1
|
Hsieh HJ, Urak R, Clark MC, Kwak LW, Forman SJ, Wang X. Capivasertib enhances chimeric antigen receptor T cell activity in preclinical models of B cell lymphoma. Mol Ther Methods Clin Dev 2025; 33:101421. [PMID: 40008088 PMCID: PMC11850743 DOI: 10.1016/j.omtm.2025.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling is involved in the growth of normal and cancer cells and is crucial for T cell activation. Previously, we have shown that AKT Inhibitor VIII, a selective AKT-1/2 inhibitor, during chimeric antigen receptor (CAR) T cell manufacturing, improves CAR T cell function in preclinical models. Although AKT Inhibitor VIII could enhance CAR T cell function, AKT Inhibitor VIII is not a clinical-grade compound. However, pan-AKT inhibitors have been applied against cancers with PIK3CA/AKT/PTEN alterations in clinical trials. We evaluated ex vivo and in vivo strategies of enhancing CAR T cell therapeutic effect using the pan-AKT inhibitor capivasertib. We found that ex vivo 0.25 μM capivasertib treatment during the period of T cell stimulation during manufacture enhanced the antitumor activity of CAR T cells in B cell lymphoma mouse models. Mechanistically, capivasertib changed gene and protein expression patterns related to the functions of memory and effector CAR T cells. Furthermore, in vivo combination therapy of capivasertib and CD19-specific CAR T cells led to improved early response to and persistence of functional CAR T cells in mice bearing PTEN-deficient lymphoma cells compared to CAR T cells alone. Capivasertib exerts a similar function to AKT Inhibitor VIII in modulating CAR T cells, and combining CAR T cell therapy with capivasertib both ex vivo and in vivo offers the potential to improve patient outcomes. Since PTEN deficiency is common in cancer and is the main mechanism for capivasertib function, combination therapy may provide an alternative solution for the challenges of CAR T cell therapy.
Collapse
Affiliation(s)
- Hui-Ju Hsieh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Mary C. Clark
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Larry W. Kwak
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Bouteau A, Qin Z, Zurawski S, Zurawski G, Igyártó BZ. Langerhans Cells Drive Tfh and B Cell Responses Independent of Canonical Cytokine Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632426. [PMID: 39868337 PMCID: PMC11760737 DOI: 10.1101/2025.01.10.632426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Dendritic cells (DCs) are key regulators of adaptive immunity, guiding T helper (Th) cell differentiation through antigen presentation, co-stimulation, and cytokine production. However, in steady-state conditions, certain DC subsets, such as Langerhans cells (LCs), induce T follicular helper (Tfh) cells and B cell responses without inflammatory stimuli. Using multiple mouse models and in vitro systems, we investigated the mechanisms underlying steady-state LC-induced adaptive immune responses. We found that LCs drive germinal center Tfh and B cell differentiation and antibody production independently of interleukin-6 (IL-6), type-I interferons, and ICOS ligand (ICOS-L) signaling, which are critical in inflammatory settings. Instead, these responses relied on CD80/CD86-mediated co-stimulation. Our findings challenge the conventional three-signal paradigm by demonstrating that cytokine signaling is dispensable for LC-mediated Tfh and B cell responses in steady-state. These insights provide a framework for understanding homeostatic immunity and the immune system's role in maintaining tolerance or developing autoimmunity under non-inflammatory conditions.
Collapse
Affiliation(s)
- Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sandra Zurawski
- Baylor Scott & White Research Institute, Dallas, TX 75204, United States
- Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Gerard Zurawski
- Baylor Scott & White Research Institute, Dallas, TX 75204, United States
- Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
3
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 regulates CD4 T follicular helper cell differentiation and humoral immunity during murine coronavirus infection. J Virol 2025; 99:e0186424. [PMID: 39679790 PMCID: PMC11784103 DOI: 10.1128/jvi.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
During activation, the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6-deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high-affinity virus-specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6-mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection-induced upregulation of Ubash3a, a negative regulator of T cell receptor (TCR) signaling, was hindered in CD6-deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6-deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity. IMPORTANCE CD6 monoclonal blocking antibodies are being therapeutically administered to inhibit T cell activation in autoimmune disorders. However, the multifaceted nature of CD6 allows for multiple and even opposing functions under different circumstances of T cell activation. We therefore sought to characterize how CD6 regulates T cell activation in the context of viral infections using an in vivo murine coronavirus model. In contrast to its role in autoimmunity, but consistent with its function in the presence of superantigens, we found that CD6 deficiency enhances CD4 T cell activation and CD4 T cell help to germinal center-dependent antiviral humoral responses. Finally, we provide evidence that CD6 regulates transcription of its intracellular binding partner UBASH3a, which suppresses T cell receptor (TCR) signaling and consequently T cell activation. These findings highlight the context-dependent flexibility of CD6 in regulating in vivo adaptive immune responses, which may be targeted to enhance antiviral immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Humoral/immunology
- Cell Differentiation/immunology
- T Follicular Helper Cells/immunology
- Lymphocyte Activation/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Mice, Inbred C57BL
- Germinal Center/immunology
- Mice, Knockout
- CD4-Positive T-Lymphocytes/immunology
- Antigens, CD/immunology
- Antigens, CD/genetics
- T-Lymphocytes, Helper-Inducer/immunology
- Signal Transduction
- Murine hepatitis virus/immunology
- Antibodies, Viral/immunology
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Feng Lin
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Jiang M, Fang H, Tian H. Metabolism of cancer cells and immune cells in the initiation, progression, and metastasis of cancer. Theranostics 2025; 15:155-188. [PMID: 39744225 PMCID: PMC11667227 DOI: 10.7150/thno.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
The metabolism of cancer and immune cells plays a crucial role in the initiation, progression, and metastasis of cancer. Cancer cells often undergo metabolic reprogramming to sustain their rapid growth and proliferation, along with meeting their energy demands and biosynthetic needs. Nevertheless, immune cells execute their immune response functions through the specific metabolic pathways, either to recognize, attack, and eliminate cancer cells or to promote the growth or metastasis of cancer cells. The alteration of cancer niches will impact the metabolism of both cancer and immune cells, modulating the survival and proliferation of cancer cells, and the activation and efficacy of immune cells. This review systematically describes the key characteristics of cancer cell metabolism and elucidates how such metabolic traits influence the metabolic behavior of immune cells. Moreover, this article also highlights the crucial role of immune cell metabolism in anti-tumor immune responses, particularly in priming T cell activation and function. By comprehensively exploring the metabolic crosstalk between cancer and immune cells in cancer niche, the aim is to discover novel strategies of cancer immunotherapy and provide effective guidance for clinical research in cancer treatment. In addition, the review also discusses current challenges such as the inadequacy of relevant diagnostic technologies and the issue of multidrug resistance, and proposes potential solutions including bolstering foundational cancer research, fostering technological innovation, and implementing precision medicine approaches. In-depth research into the metabolic effects of cancer niches can improve cancer treatment outcomes, prolong patients' survival period and enhance their quality of life.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Moon S, Zhao F, Uddin MN, Tucker CJ, Karmaus PW, Fessler MB. Flotillin-2 dampens T cell antigen sensitivity and functionality. JCI Insight 2024; 9:e182328. [PMID: 39499901 DOI: 10.1172/jci.insight.182328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/30/2024] [Indexed: 11/13/2024] Open
Abstract
T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function in response to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection. Flot2-null CD4+ T cells exhibited increased Th1 polarization, proliferation, Nur77 induction, and phosphorylation of ZAP70 and ERK1/2 upon weak TCR stimulation, indicating a sensitized TCR-triggering threshold. Single-cell RNA-Seq suggested that Flot2-null CD4+ T cells follow a similar route of activation as WT CD4+ T cells but exhibit higher occupancy of a discrete activation state under weak TCR stimulation. Given prior reports that TCR clustering influences sensitivity of T cells to stimuli, we evaluated TCR distribution with super-resolution microscopy. Flot2 ablation increased the number of surface TCR nanoclusters on naive CD4+ T cells. Collectively, we posit that Flot2 modulates T cell functionality to weak TCR stimulation, at least in part, by regulating surface TCR clustering. Our findings have implications for improving T cell reactivity in diseases with poor antigenicity, such as cancer and chronic infections.
