1
|
Snopkowska Lesniak SW, Maschio D, Henriquez-Camacho C, Moreno Cuerda V. Biomarkers for SARS-CoV-2 infection. A narrative review. Front Med (Lausanne) 2025; 12:1563998. [PMID: 40206469 PMCID: PMC11978625 DOI: 10.3389/fmed.2025.1563998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2 with devastating effects on health-care systems. The magnitude of the problem has moved physicians and investigators to identify strategies to detect patients at a high risk of severe disease. The aim of this study was to identify the most relevant biomarkers in the published literature and their correlation with clinical outcomes. To this end, we performed a revision of studies that investigated laboratory abnormalities in patients with COVID-19, comparing non-severe and severe patients. Blood biomarkers were classified into five main categories: hematological, coagulation related to the liver or kidney, and inflammatory. From our analysis, the most relevant biomarkers associated with severe infection for each category were increased levels of leukocytes, neutrophils, and neutrophil-to-lymphocyte ratio; decreased platelet count; and high levels of aspartate transaminase, alanine transaminase, creatine kinase, troponin, creatinine, and blood urea nitrogen, C-reactive protein, ferritin, and IL-6. Moreover, lactate dehydrogenase and D-dimer levels were independent risk factors for death.
Collapse
Affiliation(s)
| | - Diego Maschio
- Servicio de Medicina Interna, Hospital Universitario de Mostoles, Madrid, Spain
| | - Cesar Henriquez-Camacho
- Servicio de Medicina Interna, Hospital Universitario de Mostoles, Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Victor Moreno Cuerda
- Servicio de Medicina Interna, Hospital Universitario de Mostoles, Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
2
|
Tsanakas AT, Mueller YM, van de Werken HJG, Pujol Borrell R, Ouzounis CA, Katsikis PD. An explainable machine learning model for COVID-19 severity prognosis at hospital admission. INFORMATICS IN MEDICINE UNLOCKED 2025; 52:101602. [DOI: 10.1016/j.imu.2024.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
|
3
|
Gómez-Carballa A, Pischedda S, Pardo-Seco J, Gómez-Rial J, Martinón-Torres F, Salas A. Interferon gene expression declines over time post-COVID infection and in long COVID patients. Infect Dis (Lond) 2025; 57:35-48. [PMID: 39163143 DOI: 10.1080/23744235.2024.2389481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Interferons (IFNs) represent a first-line defense against viruses and other pathogens. It has been shown that an impaired and uncontrolled release of these glycoproteins can result in tissue damage and explain severe progression of coronavirus disease 2019 (COVID-19). However, their potential role in Long-COVID syndrome (LC) remains debateable. OBJECTIVES The objective of the present study is to shed further light on the possible role of IFNs (and related genes) gene expression patterns in the progression of COVID-19 and LC patients. METHODS We carried out a multi-cohort study by analyzing the IFN gene expression patterns (using different IFN gene signatures) in five cohorts of acute COVID-19 (n = 541 samples) and LC patients (n = 188), and compared them to patterns observed in three autoimmune diseases (systemic lupus erythematous [n = 242], systemic sclerosis [n = 91], and Sjögren's syndrome [n = 282]). RESULTS The data show that, while the interferon signatures are strongly upregulated in severe COVID-19 patients and autoimmune diseases, it decays with the time from symptoms onset and in LC patients. Differential pathway analysis of IFN-related terms indicates an over activation in autoimmune diseases (IFN-I/II) and severe COVID-19 (IFN-I/II/III), while these pathways are mostly inactivated or downregulated in LC (IFN-I/III). By analyzing six proteomic LC datasets, we did not find evidence of a role of IFNs in this condition. CONCLUSION Our findings suggest a potential role of cytokine exhaustion mediated by IFN gene expression inactivation as a possible driver of LC.
Collapse
Affiliation(s)
- A Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Galicia, Spain
| | - S Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Galicia, Spain
| | - J Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Galicia, Spain
| | - J Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- TranslationalPediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Galicia, Spain
- Servicio de Inmunología, Hospital Clínico Universitario Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - F Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- TranslationalPediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Galicia, Spain
| | - A Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Galicia, Spain
| |
Collapse
|
4
|
Cabrera LE, Jokiranta ST, Mäki S, Miettinen S, Kant R, Kareinen L, Sironen T, Pietilä JP, Kantele A, Kekäläinen E, Lindgren H, Mattila P, Kipar A, Vapalahti O, Strandin T. The assembly of neutrophil inflammasomes during COVID-19 is mediated by type I interferons. PLoS Pathog 2024; 20:e1012368. [PMID: 39172744 PMCID: PMC11340896 DOI: 10.1371/journal.ppat.1012368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024] Open
Abstract
The severity of COVID-19 is linked to excessive inflammation. Neutrophils represent a critical arm of the innate immune response and are major mediators of inflammation, but their role in COVID-19 pathophysiology remains poorly understood. We conducted transcriptomic profiling of neutrophils obtained from patients with mild and severe COVID-19, as well as from SARS-CoV-2 infected mice, in comparison to non-infected healthy controls. In addition, we investigated the inflammasome formation potential in neutrophils from patients and mice upon SARS-CoV-2 infection. Transcriptomic analysis of polymorphonuclear cells (PMNs), consisting mainly of mature neutrophils, revealed a striking type I interferon (IFN-I) gene signature in severe COVID-19 patients, contrasting with mild COVID-19 and healthy controls. Notably, low-density granulocytes (LDGs) from severe COVID-19 patients exhibited an immature neutrophil phenotype and lacked this IFN-I signature. Moreover, PMNs from severe COVID-19 patients showed heightened nigericin-induced caspase1 activation, but reduced responsiveness to exogenous inflammasome priming. Furthermore, IFN-I emerged as a priming stimulus for neutrophil inflammasomes. These findings suggest a potential role for neutrophil inflammasomes in driving inflammation during severe COVID-19. Altogether, these findings open promising avenues for targeted therapeutic interventions to mitigate the pathological processes associated with the disease.
Collapse
Affiliation(s)
- Luz E. Cabrera
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Suvi T. Jokiranta
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanna Mäki
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Simo Miettinen
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Lauri Kareinen
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Pietilä
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Meilahti Vaccine Research Center MeVac, Department of Infectious Diseases, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Meilahti Vaccine Research Center MeVac, Department of Infectious Diseases, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eliisa Kekäläinen
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Virology and Immunology, HUSLAB Clinical Microbiology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Lindgren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olli Vapalahti
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Division of Virology and Immunology, HUSLAB Clinical Microbiology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Tomas Strandin
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Homma ST, Wang X, Frere JJ, Gower AC, Zhou J, Lim JK, tenOever BR, Zhou L. Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression. Biomedicines 2024; 12:1443. [PMID: 39062017 PMCID: PMC11275164 DOI: 10.3390/biomedicines12071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection and compared them with influenza A virus (IAV) and mock infections. Histopathological and bulk RNA sequencing analyses of leg muscles derived from infected animals at days 3, 30, and 60 post-infection showed no direct viral invasion but myofiber atrophy in the SARS-CoV-2 group, which was accompanied by persistent downregulation of the genes related to myofibers, ribosomal proteins, fatty acid β-oxidation, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation complexes. While both SARS-CoV-2 and IAV infections induced acute and transient type I and II interferon responses in muscle, only the SARS-CoV-2 infection upregulated TNF-α/NF-κB but not IL-6 signaling in muscle. Treatment of C2C12 myotubes, a skeletal muscle cell line, with combined IFN-γ and TNF-α but not with IFN-γ or TNF-α alone markedly impaired mitochondrial function. We conclude that a respiratory SARS-CoV-2 infection can cause myofiber atrophy and persistent energy metabolism suppression without direct viral invasion. The effects may be induced by the combined systemic interferon and TNF-α responses at the acute phase and may contribute to post-COVID-19 persistent muscle fatigue.
