1
|
Baumrucker CC, Harris N, Hoover S, Czerniecki BJ. Intratumoral Immunotherapy in Breast Cancer. Vaccines (Basel) 2025; 13:429. [PMID: 40333343 PMCID: PMC12031351 DOI: 10.3390/vaccines13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer and the second highest cause of cancer death in females. Metastatic recurrence that is resistant to traditional therapies presents a major challenge, necessitating the development of an innovative treatment strategy. Immunotherapy has gained popularity in the treatment of cancer, particularly melanoma, lung cancer, and more recently breast cancer. Major developments in immunotherapy have been made with a better understanding of the tumor microenvironment and how the microenvironment can be manipulated to induce an anti-tumor immune response. Intratumorally delivered immunotherapy can be used to create a local immune response. This review provides a comprehensive overview of intratumoral immunotherapy for breast cancer and its resultant changes in the tumor microenvironment. The discussed immunotherapeutics include oncolytic viruses, nucleic acids, innate immune agonists, bacteria, chimeric antigen receptor T cells, and dendritic cells. The review also evaluates completed clinical trials using these therapies. Lastly, the review offers future perspectives in the development of breast cancer immunotherapy.
Collapse
Affiliation(s)
- Camille C. Baumrucker
- Clinical Science Division, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Nicole Harris
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Susan Hoover
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brian J. Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Al-Hamami SS, Kurucz S, Vondráček V, Pekar V, Andrlík M, Dědečková K, Benešová I, Haas A, Ondrová B, Pasztorová A, Vítek P, Kubeš J. Temporal dynamics of lymphocytes in prostate cancer patients treated with proton therapy. Front Oncol 2025; 15:1470876. [PMID: 40308498 PMCID: PMC12040820 DOI: 10.3389/fonc.2025.1470876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Radiotherapy can be both immunosuppressive and immunostimulatory. Radiation-induced lymphopenia (RIL) is an ongoing challenge in cancer treatment. We investigated weekly changes in the absolute lymphocyte count (ALC) during proton radiotherapy, evaluating the effects of different dosage, fractionation schedules, and pelvic node irradiation (PNI). Prostate cancer patients were prospectively chosen for this study, due to their relatively homogenous treatment plans. Treatment protocols were categorized into three groups: Group A (n=52) received 36.25 Gy/5-fractions, Group B (n=60) underwent 63 Gy/21-fractions and group C (n=69) received 63 Gy/21-fractions plus PNI. To account for individual characteristic differences, a new categorization method was made, according to the change in ALC relative to the baseline. Lymphopenia (ALC < 1000 K/μL) developed in 8%, 17% and 84% of patients in groups A, B, and C, respectively. An initial increase in ALC occurred in 44%, 47% and 28% of groups A, B and C, respectively, and declined with proceeding fractions. Patients with PNI had the most pronounced reduction in their ALC relative to the baseline. Increased dosage and fractionation led to a higher incidence of lymphopenia. Understanding which factors influence ALC in particle therapy is vital for leveraging the immune-enhancing effects of radiotherapy, while minimising its immunosuppressive impacts.
Collapse
Affiliation(s)
| | - Samuel Kurucz
- Department of Medical Physics, Proton Therapy Center Czech, Prague, Czechia
| | - Vladimír Vondráček
- Department of Medical Physics, Proton Therapy Center Czech, Prague, Czechia
| | - Vladimír Pekar
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czechia
| | - Michal Andrlík
- Department of Medical Physics, Proton Therapy Center Czech, Prague, Czechia
| | - Kateřina Dědečková
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czechia
| | - Iva Benešová
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Alexandra Haas
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czechia
| | - Barbora Ondrová
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czechia
| | - Andrea Pasztorová
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czechia
| | - Pavel Vítek
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czechia
| | - Jiří Kubeš
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czechia
| |
Collapse
|
3
|
Patel AM, Haleem A, Cowan PT, Roden DF. Neck Dissection and Survival Among Head and Neck Cancer Patients Undergoing Adjuvant Immunotherapy. Laryngoscope Investig Otolaryngol 2025; 10:e70120. [PMID: 40104563 PMCID: PMC11915686 DOI: 10.1002/lio2.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
Background Some studies suggest that neck dissection (ND) should be avoided in candidates for immunotherapy because lymph nodes are primary sites for immunotherapy activation. Our study investigates ND utilization and associated differences in overall survival (OS) among patients with head and neck cancer (HNC) undergoing adjuvant immunotherapy. Methods The 2013-2018 National Cancer Database was retrospectively reviewed for patients with HNC undergoing surgery with curative intent, and adjuvant immunotherapy. Multivariable binary logistic and Cox regression models adjusted for patient demographics, clinicopathologic features, and treatment. Results Of 1335 patients satisfying inclusion criteria, 679 (50.9%) patients underwent ND: 94 (13.8%) had pN0, 109 (16.1%) had pN1, 411 (60.5%) had pN2, 60 (8.8%) had pN3, and 5 (0.7%) had pNx classification. On multivariable binary logistic regression, academic treatment facility, cT4, and cN1-3 classification were associated with higher odds of undergoing ND (p < 0.05); salivary, sinonasal, oropharyngeal, hypopharyngeal, and laryngeal primary sites were associated with decreased odds (p < 0.05). Compared with those undergoing neck observation, patients undergoing ND had worse OS (49.4% vs. 61.5%, p < 0.001) on Kaplan-Meier but not multivariable Cox (adjusted hazard ratio [aHR] 1.00, 95% confidence interval [CI] 0.82-1.24, p = 0.968) regression. Compared with adjuvant immunotherapy alone, the addition of radiotherapy (aHR 0.64, 95% CI 0.44-0.93) and chemoradiotherapy (aHR 0.56, 95% CI 0.37-0.86) were associated with higher OS (p < 0.025). Conclusion ND was utilized in approximately 51% of patients with HNC undergoing adjuvant immunotherapy. ND was not associated with worse OS, possibly related to the high rate of pN1-3 classification. Level of Evidence 4.
Collapse
Affiliation(s)
- Aman M Patel
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| | - Afash Haleem
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| | - Paul T Cowan
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| | - Dylan F Roden
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark USA
| |
Collapse
|
4
|
Dudziak D, Heger L, Agace WW, Bakker J, de Gruijl TD, Dress RJ, Dutertre C, Fenton TM, Fransen MF, Ginhoux F, Heyman O, Horev Y, Hornsteiner F, Kandiah V, Kles P, Lubin R, Mizraji G, Prokopi A, Saar O, Sopper S, Stoitzner P, Strandt H, Sykora MM, Toffoli EC, Tripp CH, van Pul K, van de Ven R, Wilensky A, Yona S, Zelle‐Rieser C. Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC. Eur J Immunol 2025; 55:e2250325. [PMID: 39668411 PMCID: PMC11739683 DOI: 10.1002/eji.202250325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Diana Dudziak
- Institute of ImmunologyJena University HospitalFriedrich‐Schiller‐UniversityJenaGermany
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
| | - Lukas Heger
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
- Department of Transfusion Medicine and HemostaseologyUniversity Hospital ErlangenErlangenGermany
| | - William W Agace
- LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Immunology SectionLund UniversityLundSweden
| | - Joyce Bakker
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Tanja D. de Gruijl
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Regine J. Dress
- Institute of Systems ImmunologyHamburg Center for Translational Immunology (HCTI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Marieke F. Fransen
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Department of Pulmonary DiseasesAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- SingHealth Duke‐NUS Academic Medical CentreTranslational Immunology InstituteSingaporeSingapore
- INSERM U1015, Gustave Roussy Cancer CampusVillejuifFrance
| | - Oded Heyman
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Yael Horev
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Vinitha Kandiah
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Paz Kles
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Ruth Lubin
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Gabriel Mizraji
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Anastasia Prokopi
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Or Saar
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Sieghart Sopper
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Martina M Sykora
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Elisa C. Toffoli
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Christoph H. Tripp
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Kim van Pul
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Rieneke van de Ven
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
- Department of Otolaryngology, Head and Neck SurgeryAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Asaf Wilensky
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Simon Yona
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Claudia Zelle‐Rieser
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
5
|
Gupta R, Das CK, Nair SS, Pedraza-Bermeo AM, Zahalka AH, Kyprianou N, Bhardwaj N, Tewari AK. From foes to friends: rethinking the role of lymph nodes in prostate cancer. Nat Rev Urol 2024; 21:687-700. [PMID: 39095580 DOI: 10.1038/s41585-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Clinically localized prostate cancer is often treated with radical prostatectomy combined with pelvic lymph node dissection. Data suggest that lymph node dissection does improve disease staging, but its therapeutic value has often been debated, with few studies showing that lymph node removal directly improves oncological outcomes; however, lymph nodes are an important first site of antigen recognition and immune system activation and the success of many currently used immunological therapies hinges on this dogma. Evidence, particularly in the preclinical setting, has demonstrated that the success of immune checkpoint inhibitors is dampened by the removal of tumour-draining lymph nodes. Thus, whether lymph nodes are truly 'foes' or whether they are actually 'friends' in oncological care is an important idea to discuss.
