1
|
Luo R, Liu J, Wang T, Zhao W, Wang Y, Wen J, Wang H, Ding S, Zhou X. The landscape of malignant transition: Unraveling cancer cell-of-origin and heterogeneous tissue microenvironment. Cancer Lett 2025; 621:217591. [PMID: 40054660 PMCID: PMC12040592 DOI: 10.1016/j.canlet.2025.217591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/12/2025]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
- Ruihan Luo
- Laboratory of Hepatic AI Translation, Frontier Science Center for Disease-Related Molecular Network and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tiangang Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanfei Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hongyu Wang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Center for Nursing Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shanli Ding
- Graduate School of Biomedical Sciences, The University of MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Tang C, Lan R, Ma DR, Zhao M, Zhang Y, Li HY, Liu S, Li BY, Yang JL, Yang HJ, Zhang ZQ. Annexin A1: The dawn of ischemic stroke (Review). Mol Med Rep 2025; 31:62. [PMID: 39749707 PMCID: PMC11726294 DOI: 10.3892/mmr.2024.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke is a prevalent clinical condition that poses a significant global challenge. Developing innovative strategies to address this issue is crucial. Annexin A1 (ANXA1), a key member of the annexin superfamily, performs various functions, such as inhibiting inflammatory factor release, promoting phagocytosis, and blocking leukocyte migration. Evidence indicates that ANXA1 plays a pivotal role in the pathogenesis of ischemic stroke. The present article reviews involvement of ANXA1 in anti‑atherosclerosis, inflammatory processes, blood‑brain barrier protection, platelet aggregation and anti‑apoptotic mechanisms. The potential applications of ANXA1 in treating ischemic stroke are also explored.
Collapse
Affiliation(s)
- Chen Tang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Lan
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Dong-Rui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Min Zhao
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yong Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hong-Yu Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shuang Liu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bo-Yang Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Jie-Li Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Hui-Jie Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
3
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Liu P, Wang L, Wang Y, Jin L, Gong H, Fan J, Zhang Y, Li H, Fu B, Wang Q, Fu Y, Fan B, Li X, Wang H, Qin X, Zheng Q. ANXA1-FPR2 axis mitigates the susceptibility to atrial fibrillation in obesity via rescuing AMPK activity in response to lipid overload. Cardiovasc Diabetol 2024; 23:452. [PMID: 39709478 PMCID: PMC11662704 DOI: 10.1186/s12933-024-02545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, and obesity serves as a significant risk factor for its development. The underlying mechanisms of obesity-related AF remain intricate and have yet to be fully elucidated. We have identified FPR2 as a potential hub gene involved in obesity-related AF through comprehensive analysis of four transcriptome datasets from AF patients and one transcriptome dataset from obese individuals, and its expression is up-regulated in both AF and obese individuals. Interestingly, ANXA1, the endogenous ligand of FPR2, was found to exhibit differential expression with AF and obesity. Specifically, it was observed to be down-regulated in AF patients but up-regulated in obese individuals. The susceptibility to AF in obese mice induced by high-fat diet (HFD) was increased following with the FPR2 blocker Boc-2.The administration of exogenous ANXA1 active peptide chain Ac2-26 can mitigate the susceptibility to AF in obese mice by attenuating atrial fibrosis, lipid deposition, oxidative stress injury, and myocardial cell apoptosis. However, this protective effect against AF susceptibility is reversed by AAV9-shAMPK-mediated AMPK specific knockdown in the myocardium. The vitro experiments demonstrated that silencing ANXA1 exacerbated lipid deposition, oxidative stress injury, and apoptosis induced by palmitic acid (PA) in cardiomyocytes. Additionally, Ac2-26 effectively mitigated myocardial lipid deposition, oxidative stress injury, and apoptosis induced by PA. These effects were impeded by FPR2 inhibitors Boc-2 and WRW4. The main mechanism involves the activation of AMPK by ANXA1 through FPR2 in order to enhance fatty acid oxidation in cardiomyocytes, thereby ultimately leading to a reduction in lipid accumulation and associated lipotoxicity. Our findings demonstrate that the ANXA1-FPR2 axis plays a protective role in obesity-associated AF by alleviating metabolic stress in the atria of obese mice, thereby emphasizing its potential as a promising therapeutic target for AF.
Collapse
MESH Headings
- Animals
- Atrial Fibrillation/genetics
- Atrial Fibrillation/enzymology
- Atrial Fibrillation/prevention & control
- Atrial Fibrillation/metabolism
- Atrial Fibrillation/physiopathology
- Obesity/enzymology
- Obesity/metabolism
- Obesity/genetics
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/genetics
- Humans
- Mice, Inbred C57BL
- Disease Models, Animal
- Annexin A1/metabolism
- Annexin A1/genetics
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Signal Transduction
- Male
- Receptors, Formyl Peptide/metabolism
- Receptors, Formyl Peptide/genetics
- Apoptosis/drug effects
- Diet, High-Fat
- Oxidative Stress/drug effects
- Receptors, Lipoxin/metabolism
- Receptors, Lipoxin/genetics
- Fibrosis
- Lipid Metabolism
- Databases, Genetic
- Mice
- Palmitic Acid/pharmacology
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Lu Wang
- Department of Endocrinology, The First Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Linyan Jin
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Haoyu Gong
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Jiali Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Yudi Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Haiquan Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Bowen Fu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Yuping Fu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Boyuan Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Xiaoli Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Hongtao Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China.
| | - Xinghua Qin
- Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, No. 127 Youyixi Road, Beilin District, Xi'an, 710072, Shaanxi, China.
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Dhaffouli F, Hachicha H, Elloumi N, Fakhfakh R, Feki S, Ben Hmida M, Sellami Boudawara T, Kammoun K, Masmoudi H. Annexin A1 expression in Lupus Nephritis. LA TUNISIE MEDICALE 2024; 102:1025-1030. [PMID: 39748688 PMCID: PMC11770797 DOI: 10.62438/tunismed.v102i12.5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Lupus nephritis (LN) is an immune complex glomerulonephritis, caused by systemic lupus erythematosus. It is associated with an increase of morbidity and mortality. In LN, the immune responses dysregulation is one of the crucial pathogenic pathways. Annexin A1 (AnxA1), as an anti-inflammatory mediator, plays a critical role in immune responses, in addition to a variety of pathological processes. AIM This study aimed to evaluate the AnxA1 expression in renal tissues, in order to explore its potential role in LN pathogenesis. METHODS AnxA1 expression was performed by immunohistochemistry staining in renal biopsies of 24 LN patients compared to 8 controls. RESULTS LN patient's biopsies showed an increased distribution of AnxA1 in glomeruli compared to controls (p=0.00019). When comparing AnxA1 expression in different LN classes, a high AnxA1 intensity score was positively correlated with glomerular proliferation. CONCLUSION Our data suggest AnxA1 as a useful marker to differentiate between severe proliferative and non severe proliferative classes of LN.
Collapse
Affiliation(s)
- Fatma Dhaffouli
- Research Laboratory LR18/SP12 "Autoimmunity, Cancer, and Immunogenetics", Habib Bourguiba hospital, Sfax, Tunisia
| | - Hend Hachicha
- Research Laboratory LR18/SP12 "Autoimmunity, Cancer, and Immunogenetics", Habib Bourguiba hospital, Sfax, Tunisia
| | - Nesrine Elloumi
- Research Laboratory LR18/SP12 "Autoimmunity, Cancer, and Immunogenetics", Habib Bourguiba hospital, Sfax, Tunisia
| | - Raouia Fakhfakh
- Research Laboratory LR18/SP12 "Autoimmunity, Cancer, and Immunogenetics", Habib Bourguiba hospital, Sfax, Tunisia
| | - Sawsen Feki
- Research Laboratory LR18/SP12 "Autoimmunity, Cancer, and Immunogenetics", Habib Bourguiba hospital, Sfax, Tunisia
| | | | | | - Khawla Kammoun
- Faculty of Medicine of Sfax, Renal Pathology Laboratory LR19ES11
| | - Hatem Masmoudi
- Research Laboratory LR18/SP12 "Autoimmunity, Cancer, and Immunogenetics", Habib Bourguiba hospital, Sfax, Tunisia
| |
Collapse
|
6
|
Seedat F, Kandzija N, Ellis M, Jiang S, Sarbalina A, Bancroft J, Drydale E, Hester S, Fischer R, Wade A, Stefana M, Todd J, Vatish M. Placental small extracellular vesicles from normal pregnancy and gestational diabetes increase insulin gene transcription and content in β cells. Clin Sci (Lond) 2024; 138:1481-1502. [PMID: 39432712 PMCID: PMC11579211 DOI: 10.1042/cs20241782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Insulin secretion increases progressively during pregnancy to maintain normal maternal blood glucose levels. The placenta plays a crucial role in this process by releasing hormones and extracellular vesicles into the maternal circulation, which drive significant changes in pregnancy physiology. Placental extracellular vesicles, which are detectable in the plasma of pregnant women, have been shown to signal peripheral tissues and contribute to pregnancy-related conditions. While studies using murine models have demonstrated that extracellular vesicles can modulate insulin secretion in pancreatic islets, it remains unclear whether these effects translate to human biology. Understanding how placental signals enhance insulin synthesis and secretion from β cells could be pivotal in developing new therapies for diabetes. In our study, we isolated placental small extracellular vesicles from human placentae and utilised the human β cell line, EndoC-βH3, to investigate their effects on β-cell function in vitro. Our results indicate that human β cells internalise placental small extracellular vesicles, leading to enhanced insulin gene expression and increased insulin content within the β cells. Moreover, these vesicles up-regulated the expression of Annexin A1, a protein known to increase insulin content. This up-regulation of Annexin A1 holds promise as a potential mechanism by which placental small extracellular vesicles enhance insulin biosynthesis.