Collapse
MESH Headings
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Lymphocyte Activation/immunology
- Mice, Knockout
- CD4-Positive T-Lymphocytes/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Signal Transduction/immunology
- Mice, Inbred C57BL
- Phosphorylation
Collapse
Affiliation(s)
- Sookjin Moon
- Immunity, Inflammation and Disease Laboratory and
| | - Fei Zhao
- Immunity, Inflammation and Disease Laboratory and
| | | | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
6
|
Fan T, Shah R, Wang R. Metabolic footprint and logic through the T cell life cycle. Curr Opin Immunol 2024; 91:102487. [PMID: 39307123 PMCID: PMC11609023 DOI: 10.1016/j.coi.2024.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 12/02/2024]
Abstract
A simple definition of life is a system that can self-replicate (proliferation) and self-sustain (metabolism). At the cellular level, metabolism has evolved to drive proliferation, which requires energy and building blocks to duplicate cellular biomass before division. T lymphocytes (or T cells) are required for adaptive immune responses, protecting us against invading and malignant agents capable of hyper-replication. To gain a competitive advantage over these agents, activated T cells can duplicate their biomass and divide into two daughter cells in as short as 2-6 hours, considered the fastest cell division among all cell types in vertebrates. Thus, the primary task of cellular metabolism has evolved to commit available resources to drive T cell hyperproliferation. Beyond that, the T cell life cycle involves an ordered series of fate-determining events that drive cells to transition between discrete cell states. At the life stages not involved in hyperproliferation, T cells engage metabolic programs that are more flexible to sustain viability and maintenance and sometimes are fine-tuned to support specific cellular activities. Here, we focus on the central carbon metabolism, which is most relevant to cell proliferation. We provide examples of how the changes in the central carbon metabolism may or may not change the fate of T cells and further explore a few conceptual frameworks, such as metabolic flexibility, the Goldilocks Principle, overflow metabolism, and effector-signaling metabolites, in the context of T cell fate transitions.
Collapse
Affiliation(s)
- Tingting Fan
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA
| | - Rushil Shah
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Nakajima T, Kanno T, Ueda Y, Miyako K, Endo T, Yoshida S, Yokoyama S, Asou HK, Yamada K, Ikeda K, Togashi Y, Endo Y. Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling. Cell Mol Immunol 2024; 21:1266-1281. [PMID: 39187636 PMCID: PMC11528006 DOI: 10.1038/s41423-024-01209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-β); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-β-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-β-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells.
Collapse
Affiliation(s)
- Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yuki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Takeru Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Souta Yoshida
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoru Yokoyama
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hikari K Asou
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazuko Yamada
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan.
- Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
8
|
Arkee T, Hornick EL, Bishop GA. TRAF3 regulates STAT6 activation and T-helper cell differentiation by modulating the phosphatase PTP1B. J Biol Chem 2024; 300:107737. [PMID: 39233229 PMCID: PMC11462019 DOI: 10.1016/j.jbc.2024.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The adaptor protein tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifaceted regulator of lymphocyte biology that plays key roles in modulation of the molecular signals required for T-cell activation and function. TRAF3 regulates signals mediated by the T-cell receptor (TCR), costimulatory molecules, and cytokine receptors, which each drive activation of the serine/threonine kinase Akt. The impact of TRAF3 upon TCR-CD28-mediated activation of Akt, and thus on the diverse cellular processes regulated by Akt, including CD4 T-cell fate decisions, remains poorly understood. We show here that TRAF3 deficiency led to impaired Akt activation and thus to impaired in vitro skewing of CD4 T cells into the TH1 and TH2 fates. We investigated the role of TRAF3 in regulation of signaling pathways that drive TH1 and TH2 differentiation and found that TRAF3 enhanced activation of signal transducer and activator of transcription 6 (STAT6), thus promoting skewing toward the TH2 fate. TRAF3 promoted STAT6 activation by regulating recruitment of the inhibitory molecule protein tyrosine phosphatase 1B to the IL-4R signaling complex, in a manner that required integration of TCR-CD28- and IL-4R-mediated signals. This work reveals a new mechanism for TRAF3-mediated regulation of STAT6 activation in CD4 T cells and adds to our understanding of the diverse roles played by TRAF3 as an important regulator of T-cell biology.
Collapse
Affiliation(s)
- Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Emma L Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; Office of Research and Development, Iowa City VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
9
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 Regulates CD4 T Follicular Helper Cell Differentiation and Humoral Immunity During Murine Coronavirus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605237. [PMID: 39091786 PMCID: PMC11291160 DOI: 10.1101/2024.07.26.605237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During activation the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6 deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high affinity virus specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6 mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection induced upregulation of Ubash3a, a negative regulator of T cell receptor signaling, was hindered in CD6 deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6 deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity.
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| | - Feng Lin
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| |
Collapse
|
10
|
Anannya O, Huang W, August A. The kinase ITK controls a Ca 2+-mediated switch that balances T H17 and T reg cell differentiation. Sci Signal 2024; 17:eadh2381. [PMID: 39042726 PMCID: PMC11445781 DOI: 10.1126/scisignal.adh2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 11/13/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
The balance of proinflammatory T helper type 17 (TH17) and anti-inflammatory T regulatory (Treg) cells is crucial for immune homeostasis in health and disease. The differentiation of naïve CD4+ T cells into TH17 and Treg cells depends on T cell receptor (TCR) signaling mediated, in part, by interleukin-2-inducible T cell kinase (ITK), which stimulates mitogen-activated protein kinases (MAPKs) and Ca2+ signaling. Here, we report that, in the absence of ITK activity, naïve murine CD4+ T cells cultured under TH17-inducing conditions expressed the Treg transcription factor Foxp3 and did not develop into TH17 cells. Furthermore, ITK inhibition in vivo during allergic inflammation increased the Treg:TH17 ratio in the lung. These switched Foxp3+ Treg-like cells had suppressive function, and their transcriptomic profile resembled that of differentiated, induced Treg (iTreg) cells, but their chromatin accessibility profiles were intermediate between TH17 and iTreg cells. Like iTreg cells, switched Foxp3+ Treg-like cells had reductions in the expression of genes involved in mitochondrial oxidative phosphorylation and glycolysis, in the activation of the mechanistic target of rapamycin (mTOR) signaling pathway, and in the abundance of the TH17 pioneer transcription factor BATF. This ITK-dependent switch between TH17 and Treg cells depended on Ca2+ signaling but not on MAPKs. These findings suggest potential strategies for fine-tuning TCR signal strength through ITK to control the balance of TH17 and Treg cells.
Collapse
Affiliation(s)
- Orchi Anannya
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Becker JC, Stang A, Schrama D, Ugurel S. Merkel Cell Carcinoma: Integrating Epidemiology, Immunology, and Therapeutic Updates. Am J Clin Dermatol 2024; 25:541-557. [PMID: 38649621 PMCID: PMC11193695 DOI: 10.1007/s40257-024-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare skin cancer characterized by neuroendocrine differentiation. Its carcinogenesis is based either on the integration of the Merkel cell polyomavirus or on ultraviolet (UV) mutagenesis, both of which lead to high immunogenicity either through the expression of viral proteins or neoantigens. Despite this immunogenicity resulting from viral or UV-associated carcinogenesis, it exhibits highly aggressive behavior. However, owing to the rarity of MCC and the lack of epidemiologic registries with detailed clinical data, there is some uncertainty regarding the spontaneous course of the disease. Historically, advanced MCC patients were treated with conventional cytotoxic chemotherapy yielding a median response duration of only 3 months. Starting in 2017, four programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) immune checkpoint inhibitors-avelumab, pembrolizumab, nivolumab (utilized in both neoadjuvant and adjuvant settings), and retifanlimab-have demonstrated efficacy in treating patients with disseminated MCC on the basis of prospective clinical trials. However, generating clinical evidence for rare cancers, such as MCC, is challenging owing to difficulties in conducting large-scale trials, resulting in small sample sizes and therefore lacking statistical power. Thus, to comprehensively understand the available clinical evidence on various immunotherapy approaches for MCC, we also delve into the epidemiology and immune biology of this cancer. Nevertheless, while randomized studies directly comparing immune checkpoint inhibitors and chemotherapy in MCC are lacking, immunotherapy shows response rates comparable to those previously reported with chemotherapy but with more enduring responses. Notably, adjuvant nivolumab has proven superiority to the standard-of-care therapy (observation) in the adjuvant setting.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstrasse 1, 45141, Essen, Germany.