Collapse
Affiliation(s)
- Raghav Gupta
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandan K Das
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sujit S Nair
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ali H Zahalka
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Cole M, Anastasiou P, Lee C, Yu X, de Castro A, Roelink J, Moore C, Mugarza E, Jones M, Valand K, Rana S, Colliver E, Angelova M, Enfield KSS, Magness A, Mullokandov A, Kelly G, de Gruijl TD, Molina-Arcas M, Swanton C, Downward J, van Maldegem F. Spatial multiplex analysis of lung cancer reveals that regulatory T cells attenuate KRAS-G12C inhibitor-induced immune responses. SCIENCE ADVANCES 2024; 10:eadl6464. [PMID: 39485838 PMCID: PMC11529713 DOI: 10.1126/sciadv.adl6464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Kirsten rat sarcoma virus (KRAS)-G12C inhibition causes remodeling of the lung tumor immune microenvironment and synergistic responses to anti-PD-1 treatment, but only in T cell infiltrated tumors. To investigate mechanisms that restrain combination immunotherapy sensitivity in immune-excluded tumors, we used imaging mass cytometry to explore cellular distribution in an immune-evasive KRAS mutant lung cancer model. Cellular spatial pattern characterization revealed a community where CD4+ and CD8+ T cells and dendritic cells were gathered, suggesting localized T cell activation. KRAS-G12C inhibition led to increased PD-1 expression, proliferation, and cytotoxicity of CD8+ T cells, and CXCL9 expression by dendritic cells, indicating an effector response. However, suppressive regulatory T cells (Tregs) were also found in frequent contact with effector T cells within this community. Lung adenocarcinoma clinical samples showed similar communities. Depleting Tregs led to enhanced tumor control in combination with anti-PD-1 and KRAS-G12C inhibitor. Combining Treg depletion with KRAS inhibition shows therapeutic potential for increasing antitumoral immune responses.
Collapse
Affiliation(s)
- Megan Cole
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Xiaofei Yu
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Jannes Roelink
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Chris Moore
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Martin Jones
- Electron Microscopy, Francis Crick Institute, London, UK
| | - Karishma Valand
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Katey S. S. Enfield
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | | | - Gavin Kelly
- Bioinformatics and Biostatistics, Francis Crick Institute, London, UK
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Febe van Maldegem
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| |
Collapse
|
7
|
Ryu D, Park HB, An EK, Kim SJ, Kim DY, Lim D, Hwang J, Kwak M, Im W, Ryu JH, You S, Lee PCW, Jin JO. Photoimmunotherapy using indocyanine green-loaded Codium fragile polysaccharide and chitosan nanoparticles suppresses tumor growth and metastasis. J Nanobiotechnology 2024; 22:650. [PMID: 39438917 PMCID: PMC11515802 DOI: 10.1186/s12951-024-02944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Metastasis and recurrence are the main challenges in cancer treatment. Among various therapeutic approaches, immunotherapy holds promise for preventing metastasis and recurrence. In this study, we evaluated the efficacy of treating primary cancer and blocking metastasis and recurrence with photo-immunotherapeutic nanoparticles, which were synthesized using two types of charged polysaccharides. Codium fragile polysaccharide (CFP), which exhibits immune-stimulating properties and carries a negative charge, was combined with positively charged chitosan to synthesize nanoparticles. Additionally, indocyanine green (ICG), a photosensitizer, was loaded inside these particles and was referred to as chitosan-CFP-ICG (CC-ICG). Murine colon cancer cells (CT-26) internalized CC-ICG, and subsequent 808-nanometer laser irradiation promoted apoptotic/necrotic cell death. Moreover, intratumoral injection of CC-ICG, with 808-nanometer laser irradiation eliminated CT-26 tumors in mice. Rechallenged lung metastases of CT-26 cancer were inhibited by dendritic cell activation-mediated cytotoxic T lymphocyte stimulation in mice cured by CC-ICG. These results demonstrated that CC-ICG is a natural tumor therapeutic with the potential to treat primary tumors and suppress metastasis and recurrence.
Collapse
Affiliation(s)
- Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Da Young Kim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Daeun Lim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Wonpil Im
- Departments of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon, 210-702, South Korea.
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea.
| |
Collapse
|
8
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
10
|
Castenmiller SM, Kanagasabesan N, Guislain A, Nicolet BP, van Loenen MM, Monkhorst K, Veenhof AA, Smit EF, Hartemink KJ, Haanen JB, de Groot R, Wolkers MC. Tertiary lymphoid structure-related immune infiltrates in NSCLC tumor lesions correlate with low tumor-reactivity of TIL products. Oncoimmunology 2024; 13:2392898. [PMID: 39188755 PMCID: PMC11346574 DOI: 10.1080/2162402x.2024.2392898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Adoptive transfer of tumor infiltrating lymphocytes (TIL therapy) has proven highly effective for treating solid cancers, including non-small cell lung cancer (NSCLC). However, not all patients benefit from this therapy for yet unknown reasons. Defining markers that correlate with high tumor-reactivity of the autologous TIL products is thus key for achieving better tailored immunotherapies. We questioned whether the composition of immune cell infiltrates correlated with the tumor-reactivity of expanded TIL products. Unbiased flow cytometry analysis of immune cell infiltrates of 26 early-stage and 20 late-stage NSCLC tumor lesions was used for correlations with the T cell differentiation and activation status, and with the expansion rate and anti-tumor response of generated TIL products. The composition of tumor immune infiltrates was highly variable between patients. Spearman's Rank Correlation revealed that high B cell infiltration negatively correlated with the tumor-reactivity of the patient's expanded TIL products, as defined by cytokine production upon exposure to autologous tumor digest. In-depth analysis revealed that tumor lesions with high B cell infiltrates contained tertiary lymphoid structure (TLS)-related immune infiltrates, including BCL6+ antibody-secreting B cells, IgD+BCL6+ B cells and CXCR5+BLC6+ CD4+ T cells, and higher percentages of naïve CD8+ T cells. In conclusion, the composition of immune cell infiltrates in NSCLC tumors associates with the functionality of the expanded TIL product. Our findings may thus help improve patient selection for TIL therapy.
Collapse
Affiliation(s)
- Suzanne M. Castenmiller
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Nandhini Kanagasabesan
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Benoît P. Nicolet
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Marleen M. van Loenen
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Alexander A.F.A. Veenhof
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Egbert F. Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Koen J. Hartemink
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Medical Oncology and Division of Molecular Oncology and Immunology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Head of Melanoma Clinic, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rosa de Groot
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Hematology, LUMC, Leiden, The Netherlands
| | - Monika C. Wolkers
- Sanquin Blood Supply, Division Research Immunotherapy, and Landsteiner Laboratory and Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
11
|
You S, Li S, Zeng L, Song J, Li Z, Li W, Ni H, Xiao X, Deng W, Li H, Lin W, Liang C, Zheng Y, Cheng SC, Xiao N, Tong M, Yu R, Huang J, Huang H, Xu H, Han J, Ren J, Mao K. Lymphatic-localized Treg-mregDC crosstalk limits antigen trafficking and restrains anti-tumor immunity. Cancer Cell 2024; 42:1415-1433.e12. [PMID: 39029466 DOI: 10.1016/j.ccell.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
The tumor microenvironment (TME) has a significant impact on tumor growth and immunotherapy efficacies. However, the precise cellular interactions and spatial organizations within the TME that drive these effects remain elusive. Using advanced multiplex imaging techniques, we have discovered that regulatory T cells (Tregs) accumulate around lymphatic vessels in the peripheral tumor stroma. This localized accumulation is facilitated by mature dendritic cells enriched in immunoregulatory molecules (mregDCs), which promote chemotaxis of Tregs, establishing a peri-lymphatic Treg-mregDC niche. Within this niche, mregDCs facilitate Treg activation, which in turn restrains the trafficking of tumor antigens to the draining mesenteric lymph nodes, thereby impeding the initiation of anti-tumor adaptive immune responses. Disrupting Treg recruitment to mregDCs inhibits tumor progression. Our study provides valuable insights into the organization of TME and how local crosstalk between lymphoid and myeloid cells suppresses anti-tumor immune responses.
Collapse
Affiliation(s)
- Siyuan You
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Shuqin Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Lingsu Zeng
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jinsheng Song
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Zifeng Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Weiyun Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hengxiao Ni
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Xu Xiao
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenbo Deng
- Key Laboratory of Reproductive Health Research, Fujian Province University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongye Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Wenbo Lin
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Chenyu Liang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Yanfei Zheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Rongshan Yu
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hongling Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hongzhi Xu
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Jianlin Ren
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
12
|
Yueh PF, Chiang CS, Tsai IJ, Tseng YL, Chen HR, Lan KL, Hsu FT. A multifunctional PEGylated liposomal-encapsulated sunitinib enhancing autophagy, immunomodulation, and safety in renal cell carcinoma. J Nanobiotechnology 2024; 22:459. [PMID: 39085911 PMCID: PMC11293195 DOI: 10.1186/s12951-024-02664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Sunitinib is a multikinase inhibitor used to treat patients with advanced renal cell carcinoma (RCC). However, sunitinib toxicity makes it a double-edged sword. Potent immune modulation by sunitinib extends to nuclear interactions. To address these issues, there is an urgent need for delivery vectors suitable for sunitinib treatment. METHODS We developed PEGylated liposomes as delivery vectors to precisely target sunitinib (lipo-sunitinib) to RCC tumors. Further investigations, including RNA sequencing (RNA-seq), were performed to evaluate transcriptomic changes in these pathways. DiI/DiR-labeled lipo-sunitinib was used for the biodistribution analysis. Flow cytometry and immunofluorescence (IF) were used to examine immune modulation in orthotopic RCC models. RESULTS The evaluation of results indicated that lipo-sunitinib precisely targeted the tumor site to induce autophagy and was readily taken up by RCC tumor cells. In addition, transcriptomic assays revealed that following lipo-sunitinib treatment, autophagy, antigen presentation, cytokine, and chemokine production pathways were upregulated, whereas the epithelial-mesenchymal transition (EMT) pathway was downregulated. In vivo data provided evidence supporting the inhibitory effect of lipo-sunitinib on RCC tumor progression and metastasis. Flow cytometry further demonstrated that liposunitinib increased the infiltration of effector T cells (Teffs) and conventional type 1 dendritic cells (cDC1s) into the tumor. Furthermore, systemic immune organs such as the tumor-draining lymph nodes, spleen, and bone marrow exhibited upregulated anticancer immunity following lipo-sunitinib treatment. CONCLUSION Our findings demonstrated that lipo-sunitinib is distributed at the RCC tumor site, concurrently inducing potent autophagy, elevating antigen presentation, activating cytokine and chemokine production pathways, and downregulating EMT in RCC cells. This comprehensive approach significantly enhanced tumor inhibition and promoted anticancer immune modulation.
