1
|
Rusu CC, Kacso I, Moldovan D, Potra A, Tirinescu D, Ticala M, Maslyennikov Y, Urs A, Bondor CI. Exploring the Associations Between Inflammatory Biomarkers, Survival, and Cardiovascular Events in Hemodialysis Patients and the Interrelationship with Nutritional Parameters-The Experience of a Single Transylvanian Dialysis Center. J Clin Med 2025; 14:1139. [PMID: 40004669 PMCID: PMC11855970 DOI: 10.3390/jcm14041139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: In hemodialysis (HD), inflammatory biomarkers are discussed as prognostic markers for survival and cardiovascular events (CVEs). The results of the studies are not uniform and there are particularities related to population groups and comorbidities. In addition, it is known that inflammation determines protein malnutrition and less about the effect of adipose tissue on inflammation in HD. This study investigates the relationship between inflammatory molecules and nutritional biomarkers, and CVE and survival in HD patients. Methods: We included, in an observational, longitudinal study, 65 patients with chronic HD (53 without diabetes and 22 smokers), with a mean age of 60.1 ± 12.4 years. High-sensitivity C-reactive protein (hs-CRP), interleukin 1 beta, tumor necrosis factor alpha (TNF-alpha), interleukin 6, soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK), soluble CD163 (sCD163), and fibroblast growth factor 21 were determined. We recorded survival and cardiovascular events for 60 months. Univariate and multivariate analyses were performed. Results: Hs-CRP was significantly associated with survival (p = 0.014) in the total group. In smokers and former smokers, TNF-α lower than 368.34 pg/mL was associated with better survival. In multivariate analysis, hs-CRP was correlated with adipose tissue biomarkers (p = 0.006), and sCD163 was correlated with total and LDL cholesterol (p = 0.002). In addition, in univariate analysis, sTWEAK was correlated with serum albumin (p = 0.026, r = -0.30). In conclusion, in HD patients, hs-CRP was significantly associated with survival, and low TNF-alpha values in smokers and former smokers were linked to better survival. Hs-CRP was also correlated with adipose tissue biomarkers, CD163 was correlated with total and LDL cholesterol, and albumin was inversely associated with sTWEAK. The relation between inflammatory molecules and adipose tissue biomarkers was less identified in HD patients until now.
Collapse
Affiliation(s)
- Crina Claudia Rusu
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Diana Moldovan
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Yuriy Maslyennikov
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexandra Urs
- Department of Nephrology, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 8 Victor Babes, Street, 400012 Cluj-Napoca, Romania
- Department of Nephrology, County Emergency Clinical Hospital Cluj, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Cosmina Ioana Bondor
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Melnikov I, Kozlov S, Okhota S, Saburova O, Avtaeva Y, Kuznetsova T, Guria K, Prokofieva L, Riazantseva T, Ji SR, Wu Y, Gabbasov Z. Higher monomeric C-reactive protein levels are associated with premature coronary artery disease. Front Immunol 2025; 15:1501125. [PMID: 39867895 PMCID: PMC11757105 DOI: 10.3389/fimmu.2024.1501125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Chronic inflammation is a major risk factor for coronary artery disease (CAD). Currently, the inflammatory cardiovascular risk is assessed via C-reactive protein (CRP) levels measured using a high-sensitivity assay (hsCRP). Monomeric CRP (mCRP) is a locally produced form of CRP that has emerged as a potential biomarker of inflammation. Aim This study investigated whether mCRP levels are associated with premature CAD. Materials and methods This study comprised 103 participants of both sexes, including 50 patients 56 ± 7 years old with premature CAD and 53 patients 51 ± 10 years old without CAD. CAD was verified using coronary angiography, hsCRP levels were measured using a standard assay, and mCRP levels were measured using fluorescent cytometric beads conjugated with an anti-mCRP antibody. Results The levels of hsCRP were 0.99 (0.59; 3.10) mg/L vs. 0.63 (0.35; 1.85) mg/L (p = 0.067), and mCRP 6.84 (4.20; 13.78) µg/L vs. 2.57 (0.32; 5.66) µg/L (p <0.001) in patients with CAD vs. patients without CAD, respectively. There was a weak positive correlation between the mCRP and hsCRP levels (ρ = 0.214; p = 0.030). hsCRP levels were below 2.0 mg/L (i.e., residual inflammatory cardiovascular risk should have been excluded) in 70% of patients with CAD and 79% of patients without CAD (p = 0.365). mCRP levels differed between the groups of patients with hsCRP levels below 2.0 mg/L: 5.14 (4.07; 10.68) µg/L vs. 2.77 (0.53; 5.00) µg/L in patients with or without CAD, respectively (p <0.001). Logistic regression analysis demonstrated that mCRP levels were independently associated with premature CAD. The adjusted odds ratio was 1.18 (95% CI 1.06-1.33, p = 0.004) per each µg/L increase in mCRP levels. Conclusion Higher mCRP levels were associated with premature CAD, independent of hsCRP levels and traditional risk factors.
Collapse
Affiliation(s)
- Ivan Melnikov
- Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
- Laboratory of Gas Exchange, Biomechanics and Barophysiology, State Scientific Center of the Russian Federation – The Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey Kozlov
- Department of Problems of Atherosclerosis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Okhota
- Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Problems of Atherosclerosis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Saburova
- Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yuliya Avtaeva
- Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Kuznetsova
- Laboratory of Neurohumoral Regulation of Cardiovascular Diseases, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin Guria
- Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Lyudmila Prokofieva
- Laboratory of Human Stem Cells, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Riazantseva
- Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Problems of Atherosclerosis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Shang-Rong Ji
- Key Laboratory of Cell Activities and Stress Adaptations of Ministry of Education (MOE), School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yi Wu
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education (MOE), School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zufar Gabbasov
- Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Karasu E, Halbgebauer R, Schütte L, Greven J, Bläsius FM, Zeller J, Winninger O, Braig D, Messerer DAC, Berger B, Feuerstein H, Schultze A, Peter K, Knippschild U, Horst K, Hildebrand F, Eisenhardt SU, Huber-Lang M. A conformational change of C-reactive protein drives neutrophil extracellular trap formation in inflammation. BMC Biol 2025; 23:4. [PMID: 39773175 PMCID: PMC11708171 DOI: 10.1186/s12915-024-02093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms. RESULTS In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP. We were able to confirm that mCRP co-localizes with leukocytes at the site of injury after polytrauma and therefore assessed whether the CRP conformation potentiates neutrophil activation. We found mCRP-induced neutrophil-extracellular trap formation in vitro and ex vivo involving nicotinamide adenine dinucleotide phosphate oxidase activation, p38/mitogen-activated protein kinase signaling, and histone H3 citrullination. Mimicking the trauma milieu in a human ex vivo whole blood model, we found significant mCRP generation as well as NET formation, prevented by blocking pCRP conformational changes. CONCLUSIONS Our data provide novel molecular insights how CRP dissociation contributes to neutrophil activation as driver of various inflammatory disorders.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Lena Schütte
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Johannes Greven
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Felix M Bläsius
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - Oscar Winninger
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | | | - Bettina Berger
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Hendrik Feuerstein
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Karlheinz Peter
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Medical Center, 89081, Ulm, Germany
| | - Klemens Horst
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedic Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, Freiburg, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Thakare DR, Singh K, Qamar T, Singh D, Balakrishnan S, Rathore U, Jain N, Ora M, Misra DP. Serum p-Glycoprotein and Monomeric C-Reactive Protein are Elevated in Takayasu Arteritis. J Inflamm Res 2024; 17:8695-8712. [PMID: 39553310 PMCID: PMC11566576 DOI: 10.2147/jir.s490958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Existing biomarkers including C-reactive protein (CRP) do not adequately distinguish active and inactive TAK. We compared serum p-glycoprotein (p-gp)/Multidrug Resistance Protein 1 (MDR1), monomeric CRP (mCRP), CRP, and mCRP:CRP ratio in Takayasu arteritis (TAK) and healthy controls and their relationship with disease activity. Patients and Methods Serum p-gp mCRP (ELISA) and CRP (nephelometry) were compared between consecutive adults with TAK (>18 years) enrolled from a prospective cohort (n = 92) and healthy controls (n = 29), and between active vs inactive TAK (n = 46 each). In a subset of active immunosuppressive-naïve TAK (n = 29), correlation was assessed between serum p-gp and p-gp expression on circulating T helper lymphocyte populations: overall (CD4+), Th17 (CD4+IL-17+), Th17.1 (CD4+IL-17+IFN-γ+) lymphocytes [normalized to Tregs (CD4+CD25+FoxP3+)]. Changes in serum p-gp, mCRP, CRP, and mCRP:CRP were compared before and after immunosuppression (n = 29). Data was represented using median (Q1-Q3). Receiver operating characteristics (ROC) curves were generated for TAK vs controls, and active vs inactive TAK with serum p-gp, mCRP, CRP, and mCRP:CRP. Multivariable-adjusted linear regression was used to predict active disease with serum p-gp, mCRP, CRP, or mCRP:CRP. Results Serum p-gp (11.19 vs 8.05 ng/mL), mCRP (1.61 vs 1.25 µg/L), and CRP (5.40 vs 2.1 mg/L) were elevated in TAK vs controls (p <0.05 for all). CRP was higher and mCRP:CRP ratio was lower in active vs inactive TAK (p < 0.001). ROC curves identified moderate prediction for active disease with CRP and inactive disease with serum p-gp (area under ROC curve 0.705 and 0.392, respectively). Multivariable-adjusted linear regression confirmed association of CRP with active disease (p = 0.009) and serum p-gp with inactive disease (p = 0.041). In treatment-naïve TAK, serum p-gp negatively correlated with p-gp+Th17.1 lymphocytes (Spearman's rho=-0.39, p = 0.046). CRP and serum p-gp were significantly lowered following immunosuppressive therapy in treatment-naïve TAK (p < 0.05). Conclusion Serum p-gp and mCRP are elevated in TAK. Serum p-gp is associated with inactive disease.
Collapse
Affiliation(s)
- Darpan Radheshyam Thakare
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
- Department of Clinical Immunology and Rheumatology, King George Medical University (KGMU), Lucknow, Uttar Pradesh, India
| | - Kritika Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Tooba Qamar
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Deeksha Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Sandeep Balakrishnan
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Upendra Rathore
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Neeraj Jain
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Manish Ora
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Yuan M, Zhao MH, Tan Y. The anti-mCRP 199-206 antibodies aggravate tubulointerstitial lesions in lupus nephritis. Clin Immunol 2024; 268:110353. [PMID: 39237077 DOI: 10.1016/j.clim.2024.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Tubulointerstitial lesions could also be prominent in lupus nephritis, and the pathogenesis of tubulointerstitial lesions may be different from glomerular lesions. Previous studies have showed that plasma antibodies against modified /monomeric C-reactive protein (mCRP) are associated with renal tubulointerstitial lesions in patients with lupus nephritis, and amino acid (aa) 199-206 was one of the major epitopes of mCRP. However, the role of anti-mCRP199-206 antibodies in the pathogenesis of tubulointerstitial lesions in lupus nephritis is unknown. A total of 95 patients with renal biopsy-proven lupus nephritis were enrolled in this study. Plasma levels of anti-mCRP199-206 antibodies were screened by enzyme-linked immunosorbent assay (ELISA). A lupus prone mouse model was immunized using peptides mCRP199-206 to explore the potential role of anti-mCRP199-206 antibodies in tubulointerstitial lesions. The mechanism of anti-mCRP199-206 antibodies damage to renal tubular epithelial cells was investigated in vitro. Plasma antibodies against mCRP199-206 were associated with renal tubulointerstitial lesions and prognosis in patients with lupus nephritis. Immunization with peptides mCRP199-206 in lupus prone mice could aggravate tubulointerstitial lesions and drive tubulointerstitial inflammation and fibrosis. Anti-mCRP 199-206 antibodies could activate the TGF-β1/Smad3 signal pathway and induce tubular damage by binding with CRP. Circulating antibodies against mCRP199-206 could be a biomarker to reveal tubulointerstitial lesion, and participate in the pathogenesis of tubulointerstitial lesions, which might provide a potential therapeutic target for lupus nephritis.
