1
|
Nassuuna J, Sterk J, Walusimbi B, Natukunda A, Nkangi R, Amongin R, Zirimenya L, Webb EL, Elliott AM, Nkurunungi G. Helminth driven gut inflammation and microbial translocation associate with altered vaccine responses in rural Uganda. NPJ Vaccines 2025; 10:56. [PMID: 40140378 PMCID: PMC11947158 DOI: 10.1038/s41541-025-01116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Vaccine responses are sometimes impaired in rural, low-income settings. Helminth-associated gut barrier dysfunction and microbial translocation (MT) may be implicated. We used samples from a trial of praziquantel treatment-effects on vaccine responses in Schistosoma mansoni (Sm)-endemic Ugandan islands, measuring intestinal fatty acid-binding protein 2 (I-FABP2), lipopolysaccharide-binding protein, anti-endotoxin core antibodies (EndoCab), soluble CD14 (sCD14) in plasma, and faecal lipocalin-2, occult blood (FOB), and calprotectin (fCAL), and evaluating their associations with baseline helminth infection, praziquantel treatment, and responses to BCG, yellow fever, typhoid, HPV, and tetanus-diphtheria vaccines. Sm associated positively with fCAL and FOB, hookworm with I-FABP2, and any helminth with EndoCab IgM, fCAL and FOB. Sm associated inversely with sCD14. Praziquantel treatment reduced all marker concentrations, significantly fCAL and FOB, implying that Sm-associated gut inflammation and MT is reversible. Associations of assessed markers with vaccine-specific responses were predominantly inverse. Interventions to improve gut barrier function may enhance vaccine responsiveness.
Collapse
Affiliation(s)
- Jacent Nassuuna
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | - Bridgious Walusimbi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Agnes Natukunda
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ronald Nkangi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Amongin
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily L Webb
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
2
|
Konečný L, Jedličková L, Ibnahaten Z, Roberts A, Crosnier C, Dvořák J. Eggs-posed: revision of Schistosoma mansoni venom allergen-like proteins unveils new genes and offers new insights into egg-host interactions. BMC Genomics 2025; 26:189. [PMID: 39994520 PMCID: PMC11854430 DOI: 10.1186/s12864-025-11369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Venom allergen-like proteins (VALs) are abundant in the excretory-secretory products (ESPs) of numerous parasitic helminths and have been extensively studied for over 30 years because of their potential to interact with host systems. Despite substantial research, however, the precise functions of these proteins remain largely unresolved. Schistosomes, parasites of the circulatory system, are no exception, with 29 SmVAL genes identified in the genome of Schistosoma mansoni to date. The eggs of these parasites, as primary pathogenic agents, interact directly with host tissues and release excretory-secretory products that aid their egress from the host. Although SmVALs have been detected in the egg secretome in the past, direct evidence of their secretion and functional interaction with host molecules has never been demonstrated. These findings fuel the ongoing debate as to whether egg-expressed SmVALs interact with the mammalian host or are rather miracidial proteins synthesized within the egg during larval development. RESULTS Based on complete revision of the SmVAL family and an associated robust transcriptomic meta-analysis of gene expression across the life cycle, we show that many of SmVAL genes, including 6 newly identified genes, are expressed in the infective larvae-producing stages (eggs and sporocysts). Following localization of two "egg-specific" SmVAL9 and SmVAL29 did not prove active secretion of these molecules into surrounding tissues but were aligned with miracidial structures interfacing with the molluscan host, specifically the larval surface and penetration glands. Finally, we show the complete lack of interactions between candidate SmVAL proteins and an array of 755 human cell receptors via a state-of-the-art SAVEXIS screen. CONCLUSIONS Overall, we conclude that these "egg" SmVALs are not involved in direct host‒parasite interactions in the mammalian host and are rather proteins employed during intermediate host invasion. Our study revisits and updates the SmVAL gene family, highlighting the limitations of in silico protein function predictions while emphasizing the need for up-to-date datasets and tools together with experimental validation in host-parasite interactions. By uncovering the diversity, expression patterns, and interaction dynamics of SmVALs, we open new avenues for understanding host manipulation and reevaluating orthologous proteins in other helminths.
Collapse
Affiliation(s)
- Lukáš Konečný
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia.
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | | | - Adam Roberts
- Department of Biology, University of York, York, UK
- Hull York Medical School, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Cecile Crosnier
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Jan Dvořák
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Alfred MO, Ochola L, Okeyo K, Bae E, Ogongo P, Odongo D, Njaanake K, Robinson JP. Application of microphysiological systems to unravel the mechanisms of schistosomiasis egg extravasation. Front Cell Infect Microbiol 2025; 15:1521265. [PMID: 40041145 PMCID: PMC11876127 DOI: 10.3389/fcimb.2025.1521265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Despite decades of control efforts, the prevalence of schistosomiasis remains high in many endemic regions, posing significant challenges to global health. One of the key factors contributing to the persistence of the disease is the complex life cycle of the Schistosoma parasite, the causative agent, which involves multiple stages of development and intricate interactions with its mammalian hosts and snails. Among the various stages of the parasite lifecycle, the deposition of eggs and their migration through host tissues is significant, as they initiate the onset of the disease pathology by inducing inflammatory reactions and tissue damage. However, our understanding of the mechanisms underlying Schistosoma egg extravasation remains limited, hindering efforts to develop effective interventions. Microphysiological systems, particularly organ-on-a-chip systems, offer a promising approach to study this phenomenon in a controlled experimental setting because they allow the replication of physiological microenvironments in vitro. This review provides an overview of schistosomiasis, introduces the concept of organ-on-a-chip technology, and discusses its potential applications in the field of schistosomiasis research.
Collapse
Affiliation(s)
- Martin Omondi Alfred
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Kennedy Okeyo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Euiwon Bae
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Paul Ogongo
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - David Odongo
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - Kariuki Njaanake
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - J. Paul Robinson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Jain S. Does Schistosoma mansoni trigger colorectal cancer? Mol Biochem Parasitol 2025; 262:111672. [PMID: 39894059 DOI: 10.1016/j.molbiopara.2025.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
In this work the relationship between Schistosoma mansoni (Sm) and the induction and progression of colorectal cancer (CRC) is examined. Various clinical studies reviewed here yield inconsistent results, with some reporting no association between Sm infection and CRC and others suggesting a probable to strong association. Here we propose a number of plausible mechanisms whereby Sm infection might contribute to CRC induction and/or progression. These factors are (1) chronic inflammation, (2) exposure to parasite linked antigens and genotoxic products, especially soluble egg antigens (SEAs) and (3) alteration of the intestinal microbiota. These factors probably predispose humans towards CRC and can help in CRC progression however only widespread epidemiological, clinical and pathological studies can firmly establish their role or a complete lack of it.
Collapse
Affiliation(s)
- Sidhant Jain
- Institute for Globally Distributed Open Research and Education (IGDORE), India.
| |
Collapse
|
5
|
Góes VCD, Brandão-Bezerra L, Neves RH, Oliveira AVD, Machado-Silva JR. Impact of acute schistosomiasis mansoni and concurrent type 1 diabetes on pancreatic architecture in mice. Exp Parasitol 2024; 268:108885. [PMID: 39725378 DOI: 10.1016/j.exppara.2024.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
It is not well understood how type 1 diabetes (T1D) and concomitant acute schistosomiasis mansoni affect pancreatic architecture. Male Swiss mice were administered streptozotocin (single 100 mg/kg i.p.) and thirty days later infected with 80 Schistosoma mansoni cercariae. Mice were divided into groups (n = 5): A (healthy control), B (infected), C (uninfected diabetic), and D (diabetic + infected) and euthanized at week 9 post-infection. Blood glucose levels, biometry, stereology, and pancreatic histology were evaluated. Groups C and D showed hyperglycemia (>200 mg/dL). Group B had a higher (+79%) pancreatic mass than A. The endocrine pancreas showed fewer islets of Langerhans (-62%; -50%) and a smaller islet area (-36%; -30%) in C and D, respectively, compared to A. Group D had a smaller (-37%) islet area than B. The volume density of the islets was reduced (-33%) in group C compared to A. Within the exocrine pancreas, the volume density of the pancreatic parenchyma was reduced in groups B (-29%) and D (-26%), and increased in C (+15%) compared to A. Group D was reduced (-35%) compared to C. Group D showed generalized pancreatitis, including disrupted tissue with multiple nuclei of destroyed acinar cells and lost connective tissue and acinar cells with a paucity of zymogen granules. Pancreatic stellate cells were found around areas of distorted architecture. Paired adult worms were found within the pancreatic vessels. In conclusion, concomitant T1D and schistosomiasis mansoni promote extensive exocrine and endocrine changes in the pancreas, whereas pancreatic involvement begins in acute schistosomiasis.
Collapse
Affiliation(s)
- Vanessa Coelho de Góes
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Luciana Brandão-Bezerra
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Renata Heisler Neves
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| | - Albanita Viana de Oliveira
- Department of Pathology and Laboratories, Medical Sciences College (FCM), Rio de Janeiro State University, Brazil
| | - José Roberto Machado-Silva
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Montasser A, Dakrory AE, Ibrahim MIM, El Zayyat E, Tallima H, El Ridi R. Differential murine responses to Schistosoma mansoni eggs in the liver and small intestine lead to downmodulation of hepatic but not intestinal periovular granulomas. Infect Immun 2024; 92:e0036224. [PMID: 39560403 PMCID: PMC11629614 DOI: 10.1128/iai.00362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
To control schistosomiasis mansoni, it is important to attempt preventing the worms' egg-induced pathology in the liver and limiting pathogen transmission following egg exit from the intestines to the exterior. Therefore, the present study aimed to clarify the reasons behind the decades-long riddle of periovular granulomas downmodulation in the liver, but not the small intestine, with the progression of murine schistosomiasis mansoni. Outbred female CD-1 mice were percutaneously exposed to 15 Schistosoma mansoni cercariae. The liver and small intestine were collected from mice harboring a minimum of a worm couple at 8, 12, 16, and 20 weeks post-infection, assessed for egg counts/g and histopathological changes, and used to prepare Triton X-100 extracts. Content of cytokines, saturated and unsaturated fatty acids, triglycerides, cholesterol, reactive oxygen species, and uric acid per mg tissue extract proteins were evaluated using capture enzyme-linked immunosorbent assays, gas chromatography-flame ionization detector, and standard commercially available reagents, respectively. Examination of hematoxylin-eosin-stained tissue sections confirmed the decrease in size and changes in cellular composition of periovular granulomas in the liver but not the small intestine, associated with wide differences in released cytokines types and amounts, and content of the bioactive lipids, arachidonic and docosahexaenoic acids, reactive oxygen species, and uric acid. The results together disclosed that the downmodulation of hepatic, but not the small intestine, circumoval granulomas with the progression of murine S. mansoni naturally results from site- and tissue- specific immunological and biochemical responses to the egg-derived antigens and molecules and suggested that the intestines appear to harbor immune-privileged sites.
