1
|
Yang L, Xie L, Li M, Miao Y, Yang J, Chen S, Ma X, Xie P. Potential relationship between cuproptosis and sepsis-acquired weakness: an intermediate role for mitochondria. Front Physiol 2025; 16:1520669. [PMID: 40182687 PMCID: PMC11965645 DOI: 10.3389/fphys.2025.1520669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Skeletal muscle atrophy due to critical illness is a common phenomenon in the intensive care unit (ICU) and is referred to as ICU-acquired weakness (ICU-AW). The occurrence of ICU-AW in patients with sepsis is known as sepsis-acquired weakness (SAW). Furthermore, it is well known that maintaining normal muscle function closely relates to mitochondrial homeostasis. Once mitochondrial function is impaired, both muscle quality and function are affected. Copper plays a key role in mitochondrial homeostasis as a transition metal that regulates the function and stability of various enzymes. Copper is also involved in oxidation-reduction reactions, and intracellular copper overload causes oxidative stress and induces cell death. Previous studies have shown that excess intracellular copper induces cell death by targeting lipid-acylated proteins that regulate the mitochondrial tricarboxylic acid (TCA) cycle, which differs from the known canonical mechanisms of regulated cell death. Furthermore, inhibitors of cell death, such as apoptosis, necroptosis, pyroptosis and ferroptosis, are not effective in preventing copper-induced cell death. This new form of cell death has been termed "Cuproptosis"; however, the mechanism by which copper-induced cell death is involved in SAW remains unclear. In this paper, we review the possible relationship between cuproptosis and SAW. Cuproptosis may be involved in regulating the pathological mechanisms of SAW through mitochondria-related signaling pathways, mitochondria-related ferroptosis mechanisms, and mitochondria-related genes, and to provide new ideas for further investigations into the mechanism of SAW.
Collapse
Affiliation(s)
- Luying Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Min Li
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Jun Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Wei DP, Jiang WW, Chen CX, Chen ZY, Zhou FQ, Zhang Y, Lu J. Identification and validation of autophagy-related genes in sepsis based on bioinformatics studies. Virol J 2025; 22:81. [PMID: 40114170 PMCID: PMC11924728 DOI: 10.1186/s12985-025-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
We identified 14 key genes associated with mitochondrial autophagy in sepsis through differential analysis of the dataset and then analysed the identified genes for functional enrichment. The analysis of key genes and deeper analysis of key genes by molecular typing, Weighted Gene Correlation Network Analysis (WGCNA) and ceRNA were also carried out. We have also validated these key genes with clinical data. Finally, sepsis diagnostic models are constructed by combining key genes with machine learning methods. In addition, we discuss the importance of the immune system in sepsis and its relationship with signature genes, which opens up new directions for studying the role of the immune system in sepsis. Overall, our study adds new ideas to the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Dong-Po Wei
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Wei-Wei Jiang
- Department of Emergency and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chang-Xing Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Zi-Yang Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Fang-Qing Zhou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Yu Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
- Department of Critical Care Medicine, Shanghai United Family Hospital, Shanghai, China.
| |
Collapse
|
3
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
4
|
Stier MT, Sewell AE, Mwizerwa EL, Sim CY, Tanner SM, Nichols CM, Durai HH, Jennings EQ, Lindau P, Wilfong EM, Newcomb DC, Bastarache JA, Ware LB, Rathmell JC. Metabolic Adaptations Rewire CD4 T Cells in a Subset-Specific Manner in Human Critical Illness with and without Sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635146. [PMID: 39975258 PMCID: PMC11838299 DOI: 10.1101/2025.01.27.635146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Host immunity in sepsis has features of hyperinflammation together with progressive immunosuppression, particularly among CD4 T cells, that can predispose to secondary infections and ineffectual organ recovery. Metabolic and immunologic dysfunction are archetypal findings in critically ill patients with sepsis, but whether these factors are mechanistically linked remains incompletely defined. We characterized functional metabolic properties of human CD4 T cells from critically ill patients with and without sepsis and healthy adults. CD4 T cells in critical illness showed increased subset-specific metabolic plasticity, with regulatory T cells (Tregs) acquiring glycolytic capacity that stabilized suppressive markers FOXP3 and TIGIT and correlated with clinical illness severity. Single-cell transcriptomics identified differential kynurenine metabolism in Tregs, which was validated ex vivo as a mechanism of Treg glycolytic adaptation and suppressive rewiring. These findings underscore immunometabolic dysfunction as a driver of CD4 T cell remodeling in sepsis and suggest therapeutic avenues to restore an effective immune response.
Collapse
Affiliation(s)
- Matthew T. Stier
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allison E. Sewell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin L. Mwizerwa
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chooi Ying Sim
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Samantha M. Tanner
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Casey M. Nichols
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Heather H. Durai
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin Q. Jennings
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paul Lindau
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin M. Wilfong
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
5
|
Guo C, Xu P, Luo W, Zhang J, Sun X, Hoang H, Ma D, Wu D, Zhong J, Miao C. The Role of Dectin-1-Akt-RNF146 Pathway in β-Glucan Induced Immune Trained State of Monocyte in Sepsis. J Inflamm Res 2025; 18:1147-1165. [PMID: 39881796 PMCID: PMC11775823 DOI: 10.2147/jir.s482213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025] Open
Abstract
Background Sepsis is regarded as a dysregulated immune response to infections. Recent study showed partially reversal of immunosuppression by trained immunity, which fosters an enhanced immune response towards a secondary challenge. However, the role of trained immunity in sepsis has not been fully understood. Methods We profiled the characteristics of peripheral blood mononuclear cells from septic patients using single-cell RNA sequencing (scRNA-seq) analyses. Murine double-hit models (pretreatment or post-treatment of β-glucan in septic mice) and murine monocyte/macrophage cell line RAW264.7 were used then. Results scRNA-seq revealed that Ring finger protein 146 (RNF146) and protein kinase B (Akt) were downregulated in the immunosuppression period of septic patients and were verified to be decreased in bone marrow and spleen monocytes from septic mice. While β-glucan pretreatment improved the immunosuppressed state in septic mice and increased dectin-1/Akt/RNF146 expressions in monocytes, along with the increased survival rate, inflammatory factors and aerobic glycolysis, indicating a change from immunosuppression to immune training. Moreover, RNF146 regulated dectin-1-Akt-mTOR signaling in the trained immune state of murine monocyte/macrophage RAW264.7 cell line and the expression of RNF146 was dependent on dectin-1-Akt activation. The inhibition of dectin-1 by its antagonist laminarin downregulated Akt-RNF146 signaling and partially reversed β-glucan induced trained immunity in septic mice. Conclusion RNF146 and Akt are downregulated in the immunosuppression period of sepsis, while increased after β-glucan pretreatment induced trained immunity in septic mice. Moreover, RNF146 regulates the immune trained state of monocyte through dectin-1-Akt-mTOR pathway, suggesting a possible target in reversal of immunosuppression in sepsis.
Collapse
Affiliation(s)
- Chenyue Guo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People’s Republic of China
| | - Peiyao Xu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People’s Republic of China
| | - Wenchen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People’s Republic of China
| | - Jinlin Zhang
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People’s Republic of China
| | - Xingfeng Sun
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Harry Hoang
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Dehua Wu
- Department of Anesthesiology, Shanghai Songjiang District Central Hospital, Shanghai, People’s Republic of China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People’s Republic of China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Nedel W, Strogulski NR, Kopczynski A, Portela LV. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 2024; 12:107. [PMID: 39585590 PMCID: PMC11589057 DOI: 10.1186/s40635-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is characterized by a dysregulated and excessive systemic inflammatory response to infection, associated with vascular and metabolic abnormalities that ultimately lead to organ dysfunction. In immune cells, both non-oxidative and oxidative metabolic rates are closely linked to inflammatory responses. Mitochondria play a central role in supporting these cellular processes by utilizing metabolic substrates and synthesizing ATP through oxygen consumption. To meet fluctuating cellular demands, mitochondria must exhibit adaptive plasticity underlying bioenergetic capacity, biogenesis, fusion, and fission. Given their role as a hub for various cellular functions, mitochondrial alterations induced by sepsis may hold significant pathophysiological implications and impact on clinical outcomes. In patients, mitochondrial DNA concentration, protein expression levels, and bioenergetic profiles can be accessed via tissue biopsies or isolated peripheral blood cells. Clinically, monocytes and lymphocytes serve as promising matrices for evaluating mitochondrial function. These mononuclear cells are highly oxidative, mitochondria-rich, routinely monitored in blood, easy to collect and process, and show a clinical association with immune status. Hence, mitochondrial assessments in immune cells could serve as biomarkers for clinical recovery, immunometabolic status, and responsiveness to oxygen and vasopressor therapies in sepsis. These characteristics underscore mitochondrial parameters in both tissues and immune cells as practical tools for exploring underlying mechanisms and monitoring septic patients in intensive care settings. In this article, we examine pathophysiological aspects, key methods for measuring mitochondrial function, and prominent studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Unidade de Terapia Intensiva, Hospital Nossa Senhora da Conceição, Av Francisco Trein, 596-primeiro andar, Porto Alegre, RS, Brazil.