Collapse
Affiliation(s)
- Mo Yuan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.; School of Medicine, Yunnan University, Kunming, China; Department of Pathology, Affiliated Hospital of Yunnan University, Second People's Hospital of Yunnan Province, Kunming, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China..
| |
Collapse
|
6
|
Ali N, Debernardi S, Kurotova E, Tajbakhsh J, Gupta NK, Pandol SJ, Wilson P, Pereira SP, Greenhalf B, Blyuss O, Crnogorac-Jurcevic T. Evaluation of urinary C-reactive protein as an early detection biomarker for pancreatic ductal adenocarcinoma. Front Oncol 2024; 14:1450326. [PMID: 39309742 PMCID: PMC11412792 DOI: 10.3389/fonc.2024.1450326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Up to now, no specific screening or diagnostic tests are available for early PDAC detection. As a result, most patients are diagnosed with advanced or metastatic disease, which leads to a poor prognosis. In this study, we aimed to evaluate the diagnostic value of urinary CRP (uCRP) alone and in combination with our previously established urine biomarker panel (REG1B, LYVE1 and TFF1) for early detection of PDAC. A total of 534 urine samples from multiple centres were analysed: 93 from healthy individuals, 265 from patients with benign hepatobiliary diseases and 176 from PDAC patients. The uCRP and the urinary biomarker panel were assessed using commercial ELISA assays, while plasma CA19-9 and blood CRP (bCRP) were measured using Roche Cobas platform. Multiple logistic regression and nonparametric Kruskal-Wallis test were used for statistical analysis. An internal validation approach was applied, and the validated AUC estimators were reported to ensure accuracy. A significant difference was observed in the medians of uCRP between healthy and benign controls and PDAC sample groups (p < 0.001). uCRP levels were not dependent on gender and age, as well as cancer stage. When uCRP was combined with the urinary biomarker panel, it achieved AUCs of 0.878 (95% CI: 0.802-0.931), 0.798 (95% CI: 0.738-0.859) and 0.813 (95% CI: 0.758-0.869) in healthy vs PDAC, benign vs PDAC and healthy and benign vs PDAC sample groups, respectively. However, adding plasma CA19-9 to the urinary biomarker panel yielded a better performance, with AUCs of 0.978 (95% CI: 0.959-0.996), 0.911 (95% CI: 0.873-0.949) and 0.919 (95% CI: 0.883-0.955) in the healthy vs PDAC, benign vs PDAC and healthy and benign vs PDAC comparisons, respectively. In conclusion, we show that measuring CRP in urine is a feasible analytical method, and that uCRP could potentially be a promising biomarker in various diseases including other cancer types.
Collapse
Affiliation(s)
- Nurshad Ali
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Silvana Debernardi
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Evelyn Kurotova
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jian Tajbakhsh
- 3rd Street Diagnostics, Cedars-Sinai, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Nirdesh K. Gupta
- 3rd Street Diagnostics, Cedars-Sinai, Los Angeles, CA, United States
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Patrick Wilson
- Barts Health, Royal London Hospital, London, United Kingdom
| | - Stephen P. Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Bill Greenhalf
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Oleg Blyuss
- Centre for Cancer Screening, Prevention and Early Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child´s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Wang Z, Wallace DA, Spitzer BW, Huang T, Taylor K, Rotter JI, Rich SS, Liu PY, Daviglus ML, Hou L, Ramos AR, Kaur S, Durda JP, González HM, Fornage M, Redline S, Isasi CR, Sofer T. Analysis of C-reactive protein omics-measures associates methylation risk score with sleep health and related health outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313008. [PMID: 39281736 PMCID: PMC11398435 DOI: 10.1101/2024.09.04.24313008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Introduction DNA methylation (DNAm) predictors of high sensitivity C-reactive protein (CRP) offer a stable and accurate means of assessing chronic inflammation, bypassing the CRP protein fluctuations secondary to acute illness. Poor sleep health is associated with elevated inflammation (including elevated blood CRP levels) which may explain associations of sleep insufficiency with metabolic, cardiovascular and neurological diseases. Our study aims to characterize the relationships among sleep health phenotypes and CRP markers -blood, genetic, and epigenetic indicators-within the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Methods In HCHS/SOL, methylation risk scores (MRS)-CRP and polygenetic risk score (PRS)-CRP were constructed separately as weighted sums of methylation beta values or allele counts, respectively, for each individual. Sleep health phenotypes were measured using self-reported questionnaires and objective measurements. Survey-weighted linear regression established the association between the multiple sleep phenotypes (obstructive sleep apnea (OSA), sleep duration, insomnia and excessive sleepiness symptom), cognitive assessments, diabetes and hypertension with CRP markers while adjusting for age, sex, BMI, study center, and the first five principal components of genetic ancestry in HCHS/SOL. Results We included 2221 HCHS/SOL participants (age range 37-76 yrs, 65.7% female) in the analysis. Both the MRS-CRP (95% confidence interval (CI): 0.32-0.42, p = 3.3 × 10-38) and the PRS-CRP (95% CI: 0.15-0.25, p = 1 × 10-14) were associated with blood CRP level. Moreover, MRS-CRP was associated with sleep health phenotypes (OSA, long sleep duration) and related conditions (diabetes and hypertension), while PRS-CRP markers were not associated with these traits. Circulating CRP level was associated with sleep duration and diabetes. Associations between OSA traits and metabolic comorbidities weakened after adjusting for MRS-CRP, most strongly for diabetes, and least for hypertension. Conclusions MRS-CRP is a promising estimate for systemic and chronic inflammation as reflected by circulating CRP levels, which either mediates or serves as a common cause of the association between sleep phenotypes and related comorbidities, especially in the presence of diabetes.
Collapse
Affiliation(s)
- Ziqing Wang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Danielle A Wallace
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian W Spitzer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tianyi Huang
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Kent Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Peter Y Liu
- Division of Genetics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Martha L Daviglus
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sonya Kaur
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Peter Durda
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hector M González
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Center, University of California, San Diego, La Jolla, CA, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan Redline
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carmen R Isasi
- Department of Epidemiology & Population Health, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tamar Sofer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biostatistics, Harvard T.H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
8
|
Cheng B, Tang YL, Gou YF, Li JY, Xu TH, Zhu L. Efficient expression and purification of rat CRP in Pichia pastoris. Front Immunol 2024; 15:1465365. [PMID: 39253072 PMCID: PMC11381232 DOI: 10.3389/fimmu.2024.1465365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
C-reactive protein (CRP) plays a crucial role in the diagnosis and monitoring of the non-specific acute phase response in humans. In contrast, rat CRP (rCRP) is an atypical acute-phase protein that possesses unique features, such as a possible incapacity to trigger the complement system and markedly elevated baseline plasma concentrations. To facilitate in vitro studies on these unique characteristics, obtaining high-quality pure rCRP is essential. Here we explored various strategies for rCRP purification, including direct isolation from rat plasma and recombinant expression in both prokaryotic and eukaryotic systems. Our study optimized the recombinant expression system to enhance the secretion and purification efficiency of rCRP. Compared to traditional purification methods, we present a streamlined and effective approach for the expression and purification of rCRP in the Pichia pastoris system. This refined methodology offers significant improvements in the efficiency and effectiveness of rCRP purification, thereby facilitating further structural and functional studies on rCRP.
Collapse
Affiliation(s)
- Bin Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, China
| | - Yu-Long Tang
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Fei Gou
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing-Yi Li
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian-Hao Xu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Zhao X, Gao C, Chen H, Chen X, Liu T, Gu D. C-Reactive Protein: An Important Inflammatory Marker of Coronary Atherosclerotic Disease. Angiology 2024:33197241273360. [PMID: 39126663 DOI: 10.1177/00033197241273360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Cardiovascular disease (CVD) is the most common cause of death worldwide, with coronary atherosclerotic heart disease (CHD) accounting for the majority of events. Evidence demonstrates that inflammation plays a vital role in the development of CHD. The association between C-reactive protein (CRP), a representative inflammatory biomarker, and atherosclerosis (AS), CHD, and inflammation has attracted attention. Therefore, we conducted an extensive search on PubMed using the aforementioned terms as search criteria and identified a total of 1246 articles published from January 2000 to April 2024. Both review and research-based articles consistently indicate CRP as a risk enhancer for CVD, contributing to the refinement of risk stratification and early identification of apparently healthy at-risk populations. Additionally, CRP reflects disease progression and predicts the prognosis of recurrent cardiovascular events. Anti-inflammatory therapeutic strategies targeting CRP also provide new treatment options for patients. This review focuses on the link between CRP and CHD, highlighting how CRP is involved in the pathological progression of AS and its potential value for clinical applications.
Collapse
Affiliation(s)
- Xiaona Zhao
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hongfang Chen
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China
| | - Xi Chen
- Medical Department, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Tonggong Liu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
10
|
Quintana‐Castanedo L, Sánchez‐Ramón S, Maseda R, Illera N, Pérez‐Conde I, Molero‐Luis M, Butta N, Arias‐Salgado EG, Monzón‐Manzano E, Zuluaga P, Martínez‐Santamaría L, Fernández‐Arquero M, Llames SG, Meana Á, de Lucas R, del Río M, Vicente Á, Escámez MJ, Sacedón R. Unveiling the value of C-reactive protein as a severity biomarker and the IL4/IL13 pathway as a therapeutic target in recessive dystrophic epidermolysis bullosa: A multiparametric cross-sectional study. Exp Dermatol 2024; 33:e15146. [PMID: 39075828 PMCID: PMC11605501 DOI: 10.1111/exd.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) experience numerous complications, which are exacerbated by inflammatory dysregulation and infection. Understanding the immunological mechanisms is crucial for selecting medications that balance inflammation control and immunocompetence. In this cross-sectional study, aiming to identify potential immunotherapeutic targets and inflammatory biomarkers, we delved into the interrelationship between clinical severity and systemic inflammatory parameters in a representative RDEB cohort. Encompassing 84 patients aged 1-67 and spanning all three Epidermolysis Bullosa Disease Activity and Scarring Index (EBDASI) severity categories, we analysed the interrelationship of infection history, standard inflammatory markers, systemic cytokines and Ig levels to elucidate their roles in RDEB pathophysiology. Our findings identify C-reactive protein as an excellent biomarker for disease severity in RDEB. A type 2 inflammatory profile prevails among moderate and severe RDEB patients, correlating with dysregulated circulating IgA and IgG. These results underscore the IL4/IL13 pathways as potential evidence-based therapeutic targets. Moreover, the complete inflammatory scenario aligns with Staphylococcus aureus virulence mechanisms. Concurrently, abnormalities in IgG, IgE and IgM levels suggest an immunodeficiency state in a substantial number of the cohort's patients. Our results provide new insights into the interplay of infection and immunological factors in the pathogenesis of RDEB.
Collapse
Affiliation(s)
- Lucía Quintana‐Castanedo
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
- Department of DermatologyMarqués de Valdecilla University HospitalSantanderSpain
| | - Silvia Sánchez‐Ramón
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Rocío Maseda
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Nuria Illera
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Isabel Pérez‐Conde
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | | | - Nora Butta
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena G. Arias‐Salgado
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena Monzón‐Manzano
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Pilar Zuluaga
- Department of Statistics and Operations ResearchFaculty of MedicineMadridSpain
| | - Lucía Martínez‐Santamaría
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Miguel Fernández‐Arquero
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Sara G. Llames
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
| | - Álvaro Meana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Raúl de Lucas
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Marcela del Río
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - María José Escámez
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| |
Collapse
|
11
|
Zhou HH, Tang YL, Xu TH, Cheng B. C-reactive protein: structure, function, regulation, and role in clinical diseases. Front Immunol 2024; 15:1425168. [PMID: 38947332 PMCID: PMC11211361 DOI: 10.3389/fimmu.2024.1425168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
C-reactive protein (CRP) is a plasma protein that is evolutionarily conserved, found in both vertebrates and many invertebrates. It is a member of the pentraxin superfamily, characterized by its pentameric structure and calcium-dependent binding to ligands like phosphocholine (PC). In humans and various other species, the plasma concentration of this protein is markedly elevated during inflammatory conditions, establishing it as a prototypical acute phase protein that plays a role in innate immune responses. This feature can also be used clinically to evaluate the severity of inflammation in the organism. Human CRP (huCRP) can exhibit contrasting biological functions due to conformational transitions, while CRP in various species retains conserved protective functions in vivo. The focus of this review will be on the structural traits of CRP, the regulation of its expression, activate complement, and its function in related diseases in vivo.
Collapse
Affiliation(s)
- Hai-Hong Zhou
- Centre for Translational Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
- Centre for Translational Medicine, Gansu Provincial Cancer Hospital, Lanzhou, China
- Centre for Translational Medicine, Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou, China
| | - Yu-Long Tang
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian-Hao Xu
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bin Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Han L, Zhang L, Hu W, Lu Y, Wang Z. Association of C-reactive protein with all-cause and cause-specific mortality in people with gout. Eur J Med Res 2024; 29:320. [PMID: 38858782 PMCID: PMC11163753 DOI: 10.1186/s40001-024-01923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
AIMS To test the association of C-reactive protein (CRP) with all-cause and cause-specific mortality in people with gout. METHODS This cohort study included 502 participants with gout from the National Health and Nutrition Examination Survey. Multivariate Cox regression analysis, subgroup analysis, and restricted cubic spline (RCS) analyses were utilized to examine the association of CRP levels with all-cause, cardiovascular, and cancer mortality. RESULTS After adjusting for multiple variables, Cox regression analysis showed that compared with individuals in the lowest tertile of CRP levels, those in the middle and highest tertiles experienced increases in all-cause mortality risk of 74.2% and 149.7%, respectively. Similarly, the cancer mortality risk for individuals in the highest tertile of CRP levels increased by 283.9%. In addition, for each standard deviation increase in CRP, the risks of all-cause and cancer mortality increased by 25.9% and 35.4%, respectively (P < 0.05). Subgroup analyses demonstrated that the association between CRP levels and all-cause mortality remained significant across subgroups of age (≤ 60 and > 60 years), gender (male), presence or absence of hypertension, non-diabetes, cardiovascular disease, non-cardiovascular disease and non-cancer. Furthermore, the association with cancer mortality was significant in subgroups including males, those without hypertension and cancer, and those with or without diabetes. However, the association with cardiovascular mortality was only significant in the non-hypertension subgroup (P < 0.05). Nonlinear association of CRP with all-cause mortality and linear association with cancer mortality were also confirmed (P for nonlinearity = 0.008 and 0.135, respectively). CONCLUSIONS CRP levels were associated with increased all-cause and cancer mortality among individuals with gout.