- Department of Dermatology, University Medicine Essen, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
- Cancer Registry of North Rhine-Westphalia, Bochum, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Selma Ugurel
- Department of Dermatology, University Medicine Essen, Essen, Germany
| |
Collapse
|
12
|
Hale BD, Severin Y, Graebnitz F, Stark D, Guignard D, Mena J, Festl Y, Lee S, Hanimann J, Zangger NS, Meier M, Goslings D, Lamprecht O, Frey BM, Oxenius A, Snijder B. Cellular architecture shapes the naïve T cell response. Science 2024; 384:eadh8697. [PMID: 38843327 DOI: 10.1126/science.adh8967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.
Collapse
MESH Headings
- Animals
- Mice
- Calcium/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/ultrastructure
- Cell Differentiation
- Immunologic Memory
- Lymphocyte Activation
- Mice, Inbred C57BL
- Nuclear Envelope/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Microscopy, Fluorescence
- Fluorescent Antibody Technique
- Humans
Collapse
Affiliation(s)
- Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabienne Graebnitz
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Guignard
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jacob Hanimann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nathan S Zangger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Michelle Meier
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Olga Lamprecht
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zürich, Switzerland
| |
Collapse
|
13
|
Suwanchiwasiri K, Phanthaphol N, Somboonpatarakun C, Yuti P, Sujjitjoon J, Luangwattananun P, Maher J, Yenchitsomanus PT, Junking M. Bispecific T cell engager-armed T cells targeting integrin ανβ6 exhibit enhanced T cell redirection and antitumor activity in cholangiocarcinoma. Biomed Pharmacother 2024; 175:116718. [PMID: 38744221 DOI: 10.1016/j.biopha.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvβ6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvβ6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvβ6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvβ6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.β6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvβ6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvβ6-expressing cancers.
Collapse
Affiliation(s)
- Kwanpirom Suwanchiwasiri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Phanthaphol
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; School of Cardiovascular and Medical Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London, United Kingdom
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Zhang W, Chen L, Lu X, Dong X, Feng M, Tu Y, Wang Z. EFHD2 regulates T cell receptor signaling and modulates T helper cell activation in early sepsis. Int Immunopharmacol 2024; 133:112087. [PMID: 38669951 DOI: 10.1016/j.intimp.2024.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.
Collapse
Affiliation(s)
- Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xiaohui Dong
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Meixia Feng
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
15
|
Varghese JF, Kaskow BJ, von Glehn F, Case J, Li Z, Julé AM, Berdan E, Ho Sui SJ, Hu Y, Krishnan R, Chitnis T, Kuchroo VK, Weiner HL, Baecher-Allan CM. Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis. Front Immunol 2024; 15:1360219. [PMID: 38745667 PMCID: PMC11091236 DOI: 10.3389/fimmu.2024.1360219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Background Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.
Collapse
Affiliation(s)
- Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Felipe von Glehn
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Amélie M. Julé
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Emma Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shannan Janelle Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yong Hu
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vijay K. Kuchroo
- Harvard Medical School, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare Mary Baecher-Allan
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Moon S, Zhao F, Uddin MN, Tucker CJ, Karmaus PWF, Fessler MB. Flotillin-2 dampens T cell antigen-sensitivity and functionality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591344. [PMID: 38746431 PMCID: PMC11092481 DOI: 10.1101/2024.04.26.591344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection. Flot2-null CD4 + T cells exhibited increased T helper 1 polarization, proliferation, Nur77 induction, and phosphorylation of ZAP70 and LCK upon weak TCR stimulation, indicating a sensitized TCR-triggering threshold. Single cell-RNA sequencing suggested that Flot2 - null CD4 + T cells follow a similar route of activation as wild-type CD4 + T cells but exhibit higher occupancy of a discrete activation state under weak TCR stimulation. Given prior reports that TCR clustering influences sensitivity of T cells to stimuli, we evaluated TCR distribution with super-resolution microscopy. Flot2 ablation increased the number of surface TCR nanoclusters on naïve CD4 + T cells. Collectively, we posit that Flot2 modulates T cell functionality to weak TCR stimulation, at least in part, by regulating surface TCR clustering. Our findings have implications for improving T cell reactivity in diseases with poor antigenicity, such as cancer and chronic infections.
Collapse
|
17
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
18
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Site-specific regulation of Th2 differentiation within lymph node microenvironments. J Exp Med 2024; 221:e20231282. [PMID: 38442268 PMCID: PMC10912907 DOI: 10.1084/jem.20231282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
- Miranda R. Lyons-Cohen
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elya A. Shamskhou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
20
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
21
|
Limone F, Couto A, Wang JY, Zhang Y, McCourt B, Huang C, Minkin A, Jani M, McNeer S, Keaney J, Gillet G, Gonzalez RL, Goodman WA, Kadiu I, Eggan K, Burberry A. Myeloid and lymphoid expression of C9orf72 regulates IL-17A signaling in mice. Sci Transl Med 2024; 16:eadg7895. [PMID: 38295187 PMCID: PMC11247723 DOI: 10.1126/scitranslmed.adg7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A mutation in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Patients with ALS or FTD often develop autoimmunity and inflammation that precedes or coincides with the onset of neurological symptoms, but the underlying mechanisms are poorly understood. Here, we knocked out murine C9orf72 in seven hematopoietic progenitor compartments by conditional mutagenesis and found that myeloid lineage C9orf72 prevents splenomegaly, loss of tolerance, and premature mortality. Furthermore, we demonstrated that C9orf72 plays a role in lymphoid cells to prevent interleukin-17A (IL-17A) production and neutrophilia. Mass cytometry identified early and sustained elevation of the costimulatory molecule CD80 expressed on C9orf72-deficient mouse macrophages, monocytes, and microglia. Enrichment of CD80 was similarly observed in human spinal cord microglia from patients with C9ORF72-mediated ALS compared with non-ALS controls. Single-cell RNA sequencing of murine spinal cord, brain cortex, and spleen demonstrated coordinated induction of gene modules related to antigen processing and presentation and antiviral immunity in C9orf72-deficient endothelial cells, microglia, and macrophages. Mechanistically, C9ORF72 repressed the trafficking of CD80 to the cell surface in response to Toll-like receptor agonists, interferon-γ, and IL-17A. Deletion of Il17a in C9orf72-deficient mice prevented CD80 enrichment in the spinal cord, reduced neutrophilia, and reduced gut T helper type 17 cells. Last, systemic delivery of an IL-17A neutralizing antibody augmented motor performance and suppressed neuroinflammation in C9orf72-deficient mice. Altogether, we show that C9orf72 orchestrates myeloid costimulatory potency and provide support for IL-17A as a therapeutic target for neuroinflammation associated with ALS or FTD.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Leiden University Medical Center, LUMC, 2333 ZA Leiden, The Netherlands
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Jin-Yuan Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Yingying Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cerianne Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Adina Minkin
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marghi Jani
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sarah McNeer
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James Keaney
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Gaëlle Gillet
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Rodrigo Lopez Gonzalez
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Wendy A. Goodman
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irena Kadiu
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Aaron Burberry
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
22
|
Lee K, Park J, Tanno H, Georgiou G, Diamond B, Kim SJ. Peripheral T cell activation, not thymic selection, expands the T follicular helper repertoire in a lupus-prone murine model. Proc Natl Acad Sci U S A 2023; 120:e2309780120. [PMID: 37983487 PMCID: PMC10691248 DOI: 10.1073/pnas.2309780120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Many autoimmune diseases are characterized by the activation of autoreactive T cells. The T cell repertoire is established in the thymus; it remains uncertain whether the presence of disease-associated autoreactive T cells reflects abnormal T cell selection in the thymus or aberrant T cell activation in the periphery. Here, we describe T cell selection, activation, and T cell repertoire diversity in female mice deficient for B lymphocyte-induced maturation protein (BLIMP)-1 in dendritic cells (DCs) (Prdm1 CKO). These mice exhibit a lupus-like phenotype with an expanded population of T follicular helper (Tfh) cells having a more diverse T cell receptor (TCR) repertoire than wild-type mice and, in turn, develop a lupus-like pathology. To understand the origin of the aberrant Tfh population, we analyzed the TCR repertoire of thymocytes and naive CD4 T cells from Prdm1 CKO mice. We show that early development and selection of T cells in the thymus are not affected. Importantly, however, we observed increased TCR signal strength and increased proliferation of naive T cells cultured in vitro with antigen and BLIMP1-deficient DCs compared to control DCs. Moreover, there was increased diversity in the TCR repertoire in naive CD4+ T cells stimulated in vitro with BLIMP1-deficient DCs. Collectively, our data indicate that lowering the threshold for peripheral T cell activation without altering thymic selection and naive T cell TCR repertoire leads to an expanded repertoire of antigen-activated T cells and impairs peripheral T cell tolerance.