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
7
|
Sudhadevi T, Harijith A. Mitochondrial dysfunction in febrile illness and sepsis: no clear picture yet. Pediatr Res 2024:10.1038/s41390-024-03696-1. [PMID: 39511441 DOI: 10.1038/s41390-024-03696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anantha Harijith
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Watanabe H, Rana M, Son M, Chiu PY, Fei-Bloom Y, Choi K, Diamond B, Sherry B. Single cell RNA-seq reveals cellular and transcriptional heterogeneity in the splenic CD11b +Ly6C high monocyte population expanded in sepsis-surviving mice. Mol Med 2024; 30:202. [PMID: 39506629 PMCID: PMC11539566 DOI: 10.1186/s10020-024-00970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Sepsis survivors exhibit immune dysregulation that contributes to poor long-term outcomes. Phenotypic and functional alterations within the myeloid compartment are believed to be a contributing factor. Here we dissect the cellular and transcriptional heterogeneity of splenic CD11b+Ly6Chigh myeloid cells that are expanded in mice that survive the cecal ligation and puncture (CLP) murine model of polymicrobial sepsis to better understand the basis of immune dysregulation in sepsis survivors. METHODS Sham or CLP surgeries were performed on C57BL/6J and BALB/c mice. Four weeks later splenic CD11b+Ly6Chigh cells from both groups were isolated for phenotypic (flow cytometry) and functional (phagocytosis and glycolysis) characterization and RNA was obtained for single-cell RNA-seq (scRNA-seq) and subsequent analysis. RESULTS CD11b+Ly6Chigh cells from sham and CLP surviving mice exhibit phenotypic and functional differences that relate to immune function, some of which are observed in both C57BL/6J and BALB/c strains and others that are not. To dissect disease-specific and strain-specific distinctions within the myeloid compartment, scRNA-seq analysis was performed on CD11b+Ly6Chigh cells from C57BL/6J and BALB/c sham and CLP mice. Uniform Manifold Approximation and Projection from both strains identified 13 distinct clusters of sorted CD11b+Ly6Chigh cells demonstrating significant transcriptional heterogeneity and expressing gene signatures corresponding to classical-monocytes, non-classical monocytes, M1- or M2-like macrophages, dendritic-like cells, monocyte-derived dendritic-like cells, and proliferating monocytic myeloid-derived suppressor cells (M-MDSCs). Frequency plots showed that the percentages of proliferating M-MDSCs (clusters 8, 11 and 12) were increased in CLP mice compared to sham mice in both strains. Pathway and UCell score analysis in CLP mice revealed that cell cycle and glycolytic pathways were upregulated in proliferating M-MDSCs in both strains. Notably, granule protease genes were upregulated in M-MDSCs from CLP mice. ScRNA-seq analyses also showed that phagocytic pathways were upregulated in multiple clusters including the classical monocyte cluster, confirming the increased phagocytic capacity in CD11b+Ly6Chigh cells from CLP mice observed in ex vivo functional assays in C57BL/6J mice. CONCLUSION The splenic CD11b+Ly6Chigh myeloid populations expanded in survivors of CLP sepsis correspond to proliferating cells that have an increased metabolic demand and gene signatures consistent with M-MDSCs, a population known to have immunosuppressive capacity.
Collapse
Affiliation(s)
- Haruki Watanabe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Minakshi Rana
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, New York, 10021, USA
| | - Myoungsun Son
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Pui Yan Chiu
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Yurong Fei-Bloom
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| | - Barbara Sherry
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
9
|
Smith SR, Becker EJ, Bone NB, Kerby JD, Nowak JI, Tadié JM, Darley-Usmar VM, Pittet JF, Zmijewski JW. METABOLIC AND BIOENERGETIC ALTERATIONS ARE ASSOCIATED WITH INFECTION SUSCEPTIBILITY IN SURVIVORS OF SEVERE TRAUMA: AN EXPLORATORY STUDY. Shock 2024; 62:633-643. [PMID: 39012766 DOI: 10.1097/shk.0000000000002419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background : Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. Methods : Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 postadmission. Metabolites (140) were measured in plasma from trauma survivors ( n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests. Results : In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in 9, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the tricarboxylic acid cycle and glycolysis. Conclusions : Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.
Collapse
Affiliation(s)
- Samuel R Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eugene J Becker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathaniel B Bone
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D Kerby
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jean-Marc Tadié
- INSERM, EFS Bretagne, UMR U1236, Université Rennes, Rennes, France
| | | | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Yumoto T, Coopersmith CM. Targeting AMP-activated protein kinase in sepsis. Front Endocrinol (Lausanne) 2024; 15:1452993. [PMID: 39469575 PMCID: PMC11513325 DOI: 10.3389/fendo.2024.1452993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a global health challenge marked by limited clinical options and high mortality rates. AMP-activated protein kinase (AMPK) is a cellular energy sensor that mediates multiple crucial metabolic pathways that may be an attractive therapeutic target in sepsis. Pre-clinical experimental studies have demonstrated that pharmacological activation of AMPK can offer multiple potential benefits during sepsis, including anti-inflammatory effects, induction of autophagy, promotion of mitochondrial biogenesis, enhanced phagocytosis, antimicrobial properties, and regulation of tight junction assembly. This review aims to discuss the existing evidence supporting the therapeutic potential of AMPK activation in sepsis management.
Collapse
Affiliation(s)
- Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Yagin FH, Aygun U, Algarni A, Colak C, Al-Hashem F, Ardigò LP. Platelet Metabolites as Candidate Biomarkers in Sepsis Diagnosis and Management Using the Proposed Explainable Artificial Intelligence Approach. J Clin Med 2024; 13:5002. [PMID: 39274215 PMCID: PMC11395774 DOI: 10.3390/jcm13175002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Sepsis is characterized by an atypical immune response to infection and is a dangerous health problem leading to significant mortality. Current diagnostic methods exhibit insufficient sensitivity and specificity and require the discovery of precise biomarkers for the early diagnosis and treatment of sepsis. Platelets, known for their hemostatic abilities, also play an important role in immunological responses. This study aims to develop a model integrating machine learning and explainable artificial intelligence (XAI) to identify novel platelet metabolomics markers of sepsis. Methods: A total of 39 participants, 25 diagnosed with sepsis and 14 control subjects, were included in the study. The profiles of platelet metabolites were analyzed using quantitative 1H-nuclear magnetic resonance (NMR) technology. Data were processed using the synthetic minority oversampling method (SMOTE)-Tomek to address the issue of class imbalance. In addition, missing data were filled using a technique based on random forests. Three machine learning models, namely extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and kernel tree boosting (KTBoost), were used for sepsis prediction. The models were validated using cross-validation. Clinical annotations of the optimal sepsis prediction model were analyzed using SHapley Additive exPlanations (SHAP), an XAI technique. Results: The results showed that the KTBoost model (0.900 accuracy and 0.943 AUC) achieved better performance than the other models in sepsis diagnosis. SHAP results revealed that metabolites such as carnitine, glutamate, and myo-inositol are important biomarkers in sepsis prediction and intuitively explained the prediction decisions of the model. Conclusion: Platelet metabolites identified by the KTBoost model and XAI have significant potential for the early diagnosis and monitoring of sepsis and improving patient outcomes.
Collapse
Affiliation(s)
- Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye
| | - Umran Aygun
- Department of Anesthesiology and Reanimation, Malatya Yesilyurt Hasan Calık State Hospital, Malatya 44929, Türkiye
| | - Abdulmohsen Algarni
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 0166 Oslo, Norway
| |
Collapse
|
12
|
Assis PA, Allen RM, Schaller MA, Kunkel SL, Bermick JR. Metabolic reprogramming and dysregulated IL-17 production impairs CD4 T cell function post sepsis. iScience 2024; 27:110114. [PMID: 39015145 PMCID: PMC11251092 DOI: 10.1016/j.isci.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
Sepsis survivors are at high risk for infection-related rehospitalization and mortality for years following the resolution of the acute septic event. These infection-causing microorganisms generally do not cause disease in immunocompetent hosts, suggesting that the post-septic immune response is compromised. Given the importance of CD4 T cells in the development of long-lasting protective immunity, we analyzed their post-septic function. Here we showed that sepsis induced chronic increased and non-specific production of IL-17 by CD4 T cells, resulting in the inability to mount an effective immune response to a secondary pneumonia challenge. Altered cell function was associated with metabolic reprogramming, characterized by mitochondrial dysfunction and increased glycolysis. This metabolic reprogramming began during the acute septic event and persisted long after sepsis had resolved. Our findings reveal cell metabolism as a potential therapeutic target. Given the critical role of cell metabolism in the physiological and pathophysiological processes of immune cells, these findings reveal a potential new therapeutic target to help mitigate sepsis survivors' susceptibility to secondary infections.
Collapse
Affiliation(s)
- Patricia A. Assis
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ronald M. Allen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew A. Schaller
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer R. Bermick
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Onyemekwu CA, Prendergast NT, Potter KM, Toney NA, Nouraie MS, Shiva S, Girard TD. Platelet Bioenergetics and Associations With Delirium and Coma in Patients With Sepsis: A Prospective Cohort Study. CHEST CRITICAL CARE 2024; 2:100076. [PMID: 38938510 PMCID: PMC11210717 DOI: 10.1016/j.chstcc.2024.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
BACKGROUND Acute brain dysfunction during sepsis, which manifests as delirium or coma, is common and is associated with multiple adverse outcomes, including longer periods of mechanical ventilation, prolonged hospital stays, and increased mortality. Delirium and coma during sepsis may be manifestations of alteration in systemic metabolism. Because access to brain mitochondria is a limiting factor, measurement of peripheral platelet bioenergetics offers a potential opportunity to understand metabolic changes associated with acute brain dysfunction during sepsis. RESEARCH QUESTION Are altered platelet mitochondrial bioenergetics associated with acute brain dysfunction during sepsis? STUDY DESIGN AND METHODS We assessed participants with critical illness in the ICU for the presence of delirium or coma via validated assessment measures. Blood samples were collected and processed to isolate and measure platelet mitochondrial oxygen consumption. We used Seahorse extracellular flux to measure directly baseline, proton leak, maximal oxygen consumption rate, and extracellular acidification rate. We calculated adenosine triphosphate-linked, spare respiratory capacity, and nonmitochondrial oxygen consumption rate from the measured values. RESULTS Maximum oxygen consumption was highest in patients with coma, as was spare respiratory capacity and extracellular acidification rate in unadjusted analysis. After adjusting for age, sedation, modified Sequential Organ Failure Assessment score without the neurologic component, and preexisting cognitive function, increased spare respiratory capacity remained associated with coma. Delirium was not associated with any platelet mitochondrial bioenergetics. INTERPRETATION In this single-center exploratory prospective cohort study, we found that increased platelet mitochondrial spare respiratory capacity was associated with coma in patients with sepsis. Future studies powered to determine any relationship between delirium and mitochondrial respiration bioenergetics are needed.
Collapse
Affiliation(s)
- Chukwudi A Onyemekwu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Niall T Prendergast
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kelly M Potter
- Center for Research, Investigation, and Systems Modeling of Acute Illness, and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nicole A Toney
- Center for Research, Investigation, and Systems Modeling of Acute Illness, and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mehdi S Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sruti Shiva
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Timothy D Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness, and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
14
|
Dobson GP, Letson HL, Morris JL. Revolution in sepsis: a symptoms-based to a systems-based approach? J Biomed Sci 2024; 31:57. [PMID: 38811967 PMCID: PMC11138085 DOI: 10.1186/s12929-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O2 supply. Future research will investigate the potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| |
Collapse
|
15
|
Viana JPM, Costa FF, Dias TG, Mendes PM, Copeland GB, Nascimento WS, Mendes SSN, Figueiredo IFS, Fernandes ES, Bocca AL, Maciel MCG. Glucans: A Therapeutic Alternative for Sepsis Treatment. J Immunol Res 2024; 2024:6876247. [PMID: 38939744 PMCID: PMC11208795 DOI: 10.1155/2024/6876247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
Sepsis treatment is a challenging condition due to its complexity, which involves host inflammatory responses to a severe and potentially fatal infection, associated with organ dysfunction. The aim of this study was to analyze the scientific literature on the immunomodulatory effects of glucans in a murine model of systemic infection induced by cecal ligation and puncture. This study comprises an integrative literature review based on systematic steps, with searches carried out in the PubMed, ScienceDirect, Scopus, Web of Science, and Embase databases. In most studies, the main type of glucan investigated was β-glucan, at 50 mg/kg, and a reduction of inflammatory responses was identified, minimizing the occurrence of tissue damage leading to increased animal survival. Based on the data obtained and discussed in this review, glucans represent a promising biotechnological alternative to modulate the immune response and could potentially be used in the clinical management of septic individuals.