Collapse
Affiliation(s)
- Po-Fu Yueh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 6th Floor, Shouren Building, No. 155, Section 2, Linong Street, Beitou District, Taipei, 112, Taiwan, ROC
| | - Chih-Sheng Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan, ROC
| | - I-Jung Tsai
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | - He-Ru Chen
- Taiwan Liposome Company, Ltd., Taipei, Taiwan, ROC
| | - Keng-Li Lan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 6th Floor, Shouren Building, No. 155, Section 2, Linong Street, Beitou District, Taipei, 112, Taiwan, ROC.
- Department of Heavy Ion and Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Fei-Ting Hsu
- Department of Biology Science and Technology, China Medical University, 7F, Research Building, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406, Taiwan, ROC.
| |
Collapse
|
13
|
Abbasvandi F, Mahdavi R, Bayat M, Hajighasemi F, Jahanbakhshi F, Aghaei F, Sami N, Khoundabi B, Ataee H, Yousefpour N, Hoseinpour P, Mousavi Kiasary SMS, Omrani Hashemi M, Shojaeian F, Akbari A, Bagherhosseini N, Moradi A, Akbari ME, Abdolahad M. Electrical lymph node scanning (ELS) system for real-time intra-operative detection of involved axillary lymph nodes in adjuvant breast cancer patients. Sci Rep 2024; 14:12900. [PMID: 38839807 PMCID: PMC11153595 DOI: 10.1038/s41598-024-61600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Lymph node (LN) status is an essential prognostic factor in breast cancer (BC) patients, with an important role in the surgical and therapeutic plan. Recently, we have been developed a novel system for real-time intra-operative electrical LN scanning in BC patients. The ELS scores were calibrated by pathological evaluation of the LNs. Herein, we evaluated the efficacy of ELS in a prospective study for non-chemo-treated breast cancer patients. This is a prospective study in which ELS scores are blind for pathologists who declare the clearance or involvement of LNs based on permanent pathology as the gold standard. ELS and frozen-section (FS) pathology results were achieved intra-operatively, and samples were sent for the permanent pathology. The score of ELS did not affect the surgeons' decision, and the treatment approach was carried out based on FS pathology and pre-surgical data, such as imaging and probable biopsies. Patients were recruited from October 2021 through November 2022, and 381 lymph nodes of 97 patients were included in the study. In this study we recruited 38 patients (39.2%) with sentinel lymph node biopsy (SLNB) and 59 patients (60.8%) with ALND. Of the 381 LNs scored by ELS, 329 sentinel LNs underwent routine pathology, while others (n = 52) underwent both FS and permanent pathology. ELS showed a sensitivity of 91.4% for node-positive patients, decreasing to 84.8% when considering all LNs. Using ROC analysis, ELS diagnosis showed a significant AUC of 0.878 in relation to the permanent pathology gold standard. Comparison of ELS diagnosis for different tumor types and LN sizes demonstrated no significant differences, while increasing LN size correlated with enhanced ELS sensitivity. This study confirmed ELS's efficacy in real-time lymph node detection among non-chemo-treated breast cancer patients. The use of ELS's pathological scoring for intra-operative LN diagnosis, especially in the absence of FS pathology or for non-sentinel LN involvement, could improve prognosis and reduce complications by minimizing unnecessary dissection.
Collapse
Affiliation(s)
- Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 1517964311, Tehran, Iran
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reihane Mahdavi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahdis Bayat
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Farzane Hajighasemi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Fahimeh Jahanbakhshi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Faeze Aghaei
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Nafiseh Sami
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batoul Khoundabi
- Iran-Helal Institute of Applied Science and Technology, Red Crescent Society of Iran, Tehran, Iran
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Hossein Ataee
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Narges Yousefpour
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Parisa Hoseinpour
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 1517964311, Tehran, Iran
- SEPAS Pathology Laboratory, Tehran, Iran
| | - Seyed Mohamad Sadegh Mousavi Kiasary
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Omrani Hashemi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shojaeian
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Bagherhosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Abdolahad
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.
- Cancer Institute, Imam-Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Yuwen H, Wang H, Li T, Ren Y, Zhang YK, Chen P, Sun A, Bian G, Li B, Flowers D, Presler M, Subramanian K, Xue J, Wang J, Lynch K, Mei J, He X, Shan B, Hou B. ATG-101 Is a Tetravalent PD-L1×4-1BB Bispecific Antibody That Stimulates Antitumor Immunity through PD-L1 Blockade and PD-L1-Directed 4-1BB Activation. Cancer Res 2024; 84:1680-1698. [PMID: 38501978 PMCID: PMC11094422 DOI: 10.1158/0008-5472.can-23-2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
Collapse
Affiliation(s)
- Hui Yuwen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Huajing Wang
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Tengteng Li
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Yijing Ren
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | | | - Peng Chen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Ao Sun
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Gang Bian
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Bohua Li
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | | | | | | | - Jia Xue
- Crown Bioscience Inc., Taicang, P.R. China
| | | | | | - Jay Mei
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Xiaowen He
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Bo Shan
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Bing Hou
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| |
Collapse
|
16
|
Cui H, Zhao YY, Han YH, Lan Z, Zou KL, Cheng GW, Chen H, Zhong PL, Chen Y, Ma LM, Chen TK, Yu GT. Lymph node targeting strategy using a hydrogel sustained-release system to load effector memory T cells improves the anti-tumor efficacy of anti-PD-1. Acta Biomater 2024; 180:423-435. [PMID: 38641183 DOI: 10.1016/j.actbio.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: F127@TEM@aPD-1 show unique advantages in cancer treatment. When injected subcutaneously, F127@TEM@aPD-1 can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhou Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ke-Long Zou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Pei-Liang Zhong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Li-Min Ma
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Tong-Kai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
17
|
Voortman J. No prime time yet for checkpoint inhibitors in localised head and neck squamous cell carcinoma. Lancet Oncol 2024; 25:533-534. [PMID: 38697152 DOI: 10.1016/s1470-2045(24)00197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Affiliation(s)
- Jens Voortman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands.
| |
Collapse
|
18
|
Houbaert D, Nikolakopoulos AP, Jacobs KA, Meçe O, Roels J, Shankar G, Agrawal M, More S, Ganne M, Rillaerts K, Boon L, Swoboda M, Nobis M, Mourao L, Bosisio F, Vandamme N, Bergers G, Scheele CLGJ, Agostinis P. An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade. Cell Rep 2024; 43:114020. [PMID: 38554280 DOI: 10.1016/j.celrep.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Collapse
Affiliation(s)
- Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Apostolos Panagiotis Nikolakopoulos
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Jana Roels
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | | | - Magdalena Swoboda
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
| | - Larissa Mourao
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Niels Vandamme
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gabriele Bergers
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium.
| |
Collapse
|
19
|
Xu S, Li X, Hu Q, Zhang J, Li R, Meng L, Zhu X. Focused Ultrasound-Responsive Nanocomposite with Near-Infrared II Mechanoluminescence for Spatiotemporally Selective Immune Activation in Lymph Nodes. Chemistry 2024; 30:e202304066. [PMID: 38289154 DOI: 10.1002/chem.202304066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 02/15/2024]
Abstract
The immune regulation of the lymphatic system, especially the lymph node (LN), is of great significance for the treatment of diseases and the inhibition of pathogenic organisms spreading in the body. However, achieving precise spatiotemporal control of immune cell activation in LN in vivo remains a challenge due to tissue depth and off-target effects. Furthermore, minimally invasive and real-time feedback methods to monitor the regulation of the immune system in LN are lacking. Here, focused ultrasound responsive immunomodulator loaded nanoplatform (FURIN) with near-infrared II (NIR-II) luminescence is designed to achieve spatiotemporally controllable immune activation in LN in vivo. The NIR-II persistent luminescence of FURIN can track its delivery in LN through bioimaging. Under focused ultrasound (FUS) stimulation, the immunomodulator encapsulated in FURIN can be released locally in the LN to activate immune cells such as dendritic cells and the NIR-II mechanoluminescence of FURIN provides real-time optical feedback signals for immune activation. This work points to a FUS mediated, spatiotemporal selective immune activation strategy in vivo with the feedback control of luminescence signals via ultrasound responsive nanocomposite, which is of great significance in improving the efficacy and reducing the side effect of immune regulation for the development of potential immunotherapeutic methods in the future.
Collapse
Affiliation(s)
- Sixin Xu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Xiaohe Li
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Qian Hu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Jieying Zhang
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Ruotong Li
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Lingkai Meng
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Xingjun Zhu
- School of Physical Science and Technology., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
- State Key Laboratory of Advanced Medical Materials and Devices., ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| |
Collapse
|
20
|
Guo M, Liu MYR, Brooks DG. Regulation and impact of tumor-specific CD4 + T cells in cancer and immunotherapy. Trends Immunol 2024; 45:303-313. [PMID: 38508931 DOI: 10.1016/j.it.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.
Collapse
Affiliation(s)
- Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Melissa Yi Ran Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Morrison AI, Mikula AM, Spiekstra SW, de Kok M, Affandi AJ, Roest HP, van der Laan LJW, de Winde CM, Koning JJ, Gibbs S, Mebius RE. An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function. Tissue Eng Regen Med 2024; 21:455-471. [PMID: 38114886 PMCID: PMC10987465 DOI: 10.1007/s13770-023-00609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited. METHODS Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed. RESULTS FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a- MUTZ-3 DCs induced T cell proliferation within a mixed leukocyte reaction (MLR), indicating a functional DC status. FRCs expressed podoplanin (PDPN), CD90 (Thy-1), CD146 (MCAM) and Gremlin-1, thereby resembling the DC supporting stromal cell subset identified in HuLNs. CONCLUSION This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.