Collapse
Affiliation(s)
- Lishuai Han
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijuan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenlu Hu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenwei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Hu Y, Ren J, Lv Z, Liu H, Qiu X. Procalcitonin and C-reactive protein as early predictors in patients at high risk of colorectal anastomotic leakage. J Int Med Res 2024; 52:3000605241258160. [PMID: 38867514 PMCID: PMC11179477 DOI: 10.1177/03000605241258160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVE To assess the diagnostic value of C-reactive protein (CRP) and procalcitonin (PCT) for anastomotic leakage (AL) following colorectal surgery. METHODS We retrospectively analyzed data for patients who underwent colorectal surgery at our hospital between November 2019 and December 2023. CRP and PCT were measured postoperatively to compare patients with/without AL, and changes were compared between low- and high-risk groups. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic accuracy of CRP and PCT to identify AL in high-risk patients. RESULTS Mean CRP was 142.53 mg/L and 189.57 mg/L in the low- and high-risk groups, respectively, on postoperative day (POD)3. On POD2, mean PCT was 2.75 ng/mL and 8.16 ng/mL in low- and high-risk patients, respectively; values on POD3 were 3.53 ng/mL and 14.86 ng/mL, respectively. The areas under the curve (AUC) for CRP and PCT on POD3 were 0.71 and 0.78, respectively (CRP cut-off: 235.64 mg/L; sensitivity: 96%; specificity: 89.42% vs PCT cut-off: 3.94 ng/mL; sensitivity: 86%; specificity: 93.56%; AUC: 0.78). The AUC, sensitivity, and specificity for the combined diagnostic ability of CRP and PCT on POD3 were 0.92, 90%, and 100%, respectively (cut-off: 0.44). CONCLUSIONS Combining PCT and CRP on POD3 enhances the diagnostic accuracy for AL.
Collapse
Affiliation(s)
- Yilong Hu
- Department of General Surgery, Nanjing Yimin Hospital, Nanjing, China
| | - Junjie Ren
- Department of General Surgery, Nanjing Yimin Hospital, Nanjing, China
| | - Zhixin Lv
- Department of General Surgery, Nanjing Yimin Hospital, Nanjing, China
| | - He Liu
- Department of General Surgery, Nanjing Yimin Hospital, Nanjing, China
| | - Xiewu Qiu
- Department of General Surgery, Nanjing Yimin Hospital, Nanjing, China
| |
Collapse
|
14
|
Allaouat S, Halonen JI, Jussila JJ, Tiittanen P, Ervasti J, Ngandu T, Mikkonen S, Yli-Tuomi T, Jousilahti P, Lanki T. Association between active commuting and low-grade inflammation: a population-based cross-sectional study. Eur J Public Health 2024; 34:292-298. [PMID: 38066664 PMCID: PMC10990550 DOI: 10.1093/eurpub/ckad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Prior studies suggest that physical activity lowers circulating C-reactive protein (CRP) levels. However, little is known about the association between regular active commuting, i.e. walking or cycling to work, and CRP concentrations. This study examines whether active commuting is associated with lower CRP. METHODS We conducted a cross-sectional study using population-based FINRISK data from 1997, 2002, 2007 and 2012. Participants were working adults living in Finland (n = 6208; mean age = 44 years; 53.6% women). We used linear and additive models adjusted for potential confounders to analyze whether daily active commuting, defined as the time spent walking or cycling to work, was associated with lower high-sensitivity (hs-) CRP serum concentrations compared with passive commuting. RESULTS We observed that daily active commuting for 45 min or more (vs. none) was associated with lower hs-CRP [% mean difference in the main model: -16.8%; 95% confidence interval (CI) -25.6% to -7.0%), and results were robust to adjustment for leisure-time and occupational physical activity, as well as diet. Similarly, active commuting for 15-29 min daily was associated with lower hs-CRP in the main model (-7.4; 95% CI -14.1 to -0.2), but the association attenuated to null after further adjustments. In subgroup analyses, associations were only observed for women. CONCLUSIONS Active commuting for at least 45 min a day was associated with lower levels of low-grade inflammation. Promoting active modes of transport may lead not only to reduced emissions from motorized traffic but also to population-level health benefits.
Collapse
Affiliation(s)
- Sara Allaouat
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio and Helsinki, Finland
| | - Jaana I Halonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio and Helsinki, Finland
| | - Juuso J Jussila
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio and Helsinki, Finland
| | - Pekka Tiittanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio and Helsinki, Finland
| | - Jenni Ervasti
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiia Ngandu
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Yli-Tuomi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio and Helsinki, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Timo Lanki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio and Helsinki, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Ng WH, Zaid ZA, Yusof BNM, Nordin SA, Lim PY. Predictors of elevated C-reactive protein among pre-treatment, newly diagnosed breast cancer patients: A cross-sectional study. Cancer Treat Res Commun 2024; 39:100813. [PMID: 38582031 DOI: 10.1016/j.ctarc.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND & AIMS Accumulating evidence showed that inflammation contributes markedly to cancer progression, with C-reactive protein (CRP) being one of the lengthily studied inflammation marker. For breast cancer (BCa), pre-treatment elevated CRP upon diagnosis was linked with increased mortality. This study aimed to identify factors predictive of elevated CRP in pre-treatment BCa population that can serve as potential therapeutic targets to reduce inflammation. METHODS This is a cross-sectional study using multiple logistic regression to identify predictors of elevated CRP among pre-treatment, newly diagnosed BCa patients. Studied variables were socio-demographic and medical characteristics, anthropometric measurements [body weight, Body Mass Index, body fat percentage, fat mass/fat free mass ratio, muscle mass, visceral fat], biochemical parameters [albumin, hemoglobin, white blood cell (WBC), neutrophil, lymphocyte], energy-adjusted Dietary Inflammatory Index, handgrip strength (HGS), scored Patient Generated-Subjective Global Assessment, physical activity level and perceived stress scale (PSS). RESULTS A total of 105 participants took part in this study. Significant predictors of elevated CRP were body fat percentage (OR 1.222; 95 % CI 1.099-1.358; p < 0.001), PSS (OR 1.120; 95 % CI 1.026-1.223; p = 0.011), low vs normal HGS (OR 41.928; 95 % CI 2.155-815.728; p = 0.014), albumin (OR 0.779; 95 % CI 0.632-0.960; p = 0.019), and WBC (OR 1.418; 95% CI 1.024-1.963; p = 0.036). CONCLUSION Overall, predictors of elevated CRP in pre-treatment, newly diagnosed BCa population were body fat percentage, PSS, HGS category, albumin and WBC.
Collapse
Affiliation(s)
- Wai Han Ng
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; Department of Dietetics and Food Service, Institut Kanser Negara, Ministry of Health, 4, Jalan P7, Presint 7, Putrajaya 62250, Malaysia
| | - Zalina Abu Zaid
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; Department of Dietetics, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| | - Barakatun Nisak Mohd Yusof
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; Department of Dietetics, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia
| | - Poh Ying Lim
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia
| |
Collapse
|
16
|
Garrido M, Bordagaray MJ, Schweitzer C, Lucero-Mora J, Reyes M, Pellegrini E, Hernández-Ríos P, Fernández A, Hernández M. Reduced C-reactive protein levels after root canal treatment in clinically healthy young apical periodontitis individuals at cardiovascular risk. A prospective study. Int Endod J 2024; 57:406-415. [PMID: 38243897 DOI: 10.1111/iej.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
AIM To determine the systemic inflammatory burden, including hsCRP and its monomeric forms, in patients with apical lesions of endodontic origin treated with root canal treatment (RCT). METHODOLOGY Prospective pre-/post-study. Apical periodontitis (AP) individuals aged 16-40 were included (N = 29). Individuals received RCT and were followed at 1 and 6 months. Fasting blood samples were obtained. Apical lesions of endodontic origin (ALEO) diameter (mm), and periapical index (PAI), were recorded. The serum concentrations of total hsCRP were determined by turbidimetry. Tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, IL-1β, and soluble (s) E-selectin were assessed by Multiplex assay. Additionally, mCRP forms were determined in the serum of AP patients with a baseline moderate to high cardiovascular risk based on hsCRP stratification (hsCRP ≥1 mg/L) by immunowestern blot (n = 15). Also, CRP isoforms were explored in ALEOs from AP individuals (n = 4). Data were analysed with StataV16. RESULTS Periapical index and ALEO sizes were reduced at both follow-up visits after RCT (p < .05). Serum levels of TNF-α, IL-6, IL-10, IL-1β, and sE-selectin did not show significant differences. CRP was borderline reduced at 1 month (p = .04); however, in AP individuals at cardiovascular risk (hsCRP ≥ 1 mg/L), hsCRP and its monomeric isoform significantly decreased at 1 and 6 months (p < .05). CONCLUSIONS High-sensitivity CRP and mCRP are reduced after RCT in AP individuals at cardiovascular risk.
Collapse
Affiliation(s)
- Mauricio Garrido
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - María José Bordagaray
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Catalina Schweitzer
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Joaquín Lucero-Mora
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Laboratory of Oral Biology, Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| | - Montserrat Reyes
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Elizabeth Pellegrini
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Patricia Hernández-Ríos
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Bartra C, Yuan Y, Vuraić K, Valdés-Quiroz H, Garcia-Baucells P, Slevin M, Pastorello Y, Suñol C, Sanfeliu C. Resveratrol Activates Antioxidant Protective Mechanisms in Cellular Models of Alzheimer's Disease Inflammation. Antioxidants (Basel) 2024; 13:177. [PMID: 38397775 PMCID: PMC10886200 DOI: 10.3390/antiox13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Resveratrol is a natural phenolic compound with known benefits against neurodegeneration. We analyzed in vitro the protective mechanisms of resveratrol against the proinflammatory monomeric C-reactive protein (mCRP). mCRP increases the risk of AD after stroke and we previously demonstrated that intracerebral mCRP induces AD-like dementia in mice. Here, we used BV2 microglia treated with mCRP for 24 h in the presence or absence of resveratrol. Cells and conditioned media were collected for analysis. Lipopolysaccharide (LPS) has also been implicated in AD progression and so LPS was used as a resveratrol-sensitive reference agent. mCRP at the concentration of 50 µg/mL activated the nitric oxide pathway and the NLRP3 inflammasome pathway. Furthermore, mCRP induced cyclooxygenase-2 and the release of proinflammatory cytokines. Resveratrol effectively inhibited these changes and increased the expression of the antioxidant enzyme genes Cat and Sod2. As central mechanisms of defense, resveratrol activated the hub genes Sirt1 and Nfe2l2 and inhibited the nuclear translocation of the signal transducer NF-ĸB. Proinflammatory changes induced by mCRP in primary mixed glial cultures were also protected by resveratrol. This work provides a mechanistic insight into the protective benefits of resveratrol in preventing the risk of AD induced by proinflammatory agents.