Collapse
Affiliation(s)
- Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Biology, Hofstra University, Hempstead, NY11549
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
| | - Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
- Cancer Immunology Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Molecular Medicine, Northwell Health-Hofstra School of Medicine, Hofstra University, Hempstead, NY11549
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Molecular Medicine, Northwell Health-Hofstra School of Medicine, Hofstra University, Hempstead, NY11549
| |
Collapse
|
23
|
Scotland BL, Cottingham AL, Lasola JJM, Hoag SW, Pearson RM. Development of protein-polymer conjugate nanoparticles for modulation of dendritic cell phenotype and antigen-specific CD4 T cell responses. ACS APPLIED POLYMER MATERIALS 2023; 5:8794-8807. [PMID: 38911349 PMCID: PMC11192461 DOI: 10.1021/acsapm.3c00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Polymeric nanoparticles (NPs) comprised of poly(lactic-co-glycolic acid) (PLGA) have found success in modulating antigen (Ag)-specific T cell responses for the treatment multiple immunological diseases. Common methods by which Ags are associated with NPs are through encapsulation and surface conjugation; however, these methods suffer from several limitations, including uncontrolled Ag loading, burst release, and potential immune recognition. To overcome these limitations and study the relationship between NP design parameters and modulation of innate and Ag-specific adaptive immune cell responses, we developed ovalbumin (OVA) protein-PLGA bioconjugate NPs (acNP-OVA). OVA was first modified by conjugation with multiple PLGA polymers to synthesize OVA-PLGA conjugates, followed by precise combination with unmodified PLGA to form acNP-OVA with well-defined Ag loadings, reduced burst release, and reduced antibody recognition. Expression of MHC II, CD80, and CD86 on bone marrow-derived dendritic cells (BMDCs) increased as a function of acNP-OVA Ag loading. NanoString studies using BMDCs showed that PLGA NPs generally induced anti-inflammatory gene expression profiles independent of the Ag delivery method, where S100a9, Sell, and Ppbp were most significantly reduced. Co-culture studies using acNP-OVA-treated BMDCs and OT-II CD4+ T cells revealed that Ag-specific T cell activation, expansion, and differentiation were dependent on Ag loading and formulation parameters. CD25 expression was induced using acNP-OVA with the lowest Ag loading; however, the induction of robust CD4+ T cell proliferative and cytokine responses required acNP-OVA formulations with higher Ag loading, which was supported using a regulatory T cell (Treg) induction assay. The distinct differences in Ag loading required to achieve various T cell responses supported the concept of an Ag loading threshold for Ag-specific immunotherapy. We anticipate this work will help guide NP designs and aid in the future development of NP-based immunotherapies for Ag-specific immunomodulation.
Collapse
Affiliation(s)
- Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Jackline Joy M. Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Stephen W. Hoag
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
25
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
26
|
Revu SK, Yang W, Rajasundaram D, Brady A, Majumder S, Gaffen SL, Hawse W, Xia Z, McGeachy MJ. Human IL-17A protein production is controlled through a PIP5K1α-dependent translational checkpoint. Sci Signal 2023; 16:eabo6555. [PMID: 37874883 PMCID: PMC10880140 DOI: 10.1126/scisignal.abo6555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
The cytokine interleukin-17 (IL-17) is secreted by T helper 17 (TH17) cells and is beneficial for microbial control; however, it also causes inflammation and pathological tissue remodeling in autoimmunity. Hence, TH17 cell differentiation and IL-17 production must be tightly regulated, but, to date, this has been defined only in terms of transcriptional control. Phosphatidylinositols are second messengers produced during T cell activation that transduce signals from the T cell receptor (TCR) and costimulatory receptors at the plasma membrane. Here, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) was enriched in the nuclei of human TH17 cells, which depended on the kinase PIP5K1α, and that inhibition of PIP5K1α impaired IL-17A production. In contrast, nuclear PIP2 enrichment was not observed in TH1 or TH2 cells, and these cells did not require PIP5K1α for cytokine production. In T cells from people with multiple sclerosis, IL-17 production elicited by myelin basic protein was blocked by PIP5K1α inhibition. IL-17 protein was affected without altering either the abundance or stability of IL17A mRNA in TH17 cells. Instead, analysis of PIP5K1α-associating proteins revealed that PIP5K1α interacted with ARS2, a nuclear cap-binding complex scaffold protein, to facilitate its binding to IL17A mRNA and subsequent IL-17A protein production. These findings highlight a transcription-independent, translation-dependent mechanism for regulating IL-17A protein production that might be relevant to other cytokines.
Collapse
Affiliation(s)
- Shankar K. Revu
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wenjuan Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | | | - Alexander Brady
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Saikat Majumder
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L. Gaffen
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Mandy J. McGeachy
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
27
|
Sturmlechner I, Jain A, Mu Y, Weyand CM, Goronzy JJ. T cell fate decisions during memory cell generation with aging. Semin Immunol 2023; 69:101800. [PMID: 37494738 PMCID: PMC10528238 DOI: 10.1016/j.smim.2023.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The defense against infectious diseases, either through natural immunity or after vaccinations, relies on the generation and maintenance of protective T cell memory. Naïve T cells are at the center of memory T cell generation during primary responses. Upon activation, they undergo a complex, highly regulated differentiation process towards different functional states. Naïve T cells maintained into older age have undergone epigenetic adaptations that influence their fate decisions during differentiation. We review age-sensitive, molecular pathways and gene regulatory networks that bias naïve T cell differentiation towards effector cell generation at the expense of memory and Tfh cells. As a result, T cell differentiation in older adults is associated with release of bioactive waste products into the microenvironment, higher stress sensitivity as well as skewing towards pro-inflammatory signatures and shorter life spans. These maladaptations not only contribute to poor vaccine responses in older adults but also fuel a more inflammatory state.
Collapse
Affiliation(s)
- Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Sengupta S, Shaw SK, Chatterjee S, Bhattacharya G, Barik PK, Chattopadhyay S, Devadas S. Perturbations in spike-specific peripheral T follicular helper cells in SARS-CoV2 breakthrough convalescent individuals immunized by BBV152 vaccine. J Med Virol 2023; 95:e29053. [PMID: 37650214 DOI: 10.1002/jmv.29053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) infection has caused an increase in mortality and morbidity, but with vaccination, the disease severity has significantly reduced. With the emergence of various variants of concern (VOCs), the vaccine breakthrough infection has also increased. Here we studied circulating spike-specific T follicular response (cTfh) in infection-naïve vaccinees and convalescent vaccinees (individuals who got the Delta breakthrough infection after two doses of BBV152 vaccine) to understand their response as they are the most crucial cells that are involved in vaccine-mediated protection by helping in B-cell maturation. Our results indicated that cTfh cells in both the groups recognized the wild-type and Delta spike protein but memory response to the wild-type spike was superior in infection-naïve than in the convalescent group. The cytokine response, particularly interleukin-21 (IL-21) from cTfh, was also higher in infection-naïve than in convalescent vaccinees, indicating a dampened cTfh response in convalescent vaccinees after breakthrough infection. Also, there was a positive correlation between IL-21 from cTfh cells and neutralizing antibodies of infection-naïve vaccinees. Multiple cytokine analysis also revealed higher inflammation in convalescent vaccinees. Our data indicated that the necessity of a third booster dose may be individual-specific depending on the steady-state functional phenotype of immune cells.