Collapse
Affiliation(s)
- Ashgan Montasser
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmad E. Dakrory
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Emad El Zayyat
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hatem Tallima
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Serra JT, Silva C, Sidat M, Belo S, Ferreira P, Ferracini N, Kaminstein D, Thompson R, Conceiçao C. Morbidity associated with schistosomiasis in adult population of Chókwè district, Mozambique. PLoS Negl Trop Dis 2024; 18:e0012738. [PMID: 39680606 PMCID: PMC11684762 DOI: 10.1371/journal.pntd.0012738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Mozambique is one of the countries with the highest prevalence of schistosomiasis, although there is little data on the prevalence of disease and associated morbidity in the adult population. This study aimed to describe and characterize the morbidity associated with schistosomiasis in the adult population of Chókwè district and to explore the use of anamnestic questionnaires and urine dipsticks, as well as point-of-care ultrasound for urinary related findings, to better characterize disease prevalence and morbidity. METHODOLOGY Between April and October 2018, we conducted a cross-sectional study embedded within the Chókwè Health Research and Training Centre. Data were collected on sociodemographic variables, signs and symptoms for schistosomiasis and water related activities. Infection status was determined by urine filtration, Kato-Katz thick smear and DNA detection. Point-of care urinary tract ultrasonography was performed to assess structural morbidity associated with Schistosoma haematobium infection. Multivariate logistic regression was used to search for associations between risk factors, signs and symptoms, infection status and ultrasound abnormalities. PRINCIPAL FINDINGS Our study included 1033 participants with a median age of 34 years old. The prevalence of Schistosoma haematobium, Schistosoma mansoni and ultrasound detected urinary tract abnormalities were 11.3% (95% CI 9.5%-13.4%), 5.7% (95% CI 4.3%-7.5%) and 37.9% (95% CI 34.8%-41.2%), respectively. Of the 37.9% with urinary tract abnormalities, 14.5% were positive for Schistosoma haematobium. Reported hematuria in the last month (p = 0.004, aOR 4.385) and blood in the urine dipstick (p = 0.004, aOR 3.958) were markers of Schistosoma haematobium infection. Reporting lower abdominal pain (p = 0.017, aOR 1.599) was associated with ultrasound abnormalities. CONCLUSION Using microscopy and DNA analysis for both Schistosoma haematobium and Schistosoma mansoni in conjunction with urinary ultrasound abnormalities gives us several insights into correlations between disease prevalence (microscopic and anatomical) and demographic details in a high-risk population.
Collapse
Affiliation(s)
- João Tiago Serra
- Institute of Hygiene and Tropical Medicine, IHMT, NOVA University, Lisbon, Portugal
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, IHMT, NOVA University, Lisbon, Portugal
| | - Carina Silva
- Health & Technology Research Center, H&TRC, School of Health Technology, ESTeSL, Polytechnical Institute of Lisbon, Lisbon, Portugal
- Centro de Estatística e Aplicações, CEAUL, Universidade de Lisboa, Lisbon, Portugal
| | - Mohsin Sidat
- Faculty of Medicine, University Eduardo Mondlane, Maputo, Mozambique
| | - Silvana Belo
- Institute of Hygiene and Tropical Medicine, IHMT, NOVA University, Lisbon, Portugal
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, IHMT, NOVA University, Lisbon, Portugal
| | - Pedro Ferreira
- Institute of Hygiene and Tropical Medicine, IHMT, NOVA University, Lisbon, Portugal
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, IHMT, NOVA University, Lisbon, Portugal
| | - Natália Ferracini
- Institute of Hygiene and Tropical Medicine, IHMT, NOVA University, Lisbon, Portugal
| | - Daniel Kaminstein
- Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Ricardo Thompson
- Chókwè Health Research and Training Center, National Institute of Health, Chókwè, Mozambique
| | - Claúdia Conceiçao
- Institute of Hygiene and Tropical Medicine, IHMT, NOVA University, Lisbon, Portugal
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, IHMT, NOVA University, Lisbon, Portugal
| |
Collapse
|
8
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
9
|
Xiang F, Zhang Z, Li Y, Li M, Xie J, Sun M, Peng Q, Lin L. Research progress in the treatment of schistosomiasis with traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118501. [PMID: 38944361 DOI: 10.1016/j.jep.2024.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schistosomiasis, caused by infection with organisms of the Schistoma genus, is a parasitic and infectious disease that poses a significant risk to human health. Schistosomiasis has been a widespread issue in China for at least 2000 years. Traditional Chinese medicine (TCM) has a rich history of treating this disease, and the significant theoretical and practical knowledge attained therein may be useful in modern practice. AIM OF THE STUDY To comprehensively review TCM for the treatment of schistosomiasis, summarize the molecular basis, mechanism of action, active ingredients and formulas of TCM, and clarify the value of TCM for expanding drug options for the clinical treatment of schistosomiasis. MATERIALS AND METHODS In PubMed, Web of Science, ScienceDirect, Google Scholar and CNKI databases, "Schistosomiasis", "Schistosoma mansoni", "Schistosoma japonicum", "Liver fibrosis" and "Granuloma" were used as the key words. Information related to in vivo animal studies and clinical studies of TCM for the treatment of schistosomiasis in the past 25 years was retrieved, and the inclusion criteria focused on medicinal plants that had a history of use in China. RESULTS In this study, we collected and organized a large amount of literature on the treatment of schistosomiasis by TCM. TCM exerts therapeutic effects through antischistosomal and immunomodulatory effects, suppresses HSC activation and proliferation, reduces ECM deposition, and inhibits oxidative stress and other activities. The treatment of schistosomiasis by TCM has a unique advantage, especially for the treatment of schistosomal liver fibrosis, and the treatment of schistosomiasis with TCM in combination with praziquantel is superior to monotherapy. CONCLUSION Schistosomiasis remains a global public health problem, and TCM has made significant progress in the prevention and treatment of schistosomiasis and is a potential source of drugs for the treatment of schistosomiasis. However, research on drug screening and the mechanism of action of TCM for the treatment of schistosomiasis is lacking, and further studies and research are needed.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Miao Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Qinghua Peng
- Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| |
Collapse
|
10
|
Afful P, Abotsi GK, Adu-Gyamfi CO, Benyem G, Katawa G, Kyei S, Arndts K, Ritter M, Asare KK. Schistosomiasis-Microbiota Interactions: A Systematic Review and Meta-Analysis. Pathogens 2024; 13:906. [PMID: 39452777 PMCID: PMC11510367 DOI: 10.3390/pathogens13100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Schistosomiasis, a tropical disease affecting humans and animals, affected 251.4 million people in 2021. Schistosoma mansoni, S. haematobium, S. intercalatum, and S. japonicum are primary human schistosomes, causing tissue damage, granulomas, ulceration, hemorrhage, and opportunistic pathogen entry. The gut and urinary tract microbiota significantly impact a host's susceptibility to schistosomiasis, disrupting microbial balance; however, this relationship is not well understood. This systematic review and meta-analysis explores the intricate relationship between schistosomiasis and the host's microbiota, providing crucial insights into disease pathogenesis and management. METHODS This systematic review used PRISMA guidelines to identify peer-reviewed articles on schistosomiasis and its interactions with the host microbiome, using multiple databases and Google Scholar, providing a robust dataset for analysis. The study utilized Meta-Mar v3.5.1; descriptive tests, random-effects models, and subgroups were analyzed for the interaction between Schistosomiasis and the microbiome. Forest plots, Cochran's Q test, and Higgins' inconsistency statistic (I2) were used to assess heterogeneity. RESULTS The human Schistosoma species were observed to be associated with various bacterial species isolated from blood, stool, urine, sputum, skin, and vaginal or cervical samples. A meta-analysis of the interaction between schistosomiasis and the host microbiome, based on 31 studies, showed 29,784 observations and 5871 events. The pooled estimates indicated a significant association between schistosomiasis and changes in the microbiome of infected individuals. There was considerable heterogeneity with variance effect sizes (p < 0.0001). Subgroup analysis of Schistosoma species demonstrated that S. haematobium was the most significant contributor to the overall heterogeneity, accounting for 62.1% (p < 0.01). S. mansoni contributed 13.0% (p = 0.02), and the coinfection of S. haematobium and S. mansoni accounted for 16.8% of the heterogeneity (p < 0.01), contributing to the variability seen in the pooled analysis. Similarly, praziquantel treatment (RR = 1.68, 95% CI: 1.07-2.64) showed high heterogeneity (Chi2 = 71.42, df = 11, p < 0.01) and also indicated that Schistosoma infections in males (RR = 1.46, 95% CI: 0.00 to 551.30) and females (RR = 2.09, 95% CI: 0.24 to 18.31) have a higher risk of altering the host microbiome. CONCLUSIONS Schistosomiasis significantly disrupts the host microbiota across various bodily sites, leading to increased susceptibility to different bacterial taxa such as E. coli, Klebsiella, Proteus, Pseudomonas, Salmonella, Staphylococcus, Streptococcus, and Mycobacterium species (M. tuberculosis and M. leprae). This disruption enables these bacteria to produce toxic metabolites, which in turn cause inflammation and facilitate the progression of disease. The impact of schistosomiasis on the vaginal microbiome underscores the necessity for gender-specific approaches to treatment and prevention. Effective management of female genital schistosomiasis (FGS) requires addressing both the parasitic infection and the resulting microbiome imbalances. Additionally, praziquantel-treated individuals have different microbiome compositions compared to individuals with no praziquantel treatment. This suggests that combining praziquantel treatment with probiotics could potentially decrease the disease severity caused by an altered microbiome.