Collapse
Affiliation(s)
- Jesse P. M. Viana
- Departamento de Biologia CelularInstituto de Ciências BiológicasPrograma de Pós Graduação em Ciências Biológicas (Biologia Molecular)Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
| | - Fernanda F. Costa
- Programa de Pós-graduação em Saúde e TecnologiaUniversidade Federal do Maranhão, São Luís, Brazil
| | - Tatielle G. Dias
- Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal do Maranhão, São Luís, Brazil
| | - Priscila M. Mendes
- Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal do Maranhão, São Luís, Brazil
| | - Gabriel B. Copeland
- Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
| | | | - Sofia S. N. Mendes
- Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
| | - Isabella F. S. Figueiredo
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente—Faculdades Pequeno PríncipeInstituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Elizabeth S. Fernandes
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente—Faculdades Pequeno PríncipeInstituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Anamelia L. Bocca
- Departamento de Biologia CelularInstituto de Ciências BiológicasPrograma de Pós Graduação em Ciências Biológicas (Biologia Molecular)Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
- Plataforma Bi-Institucional de Pesquisa Translacional—Fiocruz/SP, São Paulo, Brazil
| | - Márcia C. G. Maciel
- Departamento de Biologia CelularInstituto de Ciências BiológicasPrograma de Pós Graduação em Ciências Biológicas (Biologia Molecular)Laboratório de Imunologia AplicadaUniversidade de Brasília (UnB), Brasília, Brazil
- Programa de Pós-graduação em Saúde e TecnologiaUniversidade Federal do Maranhão, São Luís, Brazil
- Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal do Maranhão, São Luís, Brazil
| |
Collapse
|
16
|
Ghimire L, Paudel S, Le J, Jin L, Cai S, Bhattarai D, Jeyaseelan S. NLRP6 negatively regulates host defense against polymicrobial sepsis. Front Immunol 2024; 15:1248907. [PMID: 38720893 PMCID: PMC11078015 DOI: 10.3389/fimmu.2024.1248907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Sepsis remains a major cause of death in Intensive Care Units. Sepsis is a life-threatening multi-organ dysfunction caused by a dysregulated systemic inflammatory response. Pattern recognition receptors, such as TLRs and NLRs contribute to innate immune responses. Upon activation, some NLRs form multimeric protein complexes in the cytoplasm termed "inflammasomes" which induce gasdermin d-mediated pyroptotic cell death and the release of mature forms of IL-1β and IL-18. The NLRP6 inflammasome is documented to be both a positive and a negative regulator of host defense in distinct infectious diseases. However, the role of NLRP6 in polymicrobial sepsis remains elusive. Methods We have used NLRP6 KO mice and human septic spleen samples to examine the role of NLRP6 in host defense in sepsis. Results NLRP6 KO mice display enhanced survival, reduced bacterial burden in the organs, and reduced cytokine/chemokine production. Co-housed WT and KO mice following sepsis show decreased bacterial burden in the KO mice as observed in singly housed groups. NLRP6 is upregulated in CD3, CD4, and CD8 cells of septic patients and septic mice. The KO mice showed a higher number of CD3, CD4, and CD8 positive T cell subsets and reduced T cell death in the spleen following sepsis. Furthermore, administration of recombinant IL-18, but not IL-1β, elicited excessive inflammation and reversed the survival advantages observed in NLRP6 KO mice. Conclusion These results unveil NLRP6 as a negative regulator of host defense during sepsis and offer novel insights for the development of new treatment strategies for sepsis.
Collapse
Affiliation(s)
- Laxman Ghimire
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural and Mechanical College, Baton Rouge, LA, United States
| | - Sagar Paudel
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural and Mechanical College, Baton Rouge, LA, United States
| | - John Le
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural and Mechanical College, Baton Rouge, LA, United States
| | - Liliang Jin
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural and Mechanical College, Baton Rouge, LA, United States
| | - Shanshan Cai
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural and Mechanical College, Baton Rouge, LA, United States
| | - Dinesh Bhattarai
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural and Mechanical College, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural and Mechanical College, Baton Rouge, LA, United States
- Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
17
|
Miller M, Melis MJ, Miller JRC, Kleyman A, Shankar-Hari M, Singer M. Antibiotics, Sedatives, and Catecholamines Further Compromise Sepsis-Induced Immune Suppression in Peripheral Blood Mononuclear Cells. Crit Care Med 2024; 52:596-606. [PMID: 38483219 DOI: 10.1097/ccm.0000000000006119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
OBJECTIVES We hypothesized that the immunosuppressive effects associated with antibiotics, sedatives, and catecholamines amplify sepsis-associated immune suppression through mitochondrial dysfunction, and there is a cumulative effect when used in combination. We thus sought to determine the impact of the exemplar drugs ciprofloxacin, propofol, and norepinephrine, used alone and in combination, at clinically relevant concentrations, on the ex vivo functionality of peripheral blood mononuclear cells (PBMCs) drawn from healthy, infected, and septic individuals. DESIGN In vitro/ex vivo investigation. SETTING University laboratory. SUBJECTS Healthy volunteers, infected (nonseptic) patients in the emergency department, and septic ICU patients. INTERVENTIONS PBMCs were isolated from these subjects and treated with ciprofloxacin (100 µg/mL), propofol (50 µg/mL), norepinephrine (10 µg/mL), or all three drugs combined, with and without lipopolysaccharide (100 ng/mL) for 6 or 24 hours. Comparison was made between study groups and against untreated cells. Measurements were made of cell viability, cytokine production, phagocytosis, human leukocyte antigen-DR (HLA-DR) status, mitochondrial membrane potential, mitochondrial reactive oxygen species production, and oxygen consumption. Gene expression in immune and metabolic pathways was investigated in PBMCs sampled from healthy volunteers coincubated with septic serum. MEASUREMENTS AND RESULTS Coincubation with each of the drugs reduced cytokine production and phagocytosis in PBMCs isolated from septic patients, and healthy volunteers coincubated with septic serum. No effect was seen on HLA-DR surface expression. No cumulative effects were seen with the drug combination. Sepsis-induced changes in gene expression and mitochondrial functionality were not further affected by addition of any of the drugs. CONCLUSION Drugs commonly used in critical care lead to significant immune dysfunction ex vivo and enhance sepsis-associated immunosuppression. Further studies are required to identify underlying mechanisms and potential impact on patient outcomes.
Collapse
Affiliation(s)
- Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - James R C Miller
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| |
Collapse
|
18
|
Teixeira L, Pereira-Dutra FS, Reis PA, Cunha-Fernandes T, Yoshinaga MY, Souza-Moreira L, Souza EK, Barreto EA, Silva TP, Espinheira-Silva H, Igreja T, Antunes MM, Bombaça ACS, Gonçalves-de-Albuquerque CF, Menezes GB, Hottz ED, Menna-Barreto RF, Maya-Monteiro CM, Bozza FA, Miyamoto S, Melo RC, Bozza PT. Prevention of lipid droplet accumulation by DGAT1 inhibition ameliorates sepsis-induced liver injury and inflammation. JHEP Rep 2024; 6:100984. [PMID: 38293685 PMCID: PMC10827501 DOI: 10.1016/j.jhepr.2023.100984] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Background & Aims Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.
Collapse
Affiliation(s)
- Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patrícia A. Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcos Y. Yoshinaga
- Laboratory of Modified Lipids, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Luciana Souza-Moreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ellen K. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ester A. Barreto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago P. Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Hugo Espinheira-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tathiany Igreja
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Maísa M. Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina S. Bombaça
- Laboratory of Cellular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Parasitic Disease, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo B. Menezes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eugênio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | | | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
- Intensive Care Medicine Laboratory, INI, FIOCRUZ, Rio de Janeiro, Brazil
- D'Or Institute Research and Education (IDOr), Rio de Janeiro, Brazil
| | - Sayuri Miyamoto
- Laboratory of Modified Lipids, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Rossana C.N. Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
McBride MA, Stothers CL, Fensterheim BA, Caja KR, Owen AM, Hernandez A, Bohannon JK, Patil NK, Ali S, Dalal S, Rahim M, Trenary IA, Young JD, Williams DL, Sherwood ER. Bacteria- and fungus-derived PAMPs induce innate immune memory via similar functional, metabolic, and transcriptional adaptations. J Leukoc Biol 2024; 115:358-373. [PMID: 37793181 PMCID: PMC10872320 DOI: 10.1093/jleuko/qiad120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Exposure to pathogen-associated molecular patterns (PAMPs) induces an augmented, broad-spectrum antimicrobial response to subsequent infection, a phenomenon termed innate immune memory. This study examined the effects of treatment with β-glucan, a fungus-derived dectin-1 ligand, or monophosphoryl lipid A (MPLA), a bacteria-derived Toll-like receptor 4 ligand, on innate immune memory with a focus on identifying common cellular and molecular pathways activated by these diverse PAMPs. Treatment with either PAMP prepared the innate immune system to respond more robustly to Pseudomonas aeruginosa infection in vivo by facilitating mobilization of innate leukocytes into blood, recruitment of leukocytes to the site of infection, augmentation of microbial clearance, and attenuation of cytokine production. Examination of macrophages ex vivo showed amplification of metabolism, phagocytosis, and respiratory burst after treatment with either agent, although MPLA more robustly augmented these activities and more effectively facilitated killing of bacteria. Both agents activated gene expression pathways in macrophages that control inflammation, antimicrobial functions, and protein synthesis and suppressed pathways regulating cell division. β-glucan treatment minimally altered macrophage differential gene expression in response to lipopolysaccharide (LPS) challenge, whereas MPLA attenuated the magnitude of the LPS-induced transcriptional response, especially cytokine gene expression. These results show that β-glucan and MPLA similarly augment the innate response to infection in vivo. Yet, MPLA more potently induces alterations in macrophage metabolism, antimicrobial functions, gene transcription and the response to LPS.