Collapse
Affiliation(s)
- Faheem Seedat
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Neva Kandzija
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Michael J. Ellis
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Shuhan Jiang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Asselzhan Sarbalina
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Edward Drydale
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Svenja S. Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Alisha N. Wade
- Research in Metabolism and Endocrinology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, U.S.A
| | - M. Irina Stefana
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - John A. Todd
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Manu Vatish
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| |
Collapse
|
7
|
Fang L, Liu C, Jiang ZZ, Wang M, Geng K, Xu Y, Zhu Y, Fu Y, Xue J, Shan W, Zhang Q, Chen J, Chen J, Zhao M, Guo Y, Siu KWM, Chen YE, Xu Y, Liu D, Zheng L. Annexin A1 binds PDZ and LIM domain 7 to inhibit adipogenesis and prevent obesity. Signal Transduct Target Ther 2024; 9:218. [PMID: 39174522 PMCID: PMC11341699 DOI: 10.1038/s41392-024-01930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Obesity is a global issue that warrants the identification of more effective therapeutic targets and a better understanding of the pivotal molecular pathogenesis. Annexin A1 (ANXA1) is known to inhibit phospholipase A2, exhibiting anti-inflammatory activity. However, the specific effects of ANXA1 in obesity and the underlying mechanisms of action remain unclear. Our study reveals that ANXA1 levels are elevated in the adipose tissue of individuals with obesity. Whole-body or adipocyte-specific ANXA1 deletion aggravates obesity and metabolic disorders. ANXA1 levels are higher in stromal vascular fractions (SVFs) than in mature adipocytes. Further investigation into the role of ANXA1 in SVFs reveals that ANXA1 overexpression induces lower numbers of mature adipocytes, while ANXA1-knockout SVFs exhibit the opposite effect. This suggests that ANXA1 plays an important role in adipogenesis. Mechanistically, ANXA1 competes with MYC binding protein 2 (MYCBP2) for interaction with PDZ and LIM domain 7 (PDLIM7). This exposes the MYCBP2-binding site, allowing it to bind more readily to the SMAD family member 4 (SMAD4) and promoting its ubiquitination and degradation. SMAD4 degradation downregulates peroxisome proliferator-activated receptor gamma (PPARγ) transcription and reduces adipogenesis. Treatment with Ac2-26, an active peptide derived from ANXA1, inhibits both adipogenesis and obesity through the mechanism. In conclusion, the molecular mechanism of ANXA1 inhibiting adipogenesis was first uncovered in our study, which is a potential target for obesity prevention and treatment.
Collapse
Affiliation(s)
- Lu Fang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Changjie Liu
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Mengxiao Wang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Kang Geng
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Department of plastic and burns surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Yiwen Fu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Jing Xue
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, 100050, Beijing, China
| | - Wenxin Shan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Jie Chen
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Jiahong Chen
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Yuxuan Guo
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - K W Michael Siu
- Center for Mass Spectrometry Research and Clinical Application, Shandong Public Health Clinical Center Affiliated to Shandong University, Lishan Campus, 46 Lishan Road, Jinan, Shandong, China
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| | - Donghui Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China.
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, 100050, Beijing, China.
| |
Collapse
|
8
|
Sasso GRDS, Cerri PS, Sasso-Cerri E, Simões MJ, Gil CD, Florencio-Silva R. Possible role of annexin A1/FPR2 pathway in COX2/NLRP3 inflammasome regulation in alveolar bone cells of estrogen-deficient female rats with diabetes mellitus. J Periodontol 2024; 95:749-763. [PMID: 37987258 DOI: 10.1002/jper.23-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Annexin A1 (ANXA1) and the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome play important roles in bone remodeling. However, expression profiles of these factors in bone cells under diabetes mellitus (DM) and estrogen-deficient conditions are poorly understood. This study investigated the immunoexpression of ANXA1 and its formyl peptide receptor 2 (FPR2), as well as NLRP3 inflammasome mediators, during remodeling of the alveolar process in diabetic and estrogen-deficient rats. METHODS Twenty adult female Wistar rats were divided into four groups (n = 5): Sham-operated (SHAM) and ovariectomized (OVX) rats received a vehicle solution, and SHAM and OVX rats were intraperitoneally administered 60 mg/kg/body weight (BW) of streptozotocin (STZ) to induce DM (SHAM-Di and OVX-Di groups). After 7 weeks, the rats were euthanized and their maxillae were fixed in phosphate-buffered 4% formaldehyde and embedded in paraffin. Sections were stained with hematoxylin/eosin (H&E) and picrosirius red or subjected to immunohistochemical detection of ANXA1, FPR2, NLRP3, interleukin-1β (IL-1β), and cyclooxygenase-2 (COX2). RESULTS Estrogen deficiency and DM were associated with deleterious effects in bone tissue, as evidenced by a lower number of osteocytes and higher number of empty lacunae in the SHAM-Di and OVX-Di groups compared to the nondiabetic groups. Both diabetic groups showed a smaller vascular area and weaker collagen fiber birefringence intensity in alveolar bone tissue. A significantly higher number of ANXA1/FPR2-positive osteoblasts, osteocytes, and osteoclasts was accompanied by a significantly higher number of these cells immunolabeled for COX2, NLRP3, and IL-1β in the diabetic and OVX groups, especially in both estrogen-deficient and diabetic rats. CONCLUSION These results indicate a possible role for the ANXA1/FPR2 pathway as a fine-tuning/anti-inflammatory regulator to counterbalance exacerbated COX2/NLRP3/IL-1β activation in bone cells during bone remodeling under estrogen deficiency and DM.
Collapse
Affiliation(s)
- Gisela Rodrigues Da Silva Sasso
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Paulo Sérgio Cerri
- School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Manuel Jesus Simões
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| | - Rinaldo Florencio-Silva
- Department of Morphology and Genetics, Laboratory of Histology and Structural Biology, Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM), São Paulo, SP, Brazil
| |
Collapse
|
9
|
Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther 2024; 18:3337-3360. [PMID: 39100221 PMCID: PMC11298177 DOI: 10.2147/dddt.s468147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.
Collapse
Affiliation(s)
- Rani Yulifah Elkanawati
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, West Java, 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
10
|
Ge L, Chen W, Wei F. Annexin A1 protects epidermal stem cells against ultraviolet-B irradiation-induced mitochondrial dysfunction. Arch Dermatol Res 2024; 316:385. [PMID: 38874830 DOI: 10.1007/s00403-024-02875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 06/15/2024]
Abstract
Ultraviolet-B (UV-B) radiation overexposure causes function impairment of epidermal stem cells (ESCs). We explored the mechanism of Annexin A1 (ANXA1) ameliorating UV-B-induced ESC mitochondrial dysfunction/cell injury. ESCs were cultured in vitro and irradiated with different doses of UV-B. Cell viability/ANXA1 protein level were assessed. After oe-ANXA1 transfection, ESCs were treated with oe-ANXA1/UV-B irradiation/CCCP/CCG-1423/3-methyladenine for 12 h. Cell viability/death, and adenosine triphosphate (ATP)/reactive oxygen species (ROS) levels were determined. Mitochondrial membrane potential (MMP) changes/DNA (mtDNA) content/oxygen consumption and RhoA activation were assessed. ROCK1/p-MYPT1/MYPT1/(LC3BII/I)/Beclin-1/p62 protein levels were determined. Mitochondrial morphology was observed. Mito-Tracker Green (MTG) and LC3B levels were determined. UV-B irradiation decreased cell viability/ANXA1 expression in a dose-dependent manner. UV-B-treated ESCs exhibited reduced cell viability/ATP content/MMP level/mitochondrial respiratory control ratio/mtDNA number/RhoA activity/MYPT1 phosphorylation/MTG+LC3B+ cells/(LC3BII/I) and Beclin-1 proteins, increased cell death/ROS/p62/IL-1β/IL-6/TNF-α expression, contracted mitochondrial, disappeared mitochondrial cristae, and increased vacuolar mitochondria, which were averted by ANXA1 overexpression, suggesting that UV-B induced ESC mitochondrial dysfunction/cell injury/inflammation by repressing mitophagy, but ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thus repressing UV-B's effects. Mitophagy activation ameliorated UV-B-caused ESC mitochondrial dysfunction/cell injury/inflammation. Mitophagy inhibition partly diminished ANXA1-ameliorated UV-B's effects. Conjointly, ANXA1 promoted mitophagy by activating the RhoA/ROCK1 pathway, thereby improving UV-B-induced ESC mitochondrial dysfunction/cell injury.
Collapse
Affiliation(s)
- Lingzhi Ge
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China
| | - Wenfang Chen
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China
| | - Fangli Wei
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China.
| |
Collapse
|
11
|
Luo R, Liu J, Wen J, Zhou X. Single-cell Landscape of Malignant Transition: Unraveling Cancer Cell-of-Origin and Heterogeneous Tissue Microenvironment. RESEARCH SQUARE 2024:rs.3.rs-4085185. [PMID: 38645221 PMCID: PMC11030487 DOI: 10.21203/rs.3.rs-4085185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
| | - Jiajia Liu
- The University of Texas Health Science Center at Houston
| | - Jianguo Wen
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|
12
|
You Q, Ke Y, Chen X, Yan W, Li D, Chen L, Wang R, Yu J, Hong H. Loss of Endothelial Annexin A1 Aggravates Inflammation-Induched Vascular Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307040. [PMID: 38358087 PMCID: PMC11022713 DOI: 10.1002/advs.202307040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Chronic inflammation is increasingly considered as the most important component of vascular aging, contributing to the progression of age-related cardiovascular diseases. To delay the process of vascular aging, anti-inflammation may be an effective measure. The anti-inflammatory factor annexin A1 (ANXA1) is shown to participate in several age-related diseases; however, its function during vascular aging remains unclear. Here, an ANXA1 knockout (ANXA1-/-) and an endothelial cell-specific ANXA1 deletion mouse (ANXA1△EC) model are used to investigate the role of ANXA1 in vascular aging. ANXA1 depletion exacerbates vascular remodeling and dysfunction while upregulates age- and inflammation-related protein expression. Conversely, Ac2-26 (a mimetic peptide of ANXA1) supplementation reverses this phenomenon. Furthermore, long-term tumor necrosis factor-alpha (TNF-α) induction of human umbilical vein endothelial cells (HUVECs) increases cell senescence. Finally, the senescence-associated secretory phenotype and senescence-related protein expression, rates of senescence-β-galactosidase positivity, cell cycle arrest, cell migration, and tube formation ability are observed in both ANXA1-knockdown HUVECs and overexpressed ANXA1-TNF-α induced senescent HUVECs. They also explore the impact of formyl peptide receptor 2 (a receptor of ANXA1) in an ANXA1 overexpression inflammatory model. These data provide compelling evidence that age-related inflammation in arteries contributes to senescent endothelial cells that promote vascular aging.