Collapse
Affiliation(s)
- Sachiko T. Homma
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Xingyu Wang
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam C. Gower
- Clinical and Translational Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jingsong Zhou
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Lan Zhou
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
6
|
Montenegro AFL, Clementino MAF, Yaochite JNU. Type I interferon pathway genetic variants in severe COVID-19. Virus Res 2024; 342:199339. [PMID: 38354910 PMCID: PMC10901847 DOI: 10.1016/j.virusres.2024.199339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. According to the World Health Organization (WHO), there have been over 760 million reported cases and over 6 million deaths caused by this disease worldwide. The severity of COVID-19 is based on symptoms presented by the patient and is divided as asymptomatic, mild, moderate, severe, and critical. The manifestations are interconnected with genetic variations. The innate immunity is the quickest response mechanism of an organism against viruses. Type I interferon pathway plays a key role in antiviral responses due to viral replication inhibition in infected cells and adaptive immunity stimulation induced by interferon molecules. Thus, variants in type I interferon pathway's genes are being studied in different COVID-19 manifestations. This review summarizes the role of variants in type I interferon pathway's genes on prognosis and severity progression of COVID-19.
Collapse
Affiliation(s)
- A F L Montenegro
- Laboratório de Imunologia Celular e Molecular, Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará - UFC, Rua Pastor Samuel Munguba, 1210 - Rodolfo Teófilo, Fortaleza, Ceará, Brasil
| | - M A F Clementino
- Laboratório de Toxinologia Molecular, NUBIMED - Núcleo de Biomedicina, Universidade Federal do Ceará - UFC. Fortaleza, Ceará, Brasil
| | - J N U Yaochite
- Laboratório de Imunologia Celular e Molecular, Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará - UFC, Rua Pastor Samuel Munguba, 1210 - Rodolfo Teófilo, Fortaleza, Ceará, Brasil.
| |
Collapse
|
7
|
Sefatjoo Z, Mohebbi SR, Hosseini SM, Shoraka S, Saeedi Niasar M, Baghaei K, Meyfour A, Sadeghi A, Malekpour H, Asadzadeh Aghdaei H, Zali MR. Evaluation of long non-coding RNAs EGOT, NRAV, NRIR and mRNAs ISG15 and IFITM3 expressions in COVID-19 patients. Cytokine 2024; 175:156495. [PMID: 38184893 DOI: 10.1016/j.cyto.2023.156495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.
Collapse
Affiliation(s)
- Zahra Sefatjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrzad Shoraka
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Research and Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Hensel IV, Éliás S, Steinhauer M, Stoll B, Benfatto S, Merkt W, Krienke S, Lorenz HM, Haas J, Wildemann B, Resnik-Docampo M. SLE serum induces altered goblet cell differentiation and leakiness in human intestinal organoids. EMBO Mol Med 2024; 16:547-574. [PMID: 38316934 PMCID: PMC10940301 DOI: 10.1038/s44321-024-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Merkt
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Krienke
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
9
|
Akbari A, Hadizadeh A, Amiri M, Najafi NN, Shahriari Z, Jamialahmadi T, Sahebkar A. Role of autoantibodies targeting interferon type 1 in COVID-19 severity: A systematic review and meta-analysis. J Transl Autoimmun 2023; 7:100219. [PMID: 37868109 PMCID: PMC10587724 DOI: 10.1016/j.jtauto.2023.100219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Impairment of the type I interferon (IFN-I) signaling pathway is associated with increased severity of COVID-19 disease. Here we have undertaken a systematic review and meta = analysis on the association between the severity of COVID-19 and IFN-1 autoantibodies (AAbs; aIFN-1, aIFN-α, aIFN-ω, and aIFN-β). Methods Four databases, including Medline [PubMed], Embase, Web of Science, and Scopus, were systematically searched to find papers on the role of aIFN-1 and its subtype AAbs in the severity of COVID-19 infection. Data on the prevalence of aIFN-1, aIFN-α, aIFN-ω, and aIFN-β were pooled using random- or fixed-effects models. Subgroup analysis was performed based on disease severity. Odds ratios (OR) for COVID-19 disease outcome, including length of hospital stay, ICU admission and death, were calculated in relation to positive or negative plasma IFN-1 AAbs. Results A total of 33 studies with 13023 patients were included. The overall prevalence of circulating aIFN-1, aIFN-α, and aIFN-ω AAbs was 17.8 % [13.8, 22.8], 7.2 % [4.7, 10.9], and 4.4 % [2.1, 8.6], respectively, and the overall prevalence of neutralizing aIFN-1, aIFN-α, aIFN-ω, and aIFN-β AAbs was 7.1 % [4.9, 10.1], 7.5 % [5.9, 9.5], 8.0 % [5.7, 11.1] and 1.2 % [0.4, 3.5], respectively. Circulating aIFN-α (OR = 4.537 [2.247, 9.158]), neutralizing aIFN-α (O = 17.482 [8.899, 34.342]), and neutralizing aIFN-ω (OR = 12.529 [7.397, 21.222]) were significantly more frequent in critical/severe patients than in moderate/mild patients (p < 0.001 for all). Anti-IFN-1 was more common in male subjects (OR = 2.248 [1.366, 3.699], p = 0.001) and two COVID-19 outcomes including ICU admission (OR = 2.485 [1.409, 4.385], p = 0.002) and death (OR = 2.593 [1.199, 5.604], p = 0.015) occurred more frequently in patients with positive anti-IFN-1.Conclusion: aIFN-1 and its subtypes AAbs are associated with severe and critical COVID-19 disease and may be a predictive marker for a poor prognosis, particularly in men.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hadizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Amiri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neshat Najaf Najafi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Shahriari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Li Y, Han L, Li P, Ge J, Xue Y, Chen L. Potential network markers and signaling pathways for B cells of COVID-19 based on single-cell condition-specific networks. BMC Genomics 2023; 24:619. [PMID: 37853311 PMCID: PMC10583333 DOI: 10.1186/s12864-023-09719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
To explore the potential network markers and related signaling pathways of human B cells infected by COVID-19, we performed standardized integration and analysis of single-cell sequencing data to construct conditional cell-specific networks (CCSN) for each cell. Then the peripheral blood cells were clustered and annotated based on the conditional network degree matrix (CNDM) and gene expression matrix (GEM), respectively, and B cells were selected for further analysis. Besides, based on the CNDM of B cells, the hub genes and 'dark' genes (a gene has a significant difference between case and control samples not in a gene expression level but in a conditional network degree level) closely related to COVID-19 were revealed. Interestingly, some of the 'dark' genes and differential degree genes (DDGs) encoded key proteins in the JAK-STAT pathway, which had antiviral effects. The protein p21 encoded by the 'dark' gene CDKN1A was a key regulator for the COVID-19 infection-related signaling pathway. Elevated levels of proteins encoded by some DDGs were directly related to disease severity of patients with COVID-19. In short, the proteins encoded by 'dark' genes complement some missing links in COVID-19 and these signaling pathways played an important role in the growth and activation of B cells.