Collapse
Affiliation(s)
- Soumya Sengupta
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Shubham K Shaw
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Sanchari Chatterjee
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- Molecular Virology Lab, Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
| | - Gargee Bhattacharya
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Prakash K Barik
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| | - Soma Chattopadhyay
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- Molecular Virology Lab, Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
| | - Satish Devadas
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana, India
- T cell and Immune Response Lab, Department of Infectious Disease Biology, Institute of Life Science (Autonomous Institute of Dept of Biotechnology, Govt. of India), Bhubaneswar, Odisha, India
| |
Collapse
|
29
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Prolonged T cell - DC macro-clustering within lymph node microenvironments initiates Th2 cell differentiation in a site-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547554. [PMID: 37461439 PMCID: PMC10350056 DOI: 10.1101/2023.07.07.547554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formation of T helper 2 (Th2) responses has been attributed to low-grade T cell stimulation, yet how large-scale polyclonal Th2 responses are generated in vivo remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, Th2 differentiation was associated with enhanced T cell activation and extensive integrin-dependent 'macro-clustering' at the T-B border, which also contrasted clustering behavior seen during Th1 differentiation. Unexpectedly, formation of Th2 macro-clusters within LNs was highly dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting T cell macro-clustering and cytokine sensing. Thus, generation of dedicated priming micro-environments through enhanced costimulatory molecule signaling initiates the generation of Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
| | - Elya A. Shamskhou
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
30
|
Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci 2023; 44:442-456. [PMID: 37248103 DOI: 10.1016/j.tips.2023.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Lymphocytes maturing in the thymus (T cells) are key factors in adaptive immunity and the regulation of inflammation. The kynurenine pathway of tryptophan metabolism includes several enzymes and compounds that can modulate T cell function, but manipulating these pharmacologically has not achieved the expected therapeutic activity for the treatment of autoimmune disorders and cancer. With increasing knowledge of other pathways interacting with kynurenines, the expansion of screening methods, and the application of virtual techniques to understanding enzyme structures and mechanisms, details of interactions between kynurenines and other pathways are being revealed. This review surveys some of these alternative approaches to influence T cell function indirectly via the kynurenine pathway and summarizes the most recent work on the development of compounds acting directly on the kynurenine pathway.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
31
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
32
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Jung DH, Lee A, Hwang YH, Jung MA, Pyun BJ, Lee JY, Kim T, Song KH, Ji KY. Therapeutic effects of Pulsatilla koreana Nakai extract on ovalbumin-induced allergic rhinitis by inhibition of Th2 cell activation and differentiation via the IL-4/STAT6/GATA3 pathway. Biomed Pharmacother 2023; 162:114730. [PMID: 37080090 DOI: 10.1016/j.biopha.2023.114730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Allergic rhinitis (AR), caused by immunoglobulin E (IgE)-mediated inflammation, generally occurs in the upper respiratory tract. T helper type 2 (Th2) cell-mediated cytokines, including interleukin (IL)-4, IL-5, and IL-13, are important factors in AR pathogenesis. Despite various treatment options, the difficulty in alleviating AR and pharmacological side effects necessitate development of new therapies. The root of Pulsatilla koreana Nakai (P. koreana), a pasque flower, has been used as a herbal medicine. However, its effects on AR remain unclear; therefore, we aimed to explore this subject in the current study. The therapeutic effects of P. koreana water extract (PKN) on the pathophysiological functions of the nasal mucosa was examined in ovalbumin (OVA)-induced AR mice. The effect of PKN on Th2 activation and differentiation was evaluated using concanavalin A-induced splenocytes and differentiated Th2 cells from naïve CD4+ T cells. We also investigated the effect of changes in JAK/STAT6/GATA3 signaling on IL-4-induced Th2 cells. In OVA-induced AR mice, PKN administration alleviated allergic nasal symptoms and decreased the total number of immune cells, lymphocytes, neutrophils, and eosinophils in nasal lavage fluid; serum levels of OVA-specific IgE, histamine, and IL-13 were also significantly reduced. PKN also ameliorated OVA-induced nasal mucosal tissue thickening by inhibiting inflammation and goblet cell hyperplasia. PKN treatment significantly inhibited Th2 activity and differentiation through the IL-4/STAT-6/GATA3 pathway in Th2 cells. PKN is an effective AR treatment with the potential to improve patients' daily lives by regulating the allergic inflammatory response induced by Th2 cells.
Collapse
Affiliation(s)
- Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Ami Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kwang Hoon Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea.
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea; Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup-si 56212, the Republic of Korea.
| |
Collapse
|
34
|
Anannya O, Huang W, August A. ITK signaling regulates a switch between T helper 17 and T regulatory cell lineages via a calcium-mediated pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535229. [PMID: 37066370 PMCID: PMC10103963 DOI: 10.1101/2023.04.01.535229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The balance of pro-inflammatory T helper type 17 (Th17) and anti-inflammatory T regulatory (Treg) cells is crucial in maintaining immune homeostasis in health and disease conditions. Differentiation of naïve CD4+ T cells into Th17/Treg cells is dependent upon T cell receptor (TCR) activation and cytokine signaling, which includes the kinase ITK. Signals from ITK can regulate the differentiation of Th17 and Treg cell fate choice, however, the mechanism remains to be fully understood. We report here that in the absence of ITK activity, instead of developing into Th17 cells under Th17 conditions, naïve CD4+ T cells switch to cells expressing the Treg marker Foxp3 (Forkhead box P3). These switched Foxp3+ Treg like cells retain suppressive function and resemble differentiated induced Tregs in their transcriptomic profile, although their chromatin accessibility profiles are intermediate between Th17 and induced Tregs cells. Generation of the switched Foxp3+ Treg like cells was associated with reduced expression of molecules involved in mitochondrial oxidative phosphorylation and glycolysis, with reduced activation of the mTOR signaling pathway, and reduced expression of BATF. This ITK dependent switch between Th17 and Treg cells was reversed by increasing intracellular calcium. These findings suggest potential strategies for fine tune the TCR signal strength via ITK to regulate the balance of Th17/Treg cells.
Collapse
Affiliation(s)
- Orchi Anannya
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Kim MH, Lee CW. Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4 + T Cell Lineages. Immune Netw 2023; 23:e12. [PMID: 37179750 PMCID: PMC10166661 DOI: 10.4110/in.2023.23.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 05/15/2023] Open
Abstract
Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.
Collapse
Affiliation(s)
- Min-Hee Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
36
|
Kargar M, Torabizadeh M, Purrahman D, Zayeri ZD, Saki N. Regulatory factors involved in Th17/Treg cell balance of immune thrombocytopenia. Curr Res Transl Med 2023; 71:103389. [PMID: 37062251 DOI: 10.1016/j.retram.2023.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Immune thrombocytopenia is a common heterogeneous autoimmune disease that is characterized by decreasing peripheral blood platelet counts and increasing risk of bleeding. Studies have shown that an imbalance between T helper 17 (Th17) and Regulatory T (Treg) cells differentiated from CD4+T-cells is a key factor influencing the development and pathogenesis of immune thrombocytopenia. Th17 cells promote the development of chronic inflammatory disorders and induce autoimmune diseases, whereas Treg cells regulate immune homeostasis and prevent autoimmune diseases. Several regulators affecting the production and maintenance of these cells are also essential for proper regulation of Th17/Treg balance; these regulatory factors include cell surface proteins, miRNAs, and cytokine signaling. In this review, we focus on the function and role of balance between Th17 and Treg cells in immune thrombocytopenia, the regulatory factors, and therapeutic goals of this balance in immune thrombocytopenia.
Collapse
Affiliation(s)
- Masoud Kargar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
37
|
Chen X, Liu L, Kang S, Gnanaprakasam JNR, Wang R. The lactate dehydrogenase (LDH) isoenzyme spectrum enables optimally controlling T cell glycolysis and differentiation. SCIENCE ADVANCES 2023; 9:eadd9554. [PMID: 36961904 PMCID: PMC10038341 DOI: 10.1126/sciadv.add9554] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Isoenzyme divergence is a prevalent mechanism governing tissue-specific and developmental stage-specific metabolism in mammals. The lactate dehydrogenase (LDH) isoenzyme spectrum reflects the tissue-specific metabolic status. We found that three tetrameric isoenzymes composed of LDHA and LDHB (LDH-3/4/5) comprise the LDH spectrum in T cells. Genetically deleting LDHA or LDHB altered the isoenzyme spectrum by removing all heterotetramers and leaving T cells with LDH-1 (the homotetramer of LDHB) or LDH-5 (the homotetramer of LDHA), respectively. Accordingly, deleting LDHA suppressed glycolysis, cell proliferation, and differentiation. Unexpectedly, deleting LDHB enhanced glycolysis but suppressed T cell differentiation, indicating that an optimal zone of glycolytic activity is required to maintain cell fitness. Mechanistically, the LDH isoenzyme spectrum imposed by LDHA and LDHB is necessary to optimize glycolysis to maintain a balanced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen pool. Our results suggest that the LDH isoenzyme spectrum enables "Goldilocks levels" of glycolytic and redox activity to control T cell differentiation.