Collapse
Affiliation(s)
- Philip Afful
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Godwin Kwami Abotsi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Czarina Owusua Adu-Gyamfi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - George Benyem
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo;
| | - Samuel Kyei
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Kwame Kumi Asare
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Del Angel-Millán G, Jukemura J, Bicudo JB, Jureidini R, Montagnini AL, Segatelli V, Ribeiro TC, Namur GN, Costa TN, Stolzemburg LCP, Abdo EE, Ribeiro U, Herman P, Figueira ERR. Gallbladder schistosomiasis. Autops Case Rep 2024; 14:e2024516. [PMID: 39494156 PMCID: PMC11529890 DOI: 10.4322/acr.2024.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis is an infectious disease caused by parasitic flatworms of the genus Schistosoma. The species Schistosoma mansoni is associated with hepatosplenic disease. Schistosomiasis involving the gallbladder alone is highly unusual, with a few cases reported. Herein, we present the case of a woman from a region with endemic schistosomiasis who presented with a painless solid lesion and wall thickening of the gallbladder. She underwent an uneventful laparoscopic cholecystectomy. Microscopic examination of the surgical specimen revealed Schistosoma mansoni eggs associated with granulomatous reaction, leading to the diagnosis of schistosomiasis of the gallbladder, prompting subsequent treatment with praziquantel and follow-up. This case illustrates the importance of suspicion for this diagnosis in endemic areas, as it can be misdiagnosed with malignancy if not examined microscopically. Complications and treatment strategies are poorly characterized for the few cases of schistosomiasis; reporting this case can serve as a helpful reminder of a rare presentation of this disease.
Collapse
Affiliation(s)
- Gabriela Del Angel-Millán
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - José Jukemura
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Júlia Bragion Bicudo
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Ricardo Jureidini
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - André Luís Montagnini
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Vanderlei Segatelli
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Patologia, São Paulo, SP, Brasil
| | - Thiago Costa Ribeiro
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Guilherme Naccache Namur
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Thiago Nogueira Costa
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Lucas Cata Preta Stolzemburg
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Emilio Elias Abdo
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Ulysses Ribeiro
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Paulo Herman
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| | - Estela Regina Ramos Figueira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia e Nutrologia, Divisão de Cirurgia do Aparelho Digestivo, São Paulo, SP, Brasil
| |
Collapse
|
12
|
Xinxin Z, Xianzhou L, Dandan P, Yan W, Zhenyu L. Immunization with the glutathione S-transferase Sj26GST with Chi-CpG NP against Schistosoma japonicum in mice. Microb Pathog 2024; 195:106847. [PMID: 39127365 DOI: 10.1016/j.micpath.2024.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Schistosomiasis caused by Schistosoma japonicum (S. japonicum) is a major public health problem in the Philippines, China and Indonesia. In this study, the immunopotentiator CpG-ODN was encapsulated within chitosan nanoparticles (Chi NPs) to create a combination adjuvant (Chi-CpG NP). This approach was employed to enhance the immunogenicity of 26 kDa glutathione S-transferase (Sj26GST) from S. japonicum through intranasal immunization. The results demonstrated higher levels of specific anti-Sj26GST antibodies and Sj26GST-specific splenocyte proliferation compared to mice that were immunized with Sj26GST + Chi-CpG NP. Cytokine analysis of splenocytes revealed that the Sj26GST + Chi-CpG NP induced a slight Th1-biased immune response, with increased production of IFN-γ by CD4+ T-cells in the spleen. Subsequently, mice were intradermally inoculated with 1 × 107 organisms in the Coeliac cavity. The bacterial organ burden detected in the liver of immunized mice suggested that Sj26GST + Chi-CpG NP enhances protective immunity to inhibit S. japonicum colonization. Therefore, Sj26GST + Chi-CpG NP vaccination enhances Sj26GST-specific immunogenicity and provides protection against S. japonicum.
Collapse
Affiliation(s)
- Zhou Xinxin
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Lu Xianzhou
- Affiliated Nanhua Hospital, University of South China, Hengyang Medical School, Hengyang, 421001, China
| | - Pan Dandan
- Operating Room, The Second Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wang Yan
- Operating Room, The Second Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Li Zhenyu
- Affiliated Nanhua Hospital, University of South China, Hengyang Medical School, Hengyang, 421001, China; Hengnan People's Hospital, Hengyang, 421001, China.
| |
Collapse
|
13
|
Dannenhaus TA, Winkelmann F, Reinholdt C, Bischofsberger M, Dvořák J, Grevelding CG, Löbermann M, Reisinger EC, Sombetzki M. Intra-specific variations in Schistosoma mansoni and their possible contribution to inconsistent virulence and diverse clinical outcomes. PLoS Negl Trop Dis 2024; 18:e0012615. [PMID: 39466851 PMCID: PMC11542895 DOI: 10.1371/journal.pntd.0012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosoma mansoni was introduced from Africa to the Americas during the transatlantic slave trade and remains a major public health problem in parts of South America and the Caribbean. This study presents a comprehensive comparative analysis of three S. mansoni strains with different geographical origins-from Liberia, Belo Horizonte and Puerto Rico. We demonstrated significant variation in virulence and host-parasite interactions. METHODS We investigated the phenotypic characteristics of the parasite and its eggs, as well as the immunopathologic effects on laboratory mouse organ systems. RESULTS Our results show significant differences in worm morphology, worm burden, egg size, and pathologic organ changes between these strains. The Puerto Rican strain showed the highest virulence, as evidenced by marked liver and spleen changes and advanced liver fibrosis indicated by increased collagen content. In contrast, the strains from Liberia and Belo Horizonte had a less pathogenic profile with less liver fibrosis. We found further variations in granuloma formation, cytokine expression and T-cell dynamics, indicating different immune responses. CONCLUSION Our study emphasizes the importance of considering intra-specific variations of S. mansoni for the development of targeted therapies and public health strategies. The different virulence patterns, host immune responses and organ pathologies observed in these strains provide important insights for future research and could inform region-specific interventions for schistosomiasis control.
Collapse
Affiliation(s)
- Tim A. Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Franziska Winkelmann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Jan Dvořák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Czechia Institute of Parasitology, Prague, Czechia
| | - Christoph G. Grevelding
- Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| |
Collapse
|
14
|
Makhlouf NA, Abu-Elfatth A, Khaled T, El-Kassas M. The Interplay Between Schistosomiasis and Hepatitis C Virus: Battling on Two Fronts. INFECTIOUS DISEASES & IMMUNITY 2024; 4:187-193. [DOI: 10.1097/id9.0000000000000137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 01/04/2025]
Abstract
Abstract
Schistosomiasis is a prevalent health issue in numerous countries in Africa, Asia, and South America. Data regarding the coinfection of schistosomiasis with hepatitis C virus (HCV) is limited, yet this coinfection is prevalent in regions where schistosomiasis is endemic. The extent of the coinfection issue is evident in countries with a high prevalence of both diseases, such as Egypt. Coinfections with schistosomiasis result in more pronounced liver damage compared with an HCV infection alone. Schistosomiasis has been found to disrupt HCV-specific T-cell responses, resulting in high viral load, increased likelihood of HCV chronicity, and accelerated development of comorbidities in individuals with coinfection. Introducing new, directly acting antivirals for HCV treatment resulted in a marked shift in the disease landscape. This shift may have an impact on the incidence of coinfection with schistosomiasis. This review emphasizes the notable influence of schistosomiasis on the vulnerability to HCV coinfection, the gravity of the consequent liver pathology, and the effectiveness of HCV antiviral therapy.
Collapse
Affiliation(s)
- Nahed A Makhlouf
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed Abu-Elfatth
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Gastroenterology and Hepatology, Aljazeera Hospital, Riyadh 14236, Saudi Arabia
| | - Tasneem Khaled
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
15
|
R LC, P.F. CM, M UE, V.J. BB. Hepatic schistosomiasis as a determining factor in the development of hepatic granulomas and liver fibrosis: a review of the current literature. Pathog Glob Health 2024; 118:529-537. [PMID: 39268619 PMCID: PMC11892069 DOI: 10.1080/20477724.2024.2400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Hepatic schistosomiasis is a neglected parasitosis that affects millions of people each year worldwide and leads to high healthcare costs and increased morbidity and mortality in infected humans. It is a disease that has been widely studied in terms of its pathophysiology; therefore, the signaling pathways that lead to liver damage, with the consequent development of liver fibrosis, are now better understood. Research has elucidated the role of soluble egg antigen in the development of hepatic granulomas and liver fibrosis, the signal transducer and activator of transcription 3 and its participation in liver damage, the role of heat shock protein 47 and its involvement in liver fibrosis, the anti-inflammatory effects caused by interleukin-37, and the role of natural killer and natural killer T cells in the development of the disease. Hepatic schistosomiasis can range from simple hepatomegaly to the development of portal hypertension combined with hepatic fibrosis. For diagnostic purposes, a microscopic examination of excreta remains the gold standard; however, abdominal ultrasound has recently taken on an important role in the assessment of liver lesions produced by the parasite. Praziquantel is considered the management drug of choice, and has been associated with a potential preventive antifibrotic effect.
Collapse
Affiliation(s)
- Lara-Cano R
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Benemérita Universidad Autónoma de Puebla, Mexico City, Mexico
| | | | - Uribe-Esquivel M
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Barbero-Becerra V.J.
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
16
|
Russ L, von Bülow V, Wrobel S, Stettler F, Schramm G, Falcone FH, Grevelding CG, Roderfeld M, Roeb E. Inverse Correlation of Th2-Specific Cytokines with Hepatic Egg Burden in S. mansoni-Infected Hamsters. Cells 2024; 13:1579. [PMID: 39329761 PMCID: PMC11430739 DOI: 10.3390/cells13181579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Schistosomiasis, a parasitic disease caused by Schistosoma spp., affects more than 250 million people worldwide. S. mansoni in particular affects the gastrointestinal tract and, through its eggs, induces a Th2 immune response leading to granuloma formation. The relationship between egg load and immune response is poorly understood. We investigated whether the quantity of parasitic eggs influences the immune response in S. mansoni-infected hamsters. The hepatic and intestinal egg load was assessed, and cytokine expression as well as the expression of three major egg-derived proteins were analyzed in monosex- and bisex-infected animals by qRT-PCR. Statistical correlations between egg load or egg-derived factors Ipse/alpha-1, kappa-5, and omega-1, and the immune response were analyzed in liver and colon tissue. Surprisingly, no correlation of the Th1 cytokines with the hepatic egg load was observed, while the Th2 cytokines Il4, Il5, and Il13 showed an inverse correlation in the liver but not in the colon. A longer embryogenesis of the parasitic eggs in the liver could explain this correlation. This conclusion is supported by the lack of any correlation with immune response in the colon, as the intestinal passage of the eggs is limited to a few days.
Collapse
Affiliation(s)
- Lena Russ
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Sarah Wrobel
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Frederik Stettler
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Gabriele Schramm
- Early Life Origins of Chronic Lung Diseases, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Franco H. Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (F.H.F.); (C.G.G.)
