1
|
Nejadebrahim S, Houserová J, Ječmen T, Kalousková B, Abreu C, Herynek Š, Skořepa O, Bláha J, Vaněk O. Multiple O- and an N-glycosylation of the stalk region of the NK cell activation receptor NKp46 mediates its interaction with the Candida glabrata epithelial adhesin 1. Int J Biol Macromol 2025; 310:143037. [PMID: 40216117 DOI: 10.1016/j.ijbiomac.2025.143037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Natural killer (NK) cells are critical components of the innate immune system. Their primary role is to induce apoptosis in target cells, such as cancerous or virally infected cells. These targets are recognized through interactions between activating or inhibitory receptors on the NK cell surface. Among the activating receptors is the natural cytotoxicity receptor NKp46. Several ligands for this receptor have been identified, including the epithelial adhesin Epa1 from the yeast Candida glabrata. Invasive candidiasis caused by this yeast is a significant complication for patients with hematological diseases. The interaction between NKp46 and Epa1 is thought to depend specifically on an O-glycan at threonine 225 of NKp46. To elucidate the molecular details of this interaction, we optimized the recombinant production of soluble NKp46 and Epa1, generated glycosylation variants of multiple NKp46 mutants, and evaluated the role of NKp46 glycosylation in Epa1 binding using microscale thermophoresis and isothermal titration calorimetry. Additionally, for the first time, we provide a comprehensive glycosylation profile of NKp46, determined through mass spectrometry of intact glycopeptides obtained by O-glycoprotease and trypsin proteolysis. Our findings demonstrate that the NKp46 stalk is glycosylated at multiple sites, involving both an N-glycan and more than one O-glycan. These glycans are critical for the interaction with Epa1, providing NK cells with enhanced sensitivity to Candida glabrata epitopes.
Collapse
Affiliation(s)
- Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Jana Houserová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Tomáš Ječmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Štěpán Herynek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Jan Bláha
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic.
| |
Collapse
|
2
|
Gergues M, Bari R, Koppisetti S, Gosiewska A, Kang L, Hariri RJ. Senescence, NK cells, and cancer: navigating the crossroads of aging and disease. Front Immunol 2025; 16:1565278. [PMID: 40255394 PMCID: PMC12006071 DOI: 10.3389/fimmu.2025.1565278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Cellular senescence, a state of stable cell cycle arrest, acts as a double-edged sword in cancer biology. In young organisms, it acts as a barrier against tumorigenesis, but in the aging population, it may facilitate tumor growth and metastasis through the senescence-associated secretory phenotype (SASP). Natural killer (NK) cells play a critical role in the immune system, particularly in the surveillance, targeting, and elimination of malignant and senescent cells. However, age-related immunosenescence is characterized by declining NK cell function resulting in diminished ability to fight infection, eliminate senescent cells and suppress tumor development. This implies that preserving or augmenting NK cell function may be central to defense against age-related degenerative and malignant diseases. This review explores the underlying mechanisms behind these interactions, focusing on how aging influences the battle between the immune system and cancer, the implications of senescent NK cells in disease progression, and the potential of adoptive NK cell therapy as a countermeasure to these age-related immunological challenges.
Collapse
Affiliation(s)
| | | | | | | | - Lin Kang
- Research and Development, Celularity Inc., Florham Park, NJ, United States
| | | |
Collapse
|
3
|
Ayele K, Wakimoto H, Nauwynck HJ, Kaufman HL, Rabkin SD, Saha D. Understanding the interplay between oHSV and the host immune system: Implications for therapeutic oncolytic virus development. Mol Ther 2025; 33:1327-1343. [PMID: 39741405 PMCID: PMC11997513 DOI: 10.1016/j.ymthe.2024.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Oncolytic herpes simplex viruses (oHSV) preferentially replicate in cancer cells while inducing antitumor immunity, and thus, they are often referred to as in situ cancer vaccines. OHSV infection of tumors elicits diverse host immune responses comprising both innate and adaptive components. Although the innate and adaptive immune responses primarily target the tumor, they also contribute to antiviral immunity, limiting viral replication/oncolysis. OHSV-encoded proteins use various mechanisms to evade host antiviral pathways and immune recognition, favoring oHSV replication, oncolysis, and spread. In general, oHSV infection and replication within tumors results in a series of sequential events, such as oncolysis and release of tumor and viral antigens, dendritic cell-mediated antigen presentation, T cell priming and activation, T cell trafficking and infiltration to tumors, and T cell recognition of cancer cells, leading to tumor (and viral) clearance. These sequential events align with all steps of the cancer-immunity cycle. However, a comprehensive understanding of the interplay between oHSV and host immune responses is crucial to optimize oHSV-induced antitumor immunity and efficacy. Therefore, this review aims to elucidate oHSV's communication with innate and adaptive immune systems and use such interactions to improve oHSV's potential as a potent immunovirotherapeutic agent against cancer.
Collapse
Affiliation(s)
- Kalkidan Ayele
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dipongkor Saha
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| |
Collapse
|
4
|
Lv J, Liu Z, Ren X, Song S, Zhang Y, Wang Y. γδT cells, a key subset of T cell for cancer immunotherapy. Front Immunol 2025; 16:1562188. [PMID: 40226616 PMCID: PMC11985848 DOI: 10.3389/fimmu.2025.1562188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
γδT cells represent a unique and versatile subset of T cells characterized by the expression of T-cell receptors (TCRs) composed of γ and δ chains. Unlike conventional αβT cells, γδT cells do not require major histocompatibility complex (MHC)-dependent antigen presentation for activation, enabling them to recognize and respond to a wide array of antigens, including phosphoantigens, stress-induced ligands, and tumor-associated antigens. While γδT cells are relatively rare in peripheral blood, they are enriched in peripheral tissues such as the skin, intestine, and lung. These cells play a crucial role in tumor immunotherapy by exerting direct cytotoxicity through the production of inflammatory cytokines (e.g., interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-17 (IL-17)) and cytotoxic molecules (e.g., perforin and granzyme). Recent advances in γδT cell research have elucidated their mechanisms of tumor recognition, including the detection of phosphoantigens and stress-induced ligands like MICA (MHC class I polypeptide-related sequence A), MICB (MHC class I polypeptide-related sequence B), and ULBP (UL16-binding protein). Furthermore, various strategies to enhance γδT cell-based tumor immunotherapy have been developed, such as in vitro expansion using phosphoantigen-based therapies, cytokine stimulation, and chimeric antigen receptor (CAR)-γδT cell engineering. These advancements have shown promising results in both preclinical and clinical settings, paving the way for γδT cells to become a powerful tool in cancer immunotherapy. This review highlights the key mechanisms, functions, and strategies to harness the potential of γδT cells for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Jianzhen Lv
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zheng Liu
- Pathology Department, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiangting Ren
- Medical School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yan Zhang
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Cieslak SG, Shahbazi R. Gamma delta T cells and their immunotherapeutic potential in cancer. Biomark Res 2025; 13:51. [PMID: 40148988 PMCID: PMC11951843 DOI: 10.1186/s40364-025-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Gamma-delta (γδ) T cells are a unique subset of T lymphocytes that play diverse roles in immune responses, bridging innate and adaptive immunity. With growing interest in their potential for cancer immunotherapy, a comprehensive and inclusive exploration of γδ T cell families, their development, activation mechanisms, functions, therapeutic implications, and current treatments is essential. This review aims to provide an inclusive and thorough discussion of these topics. Through our discussion, we seek to uncover insights that may harbinger innovative immunotherapeutic strategies. Beginning with an overview of γδ T cell families including Vδ1, Vδ2, and Vδ3, this review highlights their distinct functional properties and contributions to anti-tumor immunity. Despite γδ T cells exhibiting both anti-tumor and pro-tumor activities, our review elucidates strategies to harness the anti-tumor potential of γδ T cells for therapeutic benefit. Moreover, our paper discusses the structural intricacies of the γδ T cell receptor and its significance in tumor recognition. Additionally, this review examines conventional and emerging γδ T cell therapies, encompassing both non-engineered and engineered approaches, with a focus on their efficacy and safety profiles in clinical trials. From multifunctional capabilities to diverse tissue distribution, γδ T cells play a pivotal role in immune regulation and surveillance. By analyzing current research findings, this paper offers insights into the dynamic landscape of γδ T cell-based immunotherapies, underscoring their promise as a potent armamentarium against cancer. Furthermore, by dissecting the complex biology of γδ T cells, we learn valuable information about the anti-cancer contributions of γδ T cells, as well as potential targets for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Stephen G Cieslak
- Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA.
- Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Brown Center for Immunotherapy, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Giri S, Lamichhane G, Pandey J, Khadayat R, K. C. S, Devkota HP, Khadka D. Immune Modulation and Immunotherapy in Solid Tumors: Mechanisms of Resistance and Potential Therapeutic Strategies. Int J Mol Sci 2025; 26:2923. [PMID: 40243502 PMCID: PMC11989189 DOI: 10.3390/ijms26072923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Understanding the modulation of specific immune cells within the tumor microenvironment (TME) offers new hope in cancer treatments, especially in cancer immunotherapies. In recent years, immune modulation and resistance to immunotherapy have become critical challenges in cancer treatments. However, novel strategies for immune modulation have emerged as promising approaches for oncology due to the vital roles of the immunomodulators in regulating tumor progression and metastasis and modulating immunological responses to standard of care in cancer treatments. With the progress in immuno-oncology, a growing number of novel immunomodulators and mechanisms are being uncovered, offering the potential for enhanced clinical immunotherapy in the near future. Thus, gaining a comprehensive understanding of the broader context is essential. Herein, we particularly summarize the paradoxical role of tumor-related immune cells, focusing on how targeted immune cells and their actions are modulated by immunotherapies to overcome immunotherapeutic resistance in tumor cells. We also highlight the molecular mechanisms employed by tumors to evade the long-term effects of immunotherapeutic agents, rendering them ineffective.
Collapse
Affiliation(s)
- Suman Giri
- Asian College for Advance Studies, Purbanchal University, Satdobato, Lalitpur 44700, Nepal;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jitendra Pandey
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Ramesh Khadayat
- Patan Hospital, Patan Academic of Health Sciences, Lagankhel, Lalitpur 44700, Nepal;
| | - Sindhu K. C.
- Department of Pharmacology, Chitwan Medical College, Tribhuwan University, Bharatpur-05, Chitwan 44200, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | - Dipendra Khadka
- NADIANBIO Co., Ltd., Wonkwang University School of Medicine, Business Incubation Center R201-1, Iksan 54538, Jeonbuk, Republic of Korea
- KHAS Health Pvt. Ltd., Dhangadhi-04, Kailali 10910, Nepal
| |
Collapse
|
7
|
Fournier L, Arras P, Pekar L, Kolmar H, Zielonka S, Toleikis L, Becker S. Enhancing NK cell-mediated tumor killing of B7-H6 + cells with bispecific antibodies targeting allosteric sites of NKp30. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200917. [PMID: 39811682 PMCID: PMC11730255 DOI: 10.1016/j.omton.2024.200917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
In this work, we report the discovery and engineering of allosteric variable domains of the heavy chain (VHHs) derived from camelid immunization targeting NKp30, an activating receptor on natural killer (NK) cells. The aim was to enhance NK cell-mediated killing capacities by identifying VHHs that do not compete with the natural ligand of NKp30:B7-H6, thereby maximizing the recognition of B7-H6+ tumor cells. By relying on the DuoBody technology, bispecific therapeutic antibodies were engineered, creating a panel of bispecific antibodies against NKp30xEGFR (cetuximab moiety) or NKp30xHER2 (trastuzumab moiety), called natural killer cell engagers (NKCEs). These NKCEs were assessed for their killing capacities on B7-H6-expressing tumor cells. The results demonstrated an enhancement in NK killing capacities for both EGFR-expressing (HeLa) and HER2-expressing (SK-BR-3) cells, indicating the significance of the natural NKp30/B7-H6 axis in tumor recognition by the immune system. Notably, engineering NKCEs to allow natural recognition of B7-H6 was found to be more effective in promoting NKCE-mediated killing of B7-H6+ tumor cells via enhancement of cytokine release. This study highlights the potential of an enhanced-targeting approach, wherein tumor cell surface antigens are targeted while still enabling the natural recognition of the activating ligand (B7-H6) by the immune cells.
Collapse
Affiliation(s)
- Léxane Fournier
- Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paul Arras
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Lars Toleikis
- Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| |
Collapse
|
8
|
Alles M, Demberg T, Liyanage NP. Emerging role of natural killer cells in non-AIDS comorbidities during suppressive antiretroviral therapy. Curr Opin HIV AIDS 2025; 20:145-153. [PMID: 39774039 PMCID: PMC11802316 DOI: 10.1097/coh.0000000000000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Despite decades of insights about the role of natural killer (NK) cells in HIV infection, their persistent dysregulation despite antiretroviral therapy (ART) and its pathological consequences have been incompletely delineated. In this review, we highlight recent findings on the immunophenotypic and functional alterations of NK cells during virally suppressed HIV infection and explore their potential impact on promoting non-AIDS related comorbidities among people living with HIV (PLWH). RECENT FINDINGS Of note are the apparent persistent activated profiles of NK cells and pathophysiological events such as endoplasmic reticulum (ER) stress in potentially driving NK cell derived inflammation and tissue destruction. Additionally, recent interest in trained immunity is discussed as a potential mediator of ongoing NK cell dysregulation, contributing to comorbidities such as cardiovascular disease and neurocognitive disorders, both with an inflammatory etiology. SUMMARY Clinical and mechanistic evidence suggests persistent activation and dysregulation of the innate immune system are major drivers of non-AIDS comorbidities during virally suppressed HIV infection. Delineating the mechanistic role of specific components of innate immunity such as NK cells in inducing these pathologies will lead to the identification of novel therapeutic/prophylactic strategies to improve the overall health of PLWH.