Collapse
Affiliation(s)
- Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; (C.B.); (Y.Y.); (K.V.); (H.V.-Q.); (P.G.-B.); (C.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (DIBAPS), 08036 Barcelona, Spain
- PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08034 Barcelona, Spain
| | - Yi Yuan
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; (C.B.); (Y.Y.); (K.V.); (H.V.-Q.); (P.G.-B.); (C.S.)
| | - Kristijan Vuraić
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; (C.B.); (Y.Y.); (K.V.); (H.V.-Q.); (P.G.-B.); (C.S.)
| | - Haydeé Valdés-Quiroz
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; (C.B.); (Y.Y.); (K.V.); (H.V.-Q.); (P.G.-B.); (C.S.)
| | - Pau Garcia-Baucells
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; (C.B.); (Y.Y.); (K.V.); (H.V.-Q.); (P.G.-B.); (C.S.)
| | - Mark Slevin
- School of Life Sciences, John Dalton Building, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Centru Avansat de Cercetari Medicale si Farmaceutice (CCAMF), Universitatea de Medicina, Farmacie, Stiinte si Tehnologie “George Emil Palade” din Targu Mures, 540142 Targu Mures, Romania
| | - Ylenia Pastorello
- Department of Anatomy and Embryology, Universitatea de Medicina, Farmacie, Stiinte si Tehnologie “George Emil Palade” din Targu Mures, 540142 Targu Mures, Romania;
| | - Cristina Suñol
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; (C.B.); (Y.Y.); (K.V.); (H.V.-Q.); (P.G.-B.); (C.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (DIBAPS), 08036 Barcelona, Spain
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; (C.B.); (Y.Y.); (K.V.); (H.V.-Q.); (P.G.-B.); (C.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (DIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
18
|
Lin CW, Chen LY, Huang YC, Kumar P, Guo YZ, Wu CH, Wang LM, Chen KL. Improving Sensitivity and Reproducibility of Surface-Enhanced Raman Scattering Biochips Utilizing Magnetoplasmonic Nanoparticles and Statistical Methods. ACS Sens 2024; 9:305-314. [PMID: 38221769 DOI: 10.1021/acssensors.3c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) technology has been widely recognized for its remarkable sensitivity in biochip development. This study presents a novel sandwich immunoassay that synergizes SERS with magnetoplasmonic nanoparticles (MPNs) to improve sensitivity. By taking advantage of the unique magnetism of these nanoparticles, we further enhance the detection sensitivity of SERS biochips through the applied magnetic field. Despite the high sensitivity, practical applications of SERS biochips are often limited by the issues of stability and reproducibility. In this study, we introduced a straightforward statistical method known as "Gaussian binning", which involves initially binning the two-dimensional Raman mapping data and subsequently applying Gaussian fitting. This approach enables a more consistent and reliable interpretation of data by reducing the variability inherent in Raman signal measurements. Based on our method, the biochip, targeting for C-reactive protein (CRP), achieves an impressive detection limit of 5.96 fg/mL, and with the application of a 3700 G magnetic field, it further enhances the detection limit by 5.7 times, reaching 1.05 fg/mL. Furthermore, this highly sensitive and magnetically tunable SERS biochip is easily designed for versatile adaptability, enabling the detection of other proteins. We believe that this innovation holds promise in enhancing the clinical applicability of SERS biochips.
Collapse
Affiliation(s)
- Chin-Wei Lin
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Li-Yu Chen
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Ching Huang
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Pradeep Kumar
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Zhi Guo
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiu-Hsien Wu
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 402, Taiwan
| | - Li-Min Wang
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Lin Chen
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
19
|
Bachtiar E, Bachtiar BM, Kusumaningrum A, Sunarto H, Soeroso Y, Sulijaya B, Apriyanti E, Theodorea CF, Putra Pratomo I, Yudhistira Y, Efendi D, Lestari W. The utility of salivary CRP and IL-6 as a non-invasive measurement evaluated in patients with COVID-19 with and without diabetes. F1000Res 2024; 12:419. [PMID: 38269064 PMCID: PMC10806364 DOI: 10.12688/f1000research.130995.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Background The available evidence suggests that inflammatory responses, in both systemic and oral tissue, contribute to the pathology of COVID-19 disease. Hence, studies of inflammation biomarkers in oral fluids, such as saliva, might be useful to better specify COVID-19 features. Methods In the current study, we performed quantitative real-time PCR to measure salivary levels of C-reactive protein (CRP) and interleukin-6 (IL-6) in saliva obtained from patients diagnosed with mild COVID-19, in a diabetic group (DG; n = 10) and a non-diabetic group (NDG; n = 13). All participants were diagnosed with periodontitis, while six participants with periodontitis but not diagnosed with COVID-19 were included as controls. Results We found increases in salivary total protein levels in both the DG and NDG compared to control patients. In both groups, salivary CRP and IL-6 levels were comparable. Additionally, the levels of salivary CRP were significantly correlated with total proteins, in which a strong and moderate positive correlation was found between DG and NDG, respectively. A linear positive correlation was also noted in the relationship between salivary IL-6 level and total proteins, but the correlation was not significant. Interestingly, the association between salivary CRP and IL-6 levels was positive. However, a moderately significant correlation was only found in COVID-19 patients with diabetes, through which the association was validated by a receiver operating curve. Conclusions These finding suggest that salivary CRP and IL-6 are particularly relevant as potential non-invasive biomarker for predicting diabetes risk in mild cases of COVID-19 accompanied with periodontitis.
Collapse
Affiliation(s)
- Endang Bachtiar
- Department of Oral Biology and Oral Sciences Research Center, Faculty of Dentistry Universitas Indonesia, Jakarta, Indonesia, 10430, Indonesia
| | - Boy M Bachtiar
- Department of Oral Biology and Oral Sciences Research Center, Faculty of Dentistry Universitas Indonesia, Jakarta, Indonesia, 10430, Indonesia
| | - Ardiana Kusumaningrum
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia; Clinical Microbiology Medicine Staff Group, Universitas Indonesia Hospital, Jakarta, Indonesia, 10430, Indonesia
| | - Hari Sunarto
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia, 10430, Indonesia
- Dental Center, Universitas Indonesia Hospital, Depok, West Java, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia, 10430, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia, 10430, Indonesia
| | - Efa Apriyanti
- Department of Pediatric Nursing, Faculty of Nursing Universitas Indonesia, and Paediatric Intensive Care Unit, Universitas Indonesia Hospital, West Java, Indonesia
| | - Citra Fragrantia Theodorea
- Department of Oral Biology and Oral Sciences Research Center, Faculty of Dentistry Universitas Indonesia, Jakarta, Indonesia, 10430, Indonesia
| | - Irandi Putra Pratomo
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta, 10430, Indonesia
| | - Yudhistira Yudhistira
- Clinical Pathology Medicine Staff Group,, Universitas Indonesia Hospital., Depok, West Java, Indonesia
| | - Defi Efendi
- Department of Pediatric Nursing, Faculty of Nursing Universitas Indonesia, and Neonatal Intensive Care Unit, Universitas Indonesia Hospital, Depok, West Java, Indonesia
| | - Widya Lestari
- Oral Biology Unit, Fundamental Dental and Medical Sciences Kuala Lumpur, Malaysia International Islamic University Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Hornick MG, Potempa LA. Monomeric C-reactive protein as a biomarker for major depressive disorder. Front Psychiatry 2024; 14:1325220. [PMID: 38250276 PMCID: PMC10797126 DOI: 10.3389/fpsyt.2023.1325220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Neuroinflammation has been postulated to be a key factor in the pathogenesis of major depressive disorder (MDD). With this is mind, there has been a wave of research looking into pro-inflammatory mediators as potential biomarkers for MDD. One such mediator is the acute phase protein, C-reactive protein (CRP). While several studies have investigated the potential of CRP as a biomarker for MDD, the results have been inconsistent. One explanation for the lack of consistent findings may be that the high-sensitivity CRP tests utilized in these studies only measure the pentameric isoform of CRP (pCRP). Recent research, however, has indicated that the monomeric isoform of CRP (mCRP) is responsible for the pro-inflammatory function of CRP, while pCRP is weakly anti-inflammatory. The objective of this minireview is to re-examine the evidence of CRP involvement in MDD with a view of mCRP as a potential biomarker.
Collapse
Affiliation(s)
- Mary G. Hornick
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | |
Collapse
|
21
|
Hannani MT, Thudium CS, Karsdal MA, Ladel C, Mobasheri A, Uebelhoer M, Larkin J, Bacardit J, Struglics A, Bay-Jensen AC. From biochemical markers to molecular endotypes of osteoarthritis: a review on validated biomarkers. Expert Rev Mol Diagn 2024; 24:23-38. [PMID: 38353446 DOI: 10.1080/14737159.2024.2315282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) affects over 500 million people worldwide. OA patients are symptomatically treated, and current therapies exhibit marginal efficacy and frequently carry safety-risks associated with chronic use. No disease-modifying therapies have been approved to date leaving surgical joint replacement as a last resort. To enable effective patient care and successful drug development there is an urgent need to uncover the pathobiological drivers of OA and how these translate into disease endotypes. Endotypes provide a more precise and mechanistic definition of disease subgroups than observable phenotypes, and a panel of tissue- and pathology-specific biochemical markers may uncover treatable endotypes of OA. AREAS COVERED We have searched PubMed for full-text articles written in English to provide an in-depth narrative review of a panel of validated biochemical markers utilized for endotyping of OA and their association to key OA pathologies. EXPERT OPINION As utilized in IMI-APPROACH and validated in OAI-FNIH, a panel of biochemical markers may uncover disease subgroups and facilitate the enrichment of treatable molecular endotypes for recruitment in therapeutic clinical trials. Understanding the link between biochemical markers and patient-reported outcomes and treatable endotypes that may respond to given therapies will pave the way for new drug development in OA.
Collapse
Affiliation(s)
- Monica T Hannani
- ImmunoScience, Nordic Bioscience A/S, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | | | - Jonathan Larkin
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- SynOA Therapeutics, Philadelphia, PA, USA
| | - Jaume Bacardit
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - André Struglics
- Department of Clinical Sciences, Orthopaedics, Lund University, Lund, Sweden
| | | |
Collapse
|
22
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
23
|
Mushatet MK, jary TA, khalaf AA, Alqabbany MA. Protective Effect of Prosopis Farcta Fruit Aqueous Extract Against Oxidative Stress Caused By Ethanol in Albino Rats. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2023; 16:2521-2530. [DOI: 10.13005/bpj/2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Prosopis farcta was previously used in folk medicine as a dry fruit to relieve pain before its active biological components that contribute to this were known. This study assessed the effectiveness of a dry fruit extract of P. farcta by measuring the indicators of inflammation in albino rats after they were dosed with ethanol. As such, looking at the antioxidant potential of P. farcta fruit aqueous extract (PFFAE) in resistance to ethanol's harm in rats given ethanol showed a notable increase in serum C reactive protein (CRP), malondialdehyde (MDA), CRP/ALB ratio (CAR), and WBC count. At the same time, glutathione peroxidase (GPx) and albumin were markedly reduced. PFFAE diminished ethanol-induced amounts of CRP, MDA, and CAR in plasma; additionally, it strengthened the ethanol-induced decline in GPx activity, and albumin had no apparent effect on the ESR level. Consequently, the current findings demonstrate that PFFAE counteracts the toxicity of ethanol and has a protective impact against the ethanol effect.
Collapse
Affiliation(s)
- Mustafa K. Mushatet
- 1 Kerbalaa university, College of Nursing- Branch of basic sciences, Kerbalaa, Iraq
| | - Thikra abd jary
- 2 Alameed university,College of Medicine- Branch of Biochemsttry, Kerbala, Iraq
| | - Asaad Abbas khalaf
- 1 Kerbalaa university, College of Nursing- Branch of basic sciences, Kerbalaa, Iraq
| | | |
Collapse
|
24
|
Brown EL, Essigmann HT, Hoffman KL, Petrosino J, Jun G, Brown SA, Aguilar D, Hanis CL. C-Reactive Protein Levels Correlate with Measures of Dysglycemia and Gut Microbiome Profiles. Curr Microbiol 2023; 81:45. [PMID: 38127093 DOI: 10.1007/s00284-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
C-reactive protein (CRP) is a commonly used marker of low-grade inflammation as well as a marker of acute infection. CRP levels are elevated in those with diabetes and increased CRP concentrations are a risk factor for developing type 2 diabetes. Gut microbiome effects on metabolism and immune responses can impact chronic inflammation, including affecting CRP levels, that in turn can lead to the development and maintenance of dysglycemia. Using a high-sensitivity C-reactive protein (hsCRP) assay capable of detecting subtle changes in C-reactive protein, we show that higher hsCRP levels specifically correlate with worsening glycemia, reduced microbial richness and evenness, and with a reduction in the Firmicutes/Bacteroidota ratio. These data demonstrate a pivotal role for CRP not only in the context of worsening glycemia and changes to the gut microbiota, but also highlight CRP as a potential target for mitigating type 2 diabetes progression or as a therapeutic target that could be manipulated through the microbiome. Understanding these processes will provide insights into the etiology of type 2 diabetes in addition to opening doors leading to possible novel diagnostic strategies and therapeutics.