Collapse
Affiliation(s)
- Ying Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Liqin Han
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China.
- Longmen Laboratory, Luoyang, 471003, Henan, China.
| | - Jing Ge
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 201100, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201100, China.
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
12
|
Pratedrat P, Intharasongkroh D, Chansaenroj J, Vichaiwattana P, Srimuan D, Thatsanatorn T, Klinfueng S, Nilyanimit P, Chirathaworn C, Kupatawintu P, Chaiwanichsiri D, Wanlapakorn N, Poovorawan Y. Dynamics of Cytokine, SARS-CoV-2-Specific IgG, and Neutralizing Antibody Levels in COVID-19 Patients Treated with Convalescent Plasma. Diseases 2023; 11:112. [PMID: 37754308 PMCID: PMC10527804 DOI: 10.3390/diseases11030112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious illness worldwide. While guidelines for the treatment of COVID-19 have been established, the understanding of the relationship among neutralizing antibodies, cytokines, and the combined use of antiviral medications, steroid drugs, and convalescent plasma therapy remains limited. Here, we investigated the connection between the immunological response and the efficacy of convalescent plasma therapy in COVID-19 patients with moderate-to-severe pneumonia. The study included a retrospective analysis of 49 patients aged 35 to 57. We conducted clinical assessments to determine antibody levels, biochemical markers, and cytokine levels. Among the patients, 48 (98%) were discharged, while one died. We observed significantly higher levels of anti-nucleocapsid, anti-spike, and neutralizing antibodies on days 3, 7, and 14 after the transfusion compared to before treatment. Serum CRP and D-dimer levels varied significantly across these four time points. Moreover, convalescent plasma therapy demonstrated an immunoregulatory effect on cytokine parameters, with significant differences in IFN-β, IL-6, IL-10, and IFN-α levels observed at different sampling times. Evaluating the cytokine signature, along with standard clinical and laboratory parameters, may help to identify the onset of a cytokine storm in COVID-19 patients and determine the appropriate indication for anti-cytokine treatment.
Collapse
Affiliation(s)
- Pornpitra Pratedrat
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | | | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Thaksaporn Thatsanatorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pawinee Kupatawintu
- National Blood Centre, Thai Red Cross Society, Bangkok 10330, Thailand; (D.I.); (P.K.); (D.C.)
| | - Dootchai Chaiwanichsiri
- National Blood Centre, Thai Red Cross Society, Bangkok 10330, Thailand; (D.I.); (P.K.); (D.C.)
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
- Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Buchynskyi M, Oksenych V, Kamyshna I, Vari SG, Kamyshnyi A. Genetic Predictors of Comorbid Course of COVID-19 and MAFLD: A Comprehensive Analysis. Viruses 2023; 15:1724. [PMID: 37632067 PMCID: PMC10459448 DOI: 10.3390/v15081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) and its potential impact on the severity of COVID-19 have gained significant attention during the pandemic. This review aimed to explore the genetic determinants associated with MAFLD, previously recognized as non-alcoholic fatty liver disease (NAFLD), and their potential influence on COVID-19 outcomes. Various genetic polymorphisms, including PNPLA3 (rs738409), GCKR (rs780094), TM6SF2 (rs58542926), and LYPLAL1 (rs12137855), have been investigated in relation to MAFLD susceptibility and progression. Genome-wide association studies and meta-analyses have revealed associations between these genetic variants and MAFLD risk, as well as their effects on lipid metabolism, glucose regulation, and liver function. Furthermore, emerging evidence suggests a possible connection between these MAFLD-associated polymorphisms and the severity of COVID-19. Studies exploring the association between indicated genetic variants and COVID-19 outcomes have shown conflicting results. Some studies observed a potential protective effect of certain variants against severe COVID-19, while others reported no significant associations. This review highlights the importance of understanding the genetic determinants of MAFLD and its potential implications for COVID-19 outcomes. Further research is needed to elucidate the precise mechanisms linking these genetic variants to disease severity and to develop gene profiling tools for the early prediction of COVID-19 outcomes. If confirmed as determinants of disease severity, these genetic polymorphisms could aid in the identification of high-risk individuals and in improving the management of COVID-19.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
14
|
Saeedi N, Gohari NSF, Ghalibaf AAM, Dehghan A, Owlia MB. COVID-19 infection: a possible induction factor for development of autoimmune diseases? Immunol Res 2023; 71:547-553. [PMID: 37316687 DOI: 10.1007/s12026-023-09371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2023] [Indexed: 06/16/2023]
Abstract
Following the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the importance of investigation of the pathogenesis and immunological characteristics of COVID-19 became quite clear. Currently, there are reports indicating that COVID-19 is able to induce autoimmune responses. Abnormal immune reactions are a cornerstone in the pathogenicity of both conditions. Detection of autoantibodies in COVID-19 patients may suggest a link between COVID-19 and autoimmunity. In this study, we focused on the similarities and possible differences between COVID-19 and autoimmune disorders to explore the relationship between them. Comparing the pathogenicity of SARS-CoV-2 infection with autoimmune conditions revealed significant immunological properties of COVID-19 including the presence of several autoantibodies, autoimmunity-related cytokines, and cellular activities that could be useful in future clinical studies aiming at managing this pandemic.