Collapse
Affiliation(s)
- Mario Alles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Thorsten Demberg
- Southern Research Institute, Infectious Disease Unit, Birmingham, Alabama
| | - Namal P.M. Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| |
Collapse
|
9
|
Zorko NA, Makovec A, Elliott A, Kellen S, Lozada JR, Arafa AT, Felices M, Shackelford M, Barata P, Zakharia Y, Narayan V, Stein MN, Zarrabi KK, Patniak A, Bilen MA, Radovich M, Sledge G, El-Deiry WS, Heath EI, Hoon DSB, Nabhan C, Miller JS, Hwang JH, Antonarakis ES. Natural Killer Cell Infiltration in Prostate Cancers Predict Improved Patient Outcomes. Prostate Cancer Prostatic Dis 2025; 28:129-137. [PMID: 38418892 PMCID: PMC11349934 DOI: 10.1038/s41391-024-00797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Natural killer (NK) cells are non-antigen specific innate immune cells that can be redirected to targets of interest using multiple strategies, although none are currently FDA-approved. We sought to evaluate NK cell infiltration into tumors to develop an improved understanding of which histologies may be most amenable to NK cell-based therapies currently in the developmental pipeline. METHODS DNA (targeted/whole-exome) and RNA (whole-transcriptome) sequencing was performed from tumors from 45 cancer types (N = 90,916 for all cancers and N = 3365 for prostate cancer) submitted to Caris Life Sciences. NK cell fractions and immune deconvolution were inferred from RNA-seq data using quanTIseq. Real-world overall survival (OS) and treatment status was determined and Kaplan-Meier estimates were calculated. Statistical significance was determined using X2 and Mann-Whitney U tests, with corrections for multiple comparisons where appropriate. RESULTS In both a pan-tumor and prostate cancer (PCa) -specific setting, we demonstrated that NK cells represent a substantial proportion of the total cellular infiltrate (median range 2-9% for all tumors). Higher NK cell infiltration was associated with improved OS in 28 of 45 cancer types, including (PCa). NK cell infiltration was negatively correlated with common driver mutations and androgen receptor variants (AR-V7) in primary prostate biopsies, while positively correlated with negative immune regulators. Higher levels of NK cell infiltration were associated with patterns consistent with a compensatory anti-inflammatory response. CONCLUSIONS Using the largest available dataset to date, we demonstrated that NK cells infiltrate a broad range of tumors, including both primary and metastatic PCa. NK cell infiltration is associated with improved PCa patient outcomes. This study demonstrates that NK cells are capable of trafficking to both primary and metastatic PCa and are a viable option for immunotherapy approaches moving forward. Future development of strategies to enhance tumor-infiltrating NK cell-mediated cytolytic activity and activation while limiting inhibitory pathways will be key.
Collapse
Affiliation(s)
- Nicholas A Zorko
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| | - Allison Makovec
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | | - Samuel Kellen
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John R Lozada
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Ali T Arafa
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Martin Felices
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Madison Shackelford
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Pedro Barata
- University Hospital Seidman Cancer Center, Cleveland, OH, USA
| | | | - Vivek Narayan
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark N Stein
- Herbert Irving Comprehensive Cancer Center, Columbia University New York, New York, NY, USA
| | - Kevin K Zarrabi
- Sidney Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA, USA
| | - Akash Patniak
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | | | | | - Dave S B Hoon
- Saint John's Cancer Institute, Saint John's Health Center PHS, Santa Monica, CA, USA
| | | | - Jeffrey S Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Justin H Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | |
Collapse
|
10
|
Rey C, Jones KL, Stacey KB, Evans A, Worboys JD, Howell G, Sheppard S, Davis DM. CD8α and CD70 mark human natural killer cell populations which differ in cytotoxicity. Front Immunol 2025; 16:1526379. [PMID: 40046047 PMCID: PMC11880019 DOI: 10.3389/fimmu.2025.1526379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Natural Killer (NK) cells are innate immune cells that can directly detect and kill cancer cells. Understanding the molecular determinants regulating human NK cell cytotoxicity could help harness these cells for cancer therapies. To this end, we compared the transcriptome of NK cell clones derived from human peripheral blood, which were strongly or weakly cytotoxic against 721.221 and other target cells. After one month of culture, potent NK cell clones showed a significant upregulation in genes involved in cell cycle progression, suggesting that proliferating NK cells were particularly cytotoxic. Beyond two months of culture, NK cell clones which were strongly cytotoxic varied in their expression of 28 genes, including CD8Α and CD70; NK cells with high levels of CD70 expression were weakly cytotoxic while high CD8Α correlated with strong cytotoxicity. Thus, NK cells were cultured and sorted for expression of CD70 and CD8α, and in accordance with the transcriptomic data, CD70+ NK cells showed low cytotoxicity against 721.221 and K562 target cells. Cytotoxicity of CD70+ NK cells could be enhanced using blocking antibodies against CD70, indicating a direct role for CD70 in mediating low cytotoxicity. Furthermore, time-lapse microscopy of NK cell-target cell interactions revealed that CD8α+ NK cells have an increased propensity to sequentially engage and kill multiple target cells. Thus, these two markers relate to NK cell populations which are capable of potent killing (CD70-) or serial killing (CD8α+).
Collapse
Affiliation(s)
- Camille Rey
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Katherine L. Jones
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Kevin B. Stacey
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Alicia Evans
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Jonathan D. Worboys
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Gareth Howell
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
| | - Sam Sheppard
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Daniel M. Davis
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester, United Kingdom
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
11
|
Woelk J, Hornsteiner F, Aschauer-Wallner S, Stoitzner P, Baier G, Hermann-Kleiter N. Regulation of NK cell development, maturation, and antitumor responses by the nuclear receptor NR2F6. Cell Death Dis 2025; 16:77. [PMID: 39920136 PMCID: PMC11806049 DOI: 10.1038/s41419-025-07407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Natural killer (NK) cell development and functionality rely on precise regulation by specific transcription factors (TFs). Our study demonstrates that the nuclear orphan receptor NR2F6 represses the expression of the activating receptor NKp46, an established key player in NK cell-mediated cytotoxicity during infection and tumor rejection. Despite normal NK cell development in the bone marrow, germline Nr2f6-deficient mice exhibit impaired terminal maturation of NK cells in the periphery. Short-term NK cell responses to lipopolysaccharide (LPS) activation, independent of NKp46, are subsequently reduced in Nr2f6-deficient mice. Conventional type 1 dendritic cells (cDC1) and macrophage populations are decreased in spleens of Nr2f6-deficient mice, subsequently, IL-15-dependent NK cell priming is limited. Administration of exogenous IL-15 in vitro and as IL-15 complex in vivo can compensate for these deficits, promoting terminal maturation of NK cells in Nr2f6-deficient mice. Subsequent transcriptome analysis reveals significant changes in gene expression profiles of NK cells from IL-15 complex treated Nr2f6-deficient mice, with notable alterations in essential NK genes such as Klrg1, Prdm1, Stat5a, Zeb2, and Prf1. Consequently, Nr2f6-deficient IL-15 complex-treated NK cells raise enhanced effector responses of IFNγ, Perforin, and Granzyme B upon ex vivo activation. Of importance, Nr2f6-deficient mice are protected against MHC-I negative B16-F10 melanoma lung metastasis formation, especially with IL-15 complex treatment, indicating the potential of NR2F6 to affect NKp46-dependent NK cell-mediated tumor surveillance. The therapeutic targeting of NR2F6 may be a promising strategy for boosting NKp46-dependent NK-cell-mediated tumor surveillance and metastasis.
Collapse
Affiliation(s)
- Johannes Woelk
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephanie Aschauer-Wallner
- Laboratory of Tumor Immunology, Tyrolean Cancer Institute & Internal Medicine V, Medical University of Innsbruck, 6020, Innsbruck, Austria
- Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Nakamura M, Tanaka Y, Hakoda K, Ohira M, Kobayashi T, Kurachi K, Tamura K, Ohdan H. Antitumor effects of natural killer cells derived from gene-engineered human-induced pluripotent stem cells on hepatocellular carcinoma. Cancer Immunol Immunother 2025; 74:99. [PMID: 39904787 PMCID: PMC11794780 DOI: 10.1007/s00262-025-03940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/01/2025] [Indexed: 02/06/2025]
Abstract
Mortality and recurrence rates of hepatocellular carcinoma (HCC) remain high despite the use of various treatment methods. Recently, cell-based immunotherapy using natural killer (NK) cells has attracted considerable attention in cancer immunotherapy. NK cells generated from induced pluripotent stem cells (iPSCs) are a new option for use as an NK cell resource. The eNK cells (HLCN061, developed by HEALIOS K.K.) are human iPSC-derived NK cells differentiated from clinical-grade iPSCs in which IL-15, CCR2B, CCL19, CD16a, and NKG2D have been introduced. In this study, we aimed to evaluate the potential of eNK cell therapy for HCC treatment. The analysis of eNK cells for cell surface and intracellular molecules revealed that antitumor-related surface molecules (TRAIL, CD226, and CD16) and intracellular cytotoxic factors (perforin, granzyme B, TNFα, and IFNγ) were highly expressed. In addition, eNK cells exhibited high cytotoxicity against HCC cell lines (HepG2, HuH7, and SNU-423), which are sensitive to NKG2D, TRAIL, and CD226. The TRAIL and perforin/granzyme B pathways are largely involved in this cytotoxic mechanism, as indicated by the reduction in cytotoxicity induced by TRAIL inhibitory antibodies and concanamycin A, which inhibits perforin/granzyme B-mediated cytotoxicity. Our data suggest that eNK cells, whose functions have been enhanced by genetic engineering, have the potential to improve HCC treatment.