Collapse
Affiliation(s)
- Andrew I Morrison
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Aleksandra M Mikula
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Michael de Kok
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Alsya J Affandi
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Koning
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Susan Gibbs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Josi R, Ogrina A, Rothen D, Balke I, Casaramona AS, de Brot S, Mohsen MO. Intranodal Injection of Immune Activator Demonstrates Antitumor Efficacy in an Adjuvant Approach. Vaccines (Basel) 2024; 12:355. [PMID: 38675737 PMCID: PMC11054762 DOI: 10.3390/vaccines12040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor-draining lymph nodes (tdLN) are the initial site of metastases and are the prime site for generating robust antitumor responses. In this study, we explored the efficacy of a universal immune activator (ImmAct) targeted to the tdLN. This approach can be viewed as an attempt to turn a cold, unresponsive tdLN into a hot, responsive site. The adjuvant antitumor efficacy of our novel intranodal injection was evaluated in an aggressive metastatic mammary carcinoma murine model. The cancer cells were inoculated subcutaneously in the lower quadrant of the mouse to provoke the tdLN (inguinal lymph node). The study encompasses a range of methodologies, including in vivo and in vitro assays and high-dimensional flow cytometry analysis. Our findings demonstrated that intranodal administration of ImmAct following the dissection of the primary tumor led to improved tumor-free survival and minimized weight loss. ImmAct led to both local and systemic alterations in the cellular and humoral immunity. Additionally, after ImmAct treatment, non-responders showed a higher rate of exhausted CD8+ T cells compared to responders. Indeed, our innovative approach surpassed the gold standard surgery of sentinel lymph node excision. Overall, intranodal administration of ImmAct yielded a robust antitumor immune response, offering protection against micrometastases and relapse.
Collapse
Affiliation(s)
- Romano Josi
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.O.M.)
- Department of Rheumatology and Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Anete Ogrina
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia (I.B.)
| | - Dominik Rothen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.O.M.)
- Department of Rheumatology and Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Ina Balke
- Plant Virology Laboratory, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia (I.B.)
| | - Arnau Solé Casaramona
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.O.M.)
- Department of Rheumatology and Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland;
| | - Mona O. Mohsen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland (M.O.M.)
- Department of Rheumatology and Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Tajarub Research & Development, Doha P.O. Box 12627, Qatar
| |
Collapse
|
23
|
Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 2024; 24:213-227. [PMID: 37783860 PMCID: PMC12001822 DOI: 10.1038/s41577-023-00937-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.
Collapse
Affiliation(s)
- Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
24
|
Chelladurai M, Xu D, Izraely S, Ben-Menachem S, Bengaiev R, Sagi-Assif O, Yuan W, Pasmanik Chor M, Hoon DS, Lu W, Witz IP. A heterodimer of α and β hemoglobin chains functions as an innate anticancer agent. Int J Cancer 2024; 154:561-572. [PMID: 37675956 DOI: 10.1002/ijc.34702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
Metastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor. In the present study, exploring mechanisms regulating melanoma brain metastasis, we discovered that brain-derived factors restrain proliferation and induce apoptosis and necrosis of brain-metastasizing melanoma cells. Employing various purification procedures, we identified a heterodimer composed of hemoglobin alpha and beta chains that perform these antimetastatic functions. Neither the alpha nor the beta subunit alone was inhibitory. An alpha/beta chain dimer chemically purified from human hemoglobin inhibited the cell viability of primary melanomas, melanoma brain metastasis (MBM), and breast cancer cell lines. The dimer-induced DNA damage, cell cycle arrest at the SubG1 phase, apoptosis, and significant necrosis in four MBM cell lines. Proteomic analysis of dimer-treated MBM cells revealed that the dimer downregulates the expression of BRD4, GAB2, and IRS2 proteins, playing crucial roles in cancer cell sustainability and progression. Thus, we hypothesize that the hemoglobin dimer functions as a resistance factor against brain-metastasizing cancer cells.
Collapse
Affiliation(s)
- Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Dan Xu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Roman Bengaiev
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Metsada Pasmanik Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel-Aviv, Israel
| | - Dave S Hoon
- Department of Translational Molecular Medicine and Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Wright QG, Sinha D, Wells JW, Frazer IH, Gonzalez Cruz JL, Leggatt GR. Peritumoral administration of immunomodulatory antibodies as a triple combination suppresses skin tumor growth without systemic toxicity. J Immunother Cancer 2024; 12:e007960. [PMID: 38296598 PMCID: PMC10831460 DOI: 10.1136/jitc-2023-007960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Skin cancers, particularly keratinocyte cancers, are the most commonly diagnosed tumors. Although surgery is often effective in early-stage disease, skin tumors are not always easily accessible, can reoccur and have the ability to metastasize. More recently, immunotherapies, including intravenously administered checkpoint inhibitors, have been shown to control some skin cancers, but with off-target toxicities when used in combination. Our study investigated whether peritumoral administration of an antibody combination targeting PD-1, 4-1BB (CD137) and VISTA might control skin tumors and lead to circulating antitumor immunity without off-target toxicity. METHODS The efficacy of combination immunotherapy administered peritumorally or intravenously was tested using transplantable tumor models injected into mouse ears (primary tumors) or subcutaneously in flank skin (secondary tumors). Changes to the tumor microenvironment were tracked using flow cytometry while tumor-specific, CD8 T cells were identified through enzyme-linked immunospot (ELISPOT) assays. Off-target toxicity of the combination immunotherapy was assessed via serum alanine aminotransferase ELISA and histological analysis of liver sections. RESULTS The data showed that local administration of antibody therapy eliminated syngeneic murine tumors transplanted in the ear skin at a lower dose than required intravenously, and without measured hepatic toxicity. Tumor elimination was dependent on CD8 T cells and was associated with an increased percentage of CD8 T cells expressing granzyme B, KLRG1 and Eomes, and a decreased population of CD4 T cells including CD4+FoxP3+ cells in the treated tumor microenvironment. Importantly, untreated, distal tumors regressed following antibody treatment of a primary tumor, and immune memory prevented growth of subcutaneous flank tumors administered 50 days after regression of a primary tumor. CONCLUSIONS Together, these data suggest that peritumoral immunotherapy for skin tumors offers advantages over conventional intravenous delivery, allowing antibody dose sparing, improved safety and inducing long-term systemic memory. Future clinical trials of immunotherapy for primary skin cancer should focus on peritumoral delivery of combinations of immune checkpoint antibodies.
Collapse
Affiliation(s)
- Quentin G Wright
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Debottam Sinha
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian H Frazer
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
26
|
Wang Y, Zhu T, Shi Q, Zhu G, Zhu S, Hou F. Tumor-draining lymph nodes: opportunities, challenges, and future directions in colorectal cancer immunotherapy. J Immunother Cancer 2024; 12:e008026. [PMID: 38242718 PMCID: PMC10806546 DOI: 10.1136/jitc-2023-008026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are potential immunotherapy targets that could expand the population of patients with colorectal cancer (CRC) who may benefit from immunotherapy. Currently, pathological detection of tumor cell infiltration limits the acquisition of immune information related to the resected lymph nodes. Understanding the immune function and metastatic risk of specific stages of lymph nodes can facilitate better discussions on the removal or preservation of lymph nodes, as well as the timing of immunotherapy. This review summarized the contribution of TDLNs to CRC responses to immune checkpoint blockade therapy, local immunotherapy, adoptive cell therapy, and cancer vaccines, and discussed the significance of these findings for the development of diagnostics based on TDLNs and the potential implications for guiding immunotherapy after a definitive diagnosis. Molecular pathology and immune spectrum diagnosis of TDLNs will promote significant advances in the selection of immunotherapy options and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yao Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghui Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siwei Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Wang S, Cheng M, Chen CC, Chang CY, Tsai YC, Yang JM, Wu TC, Huang CH, Hung CF. Salmonella immunotherapy engineered with highly efficient tumor antigen coating establishes antigen-specific CD8+ T cell immunity and increases in antitumor efficacy with type I interferon combination therapy. Oncoimmunology 2023; 13:2298444. [PMID: 38170154 PMCID: PMC10761047 DOI: 10.1080/2162402x.2023.2298444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria-based cancer therapy employs various strategies to combat tumors, one of which is delivering tumor-associated antigen (TAA) to generate specific immunity. Here, we utilized a poly-arginine extended HPV E7 antigen (9RE7) for attachment on Salmonella SL7207 outer membrane to synthesize the bacterial vaccine Salmonella-9RE7 (Sal-9RE7), which yielded a significant improvement in the amount of antigen presentation compared to the previous lysine-extended antigen coating strategy. In TC-1 tumor mouse models, Sal-9RE7 monotherapy decreased tumor growth by inducing E7 antigen-specific immunity. In addition, pairing Sal-9RE7 with adjuvant Albumin-IFNβ (Alb-IFNβ), a protein cytokine fusion, the combination significantly increased the antitumor efficacy and enhanced immunogenicity in the tumor microenvironment (TME). Our study made a significant contribution to personalized bacterial immunotherapy via TAA delivery and demonstrated the advantage of combination therapy.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao-Cheng Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chia-Yu Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jr-Ming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - TC Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Sproll KC, Hermes I, Felder G, Stoecklein NH, Seidl M, Kaiser P, Kaisers W. Comparative analysis of diagnostic ultrasound and histopathology for detecting cervical lymph node metastases in head and neck cancer. J Cancer Res Clin Oncol 2023; 149:17319-17333. [PMID: 37823935 PMCID: PMC10657327 DOI: 10.1007/s00432-023-05439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE We evaluated the current performance of diagnostic ultrasound (US) for detecting cervical lymph node (LN) metastases based on objective measures and subjective findings in comparison to the gold standard, histopathological evaluation. PATIENTS AND METHODS From 2007 to 2016, we prospectively included patients with head and neck cancer who were scheduled for surgical therapy including neck dissection. LNs were examined by multimodal US by a level III head and neck sonologist and individually assigned to a map containing six AAO-HNS neck LN levels preoperatively. During the operation, LNs were dissected and then assessed by routine histopathology, with 86% of them examined individually and the remaining LNs (14%) per AAO-HNS neck LN level. The optimal cutoff points (OCPs) of four defined LN diameters and 2D and 3D roundness indices per AAO-HNS neck LN level were determined. RESULTS In total, 235 patients were included, and 4539 LNs were analyzed by US, 7237 by histopathology and 2684 by both methods. Of these, 259 (9.65%) were classified as suspicious for metastasis by US, whereas 299 (11.14%) were found to be positive by histopathology. Subjective US sensitivity and specificity were 0.79 and 0.99, respectively. The OCPs of the individual LN diameters and the 2D and 3D roundness index were determined individually for all AAO-HNS neck LN levels. Across all levels, the OCP for the 2D index was 1.79 and the 3D index was 14.97. The predictive performance of all distances, indices, and subjective findings improved with increasing metastasis size. Anticipation of pN stage was best achieved with subjective US findings and the smallest diameter (Cohen's κ = 0.713 and 0.438, respectively). CONCLUSION Our LN mapping and meticulous 1:1 node-by-node comparison reveals the usefulness of US for detecting metastatic involvement of neck LNs in head and neck carcinomas as compared to histopathology. The predictive ability for small tumor deposits less than 8 mm in size remains weak and urgently needs improvement.