Collapse
Affiliation(s)
- Nikoo Saeedi
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran.
| | - Narjes Sadat Farizani Gohari
- Interest Group of CoronaVirus 2019 (IGCV-19), Universal Scientific Education and Research Network (USERN), Yazd, Iran
- Student Research Committee, Faculty of Medicine, Yazd University of Medical Sciences, Yazd, Iran
| | - Amir Ali Moodi Ghalibaf
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Interest Group of CoronaVirus 2019 (IGCV-19), Universal Scientific Education and Research Network (USERN), Birjand, Iran
| | - Ali Dehghan
- Division of Rheumatology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bagher Owlia
- Division of Rheumatology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
16
|
Savan R, Gale M. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity 2023; 56:1443-1450. [PMID: 37437537 PMCID: PMC10361255 DOI: 10.1016/j.immuni.2023.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Innate immunity and the actions of type I and III interferons (IFNs) are essential for protection from SARS-CoV-2 and COVID-19. Each is induced in response to infection and serves to restrict viral replication and spread while directing the polarization and modulation of the adaptive immune response. Owing to the distribution of their specific receptors, type I and III IFNs, respectively, impart systemic and local actions. Therapeutic IFN has been administered to combat COVID-19 but with differential outcomes when given early or late in infection. In this perspective, we sort out the role of innate immunity and complex actions of IFNs in the context of SARS-CoV-2 infection and COVID-19. We conclude that IFNs are a beneficial component of innate immunity that has mediated natural clearance of infection in over 700 million people. Therapeutic induction of innate immunity and use of IFN should be featured in strategies to treat acute SARS-CoV-2 infection in people at risk for severe COVID-19.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Gyöngyösi M, Alcaide P, Asselbergs FW, Brundel BJJM, Camici GG, Martins PDC, Ferdinandy P, Fontana M, Girao H, Gnecchi M, Gollmann-Tepeköylü C, Kleinbongard P, Krieg T, Madonna R, Paillard M, Pantazis A, Perrino C, Pesce M, Schiattarella GG, Sluijter JPG, Steffens S, Tschöpe C, Van Linthout S, Davidson SM. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc Res 2023; 119:336-356. [PMID: 35875883 PMCID: PMC9384470 DOI: 10.1093/cvr/cvac115] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Long COVID has become a world-wide, non-communicable epidemic, caused by long-lasting multiorgan symptoms that endure for weeks or months after SARS-CoV-2 infection has already subsided. This scientific document aims to provide insight into the possible causes and therapeutic options available for the cardiovascular manifestations of long COVID. In addition to chronic fatigue, which is a common symptom of long COVID, patients may present with chest pain, ECG abnormalities, postural orthostatic tachycardia, or newly developed supraventricular or ventricular arrhythmias. Imaging of the heart and vessels has provided evidence of chronic, post-infectious perimyocarditis with consequent left or right ventricular failure, arterial wall inflammation, or microthrombosis in certain patient populations. Better understanding of the underlying cellular and molecular mechanisms of long COVID will aid in the development of effective treatment strategies for its cardiovascular manifestations. A number of mechanisms have been proposed, including those involving direct effects on the myocardium, microthrombotic damage to vessels or endothelium, or persistent inflammation. Unfortunately, existing circulating biomarkers, coagulation, and inflammatory markers, are not highly predictive for either the presence or outcome of long COVID when measured 3 months after SARS-CoV-2 infection. Further studies are needed to understand underlying mechanisms, identify specific biomarkers, and guide future preventive strategies or treatments to address long COVID and its cardiovascular sequelae.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, 2nd Department of Internal Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital, Zurich, Switzerland
| | - Paula da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Marianna Fontana
- Division of Medicine, Royal Free Hospital London, University College London, London, UK
| | - Henrique Girao
- Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine, Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy
- Unit of Translational Cardiology, Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Petra Kleinbongard
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Rosalinda Madonna
- Department of Pathology, Institute of Cardiology, University of Pisa, Pisa, Italy
| | - Melanie Paillard
- Laboratoire CarMeN-équipe IRIS, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France
| | - Antonis Pantazis
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre at Royal Brompton and Harefield Hospitals, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, Utrecht, The Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- Germany and Munich Heart Alliance, DZHK Partner Site Munich, Munich, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité, Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner site Berlin and Dept Cardiology (CVK), Charité, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité, Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner site Berlin and Dept Cardiology (CVK), Charité, Berlin, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| |
Collapse
|
18
|
Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol Cell Biol 2023; 101:191-203. [PMID: 36529987 PMCID: PMC9877852 DOI: 10.1111/imcb.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet β cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic β cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, β cells express the crucial entry receptors and multiple studies confirmed that β cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected β cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet β-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of β cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost β cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional β-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Shrestha AB, Pokharel P, Singh H, Shrestha S, Fioni. Serum Krebs von den Lungen-6 for Predicting the Severity of COVID-19: A Systematic Review, Meta-Analysis, and Trial Sequence Analysis. Clin Med Insights Circ Respir Pulm Med 2023; 17:11795484231152304. [PMID: 36710717 PMCID: PMC9875321 DOI: 10.1177/11795484231152304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to find the association between serum Krebs von den Lungen-6 (KL-6) and the severity of Coronavirus disease 2019 (COVID-19) infection. DATA SOURCES Databases of Embase, PubMed, Web of Science, Science Direct, and Google Scholar were searched for studies reporting KL-6 levels in COVID-19 patients, published between January 2020 and September 30 2022. DATA SYNTHESIS For comparison between the groups, standard mean difference (SMD) and 95% confidence intervals (CI) were computed as the effect sizes. Sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were measured to assess the diagnostic power of KL-6. In addition, the summary receiver operating characteristics curve (sROC) was constructed to summarize the true positive (TP), and false positive (FP) rates. To validate the findings of meta-analysis, Trial Sequential Analysis (TSA) was conducted. RESULTS Altogether 497 severe COVID-19 patients and 934 non-severe (mild to moderate) COVID-19 patients were included. Pooling of 12 studies indicated that the serum KL-6 level had significant association with severity of COVID-19 infection: standard mean difference = 1.18 (95% CI: 0.93-1.43), p = 0.01; I2: 58.56%]. Pooled diagnostic parameters calculated from eight studies were: sensitivity 0.53 (95% CI: 0.47-0.59); specificity 0.90 (95% CI: 0.88-0.93); positive likelihood ratio 4.80 (95% CI: 3.53-6.53); negative likelihood ratio 0.46 (95% CI: 0.32-0.68); and area under curve: 0.8841. Additionally, TSA verified the adequacy of sample size and robustness of the meta-analysis. CONCLUSION Serum KL-6 level has a moderate degree of correlation with the severity of COVID-19 infection but has low sensitivity. So, it is not recommended as a screening test for severe COVID-19 infection.