Collapse
Affiliation(s)
- Mayuna Nakamura
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Keishi Hakoda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | | | | | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
13
|
Lindenbergh PL, van der Stegen SJ. Adoptive Cell Therapy from the Dish: Potentiating Induced Pluripotent Stem Cells. Transfus Med Hemother 2025; 52:27-41. [PMID: 39944411 PMCID: PMC11813279 DOI: 10.1159/000540473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 02/16/2025] Open
Abstract
Background The clinical success of autologous adoptive cell therapy (ACT) is substantial but wide application is challenged by the quality and quantity of the patient's immune cells and the need for personalized manufacturing processes. Induced pluripotent stem cells (iPSCs) can be differentiated into immune effectors and thus provide an alternative, allogeneic cell source for ACT. Here, we compare iPSC-derived immune effectors to their PBMC-derived counterparts and review iPSC-derived ACT products currently under preclinical and clinical development. Summary iPSC-derived T cells, NK cells, macrophages, and neutrophils largely mimic their PBMC-derived counterparts in terms of cell-surface marker expression and cytotoxic effector functions. iPSC-derived immune effectors can be engineered with chimeric antigen receptors and other activating receptors to redirect their cytotoxic potential specifically to tumor-associated antigens (TAAs). However, several differences between iPSC- and PBMC-derived immune effectors remain and have inspired additional engineering strategies to enhance the antitumor capacity of iPSC-derived immune effectors. Key Messages iPSCs can be engineered to facilitate the generation of immune effectors with homogenous specificity for TAAs and enhanced effector functions. TAA-specific and functionally enhanced iPSC-derived T and NK cells are currently undergoing clinical evaluation in phase 1 trials. Engineered iPSC-derived macrophages and neutrophils are in preclinical development.
Collapse
Affiliation(s)
- Pieter L. Lindenbergh
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Nikkhoi SK, Li G, Hatefi A. Natural killer cell engagers for cancer immunotherapy. Front Oncol 2025; 14:1483884. [PMID: 39911822 PMCID: PMC11794116 DOI: 10.3389/fonc.2024.1483884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
This review article explores the rapidly evolving field of bi-, tri-, and multi-specific NK cell engagers (NKCEs), highlighting their potential as a cutting-edge approach in cancer immunotherapy. NKCEs offer a significant advancement over conventional monoclonal antibodies (mAbs) by enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). They achieve this by stably and selectively binding to both NK cell activating receptors and tumor-associated antigens (TAAs). Unlike traditional mAbs, which depend on the relatively transient interaction between their Fc region and CD16a, NKCEs establish more robust connections with a range of activating receptors (e.g., CD16a, NKG2D, NKp30, NKp46, NKG2C) and inhibitory receptors (e.g., Siglec-7) on NK cells, thereby increasing cancer cell killing efficacy and specificity. This review article critically examines the strategies for engineering bi-, tri-, and multi-specific NKCEs for cancer immunotherapy, providing an in-depth analysis of the latest advancements in NKCE platform technologies currently under development by pharmaceutical and biotech companies and discussing the preclinical and clinical progress of these products. While NKCEs show great promise, the review underscores the need for continued research to optimize their therapeutic efficacy and to overcome obstacles related to NK cell functionality in cancer patients. Ultimately, this article presents an overview of the current landscape and future prospects of NKCE-based cancer immunotherapy, emphasizing its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Bradić I, Kuentzel KB, Pirchheim A, Rainer S, Schwarz B, Trauner M, Larsen MR, Vujić N, Kratky D. From LAL-D to MASLD: Insights into the role of LAL and Kupffer cells in liver inflammation and lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159575. [PMID: 39486573 DOI: 10.1016/j.bbalip.2024.159575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver pathology worldwide, closely associated with obesity and metabolic disorders. Increasing evidence suggests that macrophages play a crucial role in the development of MASLD. Several human studies have shown an inverse correlation between circulating lysosomal acid lipase (LAL) activity and MASLD. LAL is the sole enzyme known to degrade cholesteryl esters (CE) and triacylglycerols in lysosomes. Consequently, these substrates accumulate when their enzymatic degradation is impaired due to LAL deficiency (LALD). This study aimed to investigate the role of hepatic LAL activity and liver-resident macrophages (i.e., Kupffer cells (KC)) in MASLD. To this end, we analyzed lipid metabolism in hepatocyte-specific (hep)Lal-/- mice and depleted KC with clodronate treatment. When fed a high-fat/high-cholesterol diet (HF/HCD), hepLal-/- mice exhibited CE accumulation and an increased number of macrophages in the liver and significant hepatic inflammation. KC were depleted upon clodronate administration, whereas infiltrating/proliferating CD68-expressing macrophages were less affected. This led to exacerbated hepatic CE accumulation and dyslipidemia, as evidenced by increased LDL-cholesterol concentrations. Along with proteomic analysis of liver tissue, these findings indicate that hepatic LAL-D in HF/HCD-fed mice leads to macrophage infiltration into the liver and that KC depletion further exacerbates hepatic CE concentrations and dyslipidemia.
Collapse
Affiliation(s)
- Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
17
|
Biggi AFB, Silvestre RN, Tirapelle MC, de Azevedo JTC, García HDM, Henrique Dos Santos M, de Lima SCG, de Souza LEB, Covas DT, Malmegrim KCR, Figueiredo ML, Picanço-Castro V. IL-27-engineered CAR.19-NK-92 cells exhibit enhanced therapeutic efficacy. Cytotherapy 2024; 26:1320-1330. [PMID: 38970613 DOI: 10.1016/j.jcyt.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 07/08/2024]
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Alison Felipe Bordini Biggi
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Mariane Cariati Tirapelle
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Julia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Matheus Henrique Dos Santos
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sarah Caroline Gomes de Lima
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Dimas Tadeu Covas
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Virginia Picanço-Castro
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Okafor EC, Nielsen K. State of the Field: Cytotoxic Immune Cell Responses in C. neoformans and C. deneoformans Infection. J Fungi (Basel) 2024; 10:712. [PMID: 39452664 PMCID: PMC11508571 DOI: 10.3390/jof10100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cryptococcus neoformans is an environmental pathogen that causes life-threatening disease in immunocompromised persons. The majority of immunological studies have centered on CD4+ T-cell dysfunction and associated cytokine signaling pathways, optimization of phagocytic cell function against fungal cells, and identification of robust antigens for vaccine development. However, a growing body of literature exists regarding cytotoxic cells, specifically CD8+ T-cells, Natural Killer cells, gamma/delta T-cells, NK T-cells, and Cytotoxic CD4+ T-cells, and their role in the innate and adaptive immune response during C. neoformans and C. deneoformans infection. In this review, we (1) provide a comprehensive report of data gathered from mouse and human studies on cytotoxic cell function and phenotype, (2) discuss harmonious and conflicting results on cellular responses in mice models and human infection, (3) identify gaps of knowledge in the field ripe for exploration, and (4) highlight how innovative immunological tools could enhance the study of cytotoxic cells and their potential immunomodulation during cryptococcosis.