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (F.H.F.); (C.G.G.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (L.R.); (V.v.B.); (M.R.)
| |
Collapse
|
17
|
Rogers M, Kamath S, McManus D, Jones M, Gordon C, Navarro S. Schistosoma excretory/secretory products: an untapped library of tolerogenic immunotherapeutics against food allergy. Clin Transl Immunology 2024; 13:e70001. [PMID: 39221178 PMCID: PMC11359118 DOI: 10.1002/cti2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.
Collapse
Affiliation(s)
- Madeleine Rogers
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sandip Kamath
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQLDAustralia
| | - Donald McManus
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Malcolm Jones
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of Science, School of Veterinary ScienceUniversity of QueenslandGattonQLDAustralia
| | - Catherine Gordon
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Severine Navarro
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Centre for Childhood Nutrition Research, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
18
|
Peng B, Luo Y, Xie S, Zhuang Q, Li J, Zhang P, Liu K, Zhang Y, Zhou C, Guo C, Zhou Z, Zhou J, Cai Y, Xia M, Cheng K, Ming Y. Proliferation of MDSCs may indicate a lower CD4+ T cell immune response in schistosomiasis japonica. Parasite 2024; 31:52. [PMID: 39212529 PMCID: PMC11363901 DOI: 10.1051/parasite/2024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Schistosoma japonicum (S. japonicum) is the main species of Schistosoma prevalent in China. Myeloid-derived suppressor cells (MDSCs) are important immunoregulatory cells and generally expand in parasite infection, but there is little research relating to MDSCs in Schistosoma infection. METHODS Fifty-six S. japonicum-infected patients were included in this study. MDSCs and percentages and absolute cell numbers of lymphocyte subsets, including CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells and natural killer (NK) cells were detected using flow cytometry. The degree of liver fibrosis was determined using color Doppler ultrasound. RESULTS Patients infected with S. japonicum had a much higher percentage of MDSCs among peripheral blood mononuclear cells (PBMCs) than the healthy control. Regarding subpopulations of MDSCs, the percentage of granulocytic myeloid-derived suppressor cells (G-MDSCs) was clearly increased. Correlation analysis showed that the absolute cell counts of T-cell subsets correlated negatively with the percentages of MDSCs and G-MDSCs among PBMCs. The percentage of G-MDSCs in PBMCs was also significantly higher in patients with liver fibrosis diagnosed by color doppler ultrasound (grade > 0), and the percentage of G-MDSCs in PBMCs and liver fibrosis grading based on ultrasound showed a positive correlation. CONCLUSION S. japonicum infection contributes to an increase in MDSCs, especially G-MDSCs, whose proliferation may inhibit the number of CD4+ T cells in peripheral blood. Meanwhile, there is a close relationship between proliferation of G-MDSCs and liver fibrosis in S. japonicum-infected patients.
Collapse
Affiliation(s)
- Bo Peng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yulin Luo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Shudong Xie
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Pengpeng Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Kai Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Jie Zhou
- Schistosomiasis Control Institute of Hunan Province, Yueyang, Hunan, China - Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Yu Cai
- Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Meng Xia
- Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Ke Cheng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| |
Collapse
|
19
|
Gordon S, Roberti A, Kaufmann SHE. Mononuclear Phagocytes, Cellular Immunity, and Nobel Prizes: A Historic Perspective. Cells 2024; 13:1378. [PMID: 39195266 PMCID: PMC11352343 DOI: 10.3390/cells13161378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
20
|
Patente TA, Gasan TA, Scheenstra M, Ozir-Fazalalikhan A, Obieglo K, Schetters S, Verwaerde S, Vergote K, Otto F, Wilbers RHP, van Bloois E, Wijck YV, Taube C, Hammad H, Schots A, Everts B, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. S. mansoni -derived omega-1 prevents OVA-specific allergic airway inflammation via hampering of cDC2 migration. PLoS Pathog 2024; 20:e1012457. [PMID: 39186814 PMCID: PMC11379383 DOI: 10.1371/journal.ppat.1012457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic infection with Schistosoma mansoni parasites is associated with reduced allergic sensitization in humans, while schistosome eggs protects against allergic airway inflammation (AAI) in mice. One of the main secretory/excretory molecules from schistosome eggs is the glycosylated T2-RNAse Omega-1 (ω1). We hypothesized that ω1 induces protection against AAI during infection. Peritoneal administration of ω1 prior to sensitization with Ovalbumin (OVA) reduced airway eosinophilia and pathology, and OVA-specific Th2 responses upon challenge, independent from changes in regulatory T cells. ω1 was taken up by monocyte-derived dendritic cells, mannose receptor (CD206)-positive conventional type 2 dendritic cells (CD206+ cDC2), and by recruited peritoneal macrophages. Additionally, ω1 impaired CCR7, F-actin, and costimulatory molecule expression on myeloid cells and cDC2 migration in and ex vivo, as evidenced by reduced OVA+ CD206+ cDC2 in the draining mediastinal lymph nodes (medLn) and retainment in the peritoneal cavity, while antigen processing and presentation in cDC2 were not affected by ω1 treatment. Importantly, RNAse mutant ω1 was unable to reduce AAI or affect DC migration, indicating that ω1 effects are dependent on its RNAse activity. Altogether, ω1 hampers migration of OVA+ cDC2 to the draining medLn in mice, elucidating how ω1 prevents allergic airway inflammation in the OVA/alum mouse model.
Collapse
Affiliation(s)
- Thiago A Patente
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maaike Scheenstra
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Frank Otto
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Eline van Bloois
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Christian Taube
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Arjen Schots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart Everts
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
21
|
Graeff-Teixeira C, Marcolongo-Pereira C, Kersanach BB, Geiger SM, Negrão-Correa D. Descriptive study on risk of increased morbidity of schistosomiasis and graft loss after liver transplantation. Rev Soc Bras Med Trop 2024; 57:e00201. [PMID: 39082515 PMCID: PMC11290851 DOI: 10.1590/0037-8682-0097-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Solid-organ transplantation procedures have witnessed a surge in frequency. Consequently, increased attention to associated infections and their impact on graft success is warranted. The liver is the principal target for infection by the flatworm Schistosoma mansoni. Hence, rigorous screening protocols for this parasite should be implemented for liver transplantation donors and recipients. This study investigated the risks posed by schistosomiasis-infected liver tissues for successful liver transplantation (LT), considering donors and recipients, by analyzing reported cases. Among the 43 patients undergoing LT (donors = 19; recipients = 24), 32 were infected with S. mansoni, five were infected with other Schistosoma species, and no identification was made in four patients. Reported follow-up periods ranged from 1 to 132 months, and all patients achieved successful recovery. As these helminths do not replicate in their vertebrate hosts, immunosuppressive treatment is not expected to promote increased morbidity or reactivation. Moreover, suspected or confirmed schistosomiasis infections often have a benign course, and generally, should not prevent LT. The available literature was reviewed and a provisional screening protocol has been proposed.
Collapse
Affiliation(s)
- Carlos Graeff-Teixeira
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia e Núcleo de Doenças Infecciosas, Vitória, ES, Brasil
| | - Clairton Marcolongo-Pereira
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia e Núcleo de Doenças Infecciosas, Vitória, ES, Brasil
- Centro Universitário do Espírito Santo, Faculdade de Medicina, Colatina, ES, Brasil
| | - Betina Bolina Kersanach
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia e Núcleo de Doenças Infecciosas, Vitória, ES, Brasil
| | - Stefan Michael Geiger
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | - Deborah Negrão-Correa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Laboratório de Esquistossomose e Imuno-helmintologia - Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| |
Collapse
|
22
|
Ishida K, Osakunor DNM, Rossi M, Lamanna OK, Mbanefo EC, Cody JJ, Le L, Hsieh MH. RNA-seq gene expression profiling of the bladder in a mouse model of urogenital schistosomiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601185. [PMID: 38979184 PMCID: PMC11230422 DOI: 10.1101/2024.06.29.601185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Parasitic flatworms of the Schistosoma genus cause schistosomiasis, which affects over 230 million people. Schistosoma haematobium causes the urogenital form of schistosomiasis (UGS), which can lead to hematuria, fibrosis, and increased risk of secondary infections by bacteria or viruses. UGS is also linked to bladder cancer. To understand the bladder pathology during S. haematobium infection, our group previously developed a mouse model that involves the injection of S. haematobium eggs into the bladder wall. Using this model, we studied changes in epigenetics profile, as well as changes in gene and protein expression in the host bladder tissues. In the current study, we expand upon this work by examining the expression level of both host and parasite genes using RNA sequencing (RNA-seq) in the mouse bladder wall injection model of S. haematobium infection. Methods We used a mouse model of S. haematobium infection in which parasite eggs or vehicle control were injected into the bladder walls of female BALB/c mice. RNA-seq was performed on the RNA isolated from the bladders four days after bladder wall injection. Results/Conclusions RNA-seq analysis of egg- and vehicle control-injected bladders revealed the differential expression of 1025 mouse genes in the egg-injected bladders, including genes associated with cellular infiltration, immune cell chemotaxis, cytokine signaling, and inflammation We also observed the upregulation of immune checkpoint-related genes, which suggests that while the infection causes an inflammatory response, it also dampens the response to avoid excessive inflammation-related damage to the host. Identifying these changes in host signaling and immune responses improves our understanding of the infection and how it may contribute to the development of bladder cancer. Analysis of the differential gene expression of the parasite eggs between bladder-injected versus uninjected eggs revealed 119 S. haematobium genes associated with transcription, intracellular signaling, and metabolism. The analysis of the parasite genes also revealed fewer transcript reads compared to that found in the analysis of mouse genes, highlighting the challenges of studying parasite egg biology in the mouse model of S. haematobium infection.