Collapse
Affiliation(s)
- Margaret A. McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Cody L. Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Benjamin A. Fensterheim
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Katherine R. Caja
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Julia K. Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Sabah Ali
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Sujata Dalal
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville 37235, Tennessee
| | - Irina A. Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville 37235, Tennessee
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville 37235, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Avenue, Nashville 37232, Tennessee
| | - David L. Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, 325 North State of Franklin Road, Johnson City 37604, Tennessee
- Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, 325 North State of Franklin Road, Johnson City 37604, Tennessee
| | - Edward R. Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville 37232, Tennessee
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, 325 North State of Franklin Road, Johnson City 37604, Tennessee
- Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, 325 North State of Franklin Road, Johnson City 37604, Tennessee
| |
Collapse
|
20
|
Xiao Y, Fang H, Zhu Y, Zhou J, Dai Z, Wang H, Xia Z, Tu Z, Leong KW. Multifunctional Cationic Hyperbranched Polyaminoglycosides that Target Multiple Mediators for Severe Abdominal Trauma Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305273. [PMID: 37997512 PMCID: PMC10767409 DOI: 10.1002/advs.202305273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Indexed: 11/25/2023]
Abstract
Trauma and its associated complications, including dysregulated inflammatory responses, severe infection, and disseminated intravascular coagulation (DIC), continue to pose lethal threats worldwide. Following injury, cell-free nucleic acids (cfNAs), categorized as damage-associated molecular patterns (DAMPs), are released from dying or dead cells, triggering local and systemic inflammatory responses and coagulation abnormalities that worsen disease progression. Harnessing cfNA scavenging strategies with biomaterials has emerged as a promising approach for treating posttrauma systemic inflammation. In this study, the effectiveness of cationic hyperbranched polyaminoglycosides derived from tobramycin (HPT) and disulfide-included HPT (ss-HPT) in scavenging cfNAs to mitigate posttrauma inflammation and hypercoagulation is investigated. Both cationic polymers demonstrate the ability to suppress DAMP-induced toll-like receptor (TLR) activation, inflammatory cytokine secretion, and hypercoagulation by efficiently scavenging cfNAs. Additionally, HPT and ss-HPT exhibit potent antibacterial efficacy attributed to the presence of tobramycin in their chemical composition. Furthermore, HPT and ss-HPT exhibit favorable modulatory effects on inflammation and therapeutic outcomes in a cecal ligation puncture (CLP) mouse abdominal trauma model. Notably, in vivo studies reveal that ss-HPT displayed high accumulation and retention in injured organs of traumatized mice while maintaining a higher biodegradation rate in healthy mice, contrasting with findings for HPT. Thus, functionalized ss-HPT, a bioreducible polyaminoglycoside, holds promise as an effective option to enhance therapeutic outcomes for trauma patients by alleviating posttrauma inflammation and coagulation complications.
Collapse
Affiliation(s)
- Yongqiang Xiao
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- ENT InstituteDepartment of Facial Plastic and Reconstructive SurgeryEye & ENT HospitalFudan UniversityShanghai200031P. R. China
| | - He Fang
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Yuefei Zhu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jie Zhou
- Department of Breast SurgeryAffiliated Cancer Hospital and InstituteGuangzhou Medical UniversityGuangzhou510095P. R. China
| | - Zhanzhan Dai
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Hongxia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhaofan Xia
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
21
|
Kim HI, Park J, Gallo D, Shankar S, Konecna B, Han Y, Banner-Goodspeed V, Capers KR, Ko SG, Otterbein LE, Itagaki K, Hauser CJ. DANGER Signals Activate G -Protein Receptor Kinases Suppressing Neutrophil Function and Predisposing to Infection After Tissue Trauma. Ann Surg 2023; 278:e1277-e1288. [PMID: 37154066 DOI: 10.1097/sla.0000000000005898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Yohan Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Valerie Banner-Goodspeed
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Krystal R Capers
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Seong-Gyu Ko
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Yuan W, Fang W, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119537. [PMID: 37463638 DOI: 10.1016/j.bbamcr.2023.119537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1). AMPK is an evolutionarily conserved serine/threonine protein kinase that acts as an energy sensor in cells and regulates various metabolic processes, including those involved in cancer. The regulatory network of AMPK is complicated and can be regulated by multiple upstream factors, such as LKB1, AKT, PPAR, SIRT1, or noncoding RNAs. Currently, AMPK is being investigated as a novel target for anticancer therapies based on its role in macroautophagy regulation. Herein, we review the effects of AMPK-dependent autophagy on tumor cell survival and treatment strategies targeting AMPK.
Collapse
Affiliation(s)
- Wenbin Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Wanyi Fang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
24
|
Taya T, Teruyama F, Gojo S. Host-directed therapy for bacterial infections -Modulation of the phagolysosome pathway. Front Immunol 2023; 14:1227467. [PMID: 37841276 PMCID: PMC10570837 DOI: 10.3389/fimmu.2023.1227467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial infections still impose a significant burden on humanity, even though antimicrobial agents have long since been developed. In addition to individual severe infections, the f fatality rate of sepsis remains high, and the threat of antimicrobial-resistant bacteria grows with time, putting us at inferiority. Although tremendous resources have been devoted to the development of antimicrobial agents, we have yet to recover from the lost ground we have been driven into. Looking back at the evolution of treatment for cancer, which, like infectious diseases, has the similarity that host immunity eliminates the lesion, the development of drugs to eliminate the tumor itself has shifted from a single-minded focus on drug development to the establishment of a treatment strategy in which the de-suppression of host immunity is another pillar of treatment. In infectious diseases, on the other hand, the development of therapies that strengthen and support the immune system has only just begun. Among innate immunity, the first line of defense that bacteria encounter after invading the host, the molecular mechanisms of the phagolysosome pathway, which begins with phagocytosis to fusion with lysosome, have been elucidated in detail. Bacteria have a large number of strategies to escape and survive the pathway. Although the full picture is still unfathomable, the molecular mechanisms have been elucidated for some of them, providing sufficient clues for intervention. In this article, we review the host defense mechanisms and bacterial evasion mechanisms and discuss the possibility of host-directed therapy for bacterial infection by intervening in the phagolysosome pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Shovlin CL, Vizcaychipi MP. Vascular inflammation and endothelial injury in SARS-CoV-2 infection: the overlooked regulatory cascades implicated by the ACE2 gene cluster. QJM 2023; 116:629-634. [PMID: 32777054 PMCID: PMC7454888 DOI: 10.1093/qjmed/hcaa241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has presented physicians with an unprecedented number of challenges and mortality. The basic question is why, in contrast to other 'respiratory' viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in such multi-systemic, life-threatening complications and a severe pulmonary vasculopathy. It is widely known that SARS-CoV-2 uses membrane-bound angiotensin-converting enzyme 2 (ACE2) as a receptor, resulting in internalization of the complex by the host cell. We discuss the evidence that failure to suppress coronaviral replication within 5 days results in sustained downregulation of ACE2 protein expression and that ACE2 is under negative-feedback regulation. We then expose openly available experimental repository data that demonstrate the gene for ACE2 lies in a novel cluster of inter-regulated genes on the X chromosome including PIR encoding pirin (quercetin 2,3-dioxygenase), and VEGFD encoding the predominantly lung-expressed vascular endothelial growth factor D. The five double-elite enhancer/promoters pairs that are known to be operational, and shared read-through lncRNA transcripts, imply that ongoing SARS-CoV-2 infection will reduce host defences to reactive oxygen species, directly generate superoxide O2·- and H2O2 (a ' ROS storm'), and impair pulmonary endothelial homeostasis. Published cellular responses to oxidative stress complete the loop to pathophysiology observed in severe COVID-19. Thus, for patients who fail to rapidly suppress viral replication, the newly appreciated ACE2 co-regulated gene cluster predicts delayed responses that would account for catastrophic deteriorations. We conclude that ACE2 homeostatic drives provide a unified understanding that should help optimize therapeutic approaches during the wait until safe, effective vaccines and antiviral therapies for SARS-CoV-2 are delivered.