Collapse
Affiliation(s)
- Elizabeth C. Okafor
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech University, Blacksburg, VA 24060, USA
| |
Collapse
|
19
|
Naidoo KK, Altfeld M. The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection. Viruses 2024; 16:1584. [PMID: 39459918 PMCID: PMC11512232 DOI: 10.3390/v16101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural killer (NK) cells are multifaceted innate effector cells that critically influence antiviral immunity, and several protective NK cell features that modulate HIV-1 acquisition and viral control have been described. Chronic HIV-1 infection leads to NK cell impairment that has been associated with metabolic dysregulations. Therapeutic approaches targeting cellular immune metabolism represent potential novel interventions to reverse defective NK cell function in people living with HIV.
Collapse
Affiliation(s)
- Kewreshini K. Naidoo
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20251 Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
20
|
Shin MH, Oh E, Minn D. Current Developments in NK Cell Engagers for Cancer Immunotherapy: Focus on CD16A and NKp46. Immune Netw 2024; 24:e34. [PMID: 39513028 PMCID: PMC11538608 DOI: 10.4110/in.2024.24.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024] Open
Abstract
NK cells are specialized immune effector cells crucial for triggering immune responses against aberrant cells. Although recent advancements have concentrated on creating or releasing T-cell responses specific to tumor Ags, the clinical advantages of this approach have been limited to certain groups of patients and tumor types. This emphasizes the need for alternative strategies. One pioneering approach involves broadening and enhancing anti-tumor immune responses by targeting innate immunity. Consequently, the advent of bi-, tri-, and multi-specific Abs has facilitated the advancement of targeted cancer immunotherapies by redirecting immune effector cells to eradicate tumor cells. These Abs enable the simultaneous binding of surface Ags on tumor cells and the activation of receptors on innate immune cells, such as NK cells, with the ability to facilitate Ab-dependent cellular cytotoxicity to enhance their immunotherapeutic effectiveness in patients with solid tumors. Here, we review the recent advances in NK cell engagers (NKCEs) focusing on NK cell-activating receptors CD16A and NKp46. In addition, we provide an overview of the ongoing clinical trials investigating the safety, efficacy, and potential of NKCEs.
Collapse
Affiliation(s)
- Min Hwa Shin
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Eunha Oh
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Dohsik Minn
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Korea
| |
Collapse
|
21
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Lee S, Kim JH, Jang IH, Jo S, Lee SY, Oh SC, Kim SM, Kong L, Ko J, Kim TD. Harnessing B7-H6 for Anticancer Immunotherapy: Expression, Pathways, and Therapeutic Strategies. Int J Mol Sci 2024; 25:10326. [PMID: 39408655 PMCID: PMC11476788 DOI: 10.3390/ijms251910326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapies have evolved from traditional chemotherapy to more precise molecular-targeted immunotherapies, which have been associated with improved side effects and outcomes. These modern strategies rely on cancer-specific biomarkers that differentiate malignant from normal cells. The B7 family of immune checkpoint molecules is crucial for cancer immune evasion and a prime therapeutic target. B7-H6, a recently identified member of the B7 family, has emerged as a promising therapeutic target. Unlike other B7 proteins, B7-H6 is not expressed in healthy tissues but is upregulated in several cancers. It binds to NKp30, activating natural killer (NK) cells and triggering immune responses against cancer cells. This review explores the expression of B7-H6 in different cancers, the factors that regulate its expression, and its intrinsic and extrinsic pathways. Additionally, we discuss potential anticancer therapies targeting B7-H6, highlighting its significance in advancing precision medicine. Understanding the role of B7-H6 in cancer immunity may inform the development of appropriate therapies that exploit its cancer-specific expression.
Collapse
Affiliation(s)
- Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Lingzu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
23
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
24
|
Dong S, Zhao M, Zhu J, Li T, Yan M, Xing K, Liu P, Yu S, Ma J, He H. Natural killer cells: a future star for immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1442673. [PMID: 39234249 PMCID: PMC11371580 DOI: 10.3389/fimmu.2024.1442673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
The interplay between immune components and the epithelium plays a crucial role in the development and progression of head and neck squamous cell carcinoma (HNSCC). Natural killer (NK) cells, one of the main tumor-killing immune cell populations, have received increasing attention in HNSCC immunotherapy. In this review, we explore the mechanism underlying the interplay between NK cells and HNSCC. A series of immune evasion strategies utilized by cancer cells restrict HNSCC infiltration of NK cells. Overcoming these limitations can fully exploit the antineoplastic potential of NK cells. We also investigated the tumor-killing efficacy of NK cell-based immunotherapies, immunotherapeutic strategies, and new results from clinical trials. Notably, cetuximab, the most essential component of NK cell-based immunotherapy, inhibits the epidermal growth factor receptor (EGFR) signaling pathway and activates the immune system in conjunction with NK cells, inducing innate effector functions and improving patient prognosis. In addition, we compiled information on other areas for the improvement of patient prognosis using anti-EGFR receptor-based monoclonal antibody drugs and the underlying mechanisms and prognoses of new immunotherapeutic strategies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shuyan Dong
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jin Zhu
- Department of Pathology, Xi’an Daxing Hospital, Xi’an, China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaixun Xing
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
25
|
Balachandran H, Kroll K, Terry K, Manickam C, Jones R, Woolley G, Hayes T, Martinot AJ, Sharma A, Lewis M, Jost S, Reeves RK. NK cells modulate in vivo control of SARS-CoV-2 replication and suppression of lung damage. PLoS Pathog 2024; 20:e1012439. [PMID: 39133756 PMCID: PMC11341101 DOI: 10.1371/journal.ppat.1012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Natural killer (NK) cells play a critical role in virus control. However, it has remained largely unclear whether NK cell mobilization in SARS-CoV-2 infections is beneficial or pathologic. To address this deficit, we employed a validated experimental NK cell depletion non-human primate (NHP) model with SARS-CoV-2 Delta variant B.1.617.2 challenge. Viral loads (VL), NK cell numbers, activation, proliferation, and functional measures were evaluated in blood and tissues. In non-depleted (control) animals, infection rapidly induced NK cell expansion, activation, and increased tissue trafficking associated with VL. Strikingly, we report that experimental NK cell depletion leads to higher VL, longer duration of viral shedding, significantly increased levels of pro-inflammatory cytokines in the lungs, and overt lung damage. Overall, we find the first significant and conclusive evidence for NK cell-mediated control of SARS-CoV-2 virus replication and disease pathology. These data indicate that adjunct therapies for infection could largely benefit from NK cell-targeted approaches.