Collapse
Affiliation(s)
- Eric L Brown
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Heather T Essigmann
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Sharon A Brown
- The University of Texas at Austin School of Nursing, Austin, TX, 78712, USA
| | - David Aguilar
- LSU Health New Orleans School of Medicine, Cardiology, New Orleans, LA, 70112, USA
| | - Craig L Hanis
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Zheng L, Rang M, Fuchs C, Keß A, Wunsch M, Hentschel J, Hsiao CC, Kleber C, Osterhoff G, Aust G. The Posttraumatic Increase of the Adhesion GPCR EMR2/ ADGRE2 on Circulating Neutrophils Is Not Related to Injury Severity. Cells 2023; 12:2657. [PMID: 37998392 PMCID: PMC10670733 DOI: 10.3390/cells12222657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Trauma triggers a rapid innate immune response to aid the clearance of damaged/necrotic cells and their released damage-associated molecular pattern (DAMP). Here, we monitored the expression of EMR2/ADGRE2, involved in the functional regulation of innate immune cells, on circulating neutrophils in very severely and moderately/severely injured patients up to 240 h after trauma. Notably, neutrophilic EMR2 showed a uniform, injury severity- and type of injury-independent posttraumatic course in all patients. The percentage of EMR2+ neutrophils and their EMR2 level increased and peaked 48 h after trauma. Afterwards, they declined and normalized in some, but not all, patients. Circulating EMR2+ compared to EMR2- neutrophils express less CD62L and more CD11c, a sign of activation. Neutrophilic EMR2 regulation was verified in vitro. Remarkably, it increased, depending on extracellular calcium, in controls as well. Cytokines, enhanced in patients immediately after trauma, and sera of patients did not further affect this neutrophilic EMR2 increase, whereas apoptosis induction disrupted it. Likely the damaged/necrotic cells/DAMPs, unavoidable during neutrophil culture, stimulate the neutrophilic EMR2 increase. In summary, the rapidly increased absolute number of neutrophils, especially present in very severely injured patients, together with upregulated neutrophilic EMR2, may expand our in vivo capacity to react to and finally clear damaged/necrotic cells/DAMPs after trauma.
Collapse
Affiliation(s)
- Leyu Zheng
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Moujie Rang
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Carolin Fuchs
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Annette Keß
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Mandy Wunsch
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Julia Hentschel
- Institute of Human Genetics, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
| | - Christian Kleber
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Georg Osterhoff
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Gabriela Aust
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
- Research Laboratories and Department of Visceral, Transplantation, Vascular and Thoracic Surgery (VTTG), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
27
|
Yuan M, Tan Y, Zhao MH. The Role of Anti-mCRP Autoantibodies in Lupus Nephritis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:317-325. [PMID: 37901707 PMCID: PMC10601961 DOI: 10.1159/000530928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 10/31/2023]
Abstract
Background Lupus nephritis is characterized by multiple autoantibodies production. However, there are few autoantibodies associated with disease activity and prognosis. CRP exists in at least two conformationally distinct forms: native pentameric C-reactive protein (pCRP) and modified/monomeric CRP (mCRP). Autoantibodies against mCRP are prevalent in sera of patients with lupus nephritis and are reported to be pathogenic. Summary The levels of serum anti-mCRP autoantibodies are associated with clinical disease activity, tubulointerstitial lesions, treatment response, and prognosis in patients with lupus nephritis. The key epitope of mCRP was amino acid 35-47. Furthermore, emerging evidence indicated that anti-mCRP autoantibodies could participate in the pathogenesis of lupus nephritis by forming in situ immune complexes or interfering with the biological functions of mCRP, such as binding to complement C1q and factor H. Key Messages Here, we review the recent advances in the prevalence, clinical-pathological associations, and potential pathogenesis of anti-mCRP autoantibodies in lupus nephritis, which may provide a promising novel therapeutic strategy for lupus nephritis.
Collapse
Affiliation(s)
- Mo Yuan
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Yunnan University, Kunming, China
- Department of Pathology, Affiliated Hospital of Yunnan University, Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Kirkgöz K. C-Reactive Protein in Atherosclerosis-More than a Biomarker, but not Just a Culprit. Rev Cardiovasc Med 2023; 24:297. [PMID: 39077585 PMCID: PMC11262456 DOI: 10.31083/j.rcm2410297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 07/31/2024] Open
Abstract
C-reactive protein (CRP) is a pentraxin that is mainly synthesized in the liver in response to inflammatory cytokines. It exists in two functionally and structurally distinct isoforms. The first is a highly pro-inflammatory and mostly tissue-bound monomeric isoform (mCRP). The second is circulating pentameric CRP (pCRP), which also serves as a substrate for the formation of mCRP. CRP is elevated during inflammatory conditions and is associated with a higher risk of cardiovascular disease. The aim of this review is to examine the current state of knowledge regarding the role of these two distinct CRP isoforms on atherogenesis. This should allow further evaluation of CRP as a potential therapeutic target for atherosclerosis. While it seems clear that CRP should be used as a therapeutic target for atherosclerosis and cardiovascular disease, questions remain about how this can be achieved. Current data suggests that CRP is more than just a biomarker of atherosclerosis and cardiovascular disease. Indeed, recent evidence shows that mCRP in particular is strongly atherogenic, whereas pCRP may be partially protective against atherogenesis. Thus, further investigation is needed to determine how the two CRP isoforms contribute to atherogenesis and the development of cardiovascular disease.
Collapse
Affiliation(s)
- Kürsat Kirkgöz
- University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
29
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
30
|
Olson ME, Hornick MG, Stefanski A, Albanna HR, Gjoni A, Hall GD, Hart PC, Rajab IM, Potempa LA. A biofunctional review of C-reactive protein (CRP) as a mediator of inflammatory and immune responses: differentiating pentameric and modified CRP isoform effects. Front Immunol 2023; 14:1264383. [PMID: 37781355 PMCID: PMC10540681 DOI: 10.3389/fimmu.2023.1264383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
C-reactive protein (CRP) is an acute phase, predominantly hepatically synthesized protein, secreted in response to cytokine signaling at sites of tissue injury or infection with the physiological function of acute pro-inflammatory response. Historically, CRP has been classified as a mediator of the innate immune system, acting as a pattern recognition receptor for phosphocholine-containing ligands. For decades, CRP was envisioned as a single, non-glycosylated, multi-subunit protein arranged non-covalently in cyclic symmetry around a central void. Over the past few years, however, CRP has been shown to exist in at least three distinct isoforms: 1.) a pentamer of five identical globular subunits (pCRP), 2.) a modified monomer (mCRP) resulting from a conformational change when subunits are dissociated from the pentamer, and 3.) a transitional isoform where the pentamer remains intact but is partially changed to express mCRP structural characteristics (referred to as pCRP* or mCRPm). The conversion of pCRP into mCRP can occur spontaneously and is observed under commonly used experimental conditions. In careful consideration of experimental design used in published reports of in vitro pro- and anti-inflammatory CRP bioactivities, we herein provide an interpretation of how distinctive CRP isoforms may have affected reported results. We argue that pro-inflammatory amplification mechanisms are consistent with the biofunction of mCRP, while weak anti-inflammatory mechanisms are consistent with pCRP. The interplay of each CRP isoform with specific immune cells (platelets, neutrophils, monocytes, endothelial cells, natural killer cells) and mechanisms of the innate immune system (complement), as well as differences in mCRP and pCRP ligand recognition and effector functions are discussed. This review will serve as a revised understanding of the structure-function relationship between CRP isoforms as related to inflammation and innate immunity mechanisms.
Collapse
Affiliation(s)
- Margaret E. Olson
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hernández-Banqué C, Jové-Juncà T, Crespo-Piazuelo D, González-Rodríguez O, Ramayo-Caldas Y, Esteve-Codina A, Mercat MJ, Bink MCAM, Quintanilla R, Ballester M. Mutations on a conserved distal enhancer in the porcine C-reactive protein gene impair its expression in liver. Front Immunol 2023; 14:1250942. [PMID: 37781386 PMCID: PMC10539928 DOI: 10.3389/fimmu.2023.1250942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
C-reactive protein (CRP) is an evolutionary highly conserved protein. Like humans, CRP acts as a major acute phase protein in pigs. While CRP regulatory mechanisms have been extensively studied in humans, little is known about the molecular mechanisms that control pig CRP gene expression. The main goal of the present work was to study the regulatory mechanisms and identify functional genetic variants regulating CRP gene expression and CRP blood levels in pigs. The characterization of the porcine CRP proximal promoter region revealed a high level of conservation with both cow and human promoters, sharing binding sites for transcription factors required for CRP expression. Through genome-wide association studies and fine mapping, the most associated variants with both mRNA and protein CRP levels were localized in a genomic region 39.3 kb upstream of CRP. Further study of the region revealed a highly conserved putative enhancer that contains binding sites for several transcriptional regulators such as STAT3, NF-kB or C/EBP-β. Luciferase reporter assays showed the necessity of this enhancer-promoter interaction for the acute phase induction of CRP expression in liver, where differences in the enhancer sequences significantly modified CRP activity. The associated polymorphisms disrupted the putative binding sites for HNF4α and FOXA2 transcription factors. The high correlation between HNF4α and CRP expression levels suggest the participation of HNF4α in the regulatory mechanism of porcine CRP expression through the modification of its binding site in liver. Our findings determine, for the first time, the relevance of a distal regulatory element essential for the acute phase induction of porcine CRP in liver and identify functional polymorphisms that can be included in pig breeding programs to improve immunocompetence.
Collapse
Affiliation(s)
- Carles Hernández-Banqué
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
32
|
Bousquet E, Chenevier-Gobeaux C, Jaworski T, Torres-Villaros H, Zola M, Mantel I, Kowalczuk L, Matet A, Daruich A, Zhao M, Yzer S, Behar-Cohen F. High Levels of C-Reactive Protein with Low Levels of Pentraxin 3 as Biomarkers for Central Serous Chorioretinopathy. OPHTHALMOLOGY SCIENCE 2023; 3:100278. [PMID: 36950301 PMCID: PMC10025279 DOI: 10.1016/j.xops.2023.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Purpose To investigate the association between the 2 acute phase proteins, C-reactive protein (CRP) and pentraxin 3 (PTX3) with central serous chorioretinopathy (CSCR), as PTX3 is a glucocorticoid-induced protein. Design Cross-sectional multicenter study. Participants Patients with CSCR compared with age- and sex-matched healthy participants. Methods Patients with CSCR from 3 centers in Europe were included in the study. The clinical form of CSCR was recorded. Blood samples from patients with CSCR and healthy participants were sampled, and high-sensitivity CRP and PTX3 levels were measured in the serum. Main Outcome Measures C-reactive protein and PTX3 serum level comparison between patients with CSCR with age- and sex-matched healthy participants. Results Although CRP levels were higher in patients with CSCR (n = 216) than in age- and sex-matched controls (n = 130) (2.2 ± 3.2 mg/l vs. 1.5 mg/l ± 1.4, respectively, P = 0.037), PTX3 levels were lower in patients with CSCR (10.5 ± 19.9 pg/ml vs. 87.4 ± 73.2 pg/ml, respectively, P < 0.001). There was no significant difference in CRP or PTX3 levels between patients with acute/recurrent and chronic CSCR. Conclusions In patients with CSCR, high CRP and low PTX3 levels suggest a form of low-grade systemic inflammation together with a lack of glucocorticoid pathway activation, raising new hypotheses on the pathophysiology of CSCR. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Elodie Bousquet
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Camille Chenevier-Gobeaux
- Service de diagnostic biologique automatisé, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Thara Jaworski
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Héloïse Torres-Villaros
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Marta Zola
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Irmela Mantel
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Laura Kowalczuk
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Alexandre Matet
- Department of Ophthalmology, Institut Curie, University of Paris Cité, Paris, France
| | - Alejandra Daruich
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
- Department of Ophthalmology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | - Suzanne Yzer
- Department of Ophthalmology, Rotterdam Eye Hospital, Rotterdam, the Netherlands
| | - Francine Behar-Cohen
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, University of Paris Cité, Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
- Correspondence: Francine Behar-Cohen, MD, PhD, centre de recherche des cordeliers, 15 rue de l’école de médecine, 75006 Paris, France.