Collapse
Affiliation(s)
- Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College,
Dinajpur, Bangladesh,Abhigan Babu Shrestha, Department of
Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Harendra Singh
- Department of Anesthesiology, Tribhuvan University Teaching
Hospital, Kathmandu, Nepal
| | - Sajina Shrestha
- Department of Internal Medicine, KIST Medical
College, Imadol, Nepal
| | - Fioni
- Faculty of Medicine, Universitas Prima
Indonesia, Medan, Indonesia
| |
Collapse
|
20
|
Sun Y, Luo B, Liu Y, Wu Y, Chen Y. Immune damage mechanisms of COVID-19 and novel strategies in prevention and control of epidemic. Front Immunol 2023; 14:1130398. [PMID: 36960050 PMCID: PMC10028144 DOI: 10.3389/fimmu.2023.1130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has diverse clinical manifestations, which is the main feature of the disease, and the fundamental reason is the different immune responses in different bodies among the population. The damage mechanisms of critical illness by SARS-CoV-2 and its variants, such as hyperinflammatory response, a double-edged function of type I interferon, and hyperactivation of the complement system, are the same as other critical illnesses. Targeting specific immune damage mechanisms of COVID-19, we scored the first to put forward that the responses of T cells induced by acute virus infection result in "acute T-cell exhaustion" in elderly patients, which is not only the peripheral exhaustion with quantity reduction and dysfunction of T cells but also the central exhaustion that central immune organs lost immune homeostasis over peripheral immune organs, whereas the increased thymic output could alleviate the severity and reduce the mortality of the disease with the help of medication. We discovered that immune responses raised by SARS-CoV-2 could also attack secondary lymphoid organs, such as the spleen, lymphoid nodes, and kidneys, in addition to the lung, which we generally recognize. Integrated with the knowledge of mechanisms of immune protection, we developed a coronavirus antigen diagnostic kit and therapeutic monoclonal antibody. In the future, we will further investigate the mechanisms of immune damage and protection raised by coronavirus infection to provide more scientific strategies for developing new vaccines and immunotherapies.
Collapse
Affiliation(s)
- Yuting Sun
- School of Medicine, Chongqing University, Chongqing, China
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Bin Luo
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
- *Correspondence: Yongwen Chen,
| |
Collapse
|
21
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
22
|
Semiz S. COVID19 biomarkers: What did we learn from systematic reviews? Front Cell Infect Microbiol 2022; 12:1038908. [PMID: 36583110 PMCID: PMC9792992 DOI: 10.3389/fcimb.2022.1038908] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID19) pandemic continues to represent a substantial public health concern. It can rapidly progress to severe disease, with poor prognosis and a high mortality risk. An early diagnosis and specific prognostic tools can help healthcare providers to start interventions promptly, understand the likely prognosis and to identify and treat timely individuals likely to develop severe disease with enhanced mortality risk. Here we focused on an impressive set of systematic reviews and meta-analyses that were performed since the start of the COVID19 pandemic and summarized their results related to the levels of hematologic, inflammatory, immunologic biomarkers as well as markers of cardiac, respiratory, hepatic, gastrointestinal and renal systems and their association with the disease progression, severity and mortality. The evidence outlines the significance of specific biomarkers, including inflammatory and immunological parameters (C-reactive protein, procalcitonin, interleukin-6), hematological (lymphocytes count, neutrophil-to-lymphocyte ratio, D-dimer, ferritin, red blood cell distribution width), cardiac (troponin, CK-MB, myoglobin), liver (AST, ALT, total bilirubin, albumin) and lung injury (Krebs von den Lungen-6) that can be used as prognostic biomarkers to aid the identification of high-risk patients and the prediction of serious outcomes, including mortality, in COVID19. Thus, these parameters should be used as essential tools for an early risk stratification and adequate intervention in improving disease outcomes in COVID19 patients.
Collapse
|
23
|
Defective activation and regulation of type I interferon immunity is associated with increasing COVID-19 severity. Nat Commun 2022; 13:7254. [PMID: 36434007 PMCID: PMC9700809 DOI: 10.1038/s41467-022-34895-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Host immunity to infection with SARS-CoV-2 is highly variable, dictating diverse clinical outcomes ranging from asymptomatic to severe disease and death. We previously reported reduced type I interferon in severe COVID-19 patients preceded clinical worsening. Further studies identified genetic mutations in loci of the TLR3- or TLR7-dependent interferon-I pathways, or neutralizing interferon-I autoantibodies as risk factors for development of COVID-19 pneumonia. Here we show in patient cohorts with different severities of COVID-19, that baseline plasma interferon α measures differ according to the immunoassay used, timing of sampling, the interferon α subtype measured, and the presence of autoantibodies. We also show a consistently reduced induction of interferon-I proteins in hospitalized COVID-19 patients upon immune stimulation, that is not associated with detectable neutralizing autoantibodies against interferon α or interferon ω. Intracellular proteomic analysis shows increased monocyte numbers in hospitalized COVID-19 patients but impaired interferon-I response after stimulation. We confirm this by ex vivo whole blood stimulation with interferon-I which induces transcriptomic responses associated with inflammation in hospitalized COVID-19 patients, that is not seen in controls or non-hospitalized moderate cases. These results may explain the dichotomy of the poor clinical response to interferon-I based treatments in late stage COVID-19, despite the importance of interferon-I in early acute infection and may guide alternative therapeutic strategies.
Collapse
|
24
|
Vezzani B, Neri M, D’Errico S, Papi A, Contoli M, Giorgi C. SARS-CoV-2 Infection Prompts IL-1β-Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue. Pathogens 2022; 11:1390. [PMID: 36422642 PMCID: PMC9698775 DOI: 10.3390/pathogens11111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2023] Open
Abstract
Two years after its spreading, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still responsible for more than 2000 deaths per day worldwide, despite vaccines and monoclonal antibody countermeasures. Therefore, there is a need to understand the immune-inflammatory pathways that prompt the manifestation of the disease to identify a novel potential target for pharmacological intervention. In this context, the characterization of the main players in the SARS-CoV-2-induced cytokine storm is mandatory. To date, the most characterized have been IL-6 and the class I and II interferons, while less is known about the proinflammatory cytokine IL-1β and class III interferons. Here, we report a preliminary study aimed at the characterization of the lung inflammatory context in COVID-19 patients, with a special focus on IFN-λ and IL-1β. By investigating IFN and inflammatory cytokine patterns by IHC in 10 deceased patients due to COVID-19 infection, compared to 10 control subjects, we reveal that while IFN-β production was increased in COVID-19 patients, IFN-λ was almost abolished. At the same time, the levels of IL-1β were dramatically improved, while IL-6 lung levels seem to be unaffected by the infection. Our findings highlight a central role of IL-1β in prompting lung inflammation after SARS-CoV-2 infection. Together, we show that IFN-λ is negatively affected by viral infection, supporting the idea that IFN-λ administration together with the pharmaceutical blockage of IL-1β represents a promising approach to revert the COVID-19-induced cytokine storm.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Margherita Neri
- Department of Medical Sciences, Section of Public Health Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano D’Errico
- Department of Medicine, Surgery and Health, University of Trieste, 34149 Trieste, Italy
| | - Alberto Papi
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Marco Contoli
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
25
|