Collapse
Affiliation(s)
- Qinyi You
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Xiaofeng Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Wanhong Yan
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Dang Li
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Lu Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Run Wang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Jie Yu
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| |
Collapse
|
13
|
Kaneva AM, Bojko ER. Fatty liver index (FLI): more than a marker of hepatic steatosis. J Physiol Biochem 2024; 80:11-26. [PMID: 37875710 DOI: 10.1007/s13105-023-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Fatty liver index (FLI) was developed as a simple and accurate marker of hepatic steatosis. FLI is derived from an algorithm based on body mass index, waist circumference, and levels of triglycerides and gamma-glutamyltransferase, and it is widely used in clinical and epidemiological studies as a screening tool for discriminating between healthy and nonalcoholic fatty liver disease (NAFLD) subjects. However, a systematic review of the literature regarding FLI revealed that this index has more extensive relationships with biochemical and physiological parameters. FLI is associated with key parameters of lipid, protein and carbohydrate metabolism, hormones, vitamins and markers of inflammation, or oxidative stress. FLI can be a predictor or risk factor for a number of metabolic and nonmetabolic diseases and mortality. FLI is also used as an indicator for determining the effects of health-related prevention interventions, medications, and toxic substances on humans. Although in most cases, the exact mechanisms underlying these associations have not been fully elucidated, they are most often assumed to be mediated by insulin resistance, inflammation, and oxidative stress. Thus, FLI may be a promising marker of metabolic health due to its multiple associations with parameters of physiological and pathological processes. In this context, the present review summarizes the data from currently available literature on the associations between FLI and biochemical variables and physiological functions. We believe that this review will be of interest to researchers working in this area and can provide new perspectives and directions for future studies on FLI.
Collapse
Affiliation(s)
- Anastasiya M Kaneva
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya str., 167982, Syktyvkar, Russia.
| | - Evgeny R Bojko
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya str., 167982, Syktyvkar, Russia
| |
Collapse
|
14
|
Cheng B, Li L, Wu Y, Luo T, Tang C, Wang Q, Zhou Q, Wu J, Lai Y, Zhu D, Du T, Huang H. The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment. Cell Biosci 2023; 13:211. [PMID: 37968699 PMCID: PMC10648385 DOI: 10.1186/s13578-023-01157-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Prostate cancer is a leading cause of cancer-related deaths among men worldwide. Docetaxel chemotherapy has proven effective in improving overall survival in patients with castration-resistant prostate cancer (CRPC), but drug resistance remains a considerable clinical challenge. METHODS We explored the role of Ribonucleotide reductase subunit M2 (RRM2), a gene associated with senescence, in the sensitivity of prostate cancer to docetaxel. We evaluated the RRM2 expression, docetaxel resistance, and ANXA1 expression in prostate cancer cell lines and tumour xenografts models. In addition, We assessed the impact of RRM2 knockdown, ANXA1 over-expression, and PI3K/AKT pathway inhibition on the sensitivity of prostate cancer cells to docetaxel. Furthermore, we assessed the sensitivity of prostate cancer cells to the combination treatment of COH29 and docetaxel. RESULTS Our results demonstrated a positive association between RRM2 expression and docetaxel resistance in prostate cancer cell lines and tumor xenograft models. Knockdown of RRM2 increased the sensitivity of prostate cancer cells to docetaxel, suggesting its role in mediating resistance. Furthermore, we observed that RRM2 stabilizes the expression of ANXA1, which in turn activates the PI3K/AKT pathway and contributes to docetaxel resistance. Importantly, we found that the combination treatment of COH29 and docetaxel resulted in a synergistic effect, further augmenting the sensitivity of prostate cancer cells to docetaxel. CONCLUSION Our findings suggest that RRM2 regulates docetaxel resistance in prostate cancer by stabilizing ANXA1-mediated activation of the PI3K/AKT pathway. Targeting RRM2 or ANXA1 may offer a promising therapeutic strategy to overcome docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongxin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chen Tang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 511430, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jilin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
15
|
Alshahrani A, Aljada A, Masood A, Mujammami M, Alfadda AA, Musambil M, Alanazi IO, Al Dubayee M, Abdel Rahman AM, Benabdelkamel H. Proteomic Profiling Identifies Distinct Regulation of Proteins in Obese Diabetic Patients Treated with Metformin. Pharmaceuticals (Basel) 2023; 16:1345. [PMID: 37895816 PMCID: PMC10609691 DOI: 10.3390/ph16101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Obesity and type 2 diabetes mellitus (T2DM) are characterized by underlying low-grade chronic inflammation. Metformin has been used as the first line of therapy in T2DM as it decreases hepatic glucose production and glucose intestinal absorption, enhances insulin sensitivity and weight loss, and is known to ameliorate inflammation. The mechanisms through which metformin exerts its effect remain unclear. Proteomics has emerged as a unique approach to explore the biological changes associated with diseases, including T2DM. It provides insight into the circulating biomarkers/mediators which could be utilized for disease screening, diagnosis, and prognosis. Methods: This study evaluated the proteomic changes in obese (Ob), obese diabetics (OD), and obese diabetic patients on metformin (ODM) using a 2D DIGE MALDI-TOF mass spectrometric approach. Results: Significant changes in sixteen plasma proteins (15 up and 1 down, ANOVA, p ≤ 0.05; fold change ≥ 1.5) were observed in the ODM group when compared to the Ob and OD groups. Bioinformatic network pathway analysis revealed that the majority of these altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. Conclusions: Our study provides important information about the possible biomarkers altered by metformin treatment in obese patients with and without T2DM. These altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. The presented proteomic profiling approach may help in identifying potential biomarkers/mediators affected by metformin treatment in T2DM and inform the understanding of metformin's mechanisms of action.
Collapse
Affiliation(s)
- Awad Alshahrani
- Department of Medicine, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
- King Abdullah International Medical Research Center, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
| | - Ibrahim O. Alanazi
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohammed Al Dubayee
- Department of Medicine, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
- King Abdullah International Medical Research Center, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Anas M. Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.); (M.M.)
| |
Collapse
|
16
|
Sant Ana M, Amantino CF, Silva RA, Gil CD, Greco KV, Primo FL, Girol AP, Oliani SM. Annexin A1 2-26 hydrogel improves healing properties in an experimental skin lesion after induction of type 1 diabetes. Biomed Pharmacother 2023; 165:115230. [PMID: 37531784 DOI: 10.1016/j.biopha.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Diabetes mellitus (DM) is characterized by metabolic alterations that involve defects in the secretion and/or action of insulin, being responsible for several complications, such as impaired healing. Studies from our research group have shown that annexin A1 protein (AnxA1) is involved in the regulation of inflammation and cell proliferation. In light of these findings, we have developed a new technology and evaluated its effect on a wound healing in vivo model using type 1 diabetes (T1DM)-induced mice. We formulated a hydrogel containing AnxA12-26 using defined parameters such as organoleptic characteristics, pH, UV-vis spectroscopy and cytotoxicity assay. UV-vis spectroscopy confirmed the presence of the associated AnxA12-26 peptide in the three-dimensional hydrogel matrix, while the in vitro cytotoxicity assay showed excellent biocompatibility. Mice showed increased blood glucose levels, confirming the efficacy of streptozotocin (STZ) to induce T1DM. Treatment with AnxA12-26 hydrogel showed to improve diabetic wound healing, defined as complete re-epithelialization and tissue remodeling, with reduction of inflammatory infiltrate in diabetic animals. We envisage that the AnxA12-26 hydrogel, with its innovative composition and formulation be efficient on improving diabetic healing and contributing on the expansion of the therapeutic arsenal to treat diabetic wounds, at a viable cost.