| |
Collapse
|
33
|
Popa-Fotea NM, Ferdoschi CE, Micheu MM. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front Cardiovasc Med 2023; 10:1200341. [PMID: 37600028 PMCID: PMC10434786 DOI: 10.3389/fcvm.2023.1200341] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis and its complications are a major cause of morbidity and mortality worldwide in spite of the improved medical and invasive treatment in terms of revascularization. Atherosclerosis is a dynamic, multi-step process in which inflammation is a ubiquitous component participating in the initiation, development, and entanglements of the atherosclerotic plaque. After activation, the immune system, either native or acquired, is part of the atherosclerotic dynamics enhancing the pro-atherogenic function of immune or non-immune cells, such as endothelial cells, smooth muscle cells, or platelets, through mediators such as cytokines or directly by cell-to-cell interaction. Cytokines are molecules secreted by the activated cells mentioned above that mediate the inflammatory component of atherosclerosis whose function is to stimulate the immune cells and the production of further cytokines. This review provides insights of the cell axis activation and specific mechanisms and pathways through which inflammation actuates atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital, Bucharest, Romania
| | - Corina-Elena Ferdoschi
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
| | | |
Collapse
|
34
|
Yuan M, Liu XL, Tan Y, Yu F, Zhao MH. Urinary Modified C-Reactive Protein is Closely Associated with Tubulointerstitial Lesions in Lupus Nephritis. Mediators Inflamm 2023; 2023:6107911. [PMID: 37545739 PMCID: PMC10403327 DOI: 10.1155/2023/6107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
Objective Modified C-reactive protein (mCRP) is known to be involved in the upregulation and amplification of the local inflammatory response. This study investigated the circulating and local levels of mCRP and their relevance to clinicopathological features in patients with lupus nephritis. Methods Ninety-five patients with renal biopsy-proven lupus nephritis and 30 normal controls were enrolled in this study. Plasma and urinary mCRP were screened by enzyme-linked immunosorbent assay (ELISA). The renal deposition of mCRP was detected by immunohistochemistry and immunofluorescence staining. A human proximal tubular epithelial cell line (HK2 cells) was incubated with purified IgG from lupus nephritis, and the production of CRP by HK2 cells was further evaluated. Results Plasma and urinary levels of mCRP increased significantly in patients with lupus nephritis compared with normal controls (P = 0.013, P < 0.001, respectively). The urinary mCRP levels were associated with interstitial inflammatory cell infiltration (r = 0.514, P < 0.001) and interstitial fibrosis (r = 0.270, P = 0.008). The ROC-AUC of the urinary mCRP levels for diagnosing tubulointerstitial lesions was 0.766. The urinary mCRP levels were closely associated with poor outcomes (HR: 1.204, 95% CI: 1.029-1.409, P = 0.020). However, no correlations were found of the plasma mCRP levels with clinicopathological data or the prognosis of lupus nephritis. CRP was mostly deposited in the renal tubules in patients with lupus nephritis, and the expression of CRP was significantly correlated with tubulointerstitial lesion indices. Immunofluorescence staining showed that mCRP could colocalize with IgG in tubules. Lupus nephritis-derived IgG could induce CRP production by HK2 cells. Conclusion Urinary mCRP levels were significantly increased, and urinary mCRP might be a biomarker for tubulointerstitial lesions in patients with lupus nephritis. Renal CRP could be produced by tubular epithelial cells after stimulation by lupus nephritis-derived IgG, and the local presence of mCRP might play a critical role in the development of tubulointerstitial lesions.
Collapse
Affiliation(s)
- Mo Yuan
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Yunnan University, Kunming, China
- Department of Pathology, Affiliated Hospital of Yunnan University, Second People's Hospital of Yunnan Province, Kunming, China
| | - Xiao-ling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Yu
- Department of Nephrology, Peking University International Hospital, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Norris PAA, Tawhidi Z, Sachs UJ, Cserti-Gazdewich CM, Lin Y, Callum J, Gil Gonzalez L, Shan Y, Branch DR, Lazarus AH. Serum from half of patients with immune thrombocytopenia trigger macrophage phagocytosis of platelets. Blood Adv 2023; 7:3561-3572. [PMID: 37042934 PMCID: PMC10368862 DOI: 10.1182/bloodadvances.2022009423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Humoral antiplatelet factors, such as autoantibodies, are thought to primarily clear platelets by triggering macrophage phagocytosis in immune thrombocytopenia (ITP). However, there are few studies characterizing the capacity and mechanisms of humoral factor-triggered macrophage phagocytosis of platelets using specimens from patients with ITP. Here, we assessed sera from a cohort of 24 patients with ITP for the capacity to trigger macrophage phagocytosis of normal donor platelets and characterized the contribution of humoral factors to phagocytosis. Sera that produced a phagocytosis magnitude greater than a normal human serum mean + 2 standard deviations were considered phagocytosis-positive. Overall, 42% (8/19) of MHC I alloantibody-negative ITP sera were phagocytosis-positive. The indirect monoclonal antibody immobilization of platelet antigens assay was used to detect immunoglobulin G (IgG) autoantibodies to glycoproteins (GP)IIb/IIIa, GPIb/IX, and GPIa/IIa. Autoantibody-positive sera triggered a higher mean magnitude of phagocytosis than autoantibody-negative sera. Phagocytosis correlated inversely with platelet counts among autoantibody-positive patients but not among autoantibody-negative patients. Select phagocytosis-positive sera were separated into IgG-purified and -depleted fractions via protein G and reassessed for phagocytosis. Phagocytosis was largely retained in the purified IgG fractions. In addition, we assessed serum concentrations of C-reactive protein, serum amyloid P, and pentraxin 3 as potential phagocytosis modulators. Pentraxin 3 concentrations correlated inversely with platelet counts among patients positive for autoantibodies. Taken together, sera from approximately half of the patients with ITP studied triggered macrophage phagocytosis of platelets beyond a normal level. An important role for antiplatelet autoantibodies in phagocytosis is supported; a role for pentraxins such as pentraxin 3 may be suggested.
Collapse
Affiliation(s)
- Peter A. A. Norris
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zoya Tawhidi
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Ulrich J. Sachs
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostasis, Justus Liebig University, Giessen, Germany
- Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany
| | - Christine M. Cserti-Gazdewich
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
| | - Yulia Lin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jeannie Callum
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen’s University, Kingston, ON, Canada
| | - Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Yuexin Shan
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Donald R. Branch
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alan H. Lazarus
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Halaris A, Hain D, Law R, Brown L, Lewis D, Filip M. Single nucleotide polymorphisms in C-reactive protein (CRP) predict response to adjunctive celecoxib treatment of resistant bipolar depression. Brain Behav Immun Health 2023; 30:100625. [PMID: 37181328 PMCID: PMC10172701 DOI: 10.1016/j.bbih.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Background Affective illness has been associated with a proinflammatory state, and it is generally accepted that the immune system plays a key role in the pathophysiology of mood disorders. Since inflammatory biomarkers are elevated in bipolar disorder, anti-inflammatory combination therapies may enhance response and reverse treatment resistance. Purpose In the present study we investigated the possible impact of single nucleotide polymorphisms (SNPs) within the CRP gene on CRP blood levels, treatment response and level-of-stress perception in our cohort of treatment-resistant bipolar-depressed patients receiving escitalopram and celecoxib, or escitalopram and placebo, as previously reported (Halaris et al., 2020). Methods Study design, clinical findings, and CRP blood levels have been reported previously (Halaris et al., 2020; Edberg et al., 2018). In this follow-up study we extracted DNA from blood cells collected at baseline. Genome-wide genotyping was performed for all subjects using the Infinium Multi-Ethnic Global-8 v1.0 Kit. Based on reports in the literature indicating possible associations with psychiatric conditions, ten previously reported CRP gene polymorphisms were evaluated in a preliminary analysis. We focused on rs3093059 and rs3093077 were in complete LD. Carriers were defined as those possessing at least one C allele for rs3093059, or at least one G allele for rs3093077. Additionally, we determined blood levels of the medications administered. Results Non-carriers of rs3093059 and rs3093077 had significantly lower baseline CRP blood levels than carriers (p = 0.03). Increased rates of HAM-D17 response (p = 0.21) and remission (p = 0.13) and lower PSS-14 scores (p = 0.13) were observed in non-carriers among subjects receiving celecoxib but they did not reach statistical significance. When examining all subjects, nominally significant associations between carrier-status and remission (p = 0.04) and PSS-14 scores (p = 0.04) were observed after correcting for treatment arm. Non-carriers receiving celecoxib had the highest rates of response and remission, and the lowest stress scores. Conclusions Carriers of the CRP SNPs may have higher baseline CRP levels, although non-carriers appear to benefit more from celecoxib co-therapy. Determination of the carrier status in conjunction with pretreatment blood CRP level measurement may contribute to personalized psychiatric practice, but replication of the present findings is needed.
Collapse
Affiliation(s)
- Angelos Halaris
- Loyola University School of Medicine and Loyola University Medical Center, 2160 South First Ave., Maywood, IL, 60153, USA
- Corresponding author.
| | - Daniel Hain
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - Rebecca Law
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - Lisa Brown
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - David Lewis
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - Maria Filip
- Department of Adult Psychiatry Medical University of Lodz, Aleksandrowska 159, 91-229, Lodz, Poland
- The Polish National Agency for Academic Exchange, Polna 40, 00-635, Warsaw, Poland
| |
Collapse
|
37
|
Shen Z, Wu Y, Zhou L, Wang Q, Tang Y, Sun Y, Zheng F, Li Y. The efficacy of sodium ferulate combination therapy in coronary heart disease: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154829. [PMID: 37116387 DOI: 10.1016/j.phymed.2023.154829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sodium ferulate (SF), a derivative of ferulic acid, is one of the active constituents in medicinal plants thought to be useful in fighting cardiovascular diseases. However, there still lacks a systematic review of the efficacy and safety of SF in treating coronary heart disease (CHD). It is therefore the purpose of this study to comprehensively review all clinical randomized controlled trials (RCTs) of SF in CHD to assess its efficacy and safety. METHODS All analysis is based on 8 databases as of February 2023, which includes 35 outcomes of RCTs that investigate the effect of SF combination therapy in CHD. The present study evaluates the quality and bias of selected literature by the Jadad scale and Cochrane Collaboration's tools, and also the quality of evidence by GRADE Profiler. Furthermore, it applies sensitivity analysis to assess the high heterogeneity impact of outcomes and conducted subgroup analysis to estimate the influence factors in these studies. The study protocol was set documented, and published beforehand in PROSPERO (Registration No.CRD42022348841). RESULTS The meta-analysis of 36 studies (with 3207 patients) shows that SF combined with conventional drugs has improved clinical effectiveness for patients with CHD [RR: 1.21 (95% CI 1.17,1.26); p < 0.00001]. Statistically significant results of meta-analyses are also seen in electrocardiography (ECG) efficacy, frequency of angina attacks, endothelium-dependent flow-mediated vasodilation (FMD), nitric oxide (NO), endothelin (ET), whole Blood low shear rate (LS), platelet aggregation test (PAgT), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL6), triglyceride (TG). Adverse events are reported in 6 RCTs. By GRADE approaches, 2 outcomes (clinical efficacy, CRP) indicate a moderate quality of evidence, 17 outcomes indicate low quality of evidence, with the other 16 very low-quality. CONCLUSION SF combination therapy has a better curative effect than conventional therapy. However, due to items with low-quality evidence demonstrated in the study, the presence of clinical heterogeneity, and imprecision in partial outcome measures, all these led to limitations in the evidence of this study. Thus, the conclusion needs to be further verified by more in-depth research.
Collapse
Affiliation(s)
- Zinuo Shen
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yang Wu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Hubei, China
| | - Lu Zhou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Henan, China
| | - Qian Wang
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yan Sun
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Yuhang Li
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| |
Collapse
|
38
|
Zhou L, Chen SJ, Chang Y, Liu SH, Zhou YF, Huang XP, Hua YX, An H, Zhang SH, Melnikov I, Gabbasov ZA, Wu Y, Ji SR. Monomeric C-reactive protein evokes TCR Signaling-dependent bystander activation of CD4+ T cells. Mol Immunol 2023; 157:158-166. [PMID: 37028130 DOI: 10.1016/j.molimm.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Bystander activation of T cells is defined as induction of effector responses by innate cytokines in the absence of cognate antigens and independent of T cell receptor (TCR) signaling. Here we show that C-reactive protein (CRP), a soluble pattern-recognition receptor assembled noncovalently by five identical subunits, can instead trigger bystander activation of CD4 + T cells by evoking allosteric activation and spontaneous signaling of TCR in the absence of cognate antigens. The actions of CRP depend on pattern ligand-binding induced conformational changes that result in the generation of monomeric CRP (mCRP). mCRP binds cholesterol in plasma membranes of CD4 + T cells, thereby shifting the conformational equilibrium of TCR to the cholesterol-unbound, primed state. The spontaneous signaling of primed TCR leads to productive effector responses manifested by upregulation of surface activation markers and release of IFN-γ. Our results thus identify a novel mode of bystander T cell activation triggered by allosteric TCR signaling, and reveal an interesting paradigm wherein innate immune recognition of CRP transforms it to a direct activator that evokes immediate adaptive immune responses.
Collapse
Affiliation(s)
- Liang Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Sheng-Juan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yue Chang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Shan-Hui Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Fei Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Ping Huang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Xin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Hao An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Shu-Hao Zhang
- School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Ivan Melnikov
- National Medical Research Center of Cardiology, 15A 3rd Cherepkovskaya street, 121552 Moscow, Russia; MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Zufar A Gabbasov
- National Medical Research Center of Cardiology, 15A 3rd Cherepkovskaya street, 121552 Moscow, Russia; MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, PR China.