Collapse
Affiliation(s)
- Kenji Ishida
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Derick N M Osakunor
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Olivia K Lamanna
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Evaristus C Mbanefo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - James J Cody
- Charles River Laboratories, Rockville, Maryland, United States
| | - Loc Le
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael H Hsieh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
- Department of Urology, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
23
|
Lima JC, Brito RMDM, Pereira LC, Pereira NDS, Nascimento MSL, de Melo AL, Guedes PMM. Innate immune receptors are differentially expressed in mice during experimental Schistosoma mansoni early infection. Mem Inst Oswaldo Cruz 2024; 119:e240013. [PMID: 38896633 PMCID: PMC11182339 DOI: 10.1590/0074-02760240013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/09/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The impact of Schistosoma mansoni infection over the immune response and the mechanisms involved in pathogenesis are not yet completely understood. OBJECTIVES This study aimed to evaluate the expression of innate immune receptors in three distinct mouse lineages (BALB/c, C57BL/6 and Swiss) during experimental S. mansoni infection with LE strain. METHODS The parasite burden, intestinal tissue oogram and presence of hepatic granulomas were evaluated at 7- and 12-weeks post infection (wpi). The mRNA expression for innate Toll-like receptors, Nod-like receptors, their adaptor molecules, and cytokines were determined at 2, 7 and 12 wpi in the hepatic tissue by real-time quantitative polymerase chain reaction (qPCR). FINDINGS Swiss mice showed 100% of survival, had lower parasite burden and intestinal eggs, while infected BALB/c and C57BL/6 presented 80% and 90% of survival, respectively, higher parasite burden and intestinal eggs. The three mouse lineages displayed distinct patterns in the expression of innate immune receptors, their adaptor molecules and cytokines, at 2 and 7 wpi. MAIN CONCLUSIONS Our results suggest that the pathogenesis of S. mansoni infection is related to a dynamic early activation of innate immunity receptors and cytokines important for the control of developing worms.
Collapse
Affiliation(s)
- Janete Cunha Lima
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Biologia Parasitária, Natal, RN, Brasil
| | | | - Luanderson Cardoso Pereira
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Biologia Parasitária, Natal, RN, Brasil
| | - Nathalie de Sena Pereira
- Universidade Federal do Rio Grande do Norte, Departamento de Microbiologia e Parasitologia, Natal, RN, Brasil
| | | | - Alan Lane de Melo
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | - Paulo Marcos Matta Guedes
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Biologia Parasitária, Natal, RN, Brasil
| |
Collapse
|
24
|
Wu P, Li W, Xie Y, Guan W, Yang S, Li J, Zhao Y. An insight into the gut microbiota after Schistosoma japonicum eggs immunization in an experimental ulcerative colitis model. FASEB J 2024; 38:e23721. [PMID: 38822662 DOI: 10.1096/fj.202302576rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.
Collapse
Affiliation(s)
- Peng Wu
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wenhao Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yanqing Zhao
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
25
|
Tallima H, Tadros MM, El Ridi R. Differential protective impact of peptide vaccine formulae targeting the lung- and liver-stage of challenge Schistosoma mansoni infection in mice. Acta Trop 2024; 254:107208. [PMID: 38621620 DOI: 10.1016/j.actatropica.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/11/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The study aimed to elicit protective immune responses against murine schistosomiasis mansoni at the parasite lung- and liver stage. Two peptides showing amino acid sequence similarity to gut cysteine peptidases, which induce strong memory immune effectors in the liver, were combined with a peptide based on S. mansoni thioredoxin peroxidase (TPX), a prominent lung-stage schistosomula excretory-secretory product, and alum as adjuvant. Only one of the 2 cysteine peptidases-based peptides in a multiple antigenic peptide construct (MAP-3 and MAP-4) appeared to adjuvant protective immune responses induced by the TPX peptide in a MAP form. Production of TPX MAP-specific IgG1 serum antibodies, and increase in lung interleukin-1 (IL-1), uric acid, and reactive oxygen species (ROS) content were associated with significant (P < 0.05) 50 % reduction in recovery of lung-stage larvae. Increase in lung triglycerides and cholesterol levels appeared to provide the surviving worms with nutrients necessary for a stout double lipid bilayer barrier at the parasite-host interface. Surviving worms-released products elicited memory responses to the MAP-3 immunogen, including production of specific IgG1 antibodies and increase in liver IL-33 and ROS. Reduction in challenge worm burden recorded 45 days post infection did not exceed 48 % associated with no differences in parasite egg counts in the host liver and small intestine compared to unimmunized adjuvant control mice. Alum adjuvant assisted the second peptide, MAP-4, in production of IgG1, IgG2a, IgG2b and IgA specific antibodies and increase in liver ROS, but with no protective potential, raising doubt about the necessity of adjuvant addition. Accordingly, different vaccine formulas containing TPX MAP and 1, 2 or 3 cysteine peptidases-derived peptides with or without alum were used to immunize parallel groups of mice. Compared to unimmunized control mice, significant (P < 0.05 to < 0.005) 22 to 54 % reduction in worm burden was recorded in the different groups associated with insignificant changes in parasite egg output. The results together indicated that a schistosomiasis vaccine able to entirely prevent disease and halt its transmission still remains elusive.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Cairo, Egypt.
| | - Menerva M Tadros
- Department of Parasitology, Theodore Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
26
|
Liu Y, Xie S, Zhou J, Cai Y, Zhang P, Li J, Ming Y. Using blood routine indicators to establish a machine learning model for predicting liver fibrosis in patients with Schistosoma japonicum. Sci Rep 2024; 14:11485. [PMID: 38769391 PMCID: PMC11106071 DOI: 10.1038/s41598-024-62521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
This study intends to use the basic information and blood routine of schistosomiasis patients to establish a machine learning model for predicting liver fibrosis. We collected medical records of Schistosoma japonicum patients admitted to a hospital in China from June 2019 to June 2022. The method was to screen out the key variables and six different machine learning algorithms were used to establish prediction models. Finally, the optimal model was compared based on AUC, specificity, sensitivity and other indicators for further modeling. The interpretation of the model was shown by using the SHAP package. A total of 1049 patients' medical records were collected, and 10 key variables were screened for modeling using lasso method, including red cell distribution width-standard deviation (RDW-SD), Mean corpuscular hemoglobin concentration (MCHC), Mean corpuscular volume (MCV), hematocrit (HCT), Red blood cells, Eosinophils, Monocytes, Lymphocytes, Neutrophils, Age. Among the 6 different machine learning algorithms, LightGBM performed the best, and its AUCs in the training set and validation set were 1 and 0.818, respectively. This study established a machine learning model for predicting liver fibrosis in patients with Schistosoma japonicum. The model could help improve the early diagnosis and provide early intervention for schistosomiasis patients with liver fibrosis.
Collapse
Affiliation(s)
- Yang Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, Hunan, China
| | - Shudong Xie
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, Hunan, China
| | - Jie Zhou
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Yu Cai
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Pengpeng Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China.
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Changsha, Hunan, China.
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, Hunan, China.
| |
Collapse
|
27
|
Jutzeler KS, Le Clec'h W, Chevalier FD, Anderson TJC. Contribution of parasite and host genotype to immunopathology of schistosome infections. Parasit Vectors 2024; 17:203. [PMID: 38711063 PMCID: PMC11073996 DOI: 10.1186/s13071-024-06286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.
Collapse
Affiliation(s)
- Kathrin S Jutzeler
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA.
- UT Health, Microbiology, Immunology & Molecular Genetics, San Antonio, TX, 78229, USA.
| | - Winka Le Clec'h
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA
| | - Frédéric D Chevalier
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX, 78245, USA.
| |
Collapse
|
28
|
Peterková K, Konečný L, Macháček T, Jedličková L, Winkelmann F, Sombetzki M, Dvořák J. Winners vs. losers: Schistosoma mansoni intestinal and liver eggs exhibit striking differences in gene expression and immunogenicity. PLoS Pathog 2024; 20:e1012268. [PMID: 38814989 PMCID: PMC11166329 DOI: 10.1371/journal.ppat.1012268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The eggs of the blood fluke Schistosoma mansoni are the main cause of the clinical manifestations of chronic schistosomiasis. After laying, the egg "winners" attach to the endothelium of the mesenteric vein and, after a period of development, induce the growth of a small granuloma, which facilitates their passage to the intestinal lumen. Egg "losers" carried by the bloodstream to non-specific tissues also undergo full development and induce large granuloma formation, but their life ends there. Although these trapped eggs represent a dead end in the parasite life cycle, the vast majority of studies attempting to describe the biology of the S. mansoni eggs have studied these liver-trapped "losers" instead of migrating intestinal "winners". This raises the fundamental question of how these eggs differ. With robust comparative transcriptomic analysis performed on S. mansoni eggs isolated 7 weeks post infection, we show that gene expression is critically dependent on tissue localization, both in the early and late stages of development. While mitochondrial genes and venom allergen-like proteins are significantly upregulated in mature intestinal eggs, well-described egg immunomodulators IPSE/alpha-1 and omega-1, together with micro-exon genes, are predominantly expressed in liver eggs. In addition, several proteases and protease inhibitors previously implicated in egg-host interactions display clear tissue-specific gene expression patterns. These major differences in gene expression could be then reflected in the observed different ability of liver and intestinal soluble egg antigens to elicit host immune responses and in the shorter viability of miracidia hatched from liver eggs. Our comparative analysis provides a new perspective on the biology of parasite's eggs in the context of their development and tissue localization. These findings could contribute to a broader and more accurate understanding of parasite eggs interactions with the host, which have historically been often restricted to liver eggs and sometimes inaccurately generalized.
Collapse
Affiliation(s)
- Kristýna Peterková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Lukáš Konečný
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Franziska Winkelmann
- Universitätsmedizin Rostock, Zentrum für Innere Medizin, Abteilung für Tropenmedizin, Infektionskrankheiten und Sektion Nephrologie, Rostock, Germany
| | - Martina Sombetzki
- Universitätsmedizin Rostock, Zentrum für Innere Medizin, Abteilung für Tropenmedizin, Infektionskrankheiten und Sektion Nephrologie, Rostock, Germany
| | - Jan Dvořák
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
29
|
Oyinloye BE, Shamaki DE, Agbebi EA, Onikanni SA, Ubah CS, Aruleba RT, Dao TNP, Owolabi OV, Idowu OT, Mathenjwa-Goqo MS, Esan DT, Ajiboye BO, Omotuyi OI. In Silico Comparison of Bioactive Compounds Characterized from Azadirachta indica with an FDA-Approved Drug against Schistosomal Agents: New Insight into Schistosomiasis Treatment. Molecules 2024; 29:1909. [PMID: 38731401 PMCID: PMC11084920 DOI: 10.3390/molecules29091909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.
Collapse
Affiliation(s)
- Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - David Ezekiel Shamaki
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Emmanuel Ayodeji Agbebi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Department of Pharmacognosy and Natural Products, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | | | - Tran Nhat Phong Dao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Makhosazana Siduduzile Mathenjwa-Goqo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Deborah Tolulope Esan
- Faculty of Nursing Sciences, College of Health Sciences, Bowen University, Iwo 232102, Nigeria
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| |
Collapse
|
30
|
Luh D, Heiles S, Roderfeld M, Grevelding CG, Roeb E, Spengler B. Hepatic Topology of Glycosphingolipids in Schistosoma mansoni-Infected Hamsters. Anal Chem 2024; 96:6311-6320. [PMID: 38594017 PMCID: PMC11044111 DOI: 10.1021/acs.analchem.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.