Collapse
Affiliation(s)
- Monielle Sant Ana
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil
| | - Camila F Amantino
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Rafael A Silva
- Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Cristiane D Gil
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Karin V Greco
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Ana P Girol
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; University Center Padre Albino, Catanduva, SP, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sonia M Oliani
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil; Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
17
|
Liu Y, Qiao Y, Pan S, Chen J, Mao Z, Ren K, Yang Y, Feng Q, Liu D, Liu Z. Broadening horizons: the contribution of mitochondria-associated endoplasmic reticulum membrane (MAM) dysfunction in diabetic kidney disease. Int J Biol Sci 2023; 19:4427-4441. [PMID: 37781026 PMCID: PMC10535705 DOI: 10.7150/ijbs.86608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a global health issue that presents a complex pathogenesis and limited treatment options. To provide guidance for precise therapies, it is crucial to accurately identify the pathogenesis of DKD. Several studies have recognized that mitochondrial and endoplasmic reticulum (ER) dysfunction are key drivers of the pathogenesis of DKD. The mitochondria-associated ER membrane (MAM) is a dynamic membrane contact site (MSC) that connects the ER and mitochondria and is essential in maintaining the normal function of the two organelles. MAM is involved in various cellular processes, including lipid synthesis and transport, calcium homeostasis, mitochondrial fusion and fission, and ER stress. Meanwhile, recent studies confirm that MAM plays a significant role in the pathogenesis of DKD by regulating glucose metabolism, lipid metabolism, inflammation, ER stress, mitochondrial fission and fusion, and autophagy. Herein, this review aims to provide a comprehensive summary of the physiological function of MAMs and their impact on the progression of DKD. Subsequently, we discuss the trend of pharmaceutical studies that target MAM resident proteins for treating DKD. Furthermore, we also explore the future development prospects of MAM in DKD research, thereby providing a new perspective for basic studies and clinical treatment of DKD.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zihui Mao
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
18
|
Abi-Ghanem C, Salinero AE, Kordit D, Mansour FM, Kelly RD, Venkataganesh H, Kyaw NR, Gannon OJ, Riccio D, Fredman G, Poitelon Y, Belin S, Kopec AM, Robison LS, Zuloaga KL. Sex differences in the effects of high fat diet on underlying neuropathology in a mouse model of VCID. Biol Sex Differ 2023; 14:31. [PMID: 37208759 PMCID: PMC10199629 DOI: 10.1186/s13293-023-00513-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias). METHODS We compared the effects of mid-life metabolic disease between males and females in a chronic cerebral hypoperfusion mouse model of VCID. C57BL/6J mice were fed a control or high fat (HF) diet starting at ~ 8.5 months of age. Three months after diet initiation, sham or unilateral carotid artery occlusion surgery (VCID model) was performed. Three months later, mice underwent behavior testing and brains were collected to assess pathology. RESULTS We have previously shown that in this VCID model, HF diet causes greater metabolic impairment and a wider array of cognitive deficits in females compared to males. Here, we report on sex differences in the underlying neuropathology, specifically white matter changes and neuroinflammation in several areas of the brain. White matter was negatively impacted by VCID in males and HF diet in females, with greater metabolic impairment correlating with less myelin markers in females only. High fat diet led to an increase in microglia activation in males but not in females. Further, HF diet led to a decrease in proinflammatory cytokines and pro-resolving mediator mRNA expression in females but not males. CONCLUSIONS The current study adds to our understanding of sex differences in underlying neuropathology of VCID in the presence of a common risk factor (obesity/prediabetes). This information is crucial for the development of effective, sex-specific therapeutic interventions for VCID.
Collapse
Affiliation(s)
- Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Kordit
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Harini Venkataganesh
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Nyi-Rein Kyaw
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Gabrielle Fredman
- Department Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Yannick Poitelon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Sophie Belin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Ashley M Kopec
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Lisa S Robison
- Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL, 33314, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| |
Collapse
|
19
|
Lee C, Han J, Jung Y. Formyl peptide receptor 2 is an emerging modulator of inflammation in the liver. Exp Mol Med 2023; 55:325-332. [PMID: 36750693 PMCID: PMC9981720 DOI: 10.1038/s12276-023-00941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 02/09/2023] Open
Abstract
Formyl peptide receptors (FPRs), which are seven-membrane G-protein coupled receptors, recognize chemotactic signals to protect hosts from pathogenic infections and mediate inflammatory responses in the body. There are three isoforms of FPRs in humans-FPR1, FPR2, and FPR3-and they bind to N-formyl peptides, except FPR3, and to various endogenous agonists. Among FPR family members, FPR2 has a lower affinity for N-formyl peptides than FPR1 and binds with a wide range of endogenous or exogenous agonists. Thus, FPR2 is considered the most ambiguous member. Accumulating evidence has shown that FPR2 is involved in the host's defense against bacterial infection and inflammation in liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, and liver cancer, suggesting the pathophysiological relevance of FPR2 to the liver. However, FPR2 has been shown to promote or suppress inflammation, depending on the type of FPR2-expressing cell and FPR2-bound ligands in the liver. Therefore, it is important to understand FPR2's function per se and to elucidate the mechanism underlying immunomodulation initiated by ligand-activated FPR2 before suggesting FPR2 as a novel therapeutic agent for liver diseases. In this review, up-to-date knowledge of FPR2, with general information on the FPR family, is provided. We shed light on the dual action of FPR2 in the liver and discuss the hepatoprotective roles of FPR2 itself and FPR2 agonists in mediating anti-inflammatory responses.
Collapse
Affiliation(s)
- Chanbin Lee
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
20
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
21
|
Wu C, Qiu T, Yuan W, Shi Y, Yao X, Jiang L, Zhang J, Yang G, Liu X, Bai J, Zhao D, Sun X. Annexin A1 inhibition facilitates NLRP3 inflammasome activation in arsenic-induced insulin resistance in rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103981. [PMID: 36182042 DOI: 10.1016/j.etap.2022.103981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Hepatic insulin resistance (IR) is the primary pathology of type 2 diabetes (T2D). The role of the NOD-like receptor protein 3 (NLRP3) inflammasome in arsenic-induced hepatic IR has been previously demonstrated. However, the mechanism of the arsenic-induced activation of the NLRP3 inflammasome is still unclear. Here, we demonstrate that NaAsO2 downregulated the mRNA and protein level of Annexin A1 (AnxA1), an anti-inflammatory factor, in rat livers and L-02 cells. Moreover, AnxA1 overexpression significantly alleviated arsenic-induced NLRP3 inflammasome activation and IR in L-02 cells. Importantly, Co-immunoprecipitation (Co-IP) results showed that AnxA1 1-190 peptide could bind to the domain encompassing amino acids 1-210 and 211-550 of NLRP3. In conclusion, our experiments demonstrated that arsenic exposure could activate the NLRP3 inflammasome and IR by inhibiting the AnxA1 activity. These findings suggest that AnxA1 may be a promising therapeutic target of arsenicosis.
Collapse
Affiliation(s)
- Chenbing Wu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Weizhuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Yan Shi
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, 116044, PR China.
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Jie Bai
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Danyi Zhao
- Department of Gastrointestinal Oncology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
22
|
Feng T, Zhang W, Li Z. Potential Mechanisms of Gut-Derived Extracellular Vesicle Participation in Glucose and Lipid Homeostasis. Genes (Basel) 2022; 13:1964. [PMID: 36360201 PMCID: PMC9689624 DOI: 10.3390/genes13111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023] Open
Abstract
The intestine participates in the regulation of glucose and lipid metabolism in multiple facets. It is the major site of nutrient digestion and absorption, provides the interface as well as docking locus for gut microbiota, and harbors hormone-producing cells scattered throughout the gut epithelium. Intestinal extracellular vesicles are known to influence the local immune response, whereas their roles in glucose and lipid homeostasis have barely been explored. Hence, this current review summarizes the latest knowledge of cargo substances detected in intestinal extracellular vesicles, and connects these molecules with the fine-tuning regulation of glucose and lipid metabolism in liver, muscle, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Tiange Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziru Li
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME 04074, USA
| |
Collapse
|
23
|
Modulating hepatic macrophages with annexin A1 in non-alcoholic steatohepatitis. Clin Sci (Lond) 2022; 136:1111-1115. [PMID: 35913023 PMCID: PMC9366860 DOI: 10.1042/cs20220258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Non-alcoholic steatohepatitis (NASH) and associated end-stage liver disease is a growing cause of concern throughout the Western world. It constitutes a significant clinical burden for which therapeutic approaches are very limited. Over the last years, considerable attention has therefore been paid to identifying potential therapeutic strategies to reduce this burden. Annexin A1 (AnxA1), a calcium-phospholipid binding protein, has been proposed to be a negative regulator of inflammation in the context of NASH. In a recent publication, Gadipudi, Ramavath, Provera et al. investigated the therapeutic potential of Annexin A1 treatment in preventing the progression of NASH. They demonstrate that treatment of mice with NASH with recombinant human AnxA1 can reduce inflammation and fibrosis without affecting steatosis or metabolic syndrome. This was proposed to be achieved through the modulation of the macrophage populations present in the liver. Here, we discuss the main findings of this work and raise some outstanding questions regarding the possible mechanisms involved and the functions of distinct macrophage populations in NASH.
Collapse
|
24
|
Zhang Q, Li F, Ritchie RH, Woodman OL, Zhou X, Qin CX. Novel strategies to promote resolution of inflammation to treat lower extremity artery disease. Curr Opin Pharmacol 2022; 65:102263. [DOI: 10.1016/j.coph.2022.102263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
|
25
|
Sajid S, Zariwala MG, Mackenzie R, Turner M, Nell T, Bellary S, Renshaw D. Suppression of Anti-Inflammatory Mediators in Metabolic Disease May Be Driven by Overwhelming Pro-Inflammatory Drivers. Nutrients 2022; 14:2360. [PMID: 35684160 PMCID: PMC9182642 DOI: 10.3390/nu14112360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Obesity is a multifactorial disease and is associated with an increased risk of developing metabolic syndrome and co-morbidities. Dysregulated expansion of the adipose tissue during obesity induces local tissue hypoxia, altered secretory profile of adipokines, cytokines and chemokines, altered profile of local tissue inflammatory cells leading to the development of low-grade chronic inflammation. Low grade chronic inflammation is considered to be the underlying mechanism that increases the risk of developing obesity associated comorbidities. The glucocorticoid induced protein annexin A1 and its N-terminal peptides are anti-inflammatory mediators involved in resolving inflammation. The aim of the current study was to investigate the role of annexin A1 in obesity and associated inflammation. To achieve this aim, the current study analysed data from two feasibility studies in clinical populations: (1) bariatric surgery patients (Pre- and 3 months post-surgery) and (2) Lipodystrophy patients. Plasma annexin A1 levels were increased at 3-months post-surgery compared to pre-surgery (1.2 ± 0.1 ng/mL, n = 19 vs. 1.6 ± 0.1 ng/mL, n = 9, p = 0.009) and positively correlated with adiponectin (p = 0.009, r = 0.468, n = 25). Plasma annexin A1 levels were decreased in patients with lipodystrophy compared to BMI matched controls (0.2 ± 0.1 ng/mL, n = 9 vs. 0.97 ± 0.1 ng/mL, n = 30, p = 0.008), whereas CRP levels were significantly elevated (3.3 ± 1.0 µg/mL, n = 9 vs. 1.4 ± 0.3 µg/mL, n = 31, p = 0.0074). The roles of annexin A1 were explored using an in vitro cell based model (SGBS cells) mimicking the inflammatory status that is observed in obesity. Acute treatment with the annexin A1 N-terminal peptide, AC2-26 differentially regulated gene expression (including PPARA (2.8 ± 0.7-fold, p = 0.0303, n = 3), ADIPOQ (2.0 ± 0.3-fold, p = 0.0073, n = 3), LEP (0.6 ± 0.2-fold, p = 0.0400, n = 3), NAMPT (0.4 ± 0.1-fold, p = 0.0039, n = 3) and RETN (0.1 ± 0.03-fold, p < 0.0001, n = 3) in mature obesogenic adipocytes indicating that annexin A1 may play a protective role in obesity and inflammation. However, this effect may be overshadowed by the continued increase in systemic inflammation associated with rapid tissue expansion in obesity.