Collapse
Affiliation(s)
- Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rhianna Jones
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tammy Hayes
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ankur Sharma
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Zang J, Mei Y, Zhu S, Yin S, Feng N, Ci T, Lyu Y. Natural Killer-Based Therapy: A Prospective Thought for Cancer Treatment Related to Diversified Drug Delivery Pathways. Pharmaceutics 2024; 16:939. [PMID: 39065636 PMCID: PMC11279587 DOI: 10.3390/pharmaceutics16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has been a research hotspot due to its low side effects, long-lasting efficacy, and wide anti-tumor spectrum. Recently, NK cell-based immunotherapy has gained broad attention for its unique immunological character of tumor identification and eradication and low risk of graft-versus-host disease and cytokine storm. With the cooperation of a drug delivery system (DDS), NK cells activate tumoricidal activity by adjusting the balance of the activating and inhibitory signals on their surface after drug-loaded DDS administration. Moreover, NK cells or NK-derived exosomes can also be applied as drug carriers for distinct modification to promote NK activation and exert anti-tumor effects. In this review, we first introduce the source and classification of NK cells and describe the common activating and inhibitory receptors on their surface. Then, we summarize the strategies for activating NK cells in vivo through various DDSs. Finally, the application prospects of NK cells in tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jing Zang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yaqi Lyu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| |
Collapse
|
27
|
Zhao NQ, Pi R, Nguyen DN, Ranganath T, Seiler C, Holmes S, Marson A, Blish CA. NKp30 and NKG2D contribute to natural killer recognition of HIV-infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600449. [PMID: 38979175 PMCID: PMC11230221 DOI: 10.1101/2024.06.24.600449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Natural killer (NK) cells respond rapidly in early HIV-1 infection. HIV-1 prevention and control strategies harnessing NK cells could be enabled by mechanistic understanding of how NK cells recognize HIV-infected T cells. Here, we profiled the phenotype of human primary NK cells responsive to autologous HIV-1-infected CD4 + T cells in vitro. We characterized the patterns of NK cell ligand expression on CD4 + T cells at baseline and after infection with a panel of transmitted/founder HIV-1 strains to identify key receptor-ligand pairings. CRISPR editing of CD4 + T cells to knockout the NKp30 ligand B7-H6, or the NKG2D ligands MICB or ULBP2 reduced NK cell responses to HIV-infected cells in some donors. In contrast, overexpression of NKp30 or NKG2D in NK cells enhanced their targeting of HIV-infected cells. Collectively, we identified receptor-ligand pairs including NKp30:B7-H6 and NKG2D:MICB/ULBP2 that contribute to NK cell recognition of HIV-infected cells.
Collapse
|
28
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
29
|
Aguilar OA, Fong LK, Lanier LL. ITAM-based receptors in natural killer cells. Immunol Rev 2024; 323:40-53. [PMID: 38411263 PMCID: PMC11102329 DOI: 10.1111/imr.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The ability of cells of the immune system to acquire features such as increased longevity and enhanced secondary responses was long thought to be restricted to cells of the adaptive immune system. Natural killer (NK) cells have challenged this notion by demonstrating that they can also gain adaptive features. This has been observed in both humans and mice during infection with cytomegalovirus (CMV). The generation of adaptive NK cells requires antigen-specific recognition of virally infected cells through stimulatory NK receptors. These receptors lack the ability to signal on their own and rather rely on adaptor molecules that contain ITAMs for driving signals. Here, we highlight our understanding of how these receptors influence the production of adaptive NK cells and propose areas in the field that merit further investigation.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| | - Lam-Kiu Fong
- Dept. of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Rallón N, Jiménez-Carretero D, Restrepo C, Ligos JM, Valentín-Quiroga J, Mahillo I, Cabello A, López-Collazo E, Sánchez-Cabo F, Górgolas M, Estrada V, Benito JM. A specific natural killer cells phenotypic signature associated to long term elite control of HIV infection. J Med Virol 2024; 96:e29646. [PMID: 38699988 DOI: 10.1002/jmv.29646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Elite controllers (ECs) are an exceptional group of people living with HIV (PLWH) that control HIV replication without therapy. Among the mechanisms involved in this ability, natural killer (NK)-cells have recently gained much attention. We performed an in-deep phenotypic analysis of NK-cells to search for surrogate markers associated with the long term spontaneous control of HIV. Forty-seven PLWH (22 long-term EC [PLWH-long-term elite controllers (LTECs)], 15 noncontrollers receiving antiretroviral treatment [ART] [PLWH-onART], and 10 noncontrollers cART-naïve [PLWH-offART]), and 20 uninfected controls were included. NK-cells homeostasis was analyzed by spectral flow cytometry using a panel of 15 different markers. Data were analyzed using FCSExpress and R software for unsupervised multidimensional analysis. Six different subsets of NK-cells were defined on the basis of CD16 and CD56 expression, and the multidimensional analysis revealed the existence of 68 different NK-cells clusters based on the expression levels of the 15 different markers. PLWH-offART presented the highest disturbance of NK-cells homeostasis and this was not completely restored by long-term ART. Interestingly, long term spontaneous control of HIV (PLWH-LTEC group) was associated with a specific profile of NK-cells homeostasis disturbance, characterized by an increase of CD16dimCD56dim subset when compared to uninfected controls (UC) group and also to offART and onART groups (p < 0.0001 for the global comparison), an increase of clusters C16 and C26 when compared to UC and onART groups (adjusted p-value < 0.05 for both comparisons), and a decrease of clusters C10 and C20 when compared to all the other groups (adjusted p-value < 0.05 for all comparisons). These findings may provide clues to elucidate markers of innate immunity with a relevant role in the long-term control of HIV.
Collapse
Affiliation(s)
- Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Daniel Jiménez-Carretero
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | | | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Eduardo López-Collazo
- Grupo de respuesta inmune innata, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
31
|
Matsumura K, Mori T, Dohi T, Kawamura YI, Takaki S. Composition of fatty acids in a high-fat diet affects adipose tissue inflammation by inducing calreticulin on adipocytes and activating group 1 innate lymphoid cells. Eur J Immunol 2024; 54:e2350800. [PMID: 38282083 DOI: 10.1002/eji.202350800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Obesity-induced adipose tissue inflammation plays a critical role in the development of metabolic diseases. For example, NK1.1+ group 1 innate lymphoid cells (G1-ILCs) in adipose tissues are activated in the early stages of inflammation in response to a high-fat diet (HFD). In this study, we examined whether the composition of fatty acids affected adipose inflammatory responses induced by an HFD. Mice were fed a stearic acid (C18:0)-rich HFD (HFD-S) or a linoleic acid (C18:2)-rich HFD (HFD-L). HFD-L-fed mice showed significant obesity compared with HFD-S-fed mice. Visceral and subcutaneous fat pads were enlarged and contained more NK1.1+KLRG1+ cells, indicating that G1-ILCs were activated in HFD-L-fed mice. We examined early changes in adipose tissues during the first week of HFD intake, and found that mice fed HFD-L showed increased levels of NK1.1+CD11b+KLRG1+ cells in adipose tissues. In adipose tissue culture, addition of 4-hydroxynonenal, the most frequent product of lipid peroxidation derived from unsaturated fatty acids, induced NK1.1+CD11b+CD27- cells. We found that calreticulin, a ligand for the NK activating receptor, was induced on the surface of adipocytes after exposure to 4-hydroxynonenal or a 1-week feeding with HFD-L. Thus, excess fatty acid intake and the activation of G1-ILCs initiate and/or modify adipose inflammation.
Collapse
Affiliation(s)
- Kazunori Matsumura
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Taizo Mori
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
- Department of Liver Disease, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Taeko Dohi
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuki I Kawamura
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
32
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
33
|
Melton HJ, Zhang Z, Wu C. SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations. Hum Mol Genet 2024; 33:624-635. [PMID: 38129112 PMCID: PMC10954367 DOI: 10.1093/hmg/ddad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene-trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), which improves gene expression prediction accuracy by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models in whole blood using SUMMIT-FA with the comprehensive functional database MACIE and eQTL summary-level data from the eQTLGen consortium. We apply these models to GWAS for 24 complex traits and show that SUMMIT-FA identifies significantly more gene-trait associations and improves predictive power for identifying "silver standard" genes compared to several benchmark methods. We further conduct a simulation study to demonstrate the effectiveness of SUMMIT-FA.