Butler-Laporte G, Gonzalez-Kozlova E, Su CY, Zhou S, Nakanishi T, Brunet-Ratnasingham E, Morrison D, Laurent L, Afilalo J, Afilalo M, Henry D, Chen Y, Carrasco-Zanini J, Farjoun Y, Pietzner M, Kimchi N, Afrasiabi Z, Rezk N, Bouab M, Petitjean L, Guzman C, Xue X, Tselios C, Vulesevic B, Adeleye O, Abdullah T, Almamlouk N, Moussa Y, DeLuca C, Duggan N, Schurr E, Brassard N, Durand M, Del Valle DM, Thompson R, Cedillo MA, Schadt E, Nie K, Simons NW, Mouskas K, Zaki N, Patel M, Xie H, Harris J, Marvin R, Cheng E, Tuballes K, Argueta K, Scott I, Greenwood CMT, Paterson C, Hinterberg M, Langenberg C, Forgetta V, Mooser V, Marron T, Beckmann N, Kenigsberg E, Charney AW, Kim-schulze S, Merad M, Kaufmann DE, Gnjatic S, Richards JB. The dynamic changes and sex differences of 147 immune-related proteins during acute COVID-19 in 580 individuals. Clin Proteomics 2022; 19:34. [PMID: 36171541 PMCID: PMC9516500 DOI: 10.1186/s12014-022-09371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/21/2022] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Severe COVID-19 leads to important changes in circulating immune-related proteins. To date it has been difficult to understand their temporal relationship and identify cytokines that are drivers of severe COVID-19 outcomes and underlie differences in outcomes between sexes. Here, we measured 147 immune-related proteins during acute COVID-19 to investigate these questions. METHODS We measured circulating protein abundances using the SOMAscan nucleic acid aptamer panel in two large independent hospital-based COVID-19 cohorts in Canada and the United States. We fit generalized additive models with cubic splines from the start of symptom onset to identify protein levels over the first 14 days of infection which were different between severe cases and controls, adjusting for age and sex. Severe cases were defined as individuals with COVID-19 requiring invasive or non-invasive mechanical respiratory support. RESULTS 580 individuals were included in the analysis. Mean subject age was 64.3 (sd 18.1), and 47% were male. Of the 147 proteins, 69 showed a significant difference between cases and controls (p < 3.4 × 10-4). Three clusters were formed by 108 highly correlated proteins that replicated in both cohorts, making it difficult to determine which proteins have a true causal effect on severe COVID-19. Six proteins showed sex differences in levels over time, of which 3 were also associated with severe COVID-19: CCL26, IL1RL2, and IL3RA, providing insights to better understand the marked differences in outcomes by sex. CONCLUSIONS Severe COVID-19 is associated with large changes in 69 immune-related proteins. Further, five proteins were associated with sex differences in outcomes. These results provide direct insights into immune-related proteins that are strongly influenced by severe COVID-19 infection.
Collapse
Affiliation(s)
- Guillaume Butler-Laporte
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec Canada
| | - Edgar Gonzalez-Kozlova
- grid.59734.3c0000 0001 0670 2351Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Chen-Yang Su
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Computer Science, McGill University, Montréal, Québec Canada
| | - Sirui Zhou
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec Canada
| | - Tomoko Nakanishi
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montréal, Québec Canada ,grid.258799.80000 0004 0372 2033Graduate School of Medicine, McGill International Collaborative School in Genomic Medicine, Kyoto University, KyotoKyoto, Japan ,grid.54432.340000 0001 0860 6072Japan Society for the Promotion of Science, Tokyo, Japan
| | - Elsa Brunet-Ratnasingham
- grid.410559.c0000 0001 0743 2111Research Centre of the Centre Hospitalier de L’Université de Montréal, Montréal, Québec Canada
| | - David Morrison
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Laetitia Laurent
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Jonathan Afilalo
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec Canada
| | - Marc Afilalo
- grid.414980.00000 0000 9401 2774Department of Emergency Medicine, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Danielle Henry
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Yiheng Chen
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montréal, Québec Canada
| | - Julia Carrasco-Zanini
- grid.5335.00000000121885934MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yossi Farjoun
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Maik Pietzner
- grid.5335.00000000121885934MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK ,grid.484013.a0000 0004 6879 971XComputational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Nofar Kimchi
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Zaman Afrasiabi
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Nardin Rezk
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Meriem Bouab
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Louis Petitjean
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Charlotte Guzman
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Xiaoqing Xue
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Chris Tselios
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Branka Vulesevic
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Olumide Adeleye
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Tala Abdullah
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Noor Almamlouk
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Yara Moussa
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Chantal DeLuca
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Naomi Duggan
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Erwin Schurr
- grid.63984.300000 0000 9064 4811Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec Canada
| | - Nathalie Brassard
- grid.410559.c0000 0001 0743 2111Research Centre of the Centre Hospitalier de L’Université de Montréal, Montréal, Québec Canada
| | - Madeleine Durand
- grid.410559.c0000 0001 0743 2111Research Centre of the Centre Hospitalier de L’Université de Montréal, Montréal, Québec Canada
| | - Diane Marie Del Valle
- grid.59734.3c0000 0001 0670 2351Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ryan Thompson
- grid.59734.3c0000 0001 0670 2351Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mario A. Cedillo
- grid.59734.3c0000 0001 0670 2351Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric Schadt
- grid.59734.3c0000 0001 0670 2351Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Kai Nie
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nicole W. Simons
- grid.59734.3c0000 0001 0670 2351Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Konstantinos Mouskas
- grid.59734.3c0000 0001 0670 2351Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nicolas Zaki
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Manishkumar Patel
- grid.59734.3c0000 0001 0670 2351Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Hui Xie
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jocelyn Harris
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Robert Marvin
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Esther Cheng
- grid.59734.3c0000 0001 0670 2351Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Kevin Tuballes
- grid.59734.3c0000 0001 0670 2351Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Kimberly Argueta
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ieisha Scott
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Celia M. T. Greenwood
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec Canada
| | - Clare Paterson
- grid.437866.80000 0004 0625 700XSomaLogic Inc, Boulder, CO USA
| | | | - Claudia Langenberg
- grid.5335.00000000121885934MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK ,grid.437866.80000 0004 0625 700XSomaLogic Inc, Boulder, CO USA
| | - Vincenzo Forgetta
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Vincent Mooser
- grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montréal, Québec Canada
| | - Thomas Marron
- grid.59734.3c0000 0001 0670 2351Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.416167.30000 0004 0442 1996Early Phase Trials Unit, Mount Sinai Hospital, New York, NY USA
| | - Noam Beckmann
- grid.59734.3c0000 0001 0670 2351Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ephraim Kenigsberg
- grid.59734.3c0000 0001 0670 2351Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alexander W. Charney
- grid.59734.3c0000 0001 0670 2351Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Seunghee Kim-schulze
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Miriam Merad
- grid.59734.3c0000 0001 0670 2351Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel E. Kaufmann
- grid.410559.c0000 0001 0743 2111Research Centre of the Centre Hospitalier de L’Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Department of Medicine, Université de Montréal, Montréal, Québec Canada
| | - Sacha Gnjatic
- grid.59734.3c0000 0001 0670 2351Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - J Brent Richards
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montréal, Québec Canada ,grid.13097.3c0000 0001 2322 6764Department of Twin Research, King’s College London, London, UK ,5 Prime Sciences, Montreal, Québec Canada ,grid.14709.3b0000 0004 1936 8649McGill University, King’s College London (Honorary), Jewish General Hospital, Pavilion H-4133755 Côte-Ste-Catherine, Montréal, Québec H3T 1E2 Canada
| |
Collapse
|
26
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
27
|
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M, Salinas E, Cervantes-García D. Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes 2022; 58:501-514. [PMID: 36085536 PMCID: PMC9462631 DOI: 10.1007/s11262-022-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. In this review, we highlighted how variations in the key genes affect the development of innate immune response against RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in generation of new strategies for vaccine development or generation of the pharmacological treatments.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Alicia Hernández-Mercado
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Claudia Berenice Barrón-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Augusto Rojas-Martínez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Los Doctores, 64710, Monterrey, Nuevo León, México
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México.