Collapse
Affiliation(s)
- Sehar Sajid
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Richard Mackenzie
- School of Life & Health Sciences, University of Roehampton, London SW15 4DJ, UK;
| | - Mark Turner
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Theo Nell
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University Main Campus, Stellenbosch 7600, South Africa;
| | - Srikanth Bellary
- The Diabetes Centre, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK;
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| |
Collapse
|
26
|
Yan Z, Cheng X, Wang T, Hong X, Shao G, Fu C. Therapeutic potential for targeting Annexin A1 in fibrotic diseases. Genes Dis 2022; 9:1493-1505. [PMID: 36157506 PMCID: PMC9485289 DOI: 10.1016/j.gendis.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Annexin A1, a well-known endogenous anti-inflammatory mediator, plays a critical role in a variety of pathological processes. Fibrosis is described by a failure of tissue regeneration and contributes to the development of many diseases. Accumulating evidence supports that Annexin A1 participates in the progression of tissue fibrosis. However, the fundamental mechanisms by which Annexin A1 regulates fibrosis remain elusive, and even the functions of Annexin A1 in fibrotic diseases are still paradoxical. This review focuses on the roles of Annexin A1 in the development of fibrosis of lung, liver, heart, and other tissues, with emphasis on the therapy potential of Annexin A1 in fibrosis, and presents future research interests and directions in fibrotic diseases.
Collapse
|
27
|
Purvis GSD, Aranda‐Tavio H, Channon KM, Greaves DR. Bruton's TK regulates myeloid cell recruitment during acute inflammation. Br J Pharmacol 2022; 179:2754-2770. [PMID: 34897650 PMCID: PMC9361009 DOI: 10.1111/bph.15778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Bruton's TK (BTK) is a non-receptor kinase best known for its role in B lymphocyte development that is critical for proliferation and survival of leukaemic cells in B-cell malignancies. However, BTK is expressed in myeloid cells, particularly neutrophils, monocytes and macrophages where its inhibition has been reported to cause anti-inflammatory properties. EXPERIMENTAL APPROACH We explored the role of BTK on migration of myeloid cells (neutrophils, monocytes and macrophages), in vitro using chemotaxis assays and in vivo using zymosan-induced peritonitis as model systems. KEY RESULTS Using the zymosan-induced peritonitis model of sterile inflammation, we demonstrated that acute inhibition of BTK prior to zymosan challenge reduced phosphorylation of BTK in circulating neutrophils and monocytes. Moreover, pharmacological inhibition of BTK with ibrutinib specifically inhibited neutrophil and Ly6Chi monocytes, but not Ly6Clo monocyte recruitment to the peritoneum. X-linked immunodeficient (XID) mice, which have a point mutation in the Btk gene, had reduced neutrophil and monocyte recruitment to the peritoneum following zymosan challenge. Pharmacological or genetic inhibition of BTK signalling substantially reduced human monocyte and murine macrophage chemotaxis, to a range of clinically relevant chemoattractants (C5a and CCL2). We also demonstrated that inhibition of BTK in tissue resident macrophages significantly decreases chemokine secretion by reducing NF-κB activity and Akt signalling. CONCLUSION AND IMPLICATIONS Our work has identified a new role of BTK in regulating myeloid cell recruitment via two mechanisms, reducing monocyte/macrophages' ability to undergo chemotaxis and reducing chemokine secretion, via reduced NF-κB and Akt activity in tissue resident macrophages.
Collapse
Affiliation(s)
- Gareth S. D. Purvis
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| | | | - Keith M. Channon
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Cardiovascular Medicine, Radcliffe Department of MedicineJohn Radcliffe HospitalOxfordUK
| | - David R. Greaves
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| |
Collapse
|
28
|
Gadipudi LL, Ramavath NN, Provera A, Reutelingsperger C, Albano E, Perretti M, Sutti S. Annexin A1 treatment prevents the evolution to fibrosis of experimental nonalcoholic steatohepatitis. Clin Sci (Lond) 2022; 136:643-656. [PMID: 35438166 DOI: 10.1042/cs20211122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In the present study, we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets (WDs) and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1 µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-β1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rationale for the development of AnxA1 analogs for the therapeutic control of NASH evolution.
Collapse
Affiliation(s)
- Laila Lavanya Gadipudi
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Naresh Naik Ramavath
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Chris Reutelingsperger
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, U.K
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
29
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
30
|
Therapeutic Potential of Annexin A1 Modulation in Kidney and Cardiovascular Disorders. Cells 2021; 10:cells10123420. [PMID: 34943928 PMCID: PMC8700139 DOI: 10.3390/cells10123420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Renal and cardiovascular disorders are very prevalent and associated with significant morbidity and mortality. Among diverse pathogenic mechanisms, the dysregulation of immune and inflammatory responses plays an essential role in such disorders. Consequently, the discovery of Annexin A1, as a glucocorticoid-inducible anti-inflammatory protein, has fueled investigation of its role in renal and cardiovascular pathologies. Indeed, with respect to the kidney, its role has been examined in diverse renal pathologies, including acute kidney injury, diabetic nephropathy, immune-mediated nephropathy, drug-induced kidney injury, kidney stone formation, and renal cancer. Regarding the cardiovascular system, major areas of investigation include the role of Annexin A1 in vascular abnormalities, atherosclerosis, and myocardial infarction. Thus, this review briefly describes major structural and functional features of Annexin A1 followed by a review of its role in pathologies of the kidney and the cardiovascular system, as well as the therapeutic potential of its modulation for such disorders.
Collapse
|
31
|
Huang Q, Chen H, Xu F, Liu C, Wang Y, Tang W, Chen L. Relationship of microRNA locus with type 2 diabetes mellitus: a case-control study. Endocr Connect 2021; 10:1393-1402. [PMID: 34596578 PMCID: PMC8630770 DOI: 10.1530/ec-21-0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is considered as a metabolic disease with hyperglycemia. Accumulating investigations have explored the important role of hereditary factors for T2DM occurrence. Some functional microRNA (miR) polymorphisms may affect their interactions with target mRNAs and result in an aberrant expression. Thus, miR variants might be considered as a biomarker of the susceptibility of T2DM. In this study, we recruited 502 T2DM cases and 782 healthy subjects. We selected miR-146a rs2910164 C>G, miR-196a2 rs11614913 T>C and miR-499 rs3746444 A>G loci and carried out an investigation to identify whether these miR loci could influence T2DM occurrence. In this investigation, a Bonferroni correction was harnessed. After adjustment, we found that rs2910164 SNP was a protective factor for T2DM (GG vs CC/CG: adjusted P = 0.010), especially in never drinking (GG vs CC/CG: adjusted P = 0.001) and BMI ≥24 kg/m2 (GG vs CC/CG: adjusted P = 0.002) subgroups. We also identified that rs11614913 SNP was a protective factor for T2DM in smoking subjects (CC/TC vs TT: adjusted P = 0.002). When we analyzed an interaction of SNP-SNP with the susceptibility tof T2DM, rs11614913/rs3746444, rs2910164/rs3746444 and rs11614913/rs2910164 combinations were not associated with the risk of T2DM. In summary, this study highlights that rs2910164 SNP decreases the susceptibility of T2DM, especially in BMI ≥24 kg/m2 and never drinking subgroups. In addition, we also identify that rs11614913 C allele decreases the susceptibility of T2DM significantly in smoking subgroup.
Collapse
Affiliation(s)
- Qiuyu Huang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Hanshen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- Correspondence should be addressed to W Tang or L Chen: or
| | - Fan Xu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yafeng Wang
- Department of Cardiology, The People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Jiangsu Province, China
- Correspondence should be addressed to W Tang or L Chen: or
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, China
- Correspondence should be addressed to W Tang or L Chen: or
| |
Collapse
|
32
|
Wu L, Liu C, Chang DY, Zhan R, Zhao M, Man Lam S, Shui G, Zhao MH, Zheng L, Chen M. The Attenuation of Diabetic Nephropathy by Annexin A1 via Regulation of Lipid Metabolism Through the AMPK/PPARα/CPT1b Pathway. Diabetes 2021; 70:2192-2203. [PMID: 34103347 DOI: 10.2337/db21-0050] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022]
Abstract
Inflammation and abnormal metabolism play important roles in the pathogenesis of diabetic nephropathy (DN). Annexin A1 (ANXA1) contributes to inflammation resolution and improves metabolism. In this study, we assess the effects of ANXA1 in diabetic mice and proximal tubular epithelial cells (PTECs) treated with high glucose plus palmitate acid (HGPA) and explore the association of ANXA1 with lipid accumulation in patients with DN. It is found that ANXA1 deletion aggravates renal injuries, including albuminuria, mesangial matrix expansion, and tubulointerstitial lesions in high-fat diet/streptozotocin-induced diabetic mice. ANXA1 deficiency promotes intrarenal lipid accumulation and drives mitochondrial alterations in kidneys. In addition, Ac2-26, an ANXA1 mimetic peptide, has a therapeutic effect against lipid toxicity in diabetic mice. In HGPA-treated human PTECs, ANXA1 silencing causes FPR2/ALX-driven deleterious effects, which suppress phosphorylated Thr172 AMPK, resulting in decreased peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1b expression and increased HGPA-induced lipid accumulation, apoptosis, and elevated expression of proinflammatory and profibrotic genes. Last but not least, the extent of lipid accumulation correlates with renal function, and the level of tubulointerstitial ANXA1 expression correlates with ectopic lipid deposition in kidneys of patients with DN. These data demonstrate that ANXA1 regulates lipid metabolism of PTECs to ameliorate disease progression; hence, it holds great potential as a therapeutic target for DN.