Collapse
Affiliation(s)
- Claire L Shovlin
- NHLI Vascular Science, Imperial College London, UK
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK
| | | |
Collapse
|
26
|
Tong R, Ding X, Liu F, Li H, Liu H, Song H, Wang Y, Zhang X, Liu S, Sun T. Classification of subtypes and identification of dysregulated genes in sepsis. Front Cell Infect Microbiol 2023; 13:1226159. [PMID: 37671148 PMCID: PMC10475835 DOI: 10.3389/fcimb.2023.1226159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Background Sepsis is a clinical syndrome with high mortality. Subtype identification in sepsis is meaningful for improving the diagnosis and treatment of patients. The purpose of this research was to identify subtypes of sepsis using RNA-seq datasets and further explore key genes that were deregulated during the development of sepsis. Methods The datasets GSE95233 and GSE13904 were obtained from the Gene Expression Omnibus database. Differential analysis of the gene expression matrix was performed between sepsis patients and healthy controls. Intersection analysis of differentially expressed genes was applied to identify common differentially expressed genes for enrichment analysis and gene set variation analysis. Obvious differential pathways between sepsis patients and healthy controls were identified, as were developmental stages during sepsis. Then, key dysregulated genes were revealed by short time-series analysis and the least absolute shrinkage and selection operator model. In addition, the MCPcounter package was used to assess infiltrating immunocytes. Finally, the dysregulated genes identified were verified using 69 clinical samples. Results A total of 898 common differentially expressed genes were obtained, which were chiefly related to increased metabolic responses and decreased immune responses. The two differential pathways (angiogenesis and myc targets v2) were screened on the basis of gene set variation analysis scores. Four subgroups were identified according to median expression of angiogenesis and myc target v2 genes: normal, myc target v2, mixed-quiescent, and angiogenesis. The genes CHPT1, CPEB4, DNAJC3, MAFG, NARF, SNX3, S100A9, S100A12, and METTL9 were recognized as being progressively dysregulated in sepsis. Furthermore, most types of immune cells showed low infiltration in sepsis patients and had a significant correlation with the key genes. Importantly, all nine key genes were highly expressed in sepsis patients. Conclusion This study revealed novel insight into sepsis subtypes and identified nine dysregulated genes associated with immune status in the development of sepsis. This study provides potential molecular targets for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Ran Tong
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
| | - Fengyu Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
| | - Hongyi Li
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
| | - Huan Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
| | - Heng Song
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuze Wang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
| | - Xiaojuan Zhang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
| | - Shaohua Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Nedel W, Deutschendorf C, Portela LVC. Sepsis-induced mitochondrial dysfunction: A narrative review. World J Crit Care Med 2023; 12:139-152. [PMID: 37397587 PMCID: PMC10308342 DOI: 10.5492/wjccm.v12.i3.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
Sepsis represents a deranged and exaggerated systemic inflammatory response to infection and is associated with vascular and metabolic abnormalities that trigger systemic organic dysfunction. Mitochondrial function has been shown to be severely impaired during the early phase of critical illness, with a reduction in biogenesis, increased generation of reactive oxygen species and a decrease in adenosine triphosphate synthesis of up to 50%. Mitochondrial dysfunction can be assessed using mitochondrial DNA concentration and respirometry assays, particularly in peripheral mononuclear cells. Isolation of monocytes and lymphocytes seems to be the most promising strategy for measuring mitochondrial activity in clinical settings because of the ease of collection, sample processing, and clinical relevance of the association between metabolic alterations and deficient immune responses in mononuclear cells. Studies have reported alterations in these variables in patients with sepsis compared with healthy controls and non-septic patients. However, few studies have explored the association between mitochondrial dysfunction in immune mononuclear cells and unfavorable clinical outcomes. An improvement in mitochondrial parameters in sepsis could theoretically serve as a biomarker of clinical recovery and response to oxygen and vasopressor therapies as well as reveal unexplored pathophysiological mechanistic targets. These features highlight the need for further studies on mitochondrial metabolism in immune cells as a feasible tool to evaluate patients in intensive care settings. The evaluation of mitochondrial metabolism is a promising tool for the evaluation and management of critically ill patients, especially those with sepsis. In this article, we explore the pathophysiological aspects, main methods of measurement, and the main studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre 91350200, Brazil
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Brazilian Research in Intensive Care Network-BRICNet, São Paulo 04039-002, Brazil
| | - Caroline Deutschendorf
- Infection Control Committee, Hospital de Clínicas de Porto Alegre, Porto Alegre 90410-000, Brazil
| | - Luis Valmor Cruz Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
28
|
Li S, Jiang H, Wang S, Li Y, Guo D, Zhan J, Li Q, Meng H, Chen A, Chen L, Dai X, Li X, Xing W, Li L, Fei J. Fibulin-2: A potential regulator of immune dysfunction after bone trauma. Immun Inflamm Dis 2023; 11:e846. [PMID: 37249292 PMCID: PMC10161779 DOI: 10.1002/iid3.846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVES To reveal the relationship between the fibulin-2 protein and immune dysfunction after bone trauma. METHODS Individuals who were admitted to the study were divided into a bone trauma group, a recovered from bone trauma group and a volunteer without bone trauma group based on the reason for admission. Fibulin-2 levels in the three groups were compared. Fibulin-2-knockout (fibulin-2-/- ) mice and wild-type (WT) mice were used to detect susceptibility to infection. Hematoxylin and eosin (HE) staining and immunohistochemical staining were employed to observe pathological changes in each organ from fibulin-2-/- mice and WT mice. RESULTS In total, 132 patients were enrolled in this study. The fibulin-2 level in the bone trauma group was lower than that in the recovered bone trauma group (3.39 ± 1.41 vs. 4.30 ± 1.38 ng/mL, t = 2.948, p < .05) and also lower than that in the volunteers without bone trauma group (3.39 ± 1.41 vs. 4.73 ± 1.67 ng/mL, t = 4.135, p < .05). Fibulin-2-/- mice are more prone to infection. Compared with those in WT mice, spleen function and thymus function in fibulin-2-/- mice were impaired. Immunohistochemical staining revealed that compared with those in WT mice, significantly fewer CD4+ T cells, CD8+ T cells, and CD19+ B cells were noted in the spleen and thymus of fibulin-2-/- mice. CONCLUSIONS The plasma fibulin-2 level was lower in patients with bone trauma. Decreased fibulin-2 is associated with immune dysfunction after bone trauma.
Collapse
Affiliation(s)
- Shidan Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Hao Jiang
- Department of OrthopaedicsAffiliated Hospital of Southwest Medical UniversityLuzhouPeople's Republic of China
| | - Shaochuan Wang
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Youbin Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Debin Guo
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Jijie Zhan
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Qiaohui Li
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Hao Meng
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Ankang Chen
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Limin Chen
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Xiaoyan Dai
- Department of Cancer Center, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Xiaoming Li
- Department of Military Traffic Injury Prevention, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| | - Jun Fei
- Department of Emergency, Daping HospitalArmy Medical UniversityChongqingPeople's Republic of China
| |
Collapse
|
29
|
Liu W, Xu C, Zou Z, Weng Q, Xiao Y. Sestrin2 suppresses ferroptosis to alleviate septic intestinal inflammation and barrier dysfunction. Immunopharmacol Immunotoxicol 2023; 45:123-132. [PMID: 36066109 DOI: 10.1080/08923973.2022.2121927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Alterations in intestinal function play a crucial role in the pathogenesis of sepsis, and the repair of the intestinal barrier is a potential strategy for the treatment of sepsis. Sestrin2 (SESN2), a highly conserved stress-responsive protein, can be induced in response to stress. AIM This paper aimed to explore the role and mechanism of SESN2 in septic intestinal dysfunction. METHODS Blood samples were collected from patients with septic intestinal dysfunction, and Caco-2 cells were subjected to lipopolysaccharide (LPS) to construct in vitro models. The expression level of SESN2 was determined in the blood samples and cells. The impacts of SESN2 overexpression on cell inflammation, oxidative stress, barrier integrity, and MAPK/Nrf2 signaling were evaluated. To determine the mediated role of MAPK signaling and ferroptosis, AMPK inhibitor (Compound C) and ferroptosis inducer (erastin) were separately used to treat cells, and the influences on the above aspects in cells were assessed. RESULTS The expression level of SESN2 was down-regulated in patients with septic intestinal dysfunction and LPS-induced cells. SESN2 overexpression was found to suppress cell inflammation and oxidative stress, maintain barrier integrity, and activate AMPK/Nrf2 signaling. Following the AMPK signaling was inhibited or the ferroptosis was triggered, the effects of SESN2 overexpression on the cells were both reversed. CONCLUSION Reduced SESN2 contributed to inflammatory response and barrier dysfunction in septic intestinal dysfunction by promoting ferroptosis via activating the AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Chanchan Xu
- Department of Internal Medicine, Shanghai Raffles Hospital, Shanghai, P.R. China
| | - Zhiqiang Zou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Qinyong Weng
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Ying Xiao
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
30
|
Xie W, Zou S, Dong C, Yang C. SPI1-mediated autophagy of peripheral blood monocyte cells as a mechanism for sepsis based on single-cell RNA sequencing. Int Immunopharmacol 2023; 117:109909. [PMID: 37012859 DOI: 10.1016/j.intimp.2023.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Autophagy has been documented to participate in immune responses and inflammatory diseases, but the mechanistic actions of monocyte autophagy in sepsis remain largely unknown. This study intends to analyze the mechanism of autophagy of peripheral blood monocyte cells (PBMCs) in sepsis based on single-cell RNA sequencing (scRNA-seq). The scRNA-seq data of PBMC samples from sepsis patients were downloaded from the GEO database, followed by identification of cell marker genes, key pathways and key genes. The bioinformatics analysis showed that the PBMC samples of sepsis patients mainly contained 9 immune cell types, among which three types of monocytes showed significant changes in cell numbers in sepsis patients. Of note, the highest autophagy score was found in the intermediate monocytes. The Annexin signaling pathway was a key pathway for the communication between monocytes and other cells. More importantly, SPI1 was predicted as a key gene in the autophagy phenotype of intermediate monocytes, and SPI1 might suppress ANXA1 transcription. The high expression of SPI1 in sepsis was confirmed by RT-qPCR and Western blot analysis. Dual luciferase reporter gene assay verified that SPI1 could bind to the promoter region of ANXA1. Furthermore, it was found that SPI1 might affect monocyte autophagy in the mouse model of sepsis through regulation of ANXA1. In conclusion, we provide insight into the mechanism underlying the septic potential of SPI1, which enhances monocyte autophagy by inhibiting the transcription of ANXA1 in sepsis.
Collapse
Affiliation(s)
- Wenfeng Xie
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Sainan Zou
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Chengcheng Dong
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Chunhua Yang
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China.
| |
Collapse
|
31
|
Suzuki Y, Kami D, Taya T, Sano A, Ogata T, Matoba S, Gojo S. ZLN005 improves the survival of polymicrobial sepsis by increasing the bacterial killing via inducing lysosomal acidification and biogenesis in phagocytes. Front Immunol 2023; 14:1089905. [PMID: 36820088 PMCID: PMC9938763 DOI: 10.3389/fimmu.2023.1089905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Polymicrobial sepsis still has a high mortality rate despite the development of antimicrobial agents, elaborate strategies to protect major organs, and the investment of numerous medical resources. Mitochondrial dysfunction, which acts as the center of energy metabolism, is clearly the basis of pathogenesis. Drugs that act on PGC1α, the master regulator of mitochondrial biosynthesis, have shown useful effects in the treatment of sepsis; therefore, we investigated the efficacy of ZLN005, a PGC1α agonist, and found significant improvement in overall survival in an animal model. The mode of action of this effect was examined, and it was shown that the respiratory capacity of mitochondria was enhanced immediately after administration and that the function of TFEB, a transcriptional regulator that promotes lysosome biosynthesis and mutually enhances PGC1α, was enhanced, as was the physical contact between mitochondria and lysosomes. ZLN005 strongly supported immune defense in early sepsis by increasing lysosome volume and acidity and enhancing cargo degradation, resulting in a significant reduction in bacterial load. ZLN005 rapidly acted on two organelles, mitochondria and lysosomes, against sepsis and interactively linked the two to improve the pathogenesis. This is the first demonstration that acidification of lysosomes by a small molecule is a mechanism of action in the therapeutic strategy for sepsis, which will have a significant impact on future drug discovery.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arata Sano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Inamdar S, Tylek T, Thumsi A, Suresh AP, Jaggarapu MMCS, Halim M, Mantri S, Esrafili A, Ng ND, Schmitzer E, Lintecum K, de Ávila C, Fryer JD, Xu Y, Spiller KL, Acharya AP. Biomaterial mediated simultaneous delivery of spermine and alpha ketoglutarate modulate metabolism and innate immune cell phenotype in sepsis mouse models. Biomaterials 2023; 293:121973. [PMID: 36549041 PMCID: PMC9868086 DOI: 10.1016/j.biomaterials.2022.121973] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Although different metabolic pathways have been associated with distinct macrophage phenotypes, the field of utilizing metabolites to modulate macrophage phenotype is in a nascent stage. In this report, we developed microparticles based on polymerization of alpha-ketoglutarate (a Krebs cycle metabolite), with or without encapsulation of spermine (a polyamine metabolite), to modulate cell phenotype that are critical for resolution of inflammation. Poly (alpha-ketoglutarate) microparticles encapsulated and released spermine (spermine (encap)paKG MPs) in vitro, which was accelerated in an acidic environment. When delivered to bone marrow-derived-macrophages, spermine (encap)paKG MPs induced a complex phenotypic profile outside of the typical M1/M2 paradigm, with distinct effects in the presence or absence of the pro-inflammatory stimulus lipopolysaccharide. Of particular interest was the increase in expression of CD163, which has been linked to anti-inflammatory responses in sepsis. Therefore, we systemically administered spermine (encap)paKG MPs to two different murine models of sepsis using acute or chronic injection of LPS. Macrophages and neutrophils in the liver and spleen of animals treated with spermine (encap)paKG MPs increased expression of CD163, concomitant with normalizing of glycolysis and oxidative phosphorylation, in both models. Overall, these results show that spermine (encap)paKG MPs modulate macrophage phenotype in vitro and in vivo, with potential applications in inflammation-associated diseases.