Collapse
Affiliation(s)
- David Luh
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut
für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany
- Lipidomics,
Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Martin Roderfeld
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | | | - Elke Roeb
- Gastroenterology, Justus Liebig University Giessen, 35392Giessen, Germany
| | - Bernhard Spengler
- Institute
of Inorganic and Analytical Chemistry, Justus
Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
31
|
Gomes ECDS, da Silva IEP, de Araújo HDA, Barbosa CS. Malacological, socio-environmental evaluation, and evidence of local transmission and maintenance of schistosomiasis in an urban area of Northeast Brazil. Acta Trop 2024; 252:107145. [PMID: 38336344 DOI: 10.1016/j.actatropica.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
To present the current epidemiological scenario of schistosomiasis related to urban transmission through an epidemiological risk assessment in Porto de Galinhas, a coastal area of Pernambuco, Brazil. Malacological and parasitological surveys were performed between the years 2018 and 2020. Snails were identified taxonomically and examined to confirm infection by Schistosoma mansoni, and so to identify Schistosomiasis Transmission Foci (STF) by the artificial light exposure technique. Stool samples were examined using the Kato-Katz method to identify schistosomiasis cases. Socioeconomic, environmental, behavioural and health data were collected by a questionnaire applied to participates in the survey and used to predict the schistosomiasis risk occurrence by multivariate logistic regression. In all, a total of 6466 snails of Biomphalaria glabrata were collected and 36 breeding sites were identified, of which 25 % were STF. A total of 2236 individuals took part of the survey which identified 187 cases of schistosomiasis, registering a positivity percentage of 8.36 %. The surveys identified the neighbourhoods with the highest risk for transmission while the socioenvironmental analysis identifies other risk factors for disease occurrence, such as gender, age range, level of education and absence of water drainage. We found that areas with poor sanitation, flooding during winter periods and dwellings located near mangroves should be treated by health authorities as priority areas for health interventions to minimize disease transmission. In addition, efforts to improve the population's educational level could certainly contribute to the adoption of measures to prevent and control this neglected tropical disease.
Collapse
Affiliation(s)
- Elainne Christine de Souza Gomes
- Department of Parasitology, Aggeu Magalhães Institute, Fiocruz - Ministry of Health, Cidade Universitária, Av. Professor Moraes Rego, 1235, CEP: 50.740-465, Recife, PE, Brazil.
| | - Iris Edna Pereira da Silva
- Department of Parasitology, Aggeu Magalhães Institute, Fiocruz - Ministry of Health, Cidade Universitária, Av. Professor Moraes Rego, 1235, CEP: 50.740-465, Recife, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Health Department of Ipojuca County (PE) - Brazil, Rua Cel. João Souza Leão, CEP: 55.590-000, Ipojuca, PE, Brazil; Biotechnology and Drugs Laboratory and Biomaterials Technology Laboratory - Academic Center of Vitória de Santo Antão, Federal University of Pernambuco, Rua Alto do Reservatório, s/n - Bela Vista, CEP: 55.608-680, Vitória de Santo Antão, PE, Brazil; Keizo Asami Institute (iLIKA), Federal University of Pernambuco, Cidade Universitária, Av. Prof. Moraes Rego, 1235 CEP: 50670-901, Recife, PE, Brazil
| | - Constança Simões Barbosa
- Department of Parasitology, Aggeu Magalhães Institute, Fiocruz - Ministry of Health, Cidade Universitária, Av. Professor Moraes Rego, 1235, CEP: 50.740-465, Recife, PE, Brazil
| |
Collapse
|
32
|
Rosa AAD, Brandão-Bezerra L, Corrêa CL, Amaral G Da-Silva S, Rodrigues LS, Machado-Silva JR, Neves RH. Changes in splenic tissue and immune response profile of Schistosoma mansoni infected mice submitted to chronic ethanol intake. Exp Parasitol 2024; 259:108706. [PMID: 38309327 DOI: 10.1016/j.exppara.2024.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
In Schistosoma mansoni infection, the spleen is one of the organs affected, causing its enlargement (splenomegaly). Intake of ethanol through alcoholic beverages can cause spleen atrophy and interfere with immune activity. To gain knowledge of this association on the spleen and on the immune response profile, male mice were used as an experimental model. These animals were divided into four groups: C. control; EC. uninfected/ethanol gavage; I. infected; and IE. infected/ethanol gavage. Groups I and IE were infected with about 100 cercariae (BH strain) of S. mansoni and in the fifth week of infection, gavage 200 μL/day/animal of 18 % ethanol was started for 28 consecutive days. At the end of the gavage (9th week of infection) all animals were euthanized. The spleen was removed and longitudinally divided in two parts. After histological processing, the sections were stained with H&E and Gomori's Reticulin for histopathological and stereological analyses, white pulp morphometry and quantification of megakaryocytes. The other fragment was macerated (in laminar flow) and the cell suspension, after adjusting the concentration (2 × 106), was plated to obtain cytokines produced by spleen cells that were measured by flow cytometry (Citometric Bead Array). Histopathological and quantitative analyzes in the spleen of the IE group showed an increase in the number of trabeculae and megakaryocytes, a decrease in reticular fibers, as well as important organizational changes in the white pulp and red pulp. Due to the decrease in the levels of cytokines measured and the result of the calculation of the ratio between the IFN-y and IL-10 cytokines (p = 0.0079) of the infected groups, we suggest that ethanol decreased the inflammatory and anti-inflammatory response generated by the infection (group IE, the production of cytokines was significantly decreased (p < 0.01). These changes demonstrate that ethanol ingestion interferes with some parameters of experimental S. mansoni infection, such as changes in splenic tissue and in the pattern of cytokine production.
Collapse
Affiliation(s)
- Aline Aparecida da Rosa
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Luciana Brandão-Bezerra
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, School of Medical Sciences, Rio de Janeiro State University, Brazil; Medicine School, Estácio de Sá University, Brazil
| | - Silvia Amaral G Da-Silva
- Laboratory of Parasitic Immunopharmacology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology, Department of Pathology and Laboratories, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - José Roberto Machado-Silva
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Renata Heisler Neves
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil.
| |
Collapse
|
33
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
34
|
Ahmed SAA, Gad SEM, Eida OM, Makhlouf LM. Anti-fibrotic Effect of Oral Versus Intraperitoneal Administration of Gold Nanoparticles in Hepatic Schistosoma mansoni-Infected Mice. Acta Parasitol 2024; 69:190-202. [PMID: 37964174 PMCID: PMC11001733 DOI: 10.1007/s11686-023-00730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Schistosomiasis significantly impacts public health, as it causes severe morbidity. Infections caused by Schistosoma mansoni (S. mansoni) can be treated with gold nanoparticles (AuNPs). This study aims to determine the most effective route of AuNPs administration and the magnitude of its anti-fibrotic effect. METHODS In the five groups' in vivo assay design, AuNPs were administered intraperitoneally (1 mg/kg) and orally (1 mg/100 g) to S. mansoni-infected mice. Biochemical parameters (serum levels of albumin and liver enzymes alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were measured. The histological changes of the liver in distinct groups were evaluated using Hematoxylin and Eosin, Masson's trichrome, and immunohistochemical stains. RESULTS Infection with S. mansoni was associated with substantial changes in the histological architecture of liver tissue and abnormal levels of hepatic function tests (albumin, AST, and ALT). Schistosoma infected hepatocytes exhibited an abnormal microscopic morphology, granuloma formation and aggressive fibrosis. AuNPs restored the liver histological architecture with a highly significant anti-fibrotic effect and significantly corrected hepatic function test levels. Intraperitoneal administration of AuNPs resulted in the most significant anti-fibrotic effect against hepatic S. mansoni infection as observed in all histological sections with Masson's trichrome being the best stain to represent this fact. CONCLUSION For treating S. mansoni-induced chronic liver fibrosis, intraperitoneal administration of AuNPs is a successful and effective route of administration that can be recommended.
Collapse
Affiliation(s)
| | - Samer Eid Mohamed Gad
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Omima Mohamed Eida
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Laila Mohamed Makhlouf
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
35
|
Kameni M, Musaigwa F, Kamguia LM, Kamdem SD, Mbanya G, Lamberton PHL, Komguep Nono J. Harnessing Schistosoma-associated metabolite changes in the human host to identify biomarkers of infection and morbidity: Where are we and what should we do next? PLoS Negl Trop Dis 2024; 18:e0012009. [PMID: 38512811 PMCID: PMC10956858 DOI: 10.1371/journal.pntd.0012009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Schistosomiasis is the second most widespread parasitic disease affecting humans. A key component of today's infection control measures is the diagnosis and monitoring of infection, informing individual- and community-level treatment. However, newly acquired infections and/or low parasite burden are still difficult to diagnose reliably. Furthermore, even though the pathological consequence of schistosome egg sequestration in host tissues is well described, the evidence linking egg burden to morbidity is increasingly challenged, making it inadequate for pathology monitoring. In the last decades, omics-based instruments and methods have been developed, adjusted, and applied in parasitic research. In particular, the profiling of the most reliable determinants of phenotypes, metabolites by metabolomics, emerged as a powerful boost in the understanding of basic interactions within the human host during infection. As such, the fine detection of host metabolites produced upon exposure to parasites such as Schistosoma spp. and the ensuing progression of the disease are believed to enable the identification of Schistosoma spp. potential biomarkers of infection and associated pathology. However, attempts to provide such a comprehensive understanding of the alterations of the human metabolome during schistosomiasis are rare, limited in their design when performed, and mostly inconclusive. In this review, we aimed to briefly summarize the most robust advances in knowledge on the changes in host metabolic profile during Schistosoma infections and provide recommendations for approaches to optimize the identification of metabolomic signatures of human schistosomiasis.