Collapse
Affiliation(s)
- Karl Christoph Sproll
- Department of Oral and Maxillofacial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Iryna Hermes
- Department of Oral and Maxillofacial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Gerd Felder
- Coordination Center for Clinical Trials, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Seidl
- Department of Pathology, Medical Faculty and University Hospital, Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Kaiser
- Department of Pathology, Medical Faculty and University Hospital, Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Pathology, Dermatopathology, Cytology and Molecular Pathology, Wetzlar, Germany
| | - Wolfgang Kaisers
- Department of Anesthesiology, Sana Hospital Benrath, Düsseldorf, Germany
| |
Collapse
|
29
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
30
|
Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, Ma X. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnology 2023; 21:212. [PMID: 37415161 PMCID: PMC10327386 DOI: 10.1186/s12951-023-01977-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Although cancer immunotherapy is a compelling approach against cancer, its effectiveness is hindered by the challenge of generating a robust and durable immune response against metastatic cancer cells. Nanovaccines, specifically engineered to transport cancer antigens and immune-stimulating agents to the lymph nodes, hold promise in overcoming these limitations and eliciting a potent and sustained immune response against metastatic cancer cells. This manuscript provides an in-depth exploration of the lymphatic system's background, emphasizing its role in immune surveillance and tumor metastasis. Furthermore, it delves into the design principles of nanovaccines and their unique capability to target lymph node metastasis. The primary objective of this review is to provide a comprehensive overview of the current advancements in nanovaccine design for targeting lymph node metastasis, while also discussing their potential to enhance cancer immunotherapy. By summarizing the state-of-the-art in nanovaccine development, this review aims to shed light on the promising prospects of harnessing nanotechnology to potentiate cancer immunotherapy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Shen Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Keqin Tan
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Yuanling Meng
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingyi Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
31
|
Tanaka R, Hiramitsu M, Shimizu S, Kawashima S, Sato A, Iwase Y. Efficient drug delivery to lymph nodes by intradermal administration and enhancement of anti-tumor effects of immune checkpoint inhibitors. Cancer Treat Res Commun 2023; 36:100740. [PMID: 37437382 DOI: 10.1016/j.ctarc.2023.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Immune checkpoint inhibitors are novel immunotherapy drugs that have improved cancer treatments. Yet only a small percentage of patients experience durable responses to immune checkpoint inhibitors. Recently, it has been suggested that lymph nodes are important for the efficacy of immunotherapy. However, it is still unclear whether the efficient anti-PD-L1 antibody delivery to tumor-draining lymph nodes improves drug efficacy. In this study, we first characterized lymphatic drug delivery by intradermal administration compared with conventional subcutaneous and systemic administration in rodents and non-human primates. The results confirmed that intradermal administration of immune checkpoint inhibitors is suitable for efficient delivery to the tumor-draining lymph node. In FM3A and EMT6 tumor mice models with different PD-L1 expressions in tumor, efficient delivery of anti-PD-L1 antibody to tumor-draining lymph node by intradermal administration resulted in efficient inhibition of tumor growth in both models. The intradermal administration of low-dose anti-PD-L1 antibody also significantly suppressed tumor growth compared to intraperitoneal administration. It also suppressed tumor growth regardless of PD-L1 expression in tumors, suggesting the importance of blocking PD-L1 in tumor-draining lymph nodes. Hence, efficient delivery by intradermal administration of anti-PD-L1 antibody to tumor-draining lymph node might to be helpful to enhance drug efficacy and potentially reduce adverse events.
Collapse
Affiliation(s)
- Ryo Tanaka
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan
| | - Masaki Hiramitsu
- Bioresearch Center, Technology Coordination Office, TERUMO CORPORATION, Japan
| | - Sakiko Shimizu
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan
| | - Shiori Kawashima
- Bioresearch Center, Technology Coordination Office, TERUMO CORPORATION, Japan
| | - Akiko Sato
- Bioresearch Center, Technology Coordination Office, TERUMO CORPORATION, Japan
| | - Yoichiro Iwase
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan.
| |
Collapse
|
32
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
33
|
Athauda A, Nankivell M, Langer R, Pritchard S, Langley RE, von Loga K, Starling N, Chau I, Cunningham D, Grabsch HI. Pathological regression of primary tumour and metastatic lymph nodes following chemotherapy in resectable OG cancer: pooled analysis of two trials. Br J Cancer 2023; 128:2036-2043. [PMID: 36966233 PMCID: PMC10206103 DOI: 10.1038/s41416-023-02217-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND No definitive largescale data exist evaluating the role of pathologically defined regression changes within the primary tumour and lymph nodes (LN) of resected oesophagogastric (OG) adenocarcinoma following neoadjuvant chemotherapy and the impact on survival. METHODS Data and samples from two large prospective randomised trials (UK MRC OE05 and ST03) were pooled. Stained slides were available for central pathology review from 1619 patients. Mandard tumour regression grade (TRG) and regression of tumour within LNs (LNR: scored as present/absent) were assessed and correlated with overall survival (OS) using a Cox regression model. An exploratory analysis to define subgroups with distinct prognoses was conducted using a classification and regression tree (CART) analysis. RESULTS Neither trial demonstrated a relationship between TRG score and the presence or absence of LNR. In univariable analysis, lower TRG, lower ypN stage, lower ypT stage, presence of LNR, presence of well/moderate tumour differentiation, and absence of tumour at resection margin were all associated with better OS. However, the multivariable analysis demonstrated that only ypN, ypT, grade of differentiation and resection margin (R0) were independent indicators of prognosis. Exploratory CART analysis identified six subgroups with 3-year OS ranging from 83% to 22%; with ypN stage being the most important single prognostic variable. CONCLUSIONS Pathological LN stage within the resection specimen was the single most important determiner of survival. Our results suggest that the assessment of regression changes within the primary tumour or LNs may not be necessary to define the prognosis further.
Collapse
Affiliation(s)
- Avani Athauda
- Department of Gastrointestinal Oncology and Lymphoma, The Royal Marsden NHS Foundation Trust, London, UK
| | - Matthew Nankivell
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Rupert Langer
- Klinisches Institut fur Pathologie und Molekularpathologie, Kepler Universitatsklinikum, Linz, Austria
| | - Susan Pritchard
- Department of Pathology, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ruth E Langley
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Katharina von Loga
- Department of Gastrointestinal Oncology and Lymphoma, The Royal Marsden NHS Foundation Trust, London, UK
| | - Naureen Starling
- Department of Gastrointestinal Oncology and Lymphoma, The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian Chau
- Department of Gastrointestinal Oncology and Lymphoma, The Royal Marsden NHS Foundation Trust, London, UK
| | - David Cunningham
- Department of Gastrointestinal Oncology and Lymphoma, The Royal Marsden NHS Foundation Trust, London, UK.
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands.
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's University, University of Leeds, Leeds, UK.
| |
Collapse
|
34
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
35
|
Hesemans E, Saffarzadeh N, Maksoudian C, Izci M, Chu T, Rios Luci C, Wang Y, Naatz H, Thieme S, Richter C, Manshian BB, Pokhrel S, Mädler L, Soenen SJ. Cu-doped TiO 2 nanoparticles improve local antitumor immune activation and optimize dendritic cell vaccine strategies. J Nanobiotechnology 2023; 21:87. [PMID: 36915084 PMCID: PMC10009859 DOI: 10.1186/s12951-023-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Nanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO2 nanoparticles in order to tune the kinetics and full extent of Cu2+ ion release from the remnant TiO2 nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO2 which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy. The nanoparticles result in highly efficient activation of dendritic cells ex vivo, which upon transplantation in tumor bearing mice, exceeded the therapeutic outcomes obtained with classically stimulated dendritic cells. Efficacious but simple nanomaterials that can promote dendritic cancer cell vaccination strategies open up new avenues for improved immunotherapy and human health.