Collapse
Affiliation(s)
- Sahil Inamdar
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Tina Tylek
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Abhirami Thumsi
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Michelle Halim
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Shivani Mantri
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Nathan D Ng
- Molecular Biosciences and Biotechnology, The College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Elizabeth Schmitzer
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Kelly Lintecum
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Camila de Ávila
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Ying Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
33
|
Nedel WL, Strogulski NR, Rodolphi MS, Kopczynski A, Montes THM, Portela LV. SHORT-TERM INFLAMMATORY BIOMARKER PROFILES ARE ASSOCIATED WITH DEFICIENT MITOCHONDRIAL BIOENERGETICS IN LYMPHOCYTES OF SEPTIC SHOCK PATIENTS-A PROSPECTIVE COHORT STUDY. Shock 2023; 59:288-293. [PMID: 36795959 DOI: 10.1097/shk.0000000000002055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Introduction: A biomarker strategy based on the quantification of an immune profile could provide a clinical understanding of the inflammatory state in patients with sepsis and its potential implications for the bioenergetic state of lymphocytes, whose metabolism is associated with altered outcomes in sepsis. The objective of this study is to investigate the association between mitochondrial respiratory states and inflammatory biomarkers in patients with septic shock. Methods: This prospective cohort study included patients with septic shock. Routine, complex I, complex II respiration, and biochemical coupling efficiency were measured to evaluate mitochondrial activity. We measured IL-1ß, IL-6, IL-10, total lymphocyte count, and C-reactive protein levels on days 1 and 3 of septic shock management as well as mitochondrial variables. The variability of these measurements was evaluated using delta counts (days 3-1 counts). Results: Sixty-four patients were included in this analysis. There was a negative correlation between complex II respiration and IL-1ß (Spearman ρ, -0.275; P = 0.028). Biochemical coupling efficiency at day 1 was negative correlated with IL-6: Spearman ρ, -0.247; P = 0.05. Delta complex II respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.261; P = 0.042). Delta complex I respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.346; P = 0.006), and delta routine respiration was also negatively correlated with both delta IL-10 (Spearman ρ, -0.257; P = 0.046) and delta IL-6 (Spearman ρ, -0.32; P = 0.012). Conclusions: The metabolic change observed in mitochondrial complex I and complex II of lymphocytes is associated with a decrease in IL-6 levels, which can signal a decrease in global inflammatory activity.
Collapse
|
34
|
Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis. Int J Mol Sci 2023; 24:ijms24031829. [PMID: 36768154 PMCID: PMC9916340 DOI: 10.3390/ijms24031829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Because of endotoxemia during sepsis (a severe life-threatening infection), lipopolysaccharide (LPS) tolerance (the reduced responses to the repeated LPS stimulation) might be one of the causes of sepsis-induced immune exhaustion (the increased susceptibility to secondary infection and/or viral reactivation). In LPS tolerance macrophage (twice-stimulated LPS, LPS/LPS) compared with a single LPS stimulation (N/LPS), there was (i) reduced energy of the cell in both glycolysis and mitochondrial activities (extracellular flux analysis), (ii) decreased abundance of the following proteins (proteomic analysis): (a) complex I and II of the mitochondrial electron transport chain, (b) most of the glycolysis enzymes, (c) anti-viral responses with Myxovirus resistance protein 1 (Mx1) and Ubiquitin-like protein ISG15 (Isg15), (d) antigen presentation pathways, and (iii) the down-regulated anti-viral genes, such as Mx1 and Isg15 (polymerase chain reaction). To test the correlation between LPS tolerance and viral reactivation, asymptomatic mice with and without murine norovirus (MNV) infection as determined in feces were tested. In MNV-positive mice, MNV abundance in the cecum, but not in feces, of LPS/LPS mice was higher than that in N/LPS and control groups, while MNV abundance of N/LPS and control were similar. Additionally, the down-regulated Mx1 and Isg15 were also demonstrated in the cecum, liver, and spleen in LPS/LPS-activated mice, regardless of MNV infection, while N/LPS more prominently upregulated these genes in the cecum of MNV-positive mice compared with the MNV-negative group. In conclusion, defects in anti-viral responses after LPS tolerance, perhaps through the reduced energy status of macrophages, might partly be responsible for the viral reactivation. More studies on patients are of interest.
Collapse
|
35
|
Chen D, Zhang C, Luo J, Deng H, Yang J, Chen S, Zhang P, Dong L, Chang T, Tang ZH. Activated autophagy of innate immune cells during the early stages of major trauma. Front Immunol 2023; 13:1090358. [PMID: 36713435 PMCID: PMC9879135 DOI: 10.3389/fimmu.2022.1090358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Background Trauma-induced immune dysfunction has been a major barrier to achieving reduced mortality, which is poorly understood. Autophagy is a crucial catabolic mechanism of immune cells during times of stress. Few studies have investigated the immune regulatory effects induced by autophagy after trauma. Here, we use single-cell transcriptomics analysis in a major trauma cohort to demonstrate the dominant role of autophagy in innate immune cells during the early stages of major trauma. Method Single-cell transcriptional profiling of peripheral blood mononuclear cells (PBMCs) was performed, which were sampled from three control participants and five major trauma patients within 6 hours of injury. In detail, after single-cell RNA-sequence data processing, cell type annotation and cluster marker identification were performed. A genetic toolbox with 604 autophagy-related genes was used to monitor the autophagy levels in immune cells. In addition, all transcriptome RNA sequencing data obtained from PBMCs in a cohort of 167 major trauma patients were downloaded from gene expression omnibus (GEO) datasets (GSE36809). Key deregulated biological processes and important autophagic hub genes involved in immune cells were identified by weighted gene co-expression network analysis and gene ontology enrichment analysis. Results A total of 20,445 differentially expressed genes were identified and five co-expression modules were constructed. Enrichment analysis indicated that activated autophagy is the most important biological process during the early stages of major trauma, and JMY (autophagy-related genes) were identified as hub genes. The single-cell transcriptional profiling of PBMCs demonstrated that all components of adaptive immune cells were significantly decreased, whereas components of innate immune cells (monocytes and neutrophils) were significantly increased in major trauma patients compared with control participants. Activated autophagy was detected in monocytes and neutrophils by monitoring the dynamic transcriptional signature of the autophagy-related genetic toolbox. Biological process analysis shows that antigen uptake, processing presentation, and major histocompatibility complex (MHC) class II protein complex assembly pathways were up-regulated in autophagy-positive monocytes, whereas antigen processing and presentation of endogenous antigen and type I interferon signaling pathways were up-regulated in autophagy-positive neutrophils during the early stages of major trauma. Conclusion Our study demonstrated that autophagy is a biological process crucial to the development of immune disorders in the early stages of major trauma. Furthermore, the results of our study generated a comprehensive single-cell immune landscape for major trauma patients, in which we determined that autophagy profoundly affects the main functions of innate immune cells and provides insight into the cellular basis of immune dysregulation after major trauma.
Collapse
|
36
|
Kopitar AN, Repas J, Janžič L, Bizjak M, Vesel TT, Emeršič N, Avramovič MZ, Ihan A, Avčin T, Pavlin M. Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Front Immunol 2023; 14:1157702. [PMID: 37153551 PMCID: PMC10157053 DOI: 10.3389/fimmu.2023.1157702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.
Collapse
Affiliation(s)
- Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Janžič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Bizjak
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tina Tajnšek Vesel
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nina Emeršič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zajc Avramovič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Avčin
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Department of Pediatrics, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| |
Collapse
|
37
|
Bonaroti J, Billiar I, Moheimani H, Wu J, Namas R, Li S, Kar UK, Vodovotz Y, Neal MD, Sperry JL, Billiar TR. Plasma proteomics reveals early, broad release of chemokine, cytokine, TNF, and interferon mediators following trauma with delayed increases in a subset of chemokines and cytokines in patients that remain critically ill. Front Immunol 2022; 13:1038086. [PMID: 36532045 PMCID: PMC9750757 DOI: 10.3389/fimmu.2022.1038086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Severe injury is known to cause a systemic cytokine storm that is associated with adverse outcomes. However, a comprehensive assessment of the time-dependent changes in circulating levels of a broad spectrum of protein immune mediators and soluble immune mediator receptors in severely injured trauma patients remains uncharacterized. To address this knowledge gap, we defined the temporal and outcome-based patterns of 184 known immune mediators and soluble cytokine receptors in the circulation of severely injured patients. Proteomics (aptamer-based assay, SomaLogic, Inc) was performed on plasma samples drawn at 0, 24, and 72 hours (h) from time of admission from 150 trauma patients, a representative subset from the Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock (PAMPer) trial. Patients were categorized into outcome groups including Early Non-Survivors (died within 72 h; ENS; n=38), Non-Resolvers (died after 72 h or required ≥7 days of intensive care; NR; n=78), and Resolvers (survivors that required < 7 days of intensive care; R; n=34), with low Injury Severity Score (ISS) patients from the Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury (STAAMP) trial as controls. The major findings include an extensive release of immune mediators and cytokine receptors at time 0h that is more pronounced in ENS and NR patients. There was a selective subset of mediators elevated at 24 and 72 h to a greater degree in NR patients, including multiple cytokines and chemokines not previously described in trauma patients. These findings were validated in a quantitative fashion using mesoscale discovery immunoassays (MSD) from an external validation cohort (VC) of samples from 58 trauma patients matched for R and NR status. This comprehensive longitudinal description of immune mediator patterns associated with trauma outcomes provides a new level of characterization of the immune response that follows severe injury.