Collapse
Affiliation(s)
- Liang Wu
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Changjie Liu
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Zhan
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
| | - Mingming Zhao
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Lipidall Technologies Co., Ltd., Changzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
- Beijing Tiantan Hospital, China National Clinical Research Center for Neuro-logical Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021; 228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.
Collapse
|
34
|
Ries M, Watts H, Mota BC, Lopez MY, Donat CK, Baxan N, Pickering JA, Chau TW, Semmler A, Gurung B, Aleksynas R, Abelleira-Hervas L, Iqbal SJ, Romero-Molina C, Hernandez-Mir G, d’Amati A, Reutelingsperger C, Goldfinger MH, Gentleman SM, Van Leuven F, Solito E, Sastre M. Annexin A1 restores cerebrovascular integrity concomitant with reduced amyloid-β and tau pathology. Brain 2021; 144:1526-1541. [PMID: 34148071 PMCID: PMC8262982 DOI: 10.1093/brain/awab050] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease, characterized by brain deposits of amyloid-β plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-β levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-β and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-β load, due to increased clearance and degradation of amyloid-β by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.
Collapse
Affiliation(s)
- Miriam Ries
- Department of Brain Sciences, Imperial College London, London, UK
| | - Helena Watts
- Department of Brain Sciences, Imperial College London, London, UK
| | - Bibiana C Mota
- Department of Brain Sciences, Imperial College London, London, UK
| | | | | | - Nicoleta Baxan
- Biological Imaging Centre, Imperial College London, London, UK
| | | | - Tsz Wing Chau
- Department of Brain Sciences, Imperial College London, London, UK
| | - Annika Semmler
- Department of Brain Sciences, Imperial College London, London, UK
| | - Brinda Gurung
- Department of Brain Sciences, Imperial College London, London, UK
| | | | | | | | | | | | - Antonio d’Amati
- William Harvey Research Institute, Queen Mary University London SMD, London, UK
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | - Fred Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University London SMD, London, UK
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universitá degli Studi di Napoli “Federico II”, Naples, Italy
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
35
|
Liao WI, Wu SY, Tsai SH, Pao HP, Huang KL, Chu SJ. 2-Methoxyestradiol Protects Against Lung Ischemia/Reperfusion Injury by Upregulating Annexin A1 Protein Expression. Front Immunol 2021; 12:596376. [PMID: 33796096 PMCID: PMC8007881 DOI: 10.3389/fimmu.2021.596376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: 2-Methoxyestradiol (2ME), a natural 17-β estradiol metabolite, is a potent anti-inflammatory agent, but its effect on ischemia/reperfusion (IR)-induced acute lung inflammation remains unknown. Annexin A1 (AnxA1), a glucocorticoid-regulated protein, is effective at inhibiting neutrophil transendothelial migration by binding the formyl peptide receptors (FPRs). We aimed to investigate whether 2ME upregulates the expression of AnxA1 and protects against IR-induced lung damage. Methods: IR-mediated acute lung inflammation was induced by ischemia for 40 min followed by reperfusion for 60 min in an isolated, perfused rat lung model. The rat lungs were randomly treated with vehicle or 2ME, and the functional relevance of AnxA1 was determined using an anti-AnxA1 antibody or BOC2 (a pan-receptor antagonist of the FPR). In vitro, human primary alveolar epithelial cells (HPAECs) and rat neutrophils were pretreated with 2ME and an AnxA1 siRNA or anti-AnxA1 antibody and subjected to hypoxia-reoxygenation (HR). Results: 2ME significantly decreased all lung edema parameters, neutrophil infiltration, oxidative stress, proinflammatory cytokine production, lung cell apoptosis, tight junction protein disruption, and lung tissue injury in the IR-induced acute lung inflammation model. 2ME also increased the expression of the AnxA1 mRNA and protein and suppressed the activation of nuclear factor-κB (NF-κB). In vitro, 2ME attenuated HR-triggered NF-κB activation and interleukin-8 production in HPAECs, decreased transendothelial migration, tumor necrosis factor-α production, and increased apoptosis in neutrophils exposed to HR. These protective effects of 2ME were significantly abrogated by BOC2, the anti-AnxA1 antibody, or AnxA1 siRNA. Conclusions: 2ME ameliorates IR-induced acute lung inflammation by increasing AnxA1 expression. Based on these results, 2ME may be a promising agent for attenuating IR-induced lung injury.
Collapse
Affiliation(s)
- Wen-I Liao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
36
|
Wu L, Liu C, Chang DY, Zhan R, Sun J, Cui SH, Eddy S, Nair V, Tanner E, Brosius FC, Looker HC, Nelson RG, Kretzler M, Wang JC, Xu M, Ju W, Zhao MH, Chen M, Zheng L. Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney Int 2021; 100:107-121. [PMID: 33675846 DOI: 10.1016/j.kint.2021.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Since failed resolution of inflammation is a major contributor to the progression of diabetic nephropathy, identifying endogenously generated molecules that promote the physiological resolution of inflammation may be a promising therapeutic approach for this disease. Annexin A1 (ANXA1), as an endogenous mediator, plays an important role in resolving inflammation. Whether ANXA1 could affect established diabetic nephropathy through modulating inflammatory states remains largely unknown. In the current study, we found that in patients with diabetic nephropathy, the levels of ANXA1 were upregulated in kidneys, and correlated with kidney function as well as kidney outcomes. Therefore, the role of endogenous ANXA1 in mouse models of diabetic nephropathy was further evaluated. ANXA1 deficiency exacerbated kidney injuries, exhibiting more severe albuminuria, mesangial matrix expansion, tubulointerstitial lesions, kidney inflammation and fibrosis in high fat diet/streptozotocin-induced-diabetic mice. Consistently, ANXA1 overexpression ameliorated kidney injuries in mice with diabetic nephropathy. Additionally, we found Ac2-26 (an ANXA1 mimetic peptide) had therapeutic potential for alleviating kidney injuries in db/db mice and diabetic Anxa1 knockout mice. Mechanistic studies demonstrated that intracellular ANXA1 bound to the transcription factor NF-κB p65 subunit, inhibiting its activation thereby modulating the inflammatory state. Thus, our data indicate that ANXA1 may be a promising therapeutic approach to treating and reversing diabetic nephropathy.
Collapse
Affiliation(s)
- Liang Wu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jing Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shi-He Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Tanner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank C Brosius
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Helen C Looker
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China.
| |
Collapse
|
37
|
Giese IM, Schilloks MC, Degroote RL, Weigand M, Renner S, Wolf E, Hauck SM, Deeg CA. Chronic Hyperglycemia Drives Functional Impairment of Lymphocytes in Diabetic INSC94Y Transgenic Pigs. Front Immunol 2021; 11:607473. [PMID: 33552065 PMCID: PMC7862560 DOI: 10.3389/fimmu.2020.607473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
People with diabetes mellitus have an increased risk for infections, however, there is still a critical gap in precise knowledge about altered immune mechanisms in this disease. Since diabetic INSC94Y transgenic pigs exhibit elevated blood glucose and a stable diabetic phenotype soon after birth, they provide a favorable model to explore functional alterations of immune cells in an early stage of diabetes mellitus in vivo. Hence, we investigated peripheral blood mononuclear cells (PBMC) of these diabetic pigs compared to non-diabetic wild-type littermates. We found a 5-fold decreased proliferative response of T cells in INSC94Y tg pigs to polyclonal T cell mitogen phytohemagglutinin (PHA). Using label-free LC-MS/MS, a total of 3,487 proteins were quantified, and distinct changes in protein abundances in CD4+ T cells of early-stage diabetic pigs were detectable. Additionally, we found significant increases in mitochondrial oxygen consumption rate (OCR) and higher basal glycolytic activity in PBMC of diabetic INSC94Y tg pigs, indicating an altered metabolic immune cell phenotype. Thus, our study provides new insights into molecular mechanisms of dysregulated immune cells triggered by permanent hyperglycemia.
Collapse
Affiliation(s)
- Isabella-Maria Giese
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Roxane L. Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Maria Weigand
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Stefanie M. Hauck
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
38
|
Duodenal Metatranscriptomics to Define Human and Microbial Functional Alterations Associated with Severe Obesity: A Pilot Study. Microorganisms 2020; 8:microorganisms8111811. [PMID: 33213098 PMCID: PMC7698607 DOI: 10.3390/microorganisms8111811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disorder, and the gut microbiome has been suggested to contribute to its onset. In order to better clarify the role of the microbiome in obesity, we evaluated the metatranscriptome in duodenal biopsies from a cohort of 23 adult severely obese and lean control subjects using next generation sequencing. Our aim was to provide a general picture of the duodenal metatranscriptome associated with severe obesity. We found altered expressions of human and microbial genes in the obese compared to lean subjects, with most of the gene alterations being present in the carbohydrate, protein, and lipid metabolic pathways. Defects were also present in several human genes involved in epithelial intestinal cells differentiation and function, as well as in the immunity/inflammation pathways. Moreover, the microbial taxa abundance inferred by our transcriptomic data differed in part from the data that we previously evaluated by 16S rRNA in 13/23 individuals of our cohort, particularly concerning the Firmicutes and Proteobacteria phyla abundances. In conclusion, our pilot study provides the first taxonomic and functional characterization of duodenal microbiota in severely obese subjects and lean controls. Our findings suggest that duodenal microbiome and human genes both play a role in deregulating metabolic pathways, likely affecting energy metabolism and thus contributing to the obese phenotype.