Collapse
Affiliation(s)
- Hunter J Melton
- Department of Statistics, Florida State University, 214 Rogers Building, 117 N. Woodward Avenue, Tallahassee, FL 32306, United States
| | - Zichen Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Unit 1689, Houston, TX 77030, United States
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Unit 1689, Houston, TX 77030, United States
| |
Collapse
|
34
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
35
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
36
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Türk L, Filippov I, Arnold C, Zaugg J, Tserel L, Kisand K, Peterson P. Cytotoxic CD8 + Temra cells show loss of chromatin accessibility at genes associated with T cell activation. Front Immunol 2024; 15:1285798. [PMID: 38370415 PMCID: PMC10870784 DOI: 10.3389/fimmu.2024.1285798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
As humans age, their memory T cell compartment expands due to the lifelong exposure to antigens. This expansion is characterized by terminally differentiated CD8+ T cells (Temra), which possess NK cell-like phenotype and are associated with chronic inflammatory conditions. Temra cells are predominantly driven by the sporadic reactivation of cytomegalovirus (CMV), yet their epigenomic patterns and cellular heterogeneity remain understudied. To address this gap, we correlated their gene expression profiles with chromatin openness and conducted single-cell transcriptome analysis, comparing them to other CD8+ subsets and CMV-responses. We confirmed that Temra cells exhibit high expression of genes associated with cytotoxicity and lower expression of costimulatory and chemokine genes. The data revealed that CMV-responsive CD8+ T cells (Tcmv) were predominantly derived from a mixed population of Temra and memory cells (Tcm/em) and shared their transcriptomic profiles. Using ATAC-seq analysis, we identified 1449 differentially accessible chromatin regions between CD8+ Temra and Tcm/em cells, of which only 127 sites gained chromatin accessibility in Temra cells. We further identified 51 gene loci, including costimulatory CD27, CD28, and ICOS genes, whose chromatin accessibility correlated with their gene expression. The differential chromatin regions Tcm/em cells were enriched in motifs that bind multiple transcriptional activators, such as Jun/Fos, NFkappaB, and STAT, whereas the open regions in Temra cells mainly contained binding sites of T-box transcription factors. Our single-cell analysis of CD8+CCR7loCD45RAhi sorted Temra population showed several subsets of Temra and NKT-like cells and CMC1+ Temra populations in older individuals that were shifted towards decreased cytotoxicity. Among CD8+CCR7loCD45RAhi sorted cells, we found a decreased proportion of IL7R+ Tcm/em-like and MAIT cells in individuals with high levels of CMV antibodies (CMVhi). These results shed new light on the molecular and cellular heterogeneity of CD8+ Temra cells and their relationship to aging and CMV infection.
Collapse
Affiliation(s)
- Lehte Türk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Igor Filippov
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Qiagen Aarhus A/S, Aarhus, Denmark
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Judith Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Lee RB, Maddineni S, Landry M, Diaz C, Tashfeen A, Yamada-Hunter SA, Mackall CL, Beinat C, Sunwoo JB, Cochran JR. An engineered NKp46 antibody for construction of multi-specific NK cell engagers. Protein Eng Des Sel 2024; 37:gzae013. [PMID: 39163262 PMCID: PMC11359164 DOI: 10.1093/protein/gzae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Indexed: 08/22/2024] Open
Abstract
Recent developments in cancer immunotherapy have highlighted the potential of harnessing natural killer (NK) cells in the treatment of neoplastic malignancies. Of these, bispecific antibodies, and NK cell engager (NKCE) protein therapeutics in particular, have been of interest. Here, we used phage display and yeast surface display to engineer RLN131, a unique cross-reactive antibody that binds to human, mouse, and cynomolgus NKp46, an activating receptor found on NK cells. RLN131 induced proliferation and activation of primary NK cells, and was used to create bispecific NKCE constructs of varying configurations and valency. All NKCEs were able to promote greater NK cell cytotoxicity against tumor cells than an unmodified anti-CD20 monoclonal antibody, and activity was observed irrespective of whether the constructs contained a functional Fc domain. Competition binding and fine epitope mapping studies were used to demonstrate that RLN131 binds to a conserved epitope on NKp46, underlying its species cross-reactivity.
Collapse
Affiliation(s)
- Robert B Lee
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
| | - Sainiteesh Maddineni
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Madeleine Landry
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, United States
| | - Celeste Diaz
- Cancer Biology Program, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Aanya Tashfeen
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, United States
| | - Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, United States
| | - John B Sunwoo
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
| |
Collapse
|
39
|
Ali U, Vungarala S, Tiriveedhi V. Genomic Features of Homologous Recombination Deficiency in Breast Cancer: Impact on Testing and Immunotherapy. Genes (Basel) 2024; 15:162. [PMID: 38397152 PMCID: PMC10887603 DOI: 10.3390/genes15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic instability is one of the well-established hallmarks of cancer. The homologous recombination repair (HRR) pathway plays a critical role in correcting the double-stranded breaks (DSB) due to DNA damage in human cells. Traditionally, the BRCA1/2 genes in the HRR pathway have been tested for their association with breast cancer. However, defects in the HRR pathway (HRD, also termed 'BRCAness'), which has up to 50 genes, have been shown to be involved in tumorigenesis and treatment susceptibility to poly-ADP ribose polymerase inhibitors (PARPis), platinum-based chemotherapy, and immune checkpoint inhibitors (ICIs). A reliable consensus on HRD scores is yet to be established. Emerging evidence suggests that only a subset of breast cancer patients benefit from ICI-based immunotherapy. Currently, albeit with limitations, the expression of programmed death-ligand 1 (PDL1) and tumor mutational burden (TMB) are utilized as biomarkers to predict the favorable outcomes of ICI therapy in breast cancer patients. Preclinical studies demonstrate an interplay between the HRR pathway and PDL1 expression. In this review, we outline the current understanding of the role of HRD in genomic instability leading to breast tumorigenesis and delineate outcomes from various clinical trials. Furthermore, we discuss potential strategies for combining HRD-targeted therapy with immunotherapy to achieve the best healthcare outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sunitha Vungarala
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN 37209, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
40
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
41
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
42
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
43
|
He S, Su L, Hu H, Liu H, Xiong J, Gong X, Chi H, Wu Q, Yang G. Immunoregulatory functions and therapeutic potential of natural killer cell-derived extracellular vesicles in chronic diseases. Front Immunol 2024; 14:1328094. [PMID: 38239346 PMCID: PMC10795180 DOI: 10.3389/fimmu.2023.1328094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Extracellular vesicles (EVs) have been proven to play a significant immunoregulatory role in many chronic diseases, such as cancer and immune disorders. Among them, EVs derived from NK cells are an essential component of the immune cell functions. These EVs have been demonstrated to carry a variety of toxic proteins and nucleic acids derived from NK cells and play a therapeutic role in diseases like malignancies, liver fibrosis, and lung injury. However, natural NK-derived EVs (NKEVs) have certain limitations in disease treatment, such as low yield and poor targeting. Concurrently, NK cells exhibit characteristics of memory-like NK cells, which have stronger proliferative capacity, increased IFN-γ production, and enhanced cytotoxicity, making them more advantageous for disease treatment. Recent research has shifted its focus towards engineered extracellular vesicles and their potential to improve the efficiency, specificity, and safety of disease treatments. In this review, we will discuss the characteristics of NK-derived EVs and the latest advancements in disease therapy. Specifically, we will compare different cellular sources of NKEVs and explore the current status and prospects of memory-like NK cell-derived EVs and engineered NKEVs.