Collapse
Affiliation(s)
- Evelien Hesemans
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Neshat Saffarzadeh
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Mukaddes Izci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Yuqing Wang
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | - Hendrik Naatz
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | | | | | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Suman Pokhrel
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | - Lutz Mädler
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359, Bremen, Germany.,Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359, Bremen, Germany
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. .,Leuven Cancer Institute, KU Leuven, Leuven, Belgium. .,KU Leuven Institute of Physics-Based Modeling for In Silico Health, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Borm FJ, Smit J, Bakker J, Wondergem M, Smit EF, de Langen AJ, de Gruijl TD. Early response evaluation of PD-1 blockade in NSCLC patients through FDG-PET-CT and T cell profiling of tumor-draining lymph nodes. Oncoimmunology 2023; 12:2204745. [PMID: 37123045 PMCID: PMC10142313 DOI: 10.1080/2162402x.2023.2204745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Better biomarkers for programmed death - (ligand) 1 (PD-(L)1) checkpoint blockade in non-small cell lung cancer (NSCLC) are needed. We explored the predictive value of early response evaluation using Fluor-18-deoxyglucose positron emission tomography and pre- and on-treatment flowcytometric T-cell profiling in peripheral blood and tumor-draining lymph nodes (TDLN). The on-treatment evaluation was performed 7-14 days after the start of PD-1 blockade in NSCLC patients. These data were related to (pathological) tumor response, progression-free survival, and overall survival (OS). We found that increases in total lesion glycolysis (TLG) had a strong reverse correlation with OS (r = -0.93, p = 0.022). Additionally, responders showed decreased progressors and increased Treg frequencies on-treatment. Frequencies of detectable PD-1-expressing CD8+ T cells decreased in responders but remained stable in progressors. This was especially found in the TDLN. Changes in activated Treg rates in TDLN were strongly but, due to low numbers of data points, non-significantly correlated with ΔTLG and reversely correlated with OS.
Collapse
Affiliation(s)
- Frank J. Borm
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands
- CONTACT Frank J. Borm Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden2333 ZA, The Netherlands
| | - Jasper Smit
- Department of Thoracic Oncology, NKI-AvL, Amsterdam, The Netherlands
| | - Joyce Bakker
- Amsterdam UMC Location Vrije Universiteit, Medical Oncology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunology, Amsterdam, Netherlands
| | | | - Egbert F. Smit
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Thoracic Oncology, NKI-AvL, Amsterdam, The Netherlands
| | | | - Tanja D. de Gruijl
- Amsterdam UMC Location Vrije Universiteit, Medical Oncology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunology, Amsterdam, Netherlands
| |
Collapse
|
37
|
Zhang Y, Zhang Y, Yang Y, Xu Z, Gao C, Liu M, Zhu W, Zhao H, Zhou H. Case report: Indocyanine green fluorescence-guided imaging in laparoscope, a more sensitive detection technique of lateral lymph nodes metastases from rectal neuroendocrine tumors. Front Oncol 2022; 12:1101990. [PMID: 36591455 PMCID: PMC9800599 DOI: 10.3389/fonc.2022.1101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background The diagnosis and surgical strategy of lateral lymph node metastases of rectal neuroendocrine tumors are still controversial. At present, the major diagnostic means rely on imaging examinations, but will be affected by the size of lymph nodes leading to false negativity. We provide a new technique to determine lateral lymph node metastases during surgery. Clinical case A 68-year-old man developed abdominal pain, bloating and fever for a month. Colonoscopy revealed the mass is 2.4 cm x 2.0 cm in size, with a wide stratum, poor mobility, and a rough but intact surface mucosa. Therefore, rectal neuroendocrine tumors (R-NET) were diagnosed. Multiple imaging methods, such as CT, octreotide imaging and endoscopic ultrasonography, have not found lateral lymph node metastases from rectal neuroendocrine tumors. But indocyanine green (ICG)-enhanced near-infrared fluorescence-guided imaging during surgery found left lateral lymph nodes metastases, which was proved by postoperative pathological examination. Conclusions We believe that applying ICG-enhanced near-infrared fluorescence-guided imaging in laparoscope can improve the detection of positive LLNs in those R-NET patients who did not reveal LNM on imaging examinations.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Colorectal Surgery, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Pathology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Department of Colorectal Surgery, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changyuan Gao
- Department of Colorectal Surgery, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meixi Liu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjia Zhu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Darragh LB, Gadwa J, Pham TT, Van Court B, Neupert B, Olimpo NA, Nguyen K, Nguyen D, Knitz MW, Hoen M, Corbo S, Joshi M, Zhuang Y, Amann M, Wang XJ, Dow S, Kedl RM, Samedi V, Boss MK, Karam SD. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat Commun 2022; 13:7015. [PMID: 36385142 PMCID: PMC9668826 DOI: 10.1038/s41467-022-34676-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
In the setting of conventional radiation therapy, even when combined with immunotherapy, head and neck cancer often recurs locally and regionally. Elective nodal irradiation (ENI) is commonly employed to decrease regional recurrence. Given our developing understanding that immune cells are radio-sensitive, and that T cell priming occurs in the draining lymph nodes (DLNs), we hypothesize that radiation therapy directed at the primary tumor only will increase the effectiveness of immunotherapies. We find that ENI increases local, distant, and metastatic tumor growth. Multi-compartmental analysis of the primary/distant tumor, the DLNs, and the blood shows that ENI decreases the immune response systemically. Additionally, we find that ENI decreases antigen-specific T cells and epitope spreading. Treating the primary tumor with radiation and immunotherapy, however, fails to reduce regional recurrence, but this is reversed by either concurrent sentinel lymph node resection or irradiation. Our data support using lymphatic sparing radiation therapy for head and neck cancer.
Collapse
Affiliation(s)
- Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany T Pham
- Department of Otolaryngology Head and Neck Surgery, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Khoa Nguyen
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Maureen Hoen
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Denver at Anschutz Medical campus, Aurora, CO, USA
| | - Yonghua Zhuang
- Department of Pediatrics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical campus, Aurora, CO, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED) Schlieren, Zurich, Switzerland
| | - Xiao-Jing Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Davis, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, 80045, USA
| | - Steven Dow
- Department of Radiation Oncology, Colorado State University, Fort Collins, Colorado. Campus, Aurora, CO, USA
| | - Ross M Kedl
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Von Samedi
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Mary-Keara Boss
- Department of Radiation Oncology, Colorado State University, Fort Collins, Colorado. Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
39
|
Liu T, Liu C, Yan M, Zhang L, Zhang J, Xiao M, Li Z, Wei X, Zhang H. Single cell profiling of primary and paired metastatic lymph node tumors in breast cancer patients. Nat Commun 2022; 13:6823. [PMID: 36357424 PMCID: PMC9649678 DOI: 10.1038/s41467-022-34581-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
The microenvironment of lymph node metastasized tumors (LNMT) determines tumor progression and response to therapy, but a systematic study of LNMT is lacking. Here, we generate single-cell maps of primary tumors (PTs) and paired LNMTs in 8 breast cancer patients. We demonstrate that the activation, cytotoxicity, and proliferation of T cells are suppressed in LNMT compared with PT. CD4+CXCL13+ T cells in LNMT are more likely to differentiate into an exhausted state. Interestingly, LAMP3+ dendritic cells in LNMT display lower T cell priming and activating ability than in PT. Additionally, we identify a subtype of PLA2G2A+ cancer-associated fibroblasts enriched in HER2+ breast cancer patients that promotes immune infiltration. We also show that the antigen-presentation pathway is downregulated in malignant cells of the metastatic lymph node. Altogether, we characterize the microenvironment of LNMT and PT, which may shed light on the individualized therapeutic strategies for breast cancer patients with lymph node metastasis.
Collapse
Affiliation(s)
- Tong Liu
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Cheng Liu
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Meisi Yan
- grid.410736.70000 0001 2204 9268Department of Pathology, Harbin Medical University, Harbin, 150081 China
| | - Lei Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Jing Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Min Xiao
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhigao Li
- grid.410736.70000 0001 2204 9268Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaofan Wei
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Hongquan Zhang
- grid.11135.370000 0001 2256 9319Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University International Cancer Institute, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China ,grid.263488.30000 0001 0472 9649Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055 China
| |
Collapse
|
40
|
Li G, Srinivasan S, Wang L, Ma C, Guo K, Xiao W, Liao W, Mishra S, Zhang X, Qiu Y, Lu Q, Liu Y, Zhang N. TGF-β-dependent lymphoid tissue residency of stem-like T cells limits response to tumor vaccine. Nat Commun 2022; 13:6043. [PMID: 36229613 PMCID: PMC9562983 DOI: 10.1038/s41467-022-33768-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
TGF-β signaling is necessary for CD8+ T cell differentiation into tissue resident memory T cells (TRM). Although higher frequency of CD8+ TRM cells in the tumor microenvironment is associated with better prognosis, TGF-β-blockade typically improves rather than worsens outcomes. Here we show that in a mouse melanoma model, in the tumor-draining lymph nodes (TDLN) rather than in the tumors themselves, stem-like CD8+ T cells differentiate into TRMs in a TGF-β and tumor antigen dependent manner. Following vaccination against a melanoma-specific epitope, most tumour-specific CD8+ T cells are maintained in a stem-like state, but a proportion of cells lost TRM status and differentiate into CX3CR1+ effector CD8+ T cells in the TDLN, which are subsequently migrating into the tumours. Disruption of TGF-β signaling changes the dynamics of these developmental processes, with the net result of improving effector CD8+ T cell migration into the tumours. In summary, TDLN stem-like T cells transiently switch from a TGF-β-dependent TRM differentiation program to an anti-tumor migratory effector development upon vaccination, which transition can be facilitated by targeted TGF-β blockade.