Collapse
Affiliation(s)
- Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | | | | | - JN Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
Zheng P, Wei X, Cao X, Ma P, Dong R, Tang H, Meng X, Liu X, Zhang C, Zhang S, Ming L. Antigen clearance at the peak of the primary immune response induces experimental autoimmune encephalomyelitis. Eur J Immunol 2023; 53:e2250122. [PMID: 36597350 DOI: 10.1002/eji.202250122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Autoimmune demyelinating diseases can be induced by an immune response against myelin peptides; however, the exact mechanism underlying the development of such diseases remains unclear. In experimental autoimmune encephalomyelitis, we found that the clearance of exogenous myelin antigen at the peak of the primary immune response is key to the pathogenesis of the disease. The generation of effector T cells requires continuous antigen stimulation, whereas redundant antigen traps and exhausts effector T cells in the periphery, which induces resistance to the disease. Moreover, insufficient antigenic stimulation fails to induce disease efficiently owing to insufficient numbers of effector T cells. When myelin antigen is entirely cleared, the number of effector T cells reaches a peak, which facilitates infiltration of more effector T cells into the central nervous system. The peripheral antigen clearance initiates the first wave of effector T cell entry into the central nervous system and induces chronic inflammation. The inflamed central nervous system recruits the second wave of effector T cells that worsen inflammation, resulting in loss of self-tolerance. These findings provide new insights into the mechanism underlying the development of autoimmune demyelinating diseases, which may potentially impact future treatments.
Collapse
Affiliation(s)
- Peiguo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Xufeng Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Xuezhen Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Panhong Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Rui Dong
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Hongwei Tang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xianchun Meng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Cai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Shuijun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
39
|
Jahan F, Koski J, Schenkwein D, Ylä-Herttuala S, Göös H, Huuskonen S, Varjosalo M, Maliniemi P, Leitner J, Steinberger P, Bühring HJ, Vettenranta K, Korhonen M. Using the Jurkat reporter T cell line for evaluating the functionality of novel chimeric antigen receptors. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1070384. [PMID: 39086686 PMCID: PMC11285682 DOI: 10.3389/fmmed.2023.1070384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 08/02/2024]
Abstract
Background: T cells that are genetically modified with chimeric antigen receptor (CAR) hold promise for immunotherapy of cancer. Currently, there are intense efforts to improve the safety and efficacy of CAR T cell therapies against liquid and solid tumors. Earlier we designed a novel CAR backbone (FiCAR) where the spacer is derived from immunoglobulin (Ig) -like domains of the signal-regulatory protein alpha (SIRPα). However, the analysis of novel CAR using primary T cells is slow and laborious. Methods: To explore the versatility of the CAR backbone, we designed a set of variant FiCARs with different spacer lengths and targeting antigens. To expedite the analysis of the novel CARs, we transduced the FiCAR genes using lentiviruses into Jurkat reporter T cells carrying fluorescent reporter genes. The expression of fluorescent markers in response to FiCAR engagement with targets was analyzed by flow cytometry, and cytotoxicity was evaluated using killing assays. Furthermore, the killing mechanisms that are employed by FiCAR-equipped Jurkat T cells were investigated by flow cytometry, and the intracellular pathways involved in signaling by FiCAR were analyzed by phosphoproteomic analysis using mass spectrometry. Results: Seven different CARs were designed and transduced into Jurkat reporter cells. We show that the SIRPα derived FiCARs can be detected by flow cytometry using the SE12B6A4 antibody recognizing SIRPα. Furthermore, FiCAR engagement leads to robust activation of NFκβ and NFAT signaling, as demonstrated by the expression of the fluorescent reporter genes. Interestingly, the Jurkat reporter system also revealed tonic signaling by a HER-2 targeting FiCAR. FiCAR-equipped Jurkat T cells were cytotoxic in cocultures with target cells and target cell engagement lead to an upregulation of CD107a on the Jurkat reporter T cell surface. Phosphoproteomic analyses confirmed signal transduction via the intracellular CD28/CD3ζ sequences upon the interaction of the FiCAR1 with its antigen. In addition, downstream signaling of CD3ζ/ZAP70- SLP-76-PLCγ, PI3K-AKT-NFκB pathways and activation of NFAT and AP-1 were observed. Conclusion: We conclude that the FiCAR backbone can be shortened and lengthened at will by engineering it with one to three SIRPα derived Ig-like domains, and the FiCARs are functional when equipped with different single chain variable fragment target binding domains. The Jurkat reporter system expedites the analysis of novel CARs as to their expression, signaling function, evaluation of tonic signaling issues and cytotoxic activity.
Collapse
Affiliation(s)
- Farhana Jahan
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Jan Koski
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Diana Schenkwein
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Helka Göös
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Sini Huuskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, University Clinic of Tübingen, Tübingen, Germany
| | - Kim Vettenranta
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
- University of Helsinki and the Children’s Hospital, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
40
|
Su HC. Insights into the pathogenesis of allergic disease from dedicator of cytokinesis 8 deficiency. Curr Opin Immunol 2023; 80:102277. [PMID: 36508760 PMCID: PMC9972721 DOI: 10.1016/j.coi.2022.102277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Clinical observations and mechanistic studies in dedicator of cytokinesis 8 (DOCK8)-deficient patients and mice have revealed multiple mechanisms that could contribute to their unusually prevalent and severe allergic disease manifestations. Physical interactions of DOCK8 with STAT3 in B cells and T cells may contribute to increased IgE isotype switching or defective immune synapse formation that decreases T-cell receptor signal strength. A newly discovered TFH13 cell type promotes the development of life-threatening allergy via production of IL-13 and is increased in DOCK8 deficiency. Cytoskeletal derangements and cytothripsis, which were previously shown to account for the increased susceptibility to viral skin infection in DOCK8 deficiency, can lead to interplay between myeloid cells and T cells to ultimately increase production of IL-4, IL-5, and IL-13. Finally, the effects on type-2 innate lymphoid cells may also contribute to allergic disease.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States.
| |
Collapse
|
41
|
Schlichtner S, Yasinska IM, Lall GS, Berger SM, Ruggiero S, Cholewa D, Aliu N, Gibbs BF, Fasler-Kan E, Sumbayev VV. T lymphocytes induce human cancer cells derived from solid malignant tumors to secrete galectin-9 which facilitates immunosuppression in cooperation with other immune checkpoint proteins. J Immunother Cancer 2023; 11:jitc-2022-005714. [PMID: 36599470 DOI: 10.1136/jitc-2022-005714] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Galectin-9 is a member of the family of lectin proteins and crucially regulates human immune responses, particularly because of its ability to suppress the anticancer activities of T lymphocytes and natural killer cells. Recent evidence demonstrated that galectin-9 is highly expressed in a wide range of human malignancies including the most aggressive tumors, such as high-grade glioblastomas and pancreatic ductal adenocarcinomas, as well as common malignancies such as breast, lung and colorectal cancers. However, solid tumor cells at rest are known to secrete either very low amounts of galectin-9 or, in most of the cases, do not secrete it at all. Our aims were to elucidate whether T cells can induce galectin-9 secretion in human cancer cells derived from solid malignant tumors and whether this soluble form displays higher systemic immunosuppressive activity compared with the cell surface-based protein. METHODS A wide range of human cancer cell lines derived from solid tumours, keratinocytes and primary embryonic cells were employed, together with helper and cytotoxic T cell lines and human as well as mouse primary T cells. Western blot analysis, ELISA, quantitative reverse transcriptase-PCR, on-cell Western and other measurement techniques were used to conduct the study. Results were validated using in vivo mouse model. RESULTS We discovered that T lymphocytes induce galectin-9 secretion in various types of human cancer cells derived from solid malignant tumors. This was demonstrated to occur via two differential mechanisms: first by translocation of galectin-9 onto the cell surface followed by its proteolytic shedding and second due to autophagy followed by lysosomal secretion. For both mechanisms a protein carrier/trafficker was required, since galectin-9 lacks a secretion sequence. Secreted galectin-9 pre-opsonised T cells and, following interaction with other immune checkpoint proteins, their activity was completely attenuated. As an example, we studied the cooperation of galectin-9 and V-domain Ig-containing suppressor of T cell activation (VISTA) proteins in human cancer cells. CONCLUSION Our results underline a crucial role of galectin-9 in anticancer immune evasion. As such, galectin-9 and regulatory pathways controlling its production should be considered as key targets for immunotherapy in a large number of cancers.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Gurprit S Lall
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Steffen M Berger
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Sabrina Ruggiero
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Dietmar Cholewa
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Nijas Aliu
- Department of Human Genetics, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Bernhard F Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery and Department of Biomedical Research, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
42
|
CD4+ T Cell Regulatory Network Underlies the Decrease in Th1 and the Increase in Anergic and Th17 Subsets in Severe COVID-19. Pathogens 2022; 12:pathogens12010018. [PMID: 36678366 PMCID: PMC9865341 DOI: 10.3390/pathogens12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In this model we use a dynamic and multistable Boolean regulatory network to provide a mechanistic explanation of the lymphopenia and dysregulation of CD4+ T cell subsets in COVID-19 and provide therapeutic targets. Using a previous model, the cytokine micro-environments found in mild, moderate, and severe COVID-19 with and without TGF-β and IL-10 was we simulated. It shows that as the severity of the disease increases, the number of antiviral Th1 cells decreases, while the the number of Th1-like regulatory and exhausted cells and the proportion between Th1 and Th1R cells increases. The addition of the regulatory cytokines TFG-β and IL-10 makes the Th1 attractor unstable and favors the Th17 and regulatory subsets. This is associated with the contradictory signals in the micro-environment that activate SOCS proteins that block the signaling pathways. Furthermore, it determined four possible therapeutic targets that increase the Th1 compartment in severe COVID-19: the activation of the IFN-γ pathway, or the inhibition of TGF-β or IL-10 pathways or SOCS1 protein; from these, inhibiting SOCS1 has the lowest number of predicted collateral effects. Finally, a tool is provided that allows simulations of specific cytokine environments and predictions of CD4 T cell subsets and possible interventions, as well as associated secondary effects.