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México. .,Consejo Nacional de Ciencia y Tecnología, 03940, Ciudad de México, México.
| |
Collapse
|
28
|
Fricke-Galindo I, Martínez-Morales A, Chávez-Galán L, Ocaña-Guzmán R, Buendía-Roldán I, Pérez-Rubio G, Hernández-Zenteno RDJ, Verónica-Aguilar A, Alarcón-Dionet A, Aguilar-Duran H, Gutiérrez-Pérez IA, Zaragoza-García O, Alanis-Ponce J, Camarena A, Bautista-Becerril B, Nava-Quiroz KJ, Mejía M, Guzmán-Guzmán IP, Falfán-Valencia R. IFNAR2 relevance in the clinical outcome of individuals with severe COVID-19. Front Immunol 2022; 13:949413. [PMID: 35967349 PMCID: PMC9374460 DOI: 10.3389/fimmu.2022.949413] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) are a group of cytokines with antiviral, antiproliferative, antiangiogenic, and immunomodulatory activities. Type I IFNs amplify and propagate the antiviral response by interacting with their receptors, IFNAR1 and IFNAR2. In COVID-19, the IFNAR2 (interferon alpha and beta receptor subunit 2) gene has been associated with the severity of the disease, but the soluble receptor (sIFNAR2) levels have not been investigated. We aimed to evaluate the association of IFNAR2 variants (rs2236757, rs1051393, rs3153, rs2834158, and rs2229207) with COVID-19 mortality and to assess if there was a relation between the genetic variants and/or the clinical outcome, with the levels of sIFNAR2 in plasma samples from hospitalized individuals with severe COVID-19. We included 1,202 subjects with severe COVID-19. The genetic variants were determined by employing Taqman® assays. The levels of sIFNAR2 were determined with ELISA in plasma samples from a subgroup of 351 individuals. The rs2236757, rs3153, rs1051393, and rs2834158 variants were associated with mortality risk among patients with severe COVID-19. Higher levels of sIFNAR2 were observed in survivors of COVID-19 compared to the group of non-survivors, which was not related to the studied IFNAR2 genetic variants. IFNAR2, both gene, and soluble protein, are relevant in the clinical outcome of patients hospitalized with severe COVID-19.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Martínez-Morales
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ranferi Ocaña-Guzmán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Abigail Verónica-Aguilar
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Aimé Alarcón-Dionet
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Hiram Aguilar-Duran
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Oscar Zaragoza-García
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Angel Camarena
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Mayra Mejía
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | | | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Ramcés Falfán-Valencia,
| |
Collapse
|
29
|
Khorramdelazad H, Kazemi MH, Azimi M, Aghamajidi A, Mehrabadi AZ, Shahba F, Aghamohammadi N, Falak R, Faraji F, Jafari R. Type-I interferons in the immunopathogenesis and treatment of Coronavirus disease 2019. Eur J Pharmacol 2022; 927:175051. [PMID: 35618037 PMCID: PMC9124632 DOI: 10.1016/j.ejphar.2022.175051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is currently the major global health problem. Still, it continues to infect people globally and up to the end of February 2022, over 436 million confirmed cases of COVID-19, including 5.95 million deaths, were reported to the world health organization (WHO). No specific treatment is currently available for COVID-19, and the discovery of effective therapeutics requires understanding the effective immunologic and immunopathologic mechanisms behind this infection. Type-I interferons (IFN-Is), as the critical elements of the immediate immune response against viral infections, can inhibit the replication and spread of the viruses. However, the available evidence shows that the antiviral IFN-I response is impaired in patients with the severe form of COVID-19. Moreover, the administration of exogenous IFN-I in different phases of the disease can lead to various outcomes. Therefore, understanding the role of IFN-I molecules in COVID-19 development and its severity can provide valuable information for better management of this disease. This review summarizes the role of IFN-Is in the pathogenesis of COIVD-19 and discusses the importance of autoantibodies against this cytokine in the spreading of SARS-CoV-2 and control of the subsequent excessive inflammation.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Aghamohammadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran,Corresponding author. Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Floor 3, Building No. 3, Hazrat-e Rasool General Hospital, Niyayesh St, Sattar Khan St, 1445613131, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran,Corresponding author. Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd, Imam Khomeini Hospital Complex, 113857147, Urmia, Iran
| |
Collapse
|
30
|
Yeh YC, Doan LH, Huang ZY, Chu LW, Shi TH, Lee YR, Wu CT, Lin CH, Chiang ST, Liu HK, Chuang TH, Ping YH, Liu HS, Huang CYF. Honeysuckle ( Lonicera japonica) and Huangqi ( Astragalus membranaceus) Suppress SARS-CoV-2 Entry and COVID-19 Related Cytokine Storm in Vitro. Front Pharmacol 2022; 12:765553. [PMID: 35401158 PMCID: PMC8990830 DOI: 10.3389/fphar.2021.765553] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is threatening human health worldwide but no effective treatment currently exists for this disease. Current therapeutic strategies focus on the inhibition of viral replication or using anti-inflammatory/immunomodulatory compounds to improve host immunity, but not both. Traditional Chinese medicine (TCM) compounds could be promising candidates due to their safety and minimal toxicity. In this study, we have developed a novel in silico bioinformatics workflow that integrates multiple databases to predict the use of honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) as potential anti-SARS-CoV-2 agents. Using extracts from honeysuckle and Huangqi, these two herbs upregulated a group of microRNAs including let-7a, miR-148b, and miR-146a, which are critical to reduce the pathogenesis of SARS-CoV-2. Moreover, these herbs suppressed pro-inflammatory cytokines including IL-6 or TNF-α, which were both identified in the cytokine storm of acute respiratory distress syndrome, a major cause of COVID-19 death. Furthermore, both herbs partially inhibited the fusion of SARS-CoV-2 spike protein-transfected BHK-21 cells with the human lung cancer cell line Calu-3 that was expressing ACE2 receptors. These herbs inhibited SARS-CoV-2 Mpro activity, thereby alleviating viral entry as well as replication. In conclusion, our findings demonstrate that honeysuckle and Huangqi have the potential to be used as an inhibitor of SARS-CoV-2 virus entry that warrants further in vivo analysis and functional assessment of miRNAs to confirm their clinical importance. This fast-screening platform can also be applied to other drug discovery studies for other infectious diseases.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ly Hien Doan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Zi-Yi Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- ASUS Intelligent Cloud Services, Taipei, Taiwan
| | - Li-Wei Chu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Hau Shi
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Tao Wu
- Division of Big Data, Phalanx Biotech Group, Hsinchu, Taiwan
| | - Chao-Hsiung Lin
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Tuan Chiang