Collapse
Affiliation(s)
- Shuang He
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiyang Hu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiqi Liu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
44
|
Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater 2024; 31:63-86. [PMID: 37601277 PMCID: PMC10432724 DOI: 10.1016/j.bioactmat.2023.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Natural killer (NK) cells display a unique inherent ability to identify and eliminate virus-infected cells and tumor cells. They are particularly powerful for elimination of hematological cancers, and have attracted considerable interests for therapy of solid tumors. However, the treatment of solid tumors with NK cells are less effective, which can be attributed to the very complicated immunosuppressive microenvironment that may lead to the inactivation, insufficient expansion, short life, and the poor tumor infiltration of NK cells. Fortunately, the development of advanced nanotechnology has provided potential solutions to these issues, and could improve the immunotherapy efficacy of NK cells. In this review, we summarize the activation and inhibition mechanisms of NK cells in solid tumors, and the recent advances in NK cell-based tumor immunotherapy boosted by diverse nanomaterials. We also propose the challenges and opportunities for the clinical application of NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Li Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
45
|
Boje AS, Pekar L, Koep K, Lipinski B, Rabinovich B, Evers A, Gehlert CL, Krohn S, Xiao Y, Krah S, Zaynagetdinov R, Toleikis L, Poetzsch S, Peipp M, Zielonka S, Klausz K. Impact of antibody architecture and paratope valency on effector functions of bispecific NKp30 x EGFR natural killer cell engagers. MAbs 2024; 16:2315640. [PMID: 38372053 PMCID: PMC10877975 DOI: 10.1080/19420862.2024.2315640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
Natural killer (NK) cells emerged as a promising effector population that can be harnessed for anti-tumor therapy. In this work, we constructed NK cell engagers (NKCEs) based on NKp30-targeting single domain antibodies (sdAbs) that redirect the cytotoxic potential of NK cells toward epidermal growth factor receptor (EGFR)-expressing tumor cells. We investigated the impact of crucial parameters such as sdAb location, binding valencies, the targeted epitope on NKp30, and the overall antibody architecture on the redirection capacity. Our study exploited two NKp30-specific sdAbs, one of which binds a similar epitope on NKp30 as its natural ligand B7-H6, while the other sdAb addresses a non-competing epitope. For EGFR-positive tumor targeting, humanized antigen-binding domains of therapeutic antibody cetuximab were used. We demonstrate that NKCEs bivalently targeting EGFR and bivalently engaging NKp30 are superior to monovalent NKCEs in promoting NK cell-mediated tumor cell lysis and that the architecture of the NKCE can substantially influence killing capacities depending on the NKp30-targeting sdAb utilized. While having a pronounced impact on NK cell killing efficacy, the capabilities of triggering antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity were not significantly affected comparing the bivalent IgG-like NKCEs with cetuximab. However, the fusion of sdAbs can have a slight impact on the NK cell release of immunomodulatory cytokines, as well as on the pharmacokinetic profile of the NKCE due to unfavorable spatial orientation within the molecule architecture. Ultimately, our findings reveal novel insights for the engineering of potent NKCEs triggering the NKp30 axis.
Collapse
Affiliation(s)
- Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Katharina Koep
- Drug Metabolism and Pharmacokinetics, Merck Healthcare KGaA, Darmstadt, Germany
| | - Britta Lipinski
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Brian Rabinovich
- Department of Oncology and Immuno-Oncology, EMD Serono Research & Development Institute Inc, 45A Middlesex Turnpike, Billerica, MA, USA
| | - Andreas Evers
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Steffen Krohn
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Yanping Xiao
- Department of Oncology and Immuno-Oncology, EMD Serono Research & Development Institute Inc, 45A Middlesex Turnpike, Billerica, MA, USA
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rinat Zaynagetdinov
- Department of Oncology and Immuno-Oncology, EMD Serono Research & Development Institute Inc, 45A Middlesex Turnpike, Billerica, MA, USA
| | - Lars Toleikis
- Early Protein Supply & Characterization, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sven Poetzsch
- Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel, Germany
| |
Collapse
|
46
|
Wang X, Huang L, Wen X, Li D, Yang G, Zheng J. Altered NCR3 Splice Variants May Result in Deficient NK Cell Function in Renal Cell Carcinoma Patients. In Vivo 2024; 38:174-183. [PMID: 38148073 PMCID: PMC10756430 DOI: 10.21873/invivo.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM The natural killer (NK) cell function of patients with malignant tumours may be suppressed by deficiency, and the poor prognosis of renal cell carcinoma (RCC) patients may be due to escape from NK cell cytotoxicity, especially with respect to natural cytotoxicity receptors (NCRs) on the NK cell surface. However, the specific mechanism remains unclear. Therefore, in this study, we sought to explore the role of NCR, especially NCR3 splice variants, in the process of NK cell deficiency in RCC patients. MATERIALS AND METHODS We used flow cytometry to analyse the phenotype of NK cells from the peripheral blood and kidney tumour tissue of RCC patients. The NKp30-mediated NK cell killing function was measured by antibody-dependent cell-mediated cytotoxicity (ADCC) in NK and RCC cell coincubation. We extracted RNA from the peripheral blood mononuclear cells (PBMCs) of RCC patients and renal carcinoma tissue and carried out real-time quantitative PCR to detect the mRNA levels of NKp30a, NKp30b and NKp30c. mRNA expression levels of cytokines (IL-6, IL-8, IL-10, IL-18 and TGF-β) based on RNA extracted from renal carcinoma tissue and adjacent normal kidney tissues were also measured by real-time quantitative PCR. RESULTS Regarding the phenotype of NK cells in RCC patients, the proportion of NK cells in tumour tissue was significantly reduced, with changes in the NK cell proportion being most obvious in NKp30+ NK cells. Furthermore, the results of the ADCC function assay showed limited NKp30+ NK cell-mediated cytotoxicity in RCC patients. Through real-time quantitative PCR, we found lower expression of NKp30a and NKp30b, the immunostimulatory splice variants of NCR3 encoding NKp30, in RCC patients. Moreover, expression of activating cytokines (IL-6 and IL-8) in renal cancer tissue was decreased, though inhibitory cytokine (TGF-β) expression remained unchanged, which may result in an immunosuppressive cytokine microenvironment. CONCLUSION Decreased expression of immunostimulatory NCR3 splice variants and the inhibitory cytokine microenvironment in RCC patients may contribute to deficient NK cell cytotoxicity and renal carcinoma cell immune escape from NK cell killing, which may provide a theoretical basis for finding new immunotherapeutic targets for RCC.
Collapse
Affiliation(s)
- Xuelei Wang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dongyang Li
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
47
|
Creegan M, Degler J, Paquin-Proulx D, Eller MA, Machmach K. OMIP-098: A 26 parameter, 24 color flow cytometry panel for human memory NK cell phenotyping. Cytometry A 2023; 103:941-946. [PMID: 37807668 PMCID: PMC10872854 DOI: 10.1002/cyto.a.24802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
This 26-parameter flow cytometry panel has been developed and optimized to analyze NK cell phenotype, using cryopreserved peripheral blood mononuclear cells (PBMCs) from people living with and without human immunodeficiency virus (PLWH, PWOH). Our panel is designed for the analysis of several parameters of total NK cells and memory NK cell subsets including markers of maturation, activation, and proliferation, as well as activating and inhibitory receptors. Other tissues have not been tested (Table 1 ).
Collapse
Affiliation(s)
- Matthew Creegan
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Justin Degler
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Dominic Paquin-Proulx
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Michael A. Eller
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
- Present address: Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), MD, USA
| | - Kawthar Machmach
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| |
Collapse
|
48
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
49
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
50
|
Esperante D, Gutiérrez MIM, Issa ME, Schcolnik-Cabrera A, Mendlovic F. Similarities and divergences in the metabolism of immune cells in cancer and helminthic infections. Front Oncol 2023; 13:1251355. [PMID: 38044996 PMCID: PMC10690632 DOI: 10.3389/fonc.2023.1251355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mónica Itzel Martínez Gutiérrez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mark E. Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Mexico
| |
Collapse
|