Collapse
|
43
|
Zhao Y, Zhang L, Liu L, Zhou X, Ding F, Yang Y, Du S, Wang H, Van Eck M, Wang J. Specific Loss of ABCA1 (ATP-Binding Cassette Transporter A1) Suppresses TCR (T-Cell Receptor) Signaling and Provides Protection Against Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:e311-e326. [PMID: 36252122 DOI: 10.1161/atvbaha.122.318226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND ABCA1 (ATP-binding cassette transporter A1) mediates cholesterol efflux to apo AI to maintain cellular cholesterol homeostasis. The current study aims to investigate whether T-cell-specific deletion of ABCA1 modulates the phenotype/function of T cells and the development of atherosclerosis. METHODS Mice with T-cell-specific deletion of ABCA1 on low-density lipoprotein receptor knockout (Ldlr-/-) background (Abca1CD4-/CD4-Ldlr-/-) were generated by multiple steps of (cross)-breedings among Abca1flox/flox, CD4-Cre, and Ldlr-/- mice. RESULTS Deletions of ABCA1 greatly suppressed cholesterol efflux to apo AI but slightly reduced membrane lipid rafts on T cells probably due to the upregulation of ABCG1. Moreover, ABCA1 deficiency impaired TCR (T-cell receptor) signaling and inhibited the survival and proliferation of T cells as well as the formation of effector memory T cells. Despite the comparable levels of plasma total cholesterol after Western-type diet feeding, Abca1CD4-/CD4-Ldlr-/- mice showed significantly attenuated arterial accumulations of T cells and smaller atherosclerotic lesions than Abca1+/+Ldlr-/-controls, which were associated with reduced surface CCR5 (CC motif chemokine receptor 5) and CXCR3 (CXC motif chemokine receptor 3), decreased antiapoptotic Bcl-2 (B-cell lymphoma 2) and Bcl-xL (B-cell lymphoma extra-large), and hampered abilities to produce IL (interleukin)-2 and IFN (interferon)-γ by ABCA1-deficient T cells. CONCLUSIONS ABCA1 is essential for T-cell cholesterol homeostasis. Deletion of ABCA1 in T cells impairs TCR signaling, suppresses the survival, proliferation, differentiation, and function of T cells, thereby providing atheroprotection in vivo.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology (Y.Z., L.Z., L.L., F.D., Y.Y., S.D.), Soochow Medical College of Soochow University, Suzhou, China
| | - Lili Zhang
- Department of Pathophysiology (Y.Z., L.Z., L.L., F.D., Y.Y., S.D.), Soochow Medical College of Soochow University, Suzhou, China
| | - Limin Liu
- Department of Pathophysiology (Y.Z., L.Z., L.L., F.D., Y.Y., S.D.), Soochow Medical College of Soochow University, Suzhou, China
| | - Xuan Zhou
- Department of Immunology (X.Z.), Soochow Medical College of Soochow University, Suzhou, China
| | - Fangfang Ding
- Department of Pathophysiology (Y.Z., L.Z., L.L., F.D., Y.Y., S.D.), Soochow Medical College of Soochow University, Suzhou, China
| | - Yan Yang
- Department of Pathophysiology (Y.Z., L.Z., L.L., F.D., Y.Y., S.D.), Soochow Medical College of Soochow University, Suzhou, China
| | - Shiyu Du
- Department of Pathophysiology (Y.Z., L.Z., L.L., F.D., Y.Y., S.D.), Soochow Medical College of Soochow University, Suzhou, China
| | - Hongmin Wang
- School of Biology & Basic Medical Sciences, and Institutes of Biology & Medical Sciences (H.W., J.W.), Soochow Medical College of Soochow University, Suzhou, China
| | - Miranda Van Eck
- Division of BioTherapeutics (M.V.E.), Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.,Division of Systems Pharmacology and Pharmacy (M.V.E.), Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.,Pharmacy Leiden, the Netherlands (M.V.E.)
| | - Jun Wang
- School of Biology & Basic Medical Sciences, and Institutes of Biology & Medical Sciences (H.W., J.W.), Soochow Medical College of Soochow University, Suzhou, China
| |
Collapse
|
44
|
Choi JO, Ham JH, Hwang SS. RNA Metabolism in T Lymphocytes. Immune Netw 2022; 22:e39. [PMID: 36381959 PMCID: PMC9634142 DOI: 10.4110/in.2022.22.e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.
Collapse
Affiliation(s)
- Jin Ouk Choi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Hyeon Ham
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.,Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
45
|
Wang Z, He Y, Cun Y, Li Q, Zhao Y, Luo Z. Identification of potential key genes for immune infiltration in childhood asthma by data mining and biological validation. Front Genet 2022; 13:957030. [PMID: 36118895 PMCID: PMC9479007 DOI: 10.3389/fgene.2022.957030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Asthma is the most common chronic condition among children; however, the underlying molecular mechanism remains unclear. Dysregulated immune response and different infiltration states of immune cells are critical for asthma pathogenesis. Here, three childhood asthma gene expression datasets were used to detect key genes, immune cells, and pathways involved in childhood asthma. From these datasets, 33 common differentially expressed genes (DEGs) were identified, which showed enrichment in the T helper 1 (Th1) and T helper 2 (Th2) cell differentiation pathway and the T helper 17 (Th17) cell differentiation pathway. Using the weighted gene co-expression network analysis (WGCNA), CD3D and CD3G were identified as key genes closely correlated with childhood asthma. Upregulation of CD3D and CD3G was further validated in bronchoalveolar lavage cells from childhood asthmatics with control individuals by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The immune cell infiltration analysis indicated that CD3D and CD3G were negatively correlated with increased resting mast cells and eosinophils, and highly correlated with several cell markers of Th1, Th2, and Th17 cells. In addition, we found that CD3D and CD3G were closely related to the Th1 and Th2 cell differentiation pathway and the Th17 cell differentiation pathway. Our results reveal the important roles of two key genes and immune infiltration in the pathogenesis of childhood asthma. Thus, this study provides a new perspective for exploring potential molecular targets for childhood asthma treatment.