Collapse
Affiliation(s)
- Mireille Kameni
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, North-West Region, Cameroon
| | - Fungai Musaigwa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leonel Meyo Kamguia
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Severin Donald Kamdem
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Gladice Mbanya
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Poppy H. L. Lamberton
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Justin Komguep Nono
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Rossi B, Previtali L, Salvi M, Gerami R, Tomasoni LR, Quiros-Roldan E. Female Genital Schistosomiasis: A Neglected among the Neglected Tropical Diseases. Microorganisms 2024; 12:458. [PMID: 38543509 PMCID: PMC10972284 DOI: 10.3390/microorganisms12030458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 11/12/2024] Open
Abstract
Schistosomiasis is a neglected parasitic disease linked to water, posing a global public health concern with a significant burden in sub-Saharan Africa. It is transmitted by Schistosoma spp., causing both acute and chronic effects affecting the urogenital or the hepato-intestinal system. Through granuloma formation, chronic schistosomiasis weakens host immunity, heightening susceptibility to coinfections. Notably, female genital schistosomiasis (FGS), a disregarded gynecological condition, adversely affects girls' and women's reproductive health and increases vulnerability to HIV. This review explores the intricate interplay between schistosomiasis and HIV, considering their geographical overlap. We delve into the clinical features of this coinfection, underlying mutual influences on transmission, diagnostic challenges, and therapeutic approaches. Understanding the dynamics of FGS and HIV coinfection is pivotal for integrated healthcare strategies in regions with co-endemicity, aiming to mitigate the impact of the two infections on vulnerable populations.
Collapse
Affiliation(s)
- Benedetta Rossi
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
- School of Advanced Studies, Department of Experimental Medicine and Public Health, University of Camerino, 62032 Camerino, Italy
| | - Letizia Previtali
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| | - Martina Salvi
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| | - Roberta Gerami
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Eugenia Quiros-Roldan
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (L.P.); (M.S.); (R.G.); (E.Q.-R.)
| |
Collapse
|
37
|
Yeh YT, Del Álamo JC, Caffrey CR. Biomechanics of parasite migration within hosts. Trends Parasitol 2024; 40:164-175. [PMID: 38172015 DOI: 10.1016/j.pt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dissemination of protozoan and metazoan parasites through host tissues is hindered by cellular barriers, dense extracellular matrices, and fluid forces in the bloodstream. To overcome these diverse biophysical impediments, parasites implement versatile migratory strategies. Parasite-exerted mechanical forces and upregulation of the host's cellular contractile machinery are the motors for these strategies, and these are comparably better characterized for protozoa than for helminths. Using the examples of the protozoans, Toxoplasma gondii and Plasmodium, and the metazoan, Schistosoma mansoni, we highlight how quantitative tools such as traction force and reflection interference contrast microscopies have improved our understanding of how parasites alter host mechanobiology to promote their migration.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 93093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0657, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Sivapornnukul P, Khamwut A, Chanchaem P, Chusongsang P, Chusongsang Y, Poodeepiyasawat P, Limpanont Y, Reamtong O, Payungporn S. Comprehensive analysis of miRNA profiling in Schistosoma mekongi across life cycle stages. Sci Rep 2024; 14:2347. [PMID: 38281987 PMCID: PMC10822868 DOI: 10.1038/s41598-024-52835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.
Collapse
Affiliation(s)
- Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ariya Khamwut
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Paporn Poodeepiyasawat
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
39
|
Silva TD, Gonçalves-Santos E, Gonçalves RV, Souza RLM, Caetano JE, Caldas IS, Diniz LF, Marques MJ, Novaes RD. Matrix metalloproteinases inhibition reveals the association between inflammation, collagen accumulation and intestinal translocation of Schistosoma mansoni eggs in vivo. Int Immunopharmacol 2024; 127:111353. [PMID: 38086267 DOI: 10.1016/j.intimp.2023.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
Schistosomiasis mansoni is a parasitic infection that causes enterohepatic morbidity associated with severe granulomatous inflammation triggered by parasite eggs. In this disease, granulomatous inflammation leads to intestinal erosion and environmental excretion of S. mansoni eggs from feces, an essential process for propagating the parasite and infecting host organisms. Metalloproteinases (MMP) are involved in S. mansoni-induced hepatic granulomatous inflammation and fibrosis. However, the relationship between MMP and collagen accumulation with the intestinal excretion of parasite eggs remains unclear. Thus, the present study investigated whether MMP inhibition is capable of modulating granulomatous inflammation, collagen accumulation and mechanical resistance to the point of influencing the dynamics between intestinal retention and excretion of S. mansoni eggs in infected mice. Our findings indicated that doxycycline (a potent MMP inhibitor) aggravates intestinal inflammation and subverts collagen dynamics in schistosomiasis. By attenuating MMP-2 and MMP-9 activity, this drug is capable of enhancing fibrosis and mechanical resistance of the intestinal wall, hindering S. mansoni eggs translocation. Although collagen content was not correlated with MMP activity, intestinal retention and fecal excretion of parasite eggs in untreated mice; these correlations were observed for doxycycline-treated animals. Thus, our study provides evidence that doxycycline is able to attenuate fecal elimination of S. mansoni eggs by inhibiting MMP-2 and MMP-9 activity, events potentially associated with excessive collagen accumulation, which increases intestinal mechanical resistance and hinders eggs translocation through the intestinal wall. Variations in intestinal collagen dynamics are relevant since they may represent changes in the environmental dispersion of S. mansoni eggs, bringing repercussions for schistosomiasis propagation.
Collapse
Affiliation(s)
- Thiago D Silva
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil
| | - Elda Gonçalves-Santos
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Raquel L M Souza
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil
| | - José Edson Caetano
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil
| | - Ivo S Caldas
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil
| | - Livia F Diniz
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil
| | - Marcos J Marques
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil; Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-000, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Jutzeler KS, LeClec'h W, Chevalier FD, Anderson TJC. Contribution of parasite and host genotype to immunopathology of schistosome infections. RESEARCH SQUARE 2024:rs.3.rs-3858151. [PMID: 38313261 PMCID: PMC10836121 DOI: 10.21203/rs.3.rs-3858151/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.
Collapse
|
41
|
Kalinna BH, Ross AG, Walduck AK. Schistosome Transgenesis: The Long Road to Success. BIOLOGY 2024; 13:48. [PMID: 38248478 PMCID: PMC10813141 DOI: 10.3390/biology13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
As research on parasitic helminths has entered the post-genomic era, research efforts have turned to deciphering the function of genes in the public databases of genome sequences. It is hoped that, by understanding the role of parasite genes in maintaining their parasitic lifestyle, critical insights can be gained to develop new intervention and control strategies. Methods to manipulate and transform parasitic worms are now developed to a point where it has become possible to gain a comprehensive understanding of the molecular mechanisms underlying host-parasite interplay, and here, we summarise and discuss the advances that have been made in schistosome transgenesis over the past 25 years. The ability to genetically manipulate schistosomes holds promise in finding new ways to control schistosomiasis, which ultimately may lead to the eradication of this debilitating disease.
Collapse
Affiliation(s)
- Bernd H. Kalinna
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia; (A.G.R.); (A.K.W.)
| | | | | |
Collapse
|
42
|
JUTZELER KS, CLEC’H WLE, CHEVALIER FD, ANDERSON TJ. Contribution of parasite and host genotype to immunopathology of schistosome infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574230. [PMID: 38260613 PMCID: PMC10802613 DOI: 10.1101/2024.01.12.574230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.
Collapse
Affiliation(s)
- Kathrin S. JUTZELER
- Host Parasite Interaction program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
- UT Health, Microbiology, Immunology & Molecular Genetics, San Antonio, TX 78229
| | - Winka LE CLEC’H
- Host Parasite Interaction program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Frédéric D. CHEVALIER
- Host Parasite Interaction program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Timothy J.C. ANDERSON
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| |
Collapse
|
43
|
Oliveira NF, Monteiro MMLV, Mainieri NS, Tamura AS, Pereira LM, Crepaldi LD, Coutinho-Silva R, Savio LEB, Silva CLM. P2Y 2-P2X7 receptors cross-talk in primed mesenteric endothelial cells upregulates NF-κB signaling favoring mononuclear cell adhesion in schistosomiasis. Front Immunol 2024; 14:1328897. [PMID: 38239348 PMCID: PMC10794548 DOI: 10.3389/fimmu.2023.1328897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is an intravascular infectious disease that impacts over 200 million people globally. In its chronic stage, it leads to mesenteric inflammation with significant involvement of monocytes/macrophages. Endothelial cells lining the vessel lumens play a crucial role, and mount of evidence links this disease to a downregulation of endoprotective cell signaling favoring a primed and proinflammatory endothelial cell phenotype and therefore the loss of immunovascular homeostasis. One hallmark of infectious and inflammatory conditions is the release of nucleotides into the extracellular milieu, which, in turn, act as innate messengers, activating purinergic receptors and triggering cell-to-cell communication. ATP influences the progression of various diseases through P2X and P2Y purinergic receptor subtypes. Among these receptors, P2Y2 (P2Y2R) and P2X7 (P2X7R) receptors stand out, known for their roles in inflammation. However, their specific role in schistosomiasis has remained largely unexplored. Therefore, we hypothesized that endothelial P2Y2R and P2X7R could contribute to monocyte adhesion to mesenteric endothelial cells in schistosomiasis. Using a preclinical murine model of schistosomiasis associated with endothelial dysfunction and age-matched control mice, we showed that endothelial P2Y2R and P2X7R activation increased monocyte adhesion to cultured primary endothelial cells in both groups. However, a distinct upregulation of endothelial P2Y2R-driven canonical Ca2+ signaling was observed in the infected group, amplifying adhesion. In the control group, the coactivation of endothelial P2Y2R and P2X7R did not alter the maximal monocyte adhesion induced by each receptor individually. However, in the infected group, this coactivation induced a distinct upregulation of P2Y2R-P2X7R-driven canonical signaling, IL-1β release, and VCAM-1 expression, with underlying mechanisms involving inflammasome and NF-κB signaling. Therefore, current data suggest that schistosomiasis alters endothelial cell P2Y2R/P2X7R signaling during inflammation. These discoveries advance our understanding of schistosomiasis. This intricate interplay, driven by PAMP-triggered endothelial P2Y2R/P2X7R cross-talk, emerges as a potential key player in the mesenteric inflammation during schistosomiasis.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nathália Santos Mainieri
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Shuiti Tamura
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Massimo Pereira
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Diniz Crepaldi
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Claudia Lucia Martins Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Gomides TAR, de Souza MLM, de Figueiredo AB, Lima MR, Silveira AMS, de Assis GFM, Fraga LAO, Silveira-Nunes G, Martucci L, Garcia JD, Afonso LCC, Teixeira-Carvalho A, Leite PM. Expression of SmATPDases 1 and 2 in Schistosoma mansoni eggs favours IL-10 production in infected individuals. Parasite Immunol 2024; 46:e13017. [PMID: 37922505 DOI: 10.1111/pim.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
A role of IL-10 is down-regulating T-cell responses to schistosome antigens. Since SmATPDases can be correlated to modulation of the immune response, we evaluated the expression of enzymes in S. mansoni eggs. Faecal samples were collected from 40 infected individuals to detect coding regions of the SmATPDases. The cytokines were measured in supernatants of PBMC. The analysis was performed by the global median determination and set up high producers (HP) of cytokines. Six individuals expressed SmATPDase1, six expressed SmATPDase2 and six expressed both enzymes. The group who expressed only SmATPDase1 showed a high frequency of IFN-γ, TNF IL-4 HP; individuals who expressed only SmATPDase2 showed a high frequency of IFN-γ, IL-6 and IL-4 HP; and individuals who expressed both enzymes showed a high frequency of IL-10 HP. The comparison of the IFN-γ/IL-10 ratio presented higher indices in the group who had SmATPDase 2 expression than those who had the expression of both enzymes. The positive correlation between infection intensity and IL-10 levels remained only in the positive SmATPDase group. The IL-10 is the only cytokine induced by the expression of both enzymes. Our data suggest that the expression of both enzymes seems to be a factor that modulates the host immune response by inducing high IL-10 production.