Collapse
|
39
|
Shen X, Zhang S, Guo Z, Xing D, Chen W. The crosstalk of ABCA1 and ANXA1: a potential mechanism for protection against atherosclerosis. Mol Med 2020; 26:84. [PMID: 32894039 PMCID: PMC7487582 DOI: 10.1186/s10020-020-00213-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis, characterized by the formation of fat-laden plaques, is a chronic inflammatory disease. ABCA1 promotes cholesterol efflux, reduces cellular cholesterol accumulation, and regulates anti-inflammatory activities in an apoA-I- or ANXA1-dependent manner. The latter activity occurs by mediating the efflux of ANXA1, which plays a critical role in anti-inflammatory effects, cholesterol transport, exosome and microparticle secretion, and apoptotic cell clearance. ApoA-I increases ANXA1 expression via the ERK, p38MAPK, AKT, and PKC pathways. ApoA-I regulates the signaling pathways by binding to ABCA1, suggesting that apoA-I increases ANXA1 expression by binding to ABCA1. Furthermore, ANXA1 may increase ABCA1 expression. ANXA1 increases PPARγ expression by modulating STAT6 phosphorylation. PPARγ also increases ANXA1 expression by binding to the promoter of ANXA1. Therefore, ABCA1, PPARγ, and ANXA1 may form a feedback loop and regulate each other. Interestingly, the ANXA1 needs to be externalized to the cell membrane or secreted into the extracellular fluids to exert its anti-inflammatory properties. ABCA1 transports ANXA1 from the cytoplasm to the cell membrane by regulating lipidization and serine phosphorylation, thereby mediating ANXA1 efflux, likely by promoting microparticle and exosome release. The direct role of ABCA1 expression and ANXA1 release in atherosclerosis has been unclear. In this review, we focus on the role of ANXA1 in atheroprogression and its novel interaction with ABCA1, which may be useful for providing basic knowledge for the development of novel therapeutic targets for atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Shen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Zhu Guo
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.,Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| |
Collapse
|
40
|
Tovar I, Guerrero R, López-Peñalver JJ, Expósito J, Ruiz de Almodóvar JM. Rationale for the Use of Radiation-Activated Mesenchymal Stromal/Stem Cells in Acute Respiratory Distress Syndrome. Cells 2020; 9:cells9092015. [PMID: 32887260 PMCID: PMC7565018 DOI: 10.3390/cells9092015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
We have previously shown that the combination of radiotherapy with human umbilical-cord-derived mesenchymal stromal/stem cells (MSCs) cell therapy significantly reduces the size of the xenotumors in mice, both in the directly irradiated tumor and in the distant nonirradiated tumor or its metastasis. We have also shown that exosomes secreted from MSCs preirradiated with 2 Gy are quantitatively, functionally and qualitatively different from the exosomes secreted from nonirradiated mesenchymal cells, and also that proteins, exosomes and microvesicles secreted by MSCs suffer a significant change when the cells are activated or nonactivated, with the amount of protein present in the exosomes of the preirradiated cells being 1.5 times greater compared to those from nonirradiated cells. This finding correlates with a dramatic increase in the antitumor activity of the radiotherapy when is combined with MSCs or with preirradiated mesenchymal stromal/stem cells (MSCs*). After the proteomic analysis of the load of the exosomes released from both irradiated and nonirradiated cells, we conclude that annexin A1 is the most important and significant difference between the exosomes released by the cells in either status. Knowing the role of annexin A1 in the control of hypoxia and inflammation that is characteristic of acute respiratory-distress syndrome (ARDS), we designed a hypothetical therapeutic strategy, based on the transplantation of mesenchymal stromal/stem cells stimulated with radiation, to alleviate the symptoms of patients who, due to pneumonia caused by SARS-CoV-2, require to be admitted to an intensive care unit for patients with life-threatening conditions. With this hypothesis, we seek to improve the patients' respiratory capacity and increase the expectations of their cure.
Collapse
Affiliation(s)
- Isabel Tovar
- Departamento de Oncología Médica y Radioterapia, Servicio Andaluz de Salud (SAS), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain; (I.T.); (R.G.); (J.E.)
- Instituto de Investigación Biosanitaria, Ibis Granada, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - Rosa Guerrero
- Departamento de Oncología Médica y Radioterapia, Servicio Andaluz de Salud (SAS), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain; (I.T.); (R.G.); (J.E.)
- Instituto de Investigación Biosanitaria, Ibis Granada, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - Jesús J. López-Peñalver
- Unidad de Radiología Experimental, Centro de Investigación Biomédica, Universidad de Granada, PTS Granada, 18016 Granada, Spain;
| | - José Expósito
- Departamento de Oncología Médica y Radioterapia, Servicio Andaluz de Salud (SAS), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain; (I.T.); (R.G.); (J.E.)
- Instituto de Investigación Biosanitaria, Ibis Granada, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, PTS Granada, 18016 Granada, Spain
| | | |
Collapse
|
41
|
Purvis GSD, Collino M, Aranda-Tavio H, Chiazza F, O'Riordan CE, Zeboudj L, Mohammad S, Collotta D, Verta R, Guisot NES, Bunyard P, Yaqoob MM, Greaves DR, Thiemermann C. Inhibition of Bruton's TK regulates macrophage NF-κB and NLRP3 inflammasome activation in metabolic inflammation. Br J Pharmacol 2020; 177:4416-4432. [PMID: 32608058 PMCID: PMC7484557 DOI: 10.1111/bph.15182] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-κB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity. EXPERIMENTAL APPROACH Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation. KEY RESULTS HFD-feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice decreased the activation of NF-κB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS-1/Akt/GSK-3β pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF-κB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. CONCLUSION AND IMPLICATIONS We provide "proof of concept" evidence that BTK is a novel therapeutic target for the treatment of diet-induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti-inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease.
Collapse
Affiliation(s)
- Gareth S D Purvis
- William Harvey Research Institute, Queen Mary University of London, London, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Lynda Zeboudj
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Verta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | | | - Magdi M Yaqoob
- William Harvey Research Institute, Queen Mary University of London, London, UK.,Centre for Diabetic Kidney Disease, Bart's and The London Hospital, London, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, UK.,Centre for Diabetic Kidney Disease, Bart's and The London Hospital, London, UK
| |
Collapse
|
42
|
Identification of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis. Sci Rep 2020; 10:13468. [PMID: 32778679 PMCID: PMC7417539 DOI: 10.1038/s41598-020-70540-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of diabetic nephropathy is not completely understood, and the effects of existing treatments are not satisfactory. Various public platforms already contain extensive data for deeper bioinformatics analysis. From the GSE30529 dataset based on diabetic nephropathy tubular samples, we identified 345 genes through differential expression analysis and weighted gene coexpression correlation network analysis. GO annotations mainly included neutrophil activation, regulation of immune effector process, positive regulation of cytokine production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, complement and coagulation cascades, cell adhesion molecules and the AGE-RAGE signalling pathway in diabetic complications. Additional datasets were analysed to understand the mechanisms of differential gene expression from an epigenetic perspective. Differentially expressed miRNAs were obtained to construct a miRNA-mRNA network from the miRNA profiles in the GSE57674 dataset. The miR-1237-3p/SH2B3, miR-1238-5p/ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. The methylation levels of the 345 genes were also tested based on the gene methylation profiles of the GSE121820 dataset. The top 20 hub genes in the PPI network were discerned using the CytoHubba tool. Correlation analysis with GFR showed that SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, RHOA, SERPING1, EGF and KNG1 may be involved in diabetic nephropathy. Eight small molecule compounds were identified as potential therapeutic drugs using Connectivity Map.
Collapse
|
43
|
Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes 2020; 27:115-123. [PMID: 32073426 PMCID: PMC11533224 DOI: 10.1097/med.0000000000000533] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To summarize recent advancements in our understanding of the impact of dyslipidemia on microvascular complications in type 2 diabetes (T2D), with an emphasis on peripheral neuropathy and nephropathy. RECENT FINDINGS Mounting evidence suggests that rigorous glycemic control only mitigates certain microvascular complications in T2D patients. Particularly, well regulated blood glucose levels only marginally improve peripheral neuropathy in the T2D setting. Dyslipidemia, an abnormal lipid profile, is emerging as a key factor in peripheral neuropathy. Furthermore, although glycemic control may prevent or slow nephropathy, recent developments demonstrate that dyslipidemia can also affect kidney outcomes in normoglycemic patients. Transcriptomic, epigenomic, and lipidomic investigations, as well as integrative approaches, are shedding light on potential pathomechanisms. These molecular studies are identifying possible targets for therapeutic intervention. Complementing molecular research, lifestyle interventions are on-going to assess whether dietary choices and/or exercise, weight-loss, or surgical interventions, such as bariatric surgery, can ameliorate peripheral neuropathy and nephropathy in T2D patients. SUMMARY Dyslipidemia is an emerging mechanism in microvascular complications in T2D. Elucidating the molecular pathomechanisms may pinpoint potential lipid-centric treatments. Interventional studies of dietary changes, exercise, or weight-loss surgery may also positively impact these highly prevalent and morbid complications.
Collapse
Affiliation(s)
- Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
44
|
Han PF, Che XD, Li HZ, Gao YY, Wei XC, Li PC. Annexin A1 involved in the regulation of inflammation and cell signaling pathways. Chin J Traumatol 2020; 23:96-101. [PMID: 32201231 PMCID: PMC7156956 DOI: 10.1016/j.cjtee.2020.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the deepening of research, proteomics has developed into a science covering the study of all the structural and functional characteristics of proteins and the dynamic change rules. The essence of various biological activities is revealed from the perspectives of the biological structure, functional activity and corresponding regulatory mechanism of proteins by proteomics. Among them, phospholipid-binding protein is one of the hotspots of proteomics, especially annexin A1, which is widely present in various tissues and cells of the body. It has the capability of binding to phospholipid membranes reversibly in a calcium ion dependent manner. In order to provide possible research ideas for researchers, who are interested in this protein, the biological effects of annexin A1, such as inflammatory regulation, cell signal transduction, cell proliferation, differentiation and apoptosis are described in this paper.