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
39
|
Køstner AH, Fuglestad AJ, Georgsen JB, Nielsen PS, Christensen KB, Zibrandtsen H, Parner ET, Rajab IM, Potempa LA, Steiniche T, Kersten C. Fueling the flames of colon cancer – does CRP play a direct pro-inflammatory role? Front Immunol 2023; 14:1170443. [PMID: 37006231 PMCID: PMC10065292 DOI: 10.3389/fimmu.2023.1170443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundSystemic inflammation, diagnostically ascribed by measuring serum levels of the acute phase reactant C-reactive protein (CRP), has consistently been correlated with poor outcomes across cancer types. CRP exists in two structurally and functionally distinct isoforms, circulating pentameric CRP (pCRP) and the highly pro-inflammatory monomeric isoform (mCRP). The aim of this pilot study was to map the pattern of mCRP distribution in a previously immunologically well-defined colon cancer (CC) cohort and explore possible functional roles of mCRP within the tumor microenvironment (TME).MethodsFormalin-fixed, paraffin-embedded (FFPE) tissue samples from 43 stage II and III CC patients, including 20 patients with serum CRP 0-1 mg/L and 23 patients with serum CRP >30 mg/L were immunohistochemically (IHC) stained with a conformation-specific mCRP antibody and selected immune and stromal markers. A digital analysis algorithm was developed for evaluating mCRP distribution within the primary tumors and adjacent normal colon mucosa.ResultsmCRP was abundantly present within tumors from patients with high serum CRP (>30 mg/L) diagnostically interpreted as being systemically inflamed, whereas patients with CRP 0-1 mg/L exhibited only modest mCRP positivity (median mCRP per area 5.07‰ (95%CI:1.32-6.85) vs. 0.02‰ (95%CI:0.01-0.04), p<0.001). Similarly, tissue-expressed mCRP correlated strongly with circulating pCRP (Spearman correlation 0.81, p<0.001). Importantly, mCRP was detected exclusively within tumors, whereas adjacent normal colon mucosa showed no mCRP expression. Double IHC staining revealed colocalization of mCRP with endothelial cells and neutrophils. Intriguingly, some tumor cells also colocalized with mCRP, suggesting a direct interaction or mCRP expression by the tumor itself.ConclusionOur data show that the pro-inflammatory mCRP isoform is expressed in the TME of CC, primarily in patients with high systemic pCRP values. This strengthens the hypothesis that CRP might not only be an inflammatory marker but also an active mediator within tumors.
Collapse
Affiliation(s)
- Anne Helene Køstner
- Center for Cancer Treatment, Sorlandet Hospital, Kristiansand, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- *Correspondence: Anne Helene Køstner,
| | - Anniken Jørlo Fuglestad
- Center for Cancer Treatment, Sorlandet Hospital, Kristiansand, Norway
- Department of Oncology, Akershus University Hospital, Nordbyhagen, Norway
| | | | - Patricia Switten Nielsen
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Erik Thorlund Parner
- Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ibraheem M. Rajab
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Kersten
- Center for Cancer Treatment, Sorlandet Hospital, Kristiansand, Norway
- Department of Oncology, Akershus University Hospital, Nordbyhagen, Norway
| |
Collapse
|
40
|
Janicic A, Petrovic M, Zekovic M, Vasilic N, Coric V, Milojevic B, Zivkovic M, Bumbasirevic U. Prognostic Significance of Systemic Inflammation Markers in Testicular and Penile Cancer: A Narrative Review of Current Literature. Life (Basel) 2023; 13:600. [PMID: 36983756 PMCID: PMC10054741 DOI: 10.3390/life13030600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
In contemporary clinical practice, biomarkers are indispensable in the assessment and management of oncological patients. Although established serum tumor markers (beta human chorionic gonadotropin (bHCG), alpha fetoprotein (AFP), and lactate dehydrogenase (LDH)) have an indisputably important role in the management of patients with testicular cancer (TC), the application of these tumor markers may be accompanied with certain limitations, implying the need for additional biomarkers. Contrary to TC, there is a lack of established serological biomarkers for penile cancer (PC) and the management of this urological malignancy is based on multiple clinicopathological parameters. Therefore, the identification and rigorous analytical and clinical validation of reliable biomarkers are considered pivotal for improving PC management. Inflammation may be associated with all stages of oncogenesis, from initial neoplastic transformation to angiogenesis, tissue invasion, and metastasis. Accordingly, an array of inflammation-related indices have gained increasing attention as emerging predictors of oncological outcomes. The clinical usefulness of systemic inflammation markers was reported in many urological and non-urological malignancies. The aim of this narrative review is to summarize current scientific data regarding the prognostic and predictive significance of systemic inflammation markers in TC and PC patients.
Collapse
Affiliation(s)
- Aleksandar Janicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milos Petrovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milica Zekovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad Vasilic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bogomir Milojevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Zivkovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Uros Bumbasirevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
41
|
Svanberg C, Enocsson H, Govender M, Martinsson K, Potempa LA, Rajab IM, Fernandez-Botran R, Wetterö J, Larsson M, Sjöwall C. Conformational state of C-reactive protein is critical for reducing immune complex-triggered type I interferon response: Implications for pathogenic mechanisms in autoimmune diseases imprinted by type I interferon gene dysregulation. J Autoimmun 2023; 135:102998. [PMID: 36706536 DOI: 10.1016/j.jaut.2023.102998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Presence of autoantibodies targeting nuclear constituents, i.e., double-stranded DNA and small nuclear ribonucleoproteins (snRNPs), remain a cornerstone in systemic lupus erythematosus (SLE). Fcγ receptor IIa (FcγRIIa) dependent uptake of nucleic acid containing immune complexes (ICs) by plasmacytoid dendritic cells (PDCs) can activate toll-like receptors (TLRs) such as TLR7 and TLR9 resulting in type I interferon (IFN) production. Previously, the classical liver-derived acute-phase reactant C-reactive protein (CRP) has been suggested to reduce IC-induced type I IFN production, whereas monomeric (mCRP) vs. pentameric (pCRP) mediated effects have not yet been unraveled. Herein, peripheral blood mononuclear cells (PBMCs) or enriched blood DCs from healthy volunteers were stimulated with SLE sera, snRNP-IgG (ICs), or TLR ligands with or without pCRP, mCRP, or anti-FcγRIIa antibody. Type I IFNs and cytokine responses were investigated using quantitative PCR, ELISA, and flow cytometry. pCRP inhibited IFN gene expression in PBMCs and enriched DCs after incubation with ICs, compared to ICs alone, whereas mCRP had significantly less inhibitory effect. The effect was independent on the order in which IC or CRP was added to the cells. In addition, pCRP inhibited IFN induced by other TLR stimulators, implicating broader inhibitory effects induced by pCRP. We demonstrate pronounced immunoregulatory functions of CRP whereas the inhibitory properties were evidently dependent on CRP's intact conformational state. The inhibition of type I IFNs was not due to competition of FcγRs, or binding of CRP to the ICs. Our findings have implications for autoimmune IC-mediated conditions imprinted by type I IFN gene dysregulation.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Helena Enocsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Klara Martinsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden
| | - Lawrence A Potempa
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, IL, United States
| | - Ibraheem M Rajab
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, IL, United States
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Jonas Wetterö
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation & Infection, Linköping University, Linköping, Sweden.
| |
Collapse
|
42
|
Monomeric C-Reactive Protein in Atherosclerotic Cardiovascular Disease: Advances and Perspectives. Int J Mol Sci 2023; 24:ijms24032079. [PMID: 36768404 PMCID: PMC9917083 DOI: 10.3390/ijms24032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis. mCRP has a distinct proinflammatory profile. In vitro and animal-model studies have suggested a role for mCRP in: platelet activation, adhesion, and aggregation; endothelial activation; leukocyte recruitment and polarization; foam-cell formation; and neovascularization. mCRP has been shown to deposit in atherosclerotic plaques and damaged tissues. In recent years, the first published papers have reported the development and application of mCRP assays. Principally, these studies demonstrated the feasibility of measuring mCRP levels. With recent advances in detection techniques and the introduction of first assays, mCRP-level measurement should become more accessible and widely used. To date, anti-inflammatory therapy in atherosclerosis has targeted the NLRP3 inflammasome and upstream links of the IL-1β/IL-6/CRP axis. Large clinical trials have provided sufficient evidence to support this strategy. However, few compounds target CRP. Studies on these agents are limited to animal models or small clinical trials.
Collapse
|
43
|
Halaris A, Prochaska D, Stefanski A, Filip M. C-reactive protein in major depressive disorder: Promise and challenge. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
Merashli M, Bucci T, Pastori D, Pignatelli P, Ames PRJ. Intima media thickness of carotid arteries in familial Mediterranean fever: a systematic review and meta-analysis. Clin Rheumatol 2022; 41:3769-3776. [PMID: 35933450 DOI: 10.1007/s10067-022-06326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
AIM To perform a systematic review and meta-analysis of studies reporting data on atherosclerosis and inflammatory markers in familial Mediterranean fever (FMF). METHODS EMBASE and PubMed databases were screened according to PRISMA guidelines from inception to January 2022 for articles reporting measurements of the intima media thickness (IMT) of carotid arteries and eventually carotid plaques; random effect meta-analyses for continuous outcomes and Peto's odds ratio for rare events were employed. RESULTS The screening and selection search strategy yielded 18 case controls studies (16 full papers and 2 abstracts); the IMT was greater in FMF (n = 1112) than in controls (n = 901) (p < 0.0001) with wide heterogeneity (I2 = 86.4%); a sensitivity analysis according to mean age of participants, male to female ratio, disease duration, C-reactive protein (CRP), serum amyloid A (SAA), fibrinogen (FNG), atherogenic index of plasma (AIP), colchicine use and NOQAS revealed that the heterogeneity variance was partly explained by CRP (p = 0.01) and to a much lesser extent by the AIP (p = 0.10). The pooled prevalence of carotid plaques was greater in FMF (n = 137) than in controls (n = 156) (19% vs 8.3%, p = 0.02) with low heterogeneity. CONCLUSION FMF is characterised by premature atherosclerosis expressed as a thicker intima media and a greater prevalence of carotid plaques, partially related to the C-reactive protein, as expected by the autoinflammatory nature of FMF. Key Points • Familial Mediterranean fever is characterised by premature atherosclerosis. • C-reactive protein relates to intima media thickness in keeping with the autoinflammatory nature Familial Mediterranean fever. • Targeting the inter-critical low-grade inflammation may be relevant to minimise the additional cardiovascular risk posed by premature atherosclerosis.
Collapse
Affiliation(s)
- Mira Merashli
- Department of Rheumatology, American University of Beirut, Beirut, Lebanon
| | - Tommaso Bucci
- Department of General Surgery, Surgical Specialties and Organ Transplantation "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Daniele Pastori
- Department of Clinical, Internal, Anesthesiological & Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical, Internal, Anesthesiological & Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Paul R J Ames
- Immune Response & Vascular Disease Unit, Nova University Lisbon, Rua Camara Pestana, Lisbon, Portugal.
- Department of Haematology, Dumfries Royal Infirmary, Cargenbridge, Dumfries, DG2 7AH, Scotland, UK.
| |
Collapse
|
45
|
Ngwa DN, Agrawal A. Structurally Altered, Not Wild-Type, Pentameric C-Reactive Protein Inhibits Formation of Amyloid-β Fibrils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1180-1188. [PMID: 35977795 PMCID: PMC9492646 DOI: 10.4049/jimmunol.2200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
The structure of wild-type pentameric C-reactive protein (CRP) is stabilized by two calcium ions that are required for the binding of CRP to its ligand phosphocholine. CRP in its structurally altered pentameric conformations also binds to proteins that are denatured and aggregated by immobilization on microtiter plates; however, the identity of the ligand on immobilized proteins remains unknown. We tested the hypotheses that immobilization of proteins generated an amyloid-like structure and that amyloid-like structure was the ligand for structurally altered pentameric CRP. We found that the Abs to amyloid-β peptide 1-42 (Aβ) reacted with immobilized proteins, indicating that some immobilized proteins express an Aβ epitope. Accordingly, four different CRP mutants capable of binding to immobilized proteins were constructed, and their binding to fluid-phase Aβ was determined. All CRP mutants bound to fluid-phase Aβ, suggesting that Aβ is a ligand for structurally altered pentameric CRP. In addition, the interaction between CRP mutants and Aβ prevented the formation of Aβ fibrils. The growth of Aβ fibrils was also halted when CRP mutants were added to growing fibrils. Biochemical analyses of CRP mutants revealed altered topology of the Ca2+-binding site, suggesting a role of this region of CRP in binding to Aβ. Combined with previous reports that structurally altered pentameric CRP is generated in vivo, we conclude that CRP is a dual pattern recognition molecule and an antiamyloidogenic protein. These findings have implications for Alzheimer's and other neurodegenerative diseases caused by amyloidosis and for the diseases caused by the deposition of otherwise fluid-phase proteins.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Alok Agrawal
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| |
Collapse
|
46
|
Potempa LA, Qiu WQ, Stefanski A, Rajab IM. Relevance of lipoproteins, membranes, and extracellular vesicles in understanding C-reactive protein biochemical structure and biological activities. Front Cardiovasc Med 2022; 9:979461. [PMID: 36158829 PMCID: PMC9493015 DOI: 10.3389/fcvm.2022.979461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Early purification protocols for C-reactive protein (CRP) often involved co-isolation of lipoproteins, primarily very low-density lipoproteins (VLDLs). The interaction with lipid particles was initially attributed to CRP’s calcium-dependent binding affinity for its primary ligand—phosphocholine—the predominant hydrophilic head group expressed on phospholipids of most lipoprotein particles. Later, CRP was shown to additionally express binding affinity for apolipoprotein B (apo B), a predominant apolipoprotein of both VLDL and LDL particles. Apo B interaction with CRP was shown to be mediated by a cationic peptide sequence in apo B. Optimal apo B binding required CRP to be surface immobilized or aggregated, treatments now known to structurally change CRP from its serum soluble pentamer isoform (i.e., pCRP) into its poorly soluble, modified, monomeric isoform (i.e., mCRP). Other cationic ligands have been described for CRP which affect complement activation, histone bioactivities, and interactions with membranes. mCRP, but not pCRP, binds cholesterol and activates signaling pathways that activate pro-inflammatory bioactivities long associated with CRP as a biomarker. Hence, a key step to express CRP’s biofunctions is its conversion into its mCRP isoform. Conversion occurs when (1) pCRP binds to a membrane surface expressed ligand (often phosphocholine); (2) biochemical forces associated with binding cause relaxation/partial dissociation of secondary and tertiary structures into a swollen membrane bound intermediate (described as mCRPm or pCRP*); (3) further structural relaxation which leads to total, irreversible dissociation of the pentamer into mCRP and expression of a cholesterol/multi-ligand binding sequence that extends into the subunit core; (4) reduction of the CRP subunit intrachain disulfide bond which enhances CRP’s binding accessibility for various ligands and activates acute phase proinflammatory responses. Taken together, the biofunctions of CRP involve both lipid and protein interactions and a conformational rearrangement of higher order structure that affects its role as a mediator of inflammatory responses.