Collapse
Affiliation(s)
- Guo Li
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Saranya Srinivasan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kai Guo
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Wenhao Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Wei Liao
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Dermatology, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, 410007, China
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
41
|
Multi-scale characterization of tumor-draining lymph nodes in resectable lung cancer treated with neoadjuvant immune checkpoint inhibitors. EBioMedicine 2022; 84:104265. [PMID: 36116212 PMCID: PMC9486045 DOI: 10.1016/j.ebiom.2022.104265] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Background Regional lymph node (LN) acts as a pivotal organ for antitumor immunity. Paradoxically, tumor-draining LNs (TDLNs) are usually the first site of tumor metastasis in lung cancer. It is largely unknown about the association between the status of TDLNs and the response of primary tumor beds to immune checkpoint inhibitors (ICIs) in lung cancer patients. Also, studies characterizing the TDLNs in response to ICIs are scarce. Methods We characterized and compared the radiological, metabolic (18F-FDG) and pathologic responses between primary tumor beds and paired TDLNs (invaded/non-invaded) from 68 lung cancer patients who underwent neoadjuvant ICIs plus surgery. Additionally, we performed the spatial profiling of immune and non-immune cells within TDLNs using multiplexed immunofluorescence. Therapy responses (e.g., pathologic complete (pCR) or major response (MPR)) of primary lung tumor beds and paired TDLNs were investigated separately. Findings We observed that responses of TDLNs to ICIs markedly differ from their paired primary lung tumors regarding the radiological, metabolic (18F-FDG uptake), and pathologic alterations. Neoadjuvant ICIs therapy specifically decreased 18F-FDG-reflected metabolic activity in the primary tumor beds with pCR/MPR but not their TDLNs counterparts. Furthermore, the presence of invaded TDLNs was associated with poor pathologic responses in the matched primary tumor beds and predictive of rapid post-treatment tumor relapse. Spatial profiling demonstrated exclusion of T cell infiltrates within the metastatic lesions of invaded TDLNs, and diminished multiple immune and non-immune compositions in non-involved regions surrounding the metastatic lesions. Interpretation These results provide the first clinically-relevant evidence demonstrating unique response patterns of TDLNs under ICIs treatment and revealing the underappreciated association of TDLNs status with the response of their paired primary tumors to ICIs in lung cancer. Funding This work was supported by the National Natural Science Foundation of China (82072570 to F. Yao; 82002941 to B. Sun), the excellent talent program of Shanghai Chest Hospital (to F.Y), the Basic Foundation Program for Youth of Shanghai Chest Hospital (2021YNJCQ2 to H.Yang), and the Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZLCX20212302 to F. Yao).
Collapse
|
42
|
Manspeaker MP, O'Melia MJ, Thomas SN. Elicitation of stem-like CD8 + T cell responses via lymph node-targeted chemoimmunotherapy evokes systemic tumor control. J Immunother Cancer 2022; 10:jitc-2022-005079. [PMID: 36100312 PMCID: PMC9472119 DOI: 10.1136/jitc-2022-005079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background Tumor-draining lymph nodes (TdLNs) are critical in the regulation of local and systemic antitumor T cell immunity and are implicated in coordinating responses to immunomodulatory therapies. Methods Biomaterial nanoparticles that deliver chemotherapeutic drug paclitaxel to TdLNs were leveraged to explore its effects in combination and immune checkpoint blockade (ICB) antibody immunotherapy to determine the benefit of TdLN-directed chemoimmunotherapy on tumor control. Results Accumulation of immunotherapeutic drugs in combination within TdLNs synergistically enhanced systemic T cell responses that led to improved control of local and disseminated disease and enhanced survival in multiple murine breast tumor models. Conclusions These findings suggest a previously underappreciated role of secondary lymphoid tissues in mediating effects of chemoimmunotherapy and demonstrate the potential for nanotechnology to unleashing drug synergies via lymph node targeted delivery to elicit improved response of breast and other cancers.
Collapse
Affiliation(s)
- Margaret P Manspeaker
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Susan N Thomas
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Zhang Y, Sriramaneni RN, Clark PA, Jagodinsky JC, Ye M, Jin W, Wang Y, Bates A, Kerr CP, Le T, Allawi R, Wang X, Xie R, Havighurst TC, Chakravarty I, Rakhmilevich AL, O'Leary KA, Schuler LA, Sondel PM, Kim K, Gong S, Morris ZS. Multifunctional nanoparticle potentiates the in situ vaccination effect of radiation therapy and enhances response to immune checkpoint blockade. Nat Commun 2022; 13:4948. [PMID: 35999216 PMCID: PMC9399096 DOI: 10.1038/s41467-022-32645-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Radiation therapy (RT) activates an in situ vaccine effect when combined with immune checkpoint blockade (ICB), yet this effect may be limited because RT does not fully optimize tumor antigen presentation or fully overcome suppressive mechanisms in the tumor-immune microenvironment. To overcome this, we develop a multifunctional nanoparticle composed of polylysine, iron oxide, and CpG (PIC) to increase tumor antigen presentation, increase the ratio of M1:M2 tumor-associated macrophages, and enhance stimulation of a type I interferon response in conjunction with RT. In syngeneic immunologically "cold" murine tumor models, the combination of RT, PIC, and ICB significantly improves tumor response and overall survival resulting in cure of many mice and consistent activation of tumor-specific immune memory. Combining RT with PIC to elicit a robust in situ vaccine effect presents a simple and readily translatable strategy to potentiate adaptive anti-tumor immunity and augment response to ICB or potentially other immunotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Paul A Clark
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin C Jagodinsky
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Wonjong Jin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amber Bates
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline P Kerr
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Raad Allawi
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiuxiu Wang
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas C Havighurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ishan Chakravarty
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kyungmann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
44
|
Liu Z, Yu Z, Chen D, Verma V, Yuan C, Wang M, Wang F, Fan Q, Wang X, Li Y, Ma Y, Wu M, Yu J. Pivotal roles of tumor-draining lymph nodes in the abscopal effects from combined immunotherapy and radiotherapy. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:971-986. [PMID: 35962977 PMCID: PMC9558691 DOI: 10.1002/cac2.12348] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/28/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Currently, due to synergy enhancement of anti-tumor effects and potent stimulation of abscopal effects, combination therapy with irradiation and programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint inhibition (immuno-radiotherapy, iRT) has revolutionized the therapeutic guidelines. It has been demonstrated that tumor-draining lymph nodes (TDLN) are essential for effective antitumor immunity induced by radiotherapy, immunotherapy, or iRT. Given that the function of TDLN in iRT remains unclear, this study aimed to investigate the function and mechanism of TDLN in iRT-induced abscopal effects. METHODS The function of TDLN was evaluated using unilateral or bilateral MC38 and B16F10 subcutaneous tumor models with or without indicated TDLN. The flow cytometry, multiple immunofluorescence analysis, and NanoString analysis were utilized to detect the composition and function of the immune cells in the primary and abscopal tumor microenvironment. Additionally, we tempted to interrogate the possible mechanisms via RNA-sequencing of tumor-infiltrating lymphocytes and TDLN. RESULTS TDLN deficiency impaired the control of tumor growth by monotherapy. Bilateral TDLN removal rather than unilateral TDLN removal substantially curtailed iRT-stimulated anti-tumor and abscopal effects. Furthermore, in the absence of TDLN, the infiltration of CD45+ and CD8+ T cells was substantially reduced in both primary and abscopal tumors, and the anti-tumor function of CD8+ T cells was attenuated as well. Additionally, the polarization of tumor-associated macrophages in primary and abscopal tumors were found to be dependent on intact bilateral TDLN. RNA-sequencing data indicated that impaired infiltration and anti-tumor effects of immune cells partially attributed to the altered secretion of components from the tumor microenvironment. CONCLUSIONS TDLN play a critical role in iRT by promoting the infiltration of CD8+ T cells and maintaining the M1/M2 macrophage ratio.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.,Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Zhiyong Yu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Dawei Chen
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Vivek Verma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States
| | - Chenxi Yuan
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Minglei Wang
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Fei Wang
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Xingwu Wang
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Yang Li
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Yuequn Ma
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Meng Wu
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Jinming Yu
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.,Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| |
Collapse
|
45
|
van Pul KM, Notohardjo JCL, Fransen MF, Koster BD, Stam AGM, Chondronasiou D, Lougheed SM, Bakker J, Kandiah V, van den Tol MP, Jooss K, Vuylsteke RJCLM, van den Eertwegh AJM, de Gruijl TD. Local delivery of low-dose anti–CTLA-4 to the melanoma lymphatic basin leads to systemic T
reg
reduction and effector T cell activation. Sci Immunol 2022; 7:eabn8097. [DOI: 10.1126/sciimmunol.abn8097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Preclinical studies show that locoregional CTLA-4 blockade is equally effective in inducing tumor eradication as systemic delivery, without the added risk of immune-related side effects. This efficacy is related to access of the CTLA-4 blocking antibodies to tumor-draining lymph nodes (TDLNs). Local delivery of anti–CTLA-4 after surgical removal of primary melanoma, before sentinel lymph node biopsy (SLNB), provides a unique setting to clinically assess the role of TDLN in the biological efficacy of locoregional CTLA-4 blockade. Here, we have evaluated the safety, tolerability, and immunomodulatory effects in the SLN and peripheral blood of a single dose of tremelimumab [a fully human immunoglobulin gamma-2 (IgG2) mAb directed against CTLA-4] in a dose range of 2 to 20 mg, injected intradermally at the tumor excision site 1 week before SLNB in 13 patients with early-stage melanoma (phase 1 trial; NCT04274816). Intradermal delivery was safe and well tolerated and induced activation of migratory dendritic cell (DC) subsets in the SLN. It also induced profound and durable decreases in regulatory T cell (T
reg
) frequencies and activation of effector T cells in both SLN and peripheral blood. Moreover, systemic T cell responses against NY-ESO-1 or MART-1 were primed or boosted (
N
= 7), in association with T cell activation and central memory T cell differentiation. These findings indicate that local administration of anti–CTLA-4 may offer a safe and promising adjuvant treatment strategy for patients with early-stage melanoma. Moreover, our data demonstrate a central role for TDLN in the biological efficacy of CTLA-4 blockade and support TDLN-targeted delivery methods.