Collapse
Affiliation(s)
- Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Isabel Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hamed Moheimani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Xiangya School of Medicine, Central South University, Changsha, China
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shimena Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Upendra K. Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason L. Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Timothy R. Billiar,
| |
Collapse
|
38
|
Owen AM, Luan L, Burelbach KR, McBride MA, Stothers CL, Boykin OA, Sivanesam K, Schaedel JF, Patil TK, Wang J, Hernandez A, Patil NK, Sherwood ER, Bohannon JK. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. Front Immunol 2022; 13:1044662. [PMID: 36439136 PMCID: PMC9692127 DOI: 10.3389/fimmu.2022.1044662] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2023] Open
Abstract
Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.
Collapse
Affiliation(s)
- Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Margaret A. McBride
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Olivia A. Boykin
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kalkena Sivanesam
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Washington State University Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Jessica F. Schaedel
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jingbin Wang
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| |
Collapse
|
39
|
Wang L, Zhang J, Zhang L, Hu L, Tian J. Significant difference of differential expression pyroptosis-related genes and their correlations with infiltrated immune cells in sepsis. Front Cell Infect Microbiol 2022; 12:1005392. [PMID: 36250055 PMCID: PMC9556990 DOI: 10.3389/fcimb.2022.1005392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSepsis is regarded as a life-threatening organ dysfunction syndrome that responds to infection. Pyroptosis, a unique form of programmed cell death, is characterized by inflammatory cytokine secretion. Recently, an increasing number of studies have investigated the relationship between sepsis and pyroptosis. Appropriate pyroptosis can help to control infection during sepsis, but an immoderate one may cause immune disorders. The present study aimed to identify pyroptosis-related gene biomarkers and their relationship with the immune microenvironment using the genome-wide technique.MethodsThe training dataset GSE154918 and the validation dataset GSE185263 were downloaded for bioinformatics analysis. Differentially expressed pyroptosis-related genes (DEPRGs) were identified between sepsis (including septic shock) and healthy samples. Gene Set Enrichment Analysis (GSEA) was performed to explore gene function. CIBERSORT tools were applied to quantify infiltrating immune cells, and the correlation between differentially infiltrating immune cells and DEPRG expression was investigated. Furthermore, based on multivariable Cox regression, the study also utilized a random forest (RF) model to screen biomarkers.ResultsIn total, 12 DEPRGs were identified. The expression level of PLCG1 was continuously significantly decreased, while the expression level of NLRC4 was elevated from control to sepsis and then to septic shock. GSEA found that one DEPRG (PLCG1) was involved in the T-cell receptor signaling pathway and that many T cell-related immunologic signature gene sets were enriched. The proportions of plasma cells, T cells CD4 memory activated, and some innate cells in the sepsis group were significantly higher than those in the healthy group, while the proportions of T cells CD8, T cells CD4 memory resting, T cells regulatory (Tregs), and NK cells were lower. Additionally, CASP4 was positively correlated with Neutrophils and negatively correlated with T cells CD4 memory resting and Tregs. Lastly, two biomarkers (CASP4 and PLCG1) were identified, and a nomogram model was constructed for diagnosis with area under the curve (AUC) values of 0.998.ConclusionThis study identified two potential pyroptosis-related diagnostic genes, CASP4 and PLCG1, and explored the correlation between DEPRGs and the immune microenvironment. Also, our study indicated that some DEPRGs were satisfactorily correlated with several representative immune cells that can regulate pyroptosis.
Collapse
Affiliation(s)
- Li Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
- *Correspondence: Li Wang, ; Lingli Hu, ; Jianhui Tian,
| | - Jiting Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Zhang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Lingli Hu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li Wang, ; Lingli Hu, ; Jianhui Tian,
| | - Jianhui Tian
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Li Wang, ; Lingli Hu, ; Jianhui Tian,
| |
Collapse
|
40
|
He Y, Huang B, Yang Y, Song W, Fan Y, Zhang L, Liu G. MicroRNA‐16‐5p exacerbates sepsis by upregulating aerobic glycolysis via SIRT3‐SDHA axis. Cell Biol Int 2022; 46:2207-2219. [DOI: 10.1002/cbin.11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yue‐Xian He
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
- Department of Pediatrics The First Affiliated Hospital of Jinan University Guangzhou Guangdong People's Republic of China
| | - Bo‐Lun Huang
- Department of PICU Guangzhou Women and Children's Medical Center Guangzhou Guangdong People's Republic of China
| | - Yi‐Yu Yang
- Department of PICU Guangzhou Women and Children's Medical Center Guangzhou Guangdong People's Republic of China
| | - Wen‐Xiu Song
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Yong‐Bo Fan
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Li‐Mei Zhang
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Guo‐Sheng Liu
- Department of Pediatrics The First Affiliated Hospital of Jinan University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
41
|
Grossamide attenuates inflammation by balancing macrophage polarization through metabolic reprogramming of macrophages in mice. Int Immunopharmacol 2022; 112:109190. [PMID: 36116152 DOI: 10.1016/j.intimp.2022.109190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Macrophages exhibited different phenotypes in response to environmental cues. To meet the needs of rapid response to stimuli, M1-activated macrophages preferred glycolysis to oxidative phosphorylation (OXPHOS) in mitochondria to quickly produce energy and obtain ample raw materials to support cell activation at the same time. Activated macrophages produced free radicals and cytokines to eradicate pathogens but also induced oxidative damage and enhanced inflammation. Grossamide (GSE), a lignanamide from Polygonum multiflorum Thunb., exhibited notable anti-inflammatory effects. In this study, the potential of GSE on macrophage polarization was explored. GSE significantly down-regulated the levels of M1 macrophage biomarkers (Cd32a, Cd80 and Cd86) while increased the levels of M2 indicators (Cd163, Mrc1 and Socs1), showing its potential to inhibit LPS-induced M1 polarization of macrophages. This ability has close a link to its effect on metabolic reprogramming of macrophage. GSE shunted nitric oxide (NO) production from arginine by up-regulation of arginase and down-regulation of inducible nitric oxide synthase, thus attenuated the inhibition of NO on OXPHOS. LPS created three breakpoints in the tricarboxylic acid cycle (TCA) cycle of macrophage as evidenced by down-regulated isocitrate dehydrogenase, accumulation of succinate and the inhibited SDH activity, significantly decreased level of oxoglutarate dehydrogenase expression and its substrate α-ketoglutarate. Thus GSE reduced oxidative stress and amended fragmented TCA cycle. As a result, GSE maintained redox (NAD+/NADH) and energy (ATP/ADP) state, reduced extracellular acidification rate and enhanced the oxygen consumption rate. In addition, GSE decreased the release of inflammatory cytokines by inhibiting the activation of the LPS/TLR4/NF-κB pathway. These findings highlighted the central role of immunometabolism of macrophages in its functional plasticity, which invited future study of mode of action of anti-inflammatory drugs from viewpoint of metabolic reprogramming.
Collapse
|
42
|
Li Y, Tan R, Chen Y, Liu Z, Chen E, Pan T, Qu H. SC2sepsis: sepsis single-cell whole gene expression database. Database (Oxford) 2022; 2022:6671201. [PMID: 35980286 PMCID: PMC9387141 DOI: 10.1093/database/baac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 08/06/2022] [Indexed: 11/14/2022]
Abstract
Sepsis, one of the major challenges in the intensive care unit, is characterized by complex host immune status. Improved understandings of the phenotypic changes of immune cells during sepsis and the driving molecular mechanisms are critical to the elucidation of sepsis pathogenesis. Single-cell RNA sequencing (scRNA-seq), which interprets transcriptome at a single-cell resolution, serves as a useful tool to uncover disease-related gene expression signatures of different cell populations in various diseases. It has also been applied to studies on sepsis immunopathological mechanisms. Due to the fact that most sepsis-related studies utilizing scRNA-seq have very small sample sizes and there is a lack of an scRNA-seq database for sepsis, we developed Sepsis Single-cell Whole Gene Expression Database Website (SC2sepsis) (http://www.rjh-sc2sepsis.com/), integrating scRNA-seq datasets of human peripheral blood mononuclear cells from 45 septic patients and 26 healthy controls, with a total amount of 232 226 cells. SC2sepsis is a comprehensive resource database with two major features: (i) retrieval of 1988 differentially expressed genes between pathological and healthy conditions and (ii) automatic cell-type annotation, which is expected to facilitate researchers to gain more insights into the immune dysregulation of sepsis.