Collapse
Affiliation(s)
- Lawrence A. Potempa
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
- *Correspondence: Lawrence A. Potempa,
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ashley Stefanski
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| |
Collapse
|
47
|
Fuglestad AJ, Meltzer S, Ree AH, McMillan DC, Park JH, Kersten C. The clinical value of C-reactive protein and its association with tumour location in patients undergoing curative surgery for colorectal cancer - a ScotScan collaborative study. Acta Oncol 2022; 61:1248-1255. [PMID: 36068730 DOI: 10.1080/0284186x.2022.2117572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The presence of preoperative systemic inflammatory response (SIR) is an established negative prognostic factor for patients diagnosed with colorectal cancer (CRC). C-reactive protein (CRP) is known to be implicated in detrimental immune responses. The biological differences between right-sided and left-sided CRC are gaining increasing attention. Our aim was to analyse the prognostic value of CRP and explore the association between tumour location and SIR. MATERIAL AND METHODS A total of 2059 patients treated for stage I-III CRC, identified from the prospectively sampled ScotScan Collaborative dataset, were included. The clinical and prognostic value of five CRP levels (<10/11-30/31-60/61-100/>100 mg/l) were examined. Additionally, the relationship between SIR and tumour location was explored. RESULTS Increasing levels of CRP were associated with impaired overall and cancer-specific outcome. Presence of SIR was independently associated with right-sided tumour location (p<0.001). However, the impact of SIR on cancer-specific survival (CSS) was greater for left-sided tumour location, even when adjusted for other clinicopathological factors. CONCLUSIONS This study confirms CRP as a routinely available, valid, and clinically relevant strong prognostic marker of SIR in CRC patients. Right-sided tumours were more often associated with SIR, but the prognostic impact was stronger in left-sided tumours.
Collapse
Affiliation(s)
- Anniken J Fuglestad
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research, Sørlandet Hospital, Kristiansand, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine Dentistry and Nursing, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James H Park
- Academic Unit of Surgery, School of Medicine Dentistry and Nursing, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Surgery, Elizabeth University Hospital, Glasgow, UK
| | - Christian Kersten
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Research, Sørlandet Hospital, Kristiansand, Norway
| |
Collapse
|
48
|
Melnikov I, Kozlov S, Pogorelova O, Tripoten M, Khamchieva L, Saburova O, Avtaeva Y, Zvereva M, Matroze E, Kuznetsova T, Prokofieva L, Balakhonova T, Gabbasov Z. The monomeric C-reactive protein level is associated with the increase in carotid plaque number in patients with subclinical carotid atherosclerosis. Front Cardiovasc Med 2022; 9:968267. [PMID: 35935662 PMCID: PMC9353581 DOI: 10.3389/fcvm.2022.968267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The high-sensitivity C-reactive protein (hsCRP) assay measures the level of the pentameric form of CRP in blood. Currently, there are no available assays measuring the level of the monomeric form of CRP (mCRP), produced at sites of local inflammation. We developed an assay measuring the mCRP level in blood plasma with functional beads for flow cytometry. The assay was used to measure the mCRP level in 80 middle-aged individuals with initially moderate cardiovascular SCORE risk. By the time of the mCRP measurement, the patients have been followed up for subclinical carotid atherosclerosis progression for 7 years. Ultrasound markers of subclinical atherosclerosis, which included plaque number (PN) and total plaque height (PH), were measured at baseline and at the 7th-year follow-up survey. Inflammatory biomarkers, including mCRP, hsCRP, inteleukin-6 (IL-6) and von Willebrand factor (VWF) level, were measured at the 7th-year follow-up survey. The median level of mCRP was 5.2 (3.3; 7.1) μg/L, hsCRP 1.05 (0.7; 2.1) mg/L, IL-6 0.0 (0.0; 2.8) pg/mL, VWF 106 (77; 151) IU/dL. In the patients with the mCRP level below median vs. the patients with the median mCRP level or higher, change from baseline in PN was 0.0 (0.0; 1.0) vs. 1.0 (1.0; 2.0) and PH 0.22 (−0.24; 1.91) mm vs. 1.97 (1.14; 3.14) mm, respectively (p < 0.05). The adjusted odds ratio for the formation of new carotid atherosclerotic plaques was 4.7 (95% CI 1.7; 13.2) for the patients with the median mCRP level or higher. The higher mCRP level is associated with the more pronounced increase in PN and PH in patients with normal level of traditional inflammatory biomarkers and initially moderate cardiovascular SCORE risk.
Collapse
Affiliation(s)
- Ivan Melnikov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Laboratory of Gas Exchange, Biomechanics and Barophysiology, State Scientific Center of the Russian Federation – The Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ivan Melnikov
| | - Sergey Kozlov
- Laboratory of Problems of Atherosclerosis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Pogorelova
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria Tripoten
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Leyla Khamchieva
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Saburova
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yuliya Avtaeva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria Zvereva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny Matroze
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Innovative Pharmacy, Medical Devices and Biotechnology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tatiana Kuznetsova
- Laboratory of Neurohormonal Regulation of Cardiovascular Diseases, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Lyudmila Prokofieva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Balakhonova
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moscow, Russia
| | - Zufar Gabbasov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Zufar Gabbasov
| |
Collapse
|
49
|
Gan Q, Wong A, Zhang Z, Na H, Tian H, Tao Q, Rajab IM, Potempa LA, Qiu WQ. Monomeric C-reactive protein induces the cellular pathology of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12319. [PMID: 35846159 PMCID: PMC9270638 DOI: 10.1002/trc2.12319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Introduction Human study shows that elevated C-reactive protein (CRP) in blood impacts apolipoprotein E (APOE) ε4, but not APOE ε3 or APOE ε2, genotype to increase the risk of Alzheimer's disease (AD). However, whether CRP is directly involved in cellular AD pathogenesis and in which type of neuronal cells of APOE ε4 carriers are unknown. Methods We aimed to use different primary neuronal cells and investigate if CRP induces cellular AD pathology depending on APOE genotypes. Here the different primary neuronal cells from the different APOE genotype knock-in mice cortex were isolated and used. Results Monomeric CRP (mCRP) increased amyloid beta production and, in parallel, induced tau phosphorylation in addition to their related proteins in the primary neurons in a pattern of APOE ε4 > APOE ε3 > APOE ε2 in a dose- and time-dependent manner. Consistently, mCRP induced the staining of other neurodegenerative biomarkers, including Fluoro-Jade B stain (FjB), TUNEL and Cleaved Caspase-3, in primary neurons in a similar pattern of APOE ε4 > APOE ε3 > APOE ε2. In contrast, pentameric CRP (pCRP) had a tendency to induce cellular AD pathology but did not reach statistical significance. On the other hand, it is intriguing that regardless of APOE genotype, mCRP did not influence the expressions of Iba-1 and CD68 in primary microglia or the expression of glial fibrillary acidic protein in primary astrocytes, and additionally mCRP did not affect the secretions of interleukin (IL)-1α, IL-1β, and tumor necrosis factor α from these cells. Discussion This is the first report to demonstrate that mCRP directly induces cellular AD pathogenesis in neurons in an APOE genotype-dependent pattern, suggesting that mCRP plays a role as a mediator involved in the APOE ε4-related pathway for AD during chronic inflammation. Highlights Pentameric C-reactive protein (pCRP) can be dissociated irreversibly to form free subunits or monomeric CRP (mCRP) during and after the acute phase.mCRP increased amyloid beta production in the primary neurons in a pattern of apolipoprotein E (APOE) ε4 > APOE ε3 > APOE ε2 in a dose-dependent manner.mCRP induced the expression of phosphorylated tau in the primary neurons in a pattern of APOE ε4 > APOE ε3 > APOE ε2 in a dose- and time-dependent manner.mCRP plays an important mediator role in the APOE ε4-related pathway of Alzheimer's disease risk.
Collapse
Affiliation(s)
- Qini Gan
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Alfred Wong
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Hana Na
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Hua Tian
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of PharmacologyXiaman Medical CollegeXiamanPeople's Republic of China
| | - Qiushan Tao
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Ibraheem M. Rajab
- Roosevelt University College of ScienceHealth and PharmacySchaumburgIllinoisUSA
| | - Lawrence A. Potempa
- Roosevelt University College of ScienceHealth and PharmacySchaumburgIllinoisUSA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease CenterBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
50
|
Fujita C, Sakurai Y, Yasuda Y, Homma R, Huang CL, Fujita M. mCRP as a Biomarker of Adult-Onset Still’s Disease: Quantification of mCRP by ELISA. Front Immunol 2022; 13:938173. [PMID: 35844576 PMCID: PMC9284222 DOI: 10.3389/fimmu.2022.938173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background C-reactive protein (CRP) is a dynamic protein that undergoes conformational changes between circulating native pentameric CRP (pCRP), pentameric symmetrical forms (pCRP*) and monomeric (or modified) CRP (mCRP) forms. mCRP exhibits strong pro-inflammatory activity and activates platelets, leukocytes, and endothelial cells. Abundant deposition of mCRP in inflamed tissues plays a role in several disease conditions, such as ischemia/reperfusion injury, Alzheimer’s disease, and cardiovascular disease. Although pCRP is typically quantified rather than mCRP for clinical purposes, mCRP may be a more appropriate disease marker of inflammatory diseases. Therefore, simple methods for quantifying mCRP are needed. Methods We developed a specific enzyme-linked immunosorbent assay (ELISA) to measure plasma levels of mCRP. Plasma mCRP concentration was measured in patients with adult-onset Still’s disease (AOSD) (n=20), polymyalgia rheumatica (PMR) (n=20), rheumatoid arthritis (RA) (n=30), infection (n=50), and in control subjects (n=30) using the developed ELISA. Results We demonstrated that mCRP is elevated in some inflammatory autoimmune diseases, particularly AOSD. The mCRP concentration was also significantly higher among AOSD patients than RA, PMR patients and controls (477 ng/ml, 77 ng/ml, 186 ng/ml, and 1.2 ng/ml, respectively). Also, the mCRP (×1,000)/pCRP ratio was significantly higher among AOSD patients than RA, PMR, and infection patients (3.5, 0.6, 1,6, and 2.0, respectively). Conclusion The plasma mCRP levels are elevated in some autoimmune diseases, particularly AOSD. The plasma mCRP levels may therefore be a potentially useful biomarker for AOSD.
Collapse
Affiliation(s)
- Chitose Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- The Japan-Multinational Trial Organization, Aichi, Japan
| | - Yasuo Sakurai
- The Japan-Multinational Trial Organization, Aichi, Japan
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Tochigi, Japan
| | - Yuki Yasuda
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Tochigi, Japan
| | - Rino Homma
- Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Tochigi, Japan
| | - Cheng-Long Huang
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- The Japan-Multinational Trial Organization, Aichi, Japan
| | - Masaaki Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- The Japan-Multinational Trial Organization, Aichi, Japan
- Division of Clinical Immunology and Rheumatology, Kansai Electric Power Hospital, Medical Research Institute, Osaka, Japan
- Department of Infectious Diseases, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
- *Correspondence: Masaaki Fujita,
| |
Collapse
|