Collapse
Affiliation(s)
- Zhili Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yu He
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yupeng Cun
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qinyuan Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengxiu Luo,
| |
Collapse
|
46
|
Piroth M, Gorski DJ, Hundhausen C, Petz A, Gorressen S, Semmler D, Zabri H, Hartwig S, Lehr S, Kelm M, Jung C, Fischer JW. Hyaluronan Synthase 3 is Protective After Cardiac Ischemia-Reperfusion by preserving the T cell Response. Matrix Biol 2022; 112:116-131. [PMID: 35998871 DOI: 10.1016/j.matbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Dysregulated extracellular matrix (ECM) is a hallmark of adverse cardiac remodeling after myocardial infarction (MI). Previous work from our laboratory suggests that synthesis of the major ECM component hyaluronan (HA) may be beneficial for post-infarct healing. Here, we aimed to investigate the mechanisms of hyaluronan synthase 3 (HAS3) in cardiac healing after MI. Mice with genetic deletion of Has3 (Has3 KO) and wildtype mice (WT) underwent 45 minutes of ischemia with subsequent reperfusion (I/R), followed by monitoring of heart function and analysis of tissue remodeling for up to three weeks. Has3 KO mice exhibited impaired cardiac function as evidenced by a reduced ejection fraction. Accordingly, Has3 deficiency also resulted in an increased scar size. Cardiac fibroblast activation and CD68+ macrophage counts were similar between genotypes. However, we found a significant decrease in CD4 T cells in the hearts of Has3 KO mice seven days post-MI, in particular reduced numbers of CD4+CXCR3+ Th1 and CD4+CD25+ Treg cells. Furthermore, Has3 deficient cardiac T cells were less activated and more apoptotic as shown by decreased CD69+ and increased annexin V+ cells, respectively. In vitro assays using activated splenic CD3 T cells demonstrated that Has3 deficiency resulted in reduced expression of the main HA receptor CD44 and diminished T cell proliferation. T cell transendothelial migration was similar between genotypes. Of note, analysis of peripheral blood from patients with ST-elevation myocardial infarction (STEMI) revealed that HAS3 is the predominant HAS isoenzyme also in human T cells. In conclusion, our data suggest that HAS3 is required for mounting a physiological T cell response after MI to support cardiac healing. Therefore, our study may serve as a foundation for the development of novel strategies targeting HA-matrix to preserve T cell function after MI.
Collapse
Affiliation(s)
- Marco Piroth
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Daniel J Gorski
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christian Hundhausen
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Anne Petz
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Simone Gorressen
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Dominik Semmler
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Heba Zabri
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Sonja Hartwig
- German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research
| | - Stefan Lehr
- German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research
| | - Malte Kelm
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf
| | - Christian Jung
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf
| | - Jens W Fischer
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
47
|
Anderson MK. Shifting gears: Id3 enables recruitment of E proteins to new targets during T cell development and differentiation. Front Immunol 2022; 13:956156. [PMID: 35983064 PMCID: PMC9378783 DOI: 10.3389/fimmu.2022.956156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Shifting levels of E proteins and Id factors are pivotal in T cell commitment and differentiation, both in the thymus and in the periphery. Id2 and Id3 are two different factors that prevent E proteins from binding to their target gene cis-regulatory sequences and inducing gene expression. Although they use the same mechanism to suppress E protein activity, Id2 and Id3 play very different roles in T cell development and CD4 T cell differentiation. Id2 imposes an irreversible choice in early T cell precursors between innate and adaptive lineages, which can be thought of as a railway switch that directs T cells down one path or another. By contrast, Id3 acts in a transient fashion downstream of extracellular signals such as T cell receptor (TCR) signaling. TCR-dependent Id3 upregulation results in the dislodging of E proteins from their target sites while chromatin remodeling occurs. After the cessation of Id3 expression, E proteins can reassemble in the context of a new genomic landscape and molecular context that allows induction of different E protein target genes. To describe this mode of action, we have developed the “Clutch” model of differentiation. In this model, Id3 upregulation in response to TCR signaling acts as a clutch that stops E protein activity (“clutch in”) long enough to allow shifting of the genomic landscape into a different “gear”, resulting in accessibility to different E protein target genes once Id3 decreases (“clutch out”) and E proteins can form new complexes on the DNA. While TCR signal strength and cytokine signaling play a role in both peripheral and thymic lineage decisions, the remodeling of chromatin and E protein target genes appears to be more heavily influenced by the cytokine milieu in the periphery, whereas the outcome of Id3 activity during T cell development in the thymus appears to depend more on the TCR signal strength. Thus, while the Clutch model applies to both CD4 T cell differentiation and T cell developmental transitions within the thymus, changes in chromatin accessibility are modulated by biased inputs in these different environments. New emerging technologies should enable a better understanding of the molecular events that happen during these transitions, and how they fit into the gene regulatory networks that drive T cell development and differentiation.
Collapse
Affiliation(s)
- Michele K. Anderson
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michele K. Anderson,
| |
Collapse
|
48
|
Richard AC. Divide and Conquer: Phenotypic and Temporal Heterogeneity Within CD8 + T Cell Responses. Front Immunol 2022; 13:949423. [PMID: 35911755 PMCID: PMC9334874 DOI: 10.3389/fimmu.2022.949423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of technologies that can characterize the phenotypes, functions and fates of individual cells has revealed extensive and often unexpected levels of diversity between cells that are nominally of the same subset. CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs), are no exception. Investigations of individual CD8+ T cells both in vitro and in vivo have highlighted the heterogeneity of cellular responses at the levels of activation, differentiation and function. This review takes a broad perspective on the topic of heterogeneity, outlining different forms of variation that arise during a CD8+ T cell response. Specific attention is paid to the impact of T cell receptor (TCR) stimulation strength on heterogeneity. In particular, this review endeavors to highlight connections between variation at different cellular stages, presenting known mechanisms and key open questions about how variation between cells can arise and propagate.
Collapse
|
49
|
Patel PS, Pérez-Baos S, Walters B, Orlen M, Volkova A, Ruggles K, Park CY, Schneider RJ. Translational regulation of TFH cell differentiation and autoimmune pathogenesis. SCIENCE ADVANCES 2022; 8:eabo1782. [PMID: 35749506 PMCID: PMC9232117 DOI: 10.1126/sciadv.abo1782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Little is known regarding T cell translational regulation. We demonstrate that T follicular helper (TFH) cells use a previously unknown mechanism of selective messenger RNA (mRNA) translation for their differentiation, role in B cell maturation, and in autoimmune pathogenesis. We show that TFH cells have much higher levels of translation factor eIF4E than non-TFH CD4+ T cells, which is essential for translation of TFH cell fate-specification mRNAs. Genome-wide translation studies indicate that modest down-regulation of eIF4E activity by a small-molecule inhibitor or short hairpin RN impairs TFH cell development and function. In mice, down-regulation of eIF4E activity specifically reduces TFH cells among T helper subtypes, germinal centers, B cell recruitment, and antibody production. In experimental autoimmune encephalomyelitis, eIF4E activity down-regulation blocks TFH cell participation in disease pathogenesis while promoting rapid remission and spinal cord remyelination. TFH cell development and its role in autoimmune pathogenesis involve selective mRNA translation that is highly druggable.
Collapse
Affiliation(s)
- Preeyam S. Patel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Beth Walters
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Margo Orlen
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Angelina Volkova
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Christopher Y. Park
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
50
|
Dwyer GK, Mathews LR, Villegas JA, Lucas A, Gonzalez de Peredo A, Blazar BR, Girard JP, Poholek AC, Luther SA, Shlomchik W, Turnquist HR. IL-33 acts as a costimulatory signal to generate alloreactive Th1 cells in graft-versus-host disease. J Clin Invest 2022; 132:e150927. [PMID: 35503257 PMCID: PMC9197517 DOI: 10.1172/jci150927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Antigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular patterns (DAMPs) that generate proinflammatory APCs that secrete IL-12, which is a driver of donor Th1 responses, causing graft-versus-host disease (GVHD). Nevertheless, other mechanisms exist to initiate alloreactive T cell responses, as recipients with disrupted DAMP signaling or lacking IL-12 develop GVHD. We established that tissue damage signals are perceived directly by donor CD4+ T cells and promoted T cell expansion and differentiation. Specifically, the fibroblastic reticular cell-derived DAMP IL-33 is increased by recipient conditioning and is critical for the initial activation, proliferation, and differentiation of alloreactive Th1 cells. IL-33 stimulation of CD4+ T cells was not required for lymphopenia-induced expansion, however. IL-33 promoted IL-12-independent expression of Tbet and generation of Th1 cells that infiltrated GVHD target tissues. Mechanistically, IL-33 augmented CD4+ T cell TCR-associated signaling pathways in response to alloantigen. This enhanced T cell expansion and Th1 polarization, but inhibited the expression of regulatory molecules such as IL-10 and Foxp3. These data establish an unappreciated role for IL-33 as a costimulatory signal for donor Th1 generation after alloHCT.
Collapse
Affiliation(s)
- Gaelen K. Dwyer
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lisa R. Mathews
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - José A. Villegas
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Anna Lucas
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Bruce R. Blazar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Amanda C. Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pediatric Rheumatology, and
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Warren Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|