Collapse
Affiliation(s)
- Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , No.197 Ruijin Er Road, Shanghai CN 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , No.197 Ruijin Er Road, Shanghai CN 200025, China
| | - Yang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , No.197 Ruijin Er Road, Shanghai CN 200025, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , No.197 Ruijin Er Road, Shanghai CN 200025, China
| | - Erzhen Chen
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , No.197 Ruijin Er Road, Shanghai CN 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , No.197 Ruijin Er Road, Shanghai CN 200025, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , No.197 Ruijin Er Road, Shanghai CN 200025, China
| |
Collapse
|
43
|
Lai Y, Lin C, Lin X, Wu L, Zhao Y, Shao T, Lin F. Comprehensive Analysis of Molecular Subtypes and Hub Genes of Sepsis by Gene Expression Profiles. Front Genet 2022; 13:884762. [PMID: 36035194 PMCID: PMC9412106 DOI: 10.3389/fgene.2022.884762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Sepsis is a systemic inflammatory response syndrome (SIRS) with heterogeneity of clinical symptoms. Studies further exploring the molecular subtypes of sepsis and elucidating its probable mechanisms are urgently needed. Methods: Microarray datasets of peripheral blood in sepsis were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA) analysis was conducted to screen key module genes. Consensus clustering analysis was carried out to identify distinct sepsis molecular subtypes. Subtype-specific pathways were explored using gene set variation analysis (GSVA). Afterward, we intersected subtype-related, dramatically expressed and module-specific genes to screen consensus DEGs (co-DEGs). Enrichment analysis was carried out to identify key pathways. The least absolute shrinkage and selection operator (LASSO) regression analysis was used for screen potential diagnostic biomarkers. Results: Patients with sepsis were classified into three clusters. GSVA showed these DEGs among different clusters in sepsis were assigned to metabolism, oxidative phosphorylation, autophagy regulation, and VEGF pathways, etc. In addition, we identified 40 co-DEGs and several dysregulated pathways. A diagnostic model with 25-gene signature was proven to be of high value for the diagnosis of sepsis. Genes in the diagnostic model with AUC values more than 0.95 in external datasets were screened as key genes for the diagnosis of sepsis. Finally, ANKRD22, GPR84, GYG1, BLOC1S1, CARD11, NOG, and LRG1 were recognized as critical genes associated with sepsis molecular subtypes. Conclusion: There are remarkable differences in and enriched pathways among different molecular subgroups of sepsis, which may be the key factors leading to heterogeneity of clinical symptoms and prognosis in patients with sepsis. Our current study provides novel diagnostic and therapeutic biomarkers for sepsis molecular subtypes.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Xing Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Lijuan Wu
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Yinan Zhao
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Tingfang Shao
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Fan Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Fan Lin,
| |
Collapse
|
44
|
Zhang J, Luo W, Miao C, Zhong J. Hypercatabolism and Anti-catabolic Therapies in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front Nutr 2022; 9:941097. [PMID: 35911117 PMCID: PMC9326442 DOI: 10.3389/fnut.2022.941097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/06/2022] Open
Abstract
Owing to the development of intensive care units, many patients survive their initial insults but progress to chronic critical illness (CCI). Patients with CCI are characterized by prolonged hospitalization, poor outcomes, and significant long-term mortality. Some of these patients get into a state of persistent low-grade inflammation, suppressed immunity, and ongoing catabolism, which was defined as persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. Over the past few years, some progress has been made in the treatment of PICS. However, most of the existing studies are about the role of persistent inflammation and suppressed immunity in PICS. As one of the hallmarks of PICS, hypercatabolism has received little research attention. In this review, we explore the potential pathophysiological changes and molecular mechanisms of hypercatabolism and its role in PICS. In addition, we summarize current therapies for improving the hypercatabolic status and recommendations for patients with PICS.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wenchen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
- Department of Anesthesiology, Zhongshan Wusong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- *Correspondence: Jing Zhong,
| |
Collapse
|
45
|
Kong E, Li Y, Deng M, Hua T, Yang M, Li J, Feng X, Yuan H. Glycometabolism Reprogramming of Glial Cells in Central Nervous System: Novel Target for Neuropathic Pain. Front Immunol 2022; 13:861290. [PMID: 35669777 PMCID: PMC9163495 DOI: 10.3389/fimmu.2022.861290] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is characterized by hyperalgesia and allodynia. Inflammatory response is conducive to tissue recovery upon nerve injury, but persistent and exaggerated inflammation is detrimental and participates in neuropathic pain. Synaptic transmission in the nociceptive pathway, and particularly the balance between facilitation and inhibition, could be affected by inflammation, which in turn is regulated by glial cells. Importantly, glycometabolism exerts a vital role in the inflammatory process. Glycometabolism reprogramming of inflammatory cells in neuropathic pain is characterized by impaired oxidative phosphorylation in mitochondria and enhanced glycolysis. These changes induce phenotypic transition of inflammatory cells to promote neural inflammation and oxidative stress in peripheral and central nervous system. Accumulation of lactate in synaptic microenvironment also contributes to synaptic remodeling and central sensitization. Previous studies mainly focused on the glycometabolism reprogramming in peripheral inflammatory cells such as macrophage or lymphocyte, little attention was paid to the regulation effects of glycometabolism reprogramming on the inflammatory responses in glial cells. This review summarizes the evidences for glycometabolism reprogramming in peripheral inflammatory cells, and presents a small quantity of present studies on glycometabolism in glial cells, expecting to promote the exploration in glycometabolism in glial cells of neuropathic pain.
Collapse
Affiliation(s)
- Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Anesthesiology, The No. 988 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xudong Feng
- Department of Anesthesiology, The No. 988 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
46
|
Mukherjee R, Tompkins CM, Ostberg NP, Joshi AU, Massis LM, Vijayan V, Gera K, Monack D, Cornell TT, Hall MW, Mochly-Rosen D, Haileselassie B. Drp1/Fis1-Dependent Pathologic Fission and Associated Damaged Extracellular Mitochondria Contribute to Macrophage Dysfunction in Endotoxin Tolerance. Crit Care Med 2022; 50:e504-e515. [PMID: 35067534 PMCID: PMC9133053 DOI: 10.1097/ccm.0000000000005437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent publications have shown that mitochondrial dynamics can govern the quality and quantity of extracellular mitochondria subsequently impacting immune phenotypes. This study aims to determine if pathologic mitochondrial fission mediated by Drp1/Fis1 interaction impacts extracellular mitochondrial content and macrophage function in sepsis-induced immunoparalysis. DESIGN Laboratory investigation. SETTING University laboratory. SUBJECTS C57BL/6 and BALB/C mice. INTERVENTIONS Using in vitro and murine models of endotoxin tolerance (ET), we evaluated changes in Drp1/Fis1-dependent pathologic fission and simultaneously measured the quantity and quality of extracellular mitochondria. Next, by priming mouse macrophages with isolated healthy mitochondria (MC) and damaged mitochondria, we determined if damaged extracellular mitochondria are capable of inducing tolerance to subsequent endotoxin challenge. Finally, we determined if inhibition of Drp1/Fis1-mediated pathologic fission abrogates release of damaged extracellular mitochondria and improves macrophage response to subsequent endotoxin challenge. MEASUREMENTS AND MAIN RESULTS When compared with naïve macrophages (NMs), endotoxin-tolerant macrophages (ETM) demonstrated Drp1/Fis1-dependent mitochondrial dysfunction and higher levels of damaged extracellular mitochondria (Mitotracker-Green + events/50 μL: ETM = 2.42 × 106 ± 4,391 vs NM = 5.69 × 105 ± 2,478; p < 0.001). Exposure of NMs to damaged extracellular mitochondria (MH) induced cross-tolerance to subsequent endotoxin challenge, whereas MC had minimal effect (tumor necrosis factor [TNF]-α [pg/mL]: NM = 668 ± 3, NM + MH = 221 ± 15, and NM + Mc = 881 ± 15; p < 0.0001). Inhibiting Drp1/Fis1-dependent mitochondrial fission using heptapeptide (P110), a selective inhibitor of Drp1/Fis1 interaction, improved extracellular mitochondrial function (extracellular mitochondrial membrane potential, JC-1 [R/G] ETM = 7 ± 0.5 vs ETM + P110 = 19 ± 2.0; p < 0.001) and subsequently improved immune response in ETMs (TNF-α [pg/mL]; ETM = 149 ± 1 vs ETM + P110 = 1,150 ± 4; p < 0.0001). Similarly, P110-treated endotoxin tolerant mice had lower amounts of damaged extracellular mitochondria in plasma (represented by higher extracellular mitochondrial membrane potential, TMRM/MT-G: endotoxin tolerant [ET] = 0.04 ± 0.02 vs ET + P110 = 0.21 ± 0.02; p = 0.03) and improved immune response to subsequent endotoxin treatment as well as cecal ligation and puncture. CONCLUSIONS Inhibition of Drp1/Fis1-dependent mitochondrial fragmentation improved macrophage function and immune response in both in vitro and in vivo models of ET. This benefit is mediated, at least in part, by decreasing the release of damaged extracellular mitochondria, which contributes to endotoxin cross-tolerance. Altogether, these data suggest that alterations in mitochondrial dynamics may play an important role in sepsis-induced immunoparalysis.
Collapse
Affiliation(s)
- Riddhita Mukherjee
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Carly M. Tompkins
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Nicolai Patrick Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Amit U. Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Liliana M. Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Vijith Vijayan
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Kanika Gera
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Denise Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Timothy T. Cornell
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Mark W. Hall
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH, 43205; USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| | - Bereketeab Haileselassie
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, 94305; USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305; USA
| |
Collapse
|
47
|
β-Glucans from Yeast—Immunomodulators from Novel Waste Resources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging. This paper outlines yeast β-glucans’ immune-modulatory and anti-cancer effects, production and extraction, and their availability in waste streams.
Collapse
|
48
|
Patil NK, Bohannon JK, Vachharajani V, McCall CE. Editorial: The Roles of Mitochondria in Immunity. Front Immunol 2022; 13:914639. [PMID: 35651600 PMCID: PMC9149419 DOI: 10.3389/fimmu.2022.914639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vidula Vachharajani
- Departments of Critical Care Medicine and Inflammation and Immunity, Cleveland, Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Charles E. McCall
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States,*Correspondence: Charles E. McCall,
| |
Collapse
|
49
|
Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, Tu Q, Zhang X, Luo S, Yao L, Chen F, Li J. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol 2022; 19:504-515. [PMID: 34983946 PMCID: PMC8976055 DOI: 10.1038/s41423-021-00806-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
Sepsis is a heterogeneous syndrome induced by a dysregulated host response to infection. Glycolysis plays a role in maintaining the immune function of macrophages, which is crucial for severely septic patients. However, how the pathways that link glycolysis and macrophages are regulated is still largely unknown. Here, we provide evidence to support the function of KLF14, a novel Krüppel-like transcription factor, in the regulation of glycolysis and the immune function of macrophages during sepsis. KLF14 deletion led to significantly increased mortality in lethal models of murine endotoxemia and sepsis. Mechanistically, KLF14 decreased glycolysis and the secretion of inflammatory cytokines by macrophages by inhibiting the transcription of HK2. In addition, we confirmed that the expression of KLF14 was upregulated in septic patients. Furthermore, pharmacological activation of KLF14 conferred protection against sepsis in mice. These findings uncover a key role of KLF14 in modulating the inflammatory signaling pathway and shed light on the development of KLF14-targeted therapeutics for sepsis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Lu Liu
- Department of Anesthesiology, Weifang Medical University, Weifang, 261000, China
| | - Tong Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Pengfei Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Qing Tu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Xinyi Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Shiyuan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Liangfang Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Jingbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, China.
| |
Collapse
|
50
|
Stanculescu D, Bergquist J. Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:818728. [PMID: 35345768 PMCID: PMC8957276 DOI: 10.3389/fmed.2022.818728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.
Collapse
Affiliation(s)
| | - Jonas Bergquist
- Division of Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|