Collapse
Affiliation(s)
- Kim M. van Pul
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Amsterdam UMC location Vrije Universiteit, Surgical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Jessica C. L. Notohardjo
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Marieke F. Fransen
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam UMC location Vrije Universiteit, Pulmonary Diseases, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Bas D. Koster
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Anita G. M. Stam
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Dafni Chondronasiou
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Sinéad M. Lougheed
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Joyce Bakker
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Vinitha Kandiah
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - M. Petrousjka van den Tol
- Amsterdam UMC location Vrije Universiteit, Surgical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | | | | | - Alfons J. M. van den Eertwegh
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunology, Cancer Immunology, Amsterdam, Netherlands
| |
Collapse
|
46
|
Cadamuro M, Romanzi A, Guido M, Sarcognato S, Cillo U, Gringeri E, Zanus G, Strazzabosco M, Simioni P, Villa E, Fabris L. Translational Value of Tumor-Associated Lymphangiogenesis in Cholangiocarcinoma. J Pers Med 2022; 12:jpm12071086. [PMID: 35887583 PMCID: PMC9324584 DOI: 10.3390/jpm12071086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The prognosis of cholangiocarcinoma remains poor in spite of the advances in immunotherapy and molecular profiling, which has led to the identification of several targetable genetic alterations. Surgical procedures, including both liver resection and liver transplantation, still represent the treatment with the best curative potential, though the outcomes are significantly compromised by the early development of lymph node metastases. Progression of lymphatic metastasis from the primary tumor to tumor-draining lymph nodes is mediated by tumor-associated lymphangiogenesis, a topic largely overlooked until recently. Recent findings highlight tumor-associated lymphangiogenesis as paradigmatic of the role played by the tumor microenvironment in sustaining cholangiocarcinoma invasiveness and progression. This study reviews the current knowledge about the intercellular signaling and molecular mechanism of tumor-associated lymphangiogenesis in cholangiocarcinoma in the hope of identifying novel therapeutic targets to halt a process that often limits the success of the few available treatments.
Collapse
Affiliation(s)
| | - Adriana Romanzi
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Giacomo Zanus
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Mario Strazzabosco
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
| | - Paolo Simioni
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, 35122 Padua, Italy;
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| |
Collapse
|
47
|
Koyaman-Nasu R, Wang Y, Hasegawa I, Endo Y, Nakayama T, Kimura MY. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int Immunol 2022; 34:555-561. [PMID: 35689672 DOI: 10.1093/intimm/dxac024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy utilizes our immune system to attack cancer cells and is an extremely promising strategy for cancer treatment. Although immune-checkpoint blockade, such as anti-PD-1 antibody (Ab), has demonstrated significant enhancement of anti-tumor immunity and has induced notable clinical outcomes, its response rates remain low, and adverse effects are always a matter of concern; therefore, new targets for cancer immunotherapy are always desired. In this situation, new concepts are needed to fuel the investigation of new target molecules for cancer immunotherapy. We propose that CD69 is one such target molecule. CD69 is known to be an activation marker of leukocytes and is also considered a crucial regulator of various immune responses through its interacting proteins. CD69 promotes T cell retention in lymphoid tissues via sphingosine-1-phosphate receptor 1 (S1P1) internalization and also plays roles in the pathogenesis of inflammatory disorders through interacting with its functional ligands Myl9/12 (myosin light chains 9, 12a and 12b). In anti-tumor immunity, CD69 is known to be expressed on T cells in the tumor microenvironment (TME) and tumor-draining lymph nodes (TDLNs). We revealed that CD69 negatively regulates the effector function of intratumoral T cells and importantly controls the 'exhaustion' of CD8 T cells. In addition, we and others showed that either CD69 deficiency or the administration of anti-CD69 monoclonal antibody enhances anti-tumor immunity. Thus, CD69 is an attractive target for cancer immunotherapy.
Collapse
Affiliation(s)
- Ryo Koyaman-Nasu
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yangsong Wang
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichita Hasegawa
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yukihiro Endo
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Motoko Y Kimura
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
48
|
Sanborn RE, Schneiders FL, Senan S, Gadgeel SM. Beyond Checkpoint Inhibitors: Enhancing Antitumor Immune Response in Lung Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35671433 DOI: 10.1200/edbk_350967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The introduction of immune checkpoint inhibitors has dramatically changed the treatment landscape and improved survival for many patients with thoracic malignancies. Although some patients may experience prolonged survival benefit with immune checkpoint inhibitors, a majority do not experience disease control or benefit, supporting the need for research and development of improved approaches for facilitating immune recognition. Additionally, many patients will experience toxicity with the current approaches to immunotherapy, supporting the need for developing treatment strategies with less risk of adverse events. An extensive array of different strategies are currently under investigation, including novel combinations of checkpoint inhibitors or immunotherapies; novel agents beyond checkpoint inhibitors (e.g., bispecific antibodies, vaccine strategies, cytokine therapies); and different approaches for use of radiation to augment systemic immunotherapy agents. With each strategy, researchers are evaluating the potential for augmenting antitumor responses and ensuring more sustained antitumor effects. This article highlights areas of active research, reviewing the rationale for different investigative strategies, as well as currently available clinical data.
Collapse
Affiliation(s)
- Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | | | - Suresh Senan
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | |
Collapse
|
49
|
Mahdieh Z, Cherne MD, Fredrikson JP, Sidar B, Sanchez HS, Chang CB, Bimczok D, Wilking JN. Granular Matrigel: restructuring a trusted extracellular matrix material for improved permeability. Biomed Mater 2022; 17:045020. [PMID: 35609584 DOI: 10.1088/1748-605x/ac7306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Matrigel is a polymeric extracellular matrix material produced by mouse cancer cells. Over the past four decades, Matrigel has been shown to support a wide variety of two- and three-dimensional cell and tissue culture applications including organoids. Despite widespread use, transport of molecules, cells, and colloidal particles through Matrigel can be limited. These limitations restrict cell growth, viability, and function and limit Matrigel applications. A strategy to improve transport through a hydrogel without modifying the chemistry or composition of the gel is to physically restructure the material into microscopic microgels and then pack them together to form a porous material. These 'granular' hydrogels have been created using a variety of synthetic hydrogels, but granular hydrogels composed of Matrigel have not yet been reported. Here we present a drop-based microfluidics approach for structuring Matrigel into a three-dimensional, mesoporous material composed of packed Matrigel microgels, which we call granular Matrigel. We show that restructuring Matrigel in this manner enhances the transport of colloidal particles and human dendritic cells (DCs) through the gel while providing sufficient mechanical support for culture of human gastric organoids (HGOs) and co-culture of human DCs with HGOs.
Collapse
Affiliation(s)
- Zahra Mahdieh
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Michelle D Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Jacob P Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Humberto S Sanchez
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - James N Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
50
|
Hao X, Li W, Li W, Gu M, Wang Z, Nakahashi K, Antonoff MB, Adachi H, Zhou S, Xu S. Re-evaluating the need for mediastinal lymph node dissection and exploring lncRNAs as biomarkers of N2 metastasis in T1 lung adenocarcinoma. Transl Lung Cancer Res 2022; 11:1079-1088. [PMID: 35832449 PMCID: PMC9271436 DOI: 10.21037/tlcr-22-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022]
Abstract
Background Although a well-acknowledged component of curative surgery for lung cancer, investigators have recently questioned the need for mediastinal lymph node dissection (MLND) in early-stage lung cancer cases. As such, the accurate prediction of N2 stage prior to surgery has become increasingly critical. But diagnostic biomarkers predicting N2 metastases are deficient, which are urgently needed. Methods We extracted the data of non-small cell lung cancer (NSCLC) patients whose clinical information and follow-up data are complete and without preoperative induction therapy from the Surveillance, Epidemiology, and End Results (SEER) database. The SEER program registries routinely collect demographic and clinic data on patients. And the prognostic differences were analyzed according to the presence or absence of MLND in their lung resection using the R package. Subsequently, the correlations between pN2 metastasis and clinical characteristics were analyzed. In parallel, the long non-coding RNAs (lncRNAs) associated with pN2 status were screened in The Cancer Genome Atlas (TCGA) database by expression difference analysis between pN0-N1 and pN2 patients using limma. Their diagnostic efficiency for detecting N2 metastases was evaluated using receiver operating characteristic (ROC) curves, and a combined diagnostic model was constructed using logistic regression and ROC curve analyses in lung adenocarcinoma (LUAD). Results There were 16,772 patients in MLND group, and 2,699 cases in no-MLND group. The clinical data from SEER showed that the incidence of N2 metastasis was low in pT1 NSCLC (1,023/16,772, 6.10%), but the prognosis of no-MLND patients was poorer than those who underwent MLND (P<0.001, HR =1.605). Pathological N2 metastasis was correlated with age, histologic type, and tumor size. On the other hand, five lncRNAs (LINC00892, AC099522.2, LINC01481, SCAMP1-AS1, and AC004812.2) were screened and confirmed as potential diagnostic biomarkers for detecting N2 metastasis in pT1 LUAD. The AUC of the combined indicators was 0.857. Conclusions MLND may be oncologically necessary for selected T1 NSCLC patients based on the metastasis incidence and prognosis. A diagnostic model combining LINC00892, AC099522.2, LINC01481, SCAMP1-AS1, and AC004812.2 expression levels may have the potential to be a diagnostic biomarker for detecting N2 metastasis in pT1 LUAD. This study suggests that MLND might be omitted in patients with lower expression level of this diagnostic model.
Collapse
Affiliation(s)
- Xuefeng Hao
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weiying Li
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Li
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Kenta Nakahashi
- Department of Thoracic Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mara B Antonoff
- Thoracic & Cardiovascular Surgery, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Adachi
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Shijie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaofa Xu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|