Collapse
Affiliation(s)
- Thalisson Artur Ribeiro Gomides
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Imunologia da Universidade Vale do Rio Doce, Govenador Valadares, Brazil
| | | | - Amanda Braga de Figueiredo
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Alda Maria Soares Silveira
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | | | - Lúcia Alves Oliveira Fraga
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Gabriela Silveira-Nunes
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Letícia Martucci
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Jennifer Delgado Garcia
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Luís Carlos Crocco Afonso
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil
| | - Pauline Martins Leite
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| |
Collapse
|
45
|
Lekki-Jóźwiak J, Bąska P. The Roles of Various Immune Cell Populations in Immune Response against Helminths. Int J Mol Sci 2023; 25:420. [PMID: 38203591 PMCID: PMC10778651 DOI: 10.3390/ijms25010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Helminths are multicellular parasites that are a substantial problem for both human and veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting in decreased life quality and burdens for healthcare systems. On the other hand, these infections may alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate clinical symptoms. This review summarizes the role of the immune response against worms, with an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize non-immune cells (enteric tuft cells-ETCs) responsible for detecting parasites, as well as the role of hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells group 2-ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response, as well as the functions they play in granulomas. The aim of this paper is to review the existing knowledge regarding the immune response against helminths, to attempt to decipher the interactions between cells engaged in the response, and to indicate the gaps in the current knowledge.
Collapse
Affiliation(s)
- Janina Lekki-Jóźwiak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
46
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
47
|
Jain S, Rana M. From the discovery of helminths to the discovery of their carcinogenic potential. Parasitol Res 2023; 123:47. [PMID: 38095695 DOI: 10.1007/s00436-023-08022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Cancer involves a major aberration in the normal behaviour of cells, making them divide continuously, which interferes with the normal physiology of the body. The link between helminths and their cancer-inducing potential has been proposed in the last century. The exact pathway is still not clear but chronic inflammation in response to the deposited eggs, immune response against soluble egg antigens, and co-infection with a third party (a bacteria, a virus, or infection leading to a change in microbiome) seems to be the reasons for cancer induction. This review looks into the historical outlook on helminths along with their epidemiology, morphology, and life cycle. It then focuses on providing correlations between helminth infection and molecular mechanism of carcinogenesis by elaborating upon epidemiological, clinical, and surgical studies. While the cancer-inducing potential has been convincingly established only for a few helminths and studies point out towards possible cancer-inducing ability of the rest of the helminths elucidated in this work, however, more insights into the immunobiology of helminths as well as infected patients are required to conclusively comment upon this ability of the latter.
Collapse
Affiliation(s)
- Sidhant Jain
- Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, Haryana, India.
| | - Meenakshi Rana
- Dyal Singh College, University of Delhi, Lodhi Road, Pragati Vihaar, New Delhi, India
| |
Collapse
|
48
|
Härle L, von Bülow V, Knedla L, Stettler F, Müller H, Zahner D, Haeberlein S, Windhorst A, Tschuschner A, Burg-Roderfeld M, Köhler K, Grevelding CG, Roeb E, Roderfeld M. Hepatocyte integrity depends on c-Jun-controlled proliferation in Schistosoma mansoni infected mice. Sci Rep 2023; 13:20390. [PMID: 37990129 PMCID: PMC10663609 DOI: 10.1038/s41598-023-47646-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. The transcription factor c-Jun, which is induced in S. mansoni infection-associated liver disease, can promote hepatocyte survival but can also trigger hepatocellular carcinogenesis. We aimed to analyze the hepatic role of c-Jun following S. mansoni infection. We adopted a hepatocyte-specific c-Jun knockout mouse model (Alb-Cre/c-Jun loxP) and analyzed liver tissue and serum samples by quantitative real-time PCR array, western blotting, immunohistochemistry, hydroxyproline quantification, and functional analyses. Hepatocyte-specific c-Jun knockout (c-JunΔli) was confirmed by immunohistochemistry and western blotting. Infection with S. mansoni induced elevated aminotransferase-serum levels in c-JunΔli mice. Of note, hepatic Cyclin D1 expression was induced in infected c-Junf/f control mice but to a lower extent in c-JunΔli mice. S. mansoni soluble egg antigen-induced proliferation in a human hepatoma cell line was diminished by inhibition of c-Jun signaling. Markers for apoptosis, oxidative stress, ER stress, inflammation, autophagy, DNA-damage, and fibrosis were not altered in S. mansoni infected c-JunΔli mice compared to infected c-Junf/f controls. Enhanced liver damage in c-JunΔli mice suggested a protective role of c-Jun. A reduced Cyclin D1 expression and reduced hepatic regeneration could be the reason. In addition, it seems likely that the trends in pathological changes in c-JunΔli mice cumulatively led to a loss of the protective potential being responsible for the increased hepatocyte damage and loss of regenerative ability.
Collapse
Affiliation(s)
- Lukas Härle
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Lukas Knedla
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Frederik Stettler
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Heike Müller
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Daniel Zahner
- Central Laboratory Animal Facility, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, BFS, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Anita Windhorst
- Institute of Medical Informatics, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Annette Tschuschner
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | | | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, BFS, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Gaffkystr. 11c, 35392, Giessen, Germany.
| |
Collapse
|
49
|
Zhu J, Zhang L, Xue Z, Li Z, Wang C, Chen F, Li Y, Dai Y, Zhou Y, Zhou S, Chen X, Okumura-Noji K, Lu R, Yokoyama S, Su C. Vaccination against the HDL receptor of S. japonicum inhibits egg embryonation and prevents fatal hepatic complication in rabbit model. PLoS Negl Trop Dis 2023; 17:e0011749. [PMID: 38019787 PMCID: PMC10686426 DOI: 10.1371/journal.pntd.0011749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Schistosomiasis is one of the most important neglected tropical infectious diseases to overcome and the primary cause of its pathogenesis is ectopic maturation of the parasite eggs. Uptake of cholesteryl ester from the host high-density lipoprotein (HDL) is a key in this process in Schistosoma japonicum and CD36-related protein (CD36RP) has been identified as the receptor for this reaction. Antibody against the extracellular domain of CD36RP (Ex160) efficiently blocked the HDL cholesteryl ester uptake and the egg embryonation in vitro. However, whether Ex160 immunization could efficiently raise proper antibody responses to sufficiently block HDL cholesteryl ester uptake and the egg embryonation to protect host in vivo is very interesting but unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, rabbits were immunized with the recombinant Ex160 peptide (rEx160) to evaluate its anti-pathogenic vaccine potential. Immunization with rEx160 induced consistent anti-Ex160 IgG antibody and significant reduction in development of the liver granulomatosis lesions associated with suppressed intrahepatic maturation of the schistosome eggs. The immunization with rEx160 rescued reduction of serum HDL by the infection without changing its size distribution, being consistent with interference of the HDL lipid uptake by the parasites or their eggs by antibody against Ex160 in in vitro culture. CONCLUSIONS/SIGNIFICANCE The results demonstrated that vaccination strategy against nutritional supply pathway of the parasite is effective for reducing its pathogenesis.
Collapse
Affiliation(s)
- Jifeng Zhu
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lina Zhang
- Department of Blood Transfusion, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zechao Xue
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zilüe Li
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanyan Chen
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Dai
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Sha Zhou
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Rui Lu
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Shinji Yokoyama
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Chuan Su
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Pan W, Guo J, Li J, Su J, Zhang X, Liu J, Xu C, Hou Y. Presence of schistosome eggs in lymph node predict unfavorable prognosis in schistosomal colorectal cancer. Eur J Cancer Prev 2023; 32:566-574. [PMID: 37200090 PMCID: PMC10538618 DOI: 10.1097/cej.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the prognostic significance of schistosome eggs' location in schistosomal colorectal cancer (SCRC). METHODS 172 cases of SCRC were retrospectively analyzed. Patient clinicopathological parameters and survival rates were analyzed. RESULTS There were 102 males and 70 females, the median age was 71 years (range, 44-91). All patients were followed, and the median time was 50.1 months (range, 1.0-79.7). There were 87 patients with PS1 (presence site 1, eggs deposited in the mucosa) and 85 patients with PS2 (presence site 2, eggs deposited in the muscularis propria or throughout the full thickness of the intestinal wall), 159 patients presented with eggs in cutting edge and 83 patients presented with eggs in lymph node (LN). Hepatic schistosomiasis was found in 27.3% of patients by imaging modalities and correlated to patients with PS2 ( P < 0.001) and LNs' eggs ( P < 0.001). Survival analyses showed that in stage III SCRC, eggs' presence in LN associated with worse DFS ( P = 0.004) or marginally worse OS ( P = 0.056), patients with PS2 had shorter OS ( P = 0.044). Multivariate analyses revealed hepatic schistosomiasis was an independent prognostic factor for DFS and OS in stage III SCRC ( P = 0.001, 0.002, respectively). In adjusted multivariate analysis, eggs' presence in LN was an independent prognostic factor for DFS in stage III SCRC ( P = 0.006). CONCLUSIONS In stage III SCRC, eggs' presence in LN could predict poor prognosis and hepatic schistosomiasis was an independently unfavorable prognosis factor.
Collapse
Affiliation(s)
- Weiyu Pan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jiaojiao Guo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jiali Li
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jia Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|