Collapse
Affiliation(s)
- Peng-Fei Han
- Department of Orthopaedic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Xian-Da Che
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China
| | - Hong-Zhuo Li
- Department of Orthopaedic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Yang-Yang Gao
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China
| | - Xiao-Chun Wei
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China
| | - Peng-Cui Li
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030009, China,Corresponding author.
| |
Collapse
|
45
|
Jelinic M, Kahlberg N, Leo CH, Ng HH, Rosli S, Deo M, Li M, Finlayson S, Walsh J, Parry LJ, Ritchie RH, Qin CX. Annexin-A1 deficiency exacerbates pathological remodelling of the mesenteric vasculature in insulin-resistant, but not insulin-deficient, mice. Br J Pharmacol 2020; 177:1677-1691. [PMID: 31724161 DOI: 10.1111/bph.14927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Arterial stiffness, a characteristic feature of diabetes, increases the risk of cardiovascular complications. Potential mechanisms that promote arterial stiffness in diabetes include oxidative stress, glycation and inflammation. The anti-inflammatory protein annexin-A1 has cardioprotective properties, particularly in the context of ischaemia. However, the role of endogenous annexin-A1 in the vasculature in both normal physiology and pathophysiology remains largely unknown. Hence, this study investigated the role of endogenous annexin-A1 in diabetes-induced remodelling of mouse mesenteric vasculature. EXPERIMENTAL APPROACH Insulin-resistance was induced in male mice (AnxA1+/+ and AnxA1-/- ) with the combination of streptozotocin (55mg/kg i.p. x 3 days) with high fat diet (42% energy from fat) or citrate vehicle with normal chow diet (20-weeks). Insulin-deficiency was induced in a separate cohort of mice using a higher total streptozocin dose (55mg/kg i.p. x 5 days) on chow diet (16-weeks). At study endpoint, mesenteric artery passive mechanics were assessed by pressure myography. KEY RESULTS Insulin-resistance induced significant outward remodelling but had no impact on passive stiffness. Interestingly, vascular stiffness was significantly increased in AnxA1-/- mice when subjected to insulin-resistance. In contrast, insulin-deficiency induced outward remodelling and increased volume compliance in mesenteric arteries, regardless of genotype. In addition, the annexin-A1 / formyl peptide receptor axis is upregulated in both insulin-resistant and insulin-deficient mice. CONCLUSION AND IMPLICATIONS Our study provided the first evidence that endogenous AnxA1 may play an important vasoprotective role in the context of insulin-resistance. AnxA1-based therapies may provide additional benefits over traditional anti-inflammatory strategies for reducing vascular injury in diabetes.
Collapse
Affiliation(s)
- Maria Jelinic
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Nicola Kahlberg
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Chen Huei Leo
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Science, Math and Technology, Singapore University of Technology and Design, Singapore
| | - Hooi Hooi Ng
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Sarah Rosli
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Siobhan Finlayson
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jesse Walsh
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Laura J Parry
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Fu T, Mohan M, Brennan EP, Woodman OL, Godson C, Kantharidis P, Ritchie RH, Qin CX. Therapeutic Potential of Lipoxin A 4 in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacol Transl Sci 2020; 3:43-55. [PMID: 32259087 DOI: 10.1021/acsptsci.9b00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Several studies have shown that failure to resolve inflammation may contribute to the progression of many chronic inflammatory disorders. It has been suggested targeting the resolution of inflammation might be a novel therapeutic approach for chronic inflammatory diseases, including inflammatory bowel disease, diabetic complications, and cardiometabolic disease. Lipoxins [LXs] are a class of endogenously generated mediators that promote the resolution of inflammation. Biological actions of LXs include inhibition of neutrophil infiltration, promotion of macrophage polarization, increase of macrophage efferocytosis, and restoration of tissue homeostasis. Recently, several studies have demonstrated that LXs and synthetic analogues protect tissues from acute and chronic inflammation. The mechanism includes down-regulation of pro-inflammatory cytokines and chemokines (e.g., interleukin-1β and tumor necrosis factor-α), inhibition of the activation of the master pro-inflammatory pathway (e.g., nuclear factor κ-light-chain-enhancer of activated B cells pathway) and increased release of the pro-resolving cytokines (e.g., interleukin-10). Three generations of LXs analogues are well described in the literature, and more recently a fourth generation has been generated that appears to show enhanced potency. In this review, we will briefly discuss the potential therapeutic opportunity provided by lipoxin A4 as a novel approach to treat chronic inflammatory disorders, focusing on cardiometabolic disease and the current drug development in this area.
Collapse
Affiliation(s)
- Ting Fu
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H Ritchie
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
47
|
Baracco EE, Stoll G, Van Endert P, Zitvogel L, Vacchelli E, Kroemer G. Contribution of annexin A1 to anticancer immunosurveillance. Oncoimmunology 2019; 8:e1647760. [PMID: 32923172 DOI: 10.1080/2162402x.2019.1647760] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Mouse cancers lacking the expression of annexin A1 (ANXA1) fail to respond to immunogenic chemotherapies. This has been initially explained by the requirement of extracellular ANXA1 (which is released from dying cancer cells) to engage formyl peptide receptor-1 (FPR1) on dendritic cells (DC) for the establishment of corpse/DC synapses. Here, we show that ANXA1-deficent cancer cells exhibit a defect in the exposure of calreticulin (CALR), which is an important "eat-me" signal, facilitating the phagocytic uptake of dead-cell antigens by DC. Of note, intratumoral injection of recombinant CALR protein was able to restore the therapeutic response of ANXA1-deficient cancers to anthracycline-based chemotherapy. Carcinomas developing in patients tend to downregulate ANXA1 expression as compared to their normal tissues of origin. ANXA1-low breast, colorectal, lung and kidney cancers are scarcely infiltrated by DC and cytotoxic T lymphocytes, supporting the idea that ANXA1 deficiency facilitates immune escape. We propose that such ANXA1-low cancers might be particularly suitable to local immunotherapy with CALR protein.
Collapse
Affiliation(s)
- Elisa Elena Baracco
- Institut de Cancérologie, Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Gautier Stoll
- Institut de Cancérologie, Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Peter Van Endert
- Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
| | - Laurence Zitvogel
- Institut de Cancérologie, Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Center of Clinical Investigations, Villejuif, France.,INSERM, Villejuif, France
| | - Erika Vacchelli
- Institut de Cancérologie, Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Guido Kroemer
- Institut de Cancérologie, Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
48
|
Grewal T, Enrich C, Rentero C, Buechler C. Annexins in Adipose Tissue: Novel Players in Obesity. Int J Mol Sci 2019; 20:ijms20143449. [PMID: 31337068 PMCID: PMC6678658 DOI: 10.3390/ijms20143449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and the associated comorbidities are a growing health threat worldwide. Adipose tissue dysfunction, impaired adipokine activity, and inflammation are central to metabolic diseases related to obesity. In particular, the excess storage of lipids in adipose tissues disturbs cellular homeostasis. Amongst others, organelle function and cell signaling, often related to the altered composition of specialized membrane microdomains (lipid rafts), are affected. Within this context, the conserved family of annexins are well known to associate with membranes in a calcium (Ca2+)- and phospholipid-dependent manner in order to regulate membrane-related events, such as trafficking in endo- and exocytosis and membrane microdomain organization. These multiple activities of annexins are facilitated through their diverse interactions with a plethora of lipids and proteins, often in different cellular locations and with consequences for the activity of receptors, transporters, metabolic enzymes, and signaling complexes. While increasing evidence points at the function of annexins in lipid homeostasis and cell metabolism in various cells and organs, their role in adipose tissue, obesity and related metabolic diseases is still not well understood. Annexin A1 (AnxA1) is a potent pro-resolving mediator affecting the regulation of body weight and metabolic health. Relevant for glucose metabolism and fatty acid uptake in adipose tissue, several studies suggest AnxA2 to contribute to coordinate glucose transporter type 4 (GLUT4) translocation and to associate with the fatty acid transporter CD36. On the other hand, AnxA6 has been linked to the control of adipocyte lipolysis and adiponectin release. In addition, several other annexins are expressed in fat tissues, yet their roles in adipocytes are less well examined. The current review article summarizes studies on the expression of annexins in adipocytes and in obesity. Research efforts investigating the potential role of annexins in fat tissue relevant to health and metabolic disease are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carles Rentero
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany.
| |
Collapse
|
49
|
Purvis GSD, Solito E, Thiemermann C. Annexin-A1: Therapeutic Potential in Microvascular Disease. Front Immunol 2019; 10:938. [PMID: 31114582 PMCID: PMC6502989 DOI: 10.3389/fimmu.2019.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Annexin-A1 (ANXA1) was first discovered in the early 1980's as a protein, which mediates (some of the) anti-inflammatory effects of glucocorticoids. Subsequently, the role of ANXA1 in inflammation has been extensively studied. The biology of ANXA1 is complex and it has many different roles in both health and disease. Its effects as a potent endogenous anti-inflammatory mediator are well-described in both acute and chronic inflammation and its role in activating the pro-resolution phase receptor, FPR2, has been described and is now being exploited for therapeutic benefit. In the present mini review, we will endeavor to give an overview of ANXA1 biology in relation to inflammation and functions that mediate pro-resolution that are independent of glucocorticoid induction. We will focus on the role of ANXA1 in diseases with a large inflammatory component focusing on diabetes and microvascular disease. Finally, we will explore the possibility of exploiting ANXA1 as a novel therapeutic target in diabetes and the treatment of microvascular disease.
Collapse
Affiliation(s)
- Gareth S D Purvis
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|