- Chuang Song Zong Pharmaceutical Co., Ltd. Ligang Plant, Pingtung, Taiwan
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine (NRICM), Ministry of Health and Welfare, Taipei, Taiwan
- Ph. D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ying F. Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung, Taipei, Taiwan
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Georgakopoulou VE, Lembessis P, Skarlis C, Gkoufa A, Sipsas NV, Mavragani CP. Hematological Abnormalities in COVID-19 Disease: Association With Type I Interferon Pathway Activation and Disease Outcomes. Front Med (Lausanne) 2022; 9:850472. [PMID: 35372456 PMCID: PMC8968418 DOI: 10.3389/fmed.2022.850472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022] Open
Abstract
Increased expression of interferon (IFN)-stimulated genes (ISGs) in peripheral blood, has been previously reported in viral infections, as well as in autoimmune disorders, in association with reduced leukocyte and platelet counts. Though cytopenias are common in patients with COVID-19 disease and predict severe outcomes, the underlying mechanisms have not been fully elucidated. In the current study, we aimed to determine the prevalence of hematological abnormalities in the setting of active COVID-19 infection and to explore whether they associate with disease outcomes and activation of type I IFN pathway. One-hundred-twenty-three consecutive SARS-CoV2 infected patients were included in the study. Clinical and laboratory parameters were recorded for all study participants. In 114 patients, total RNA was extracted from whole peripheral blood and subjected to real time PCR. The relative expression of three interferon stimulated genes (ISGs; IFIT1, MX-1, and IFI44) was determined and a type I IFN score reflecting peripheral type I IFN activity was calculated. The rates of anemia, leukopenia, and thrombocytopenia were 28.5, 14.6, and 24.4%, respectively. Among leukocytopenias, eosinopenia, and lymphopenia were the most prominent abnormalities being found in 56.9 and 43.1%, respectively. Of interest, patients with either eosinopenia and/or thrombocytopenia but no other hematological abnormalities displayed significantly increased peripheral type I IFN scores compared to their counterparts with normal/high eosinophil and platelet counts. While eosinopenia along with lymphopenia were found to be associated with increased risk for intubation and severe/critical disease, such an association was not detected between other hematological abnormalities or increased type I IFN scores. In conclusion, hematological abnormalities are commonly detected among patients with COVID-19 infection in association with severe disease outcomes and activation of the type I IFN pathway.
Collapse
Affiliation(s)
- Vasiliki E. Georgakopoulou
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Lembessis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Gkoufa
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos V. Sipsas
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P. Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Fourth Department of Internal Medicine, School of Medicine, University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Clio P. Mavragani
| |
Collapse
|
32
|
Nagaoka K, Kawasuji H, Murai Y, Kaneda M, Ueno A, Miyajima Y, Fukui Y, Morinaga Y, Yamamoto Y. Circulating Type I Interferon Levels in the Early Phase of COVID-19 Are Associated With the Development of Respiratory Failure. Front Immunol 2022; 13:844304. [PMID: 35237279 PMCID: PMC8882823 DOI: 10.3389/fimmu.2022.844304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
BackgroundThe role of type I interferons (IFNs) in the early phase of COVID-19 remains unclear.ObjectivesTo evaluate the relationship between IFN-I levels in patients with COVID-19 and clinical presentation, SARS-CoV-2 viral load, and other major pro-inflammatory cytokines.MethodsThis prospective observational study recruited patients hospitalized with COVID-19. The levels of interferon-alpha (IFN-α), interferon-beta (IFN-β), interleukin-6 (IL-6), and C-X-C motif chemokine ligand (CXCL10) within 5 days after symptom onset were measured using an ELISA, in serum from blood collected within 5 days after the onset of symptoms. The SARS-CoV-2 viral load was determined via qPCR using nasal-swab specimens and serum.ResultsThe study enrolled 50 patients with COVID-19. IFN-α levels were significantly higher in patients who presented with pneumonia or developed hypoxemic respiratory failure (p < 0.001). Furthermore, IFN-α levels were associated with viral load in nasal-swab specimens and RNAemia (p < 0.05). In contrast, there was no significant association between IFN-β levels and the presence of pneumonia or RNAemia, despite showing a stronger association with nasal-swab viral load (p < 0.001). Correlation analysis showed that the serum levels of IFN-α significantly correlated with those of IFN-β, IL-6, and CXCL10, while the levels of IFN-β did not correlate with those of IL-6 or CXCL10.ConclusionsSerum IFN-I levels in the early phase of SARS-CoV-2 infection were higher in patients who developed hypoxemic respiratory failure. The association between IFN-α, IL-6, and CXCL10 may reflect the systemic immune response against SARS-CoV-2 invasion into pulmonary circulation, which might be an early predictor of respiratory failure due to COVID-19.
Collapse
Affiliation(s)
- Kentaro Nagaoka
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- *Correspondence: Kentaro Nagaoka,
| | - Hitoshi Kawasuji
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yushi Murai
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Makito Kaneda
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Akitoshi Ueno
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yuki Miyajima
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yasutaka Fukui
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
33
|
Low Serum Levels of Interferon Alpha in COVID-19 Patients Are Associated with Older Age. J Clin Med 2022; 11:jcm11040961. [PMID: 35207234 PMCID: PMC8877658 DOI: 10.3390/jcm11040961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Innate immune response, especially type 1 interferon (IFN) response is considered to play a substantial role in the outcome of SARS-CoV-2 infection. A reduced and delayed IFN response has been associated with progression to severe COVID-19. In this study, we investigated levels of circulating IFNα and serum neutralizing activity in COVID-19 patients admitted to the intensive care unit. We found a significant association of levels of IFNα with age (p = 0.007). This association has also been observed in a cohort of COVID-19 outpatients with mild infection (p = 0.02). The impact of senescence on IFN response can explain the higher susceptibility of the elderly to severe COVID-19.
Collapse
|
34
|
Gerhardt T, Haghikia A, Stapmanns P, Leistner DM. Immune Mechanisms of Plaque Instability. Front Cardiovasc Med 2022; 8:797046. [PMID: 35087883 PMCID: PMC8787133 DOI: 10.3389/fcvm.2021.797046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation crucially drives atherosclerosis from disease initiation to the emergence of clinical complications. Targeting pivotal inflammatory pathways without compromising the host defense could compliment therapy with lipid-lowering agents, anti-hypertensive treatment, and lifestyle interventions to address the substantial residual cardiovascular risk that remains beyond classical risk factor control. Detailed understanding of the intricate immune mechanisms that propel plaque instability and disruption is indispensable for the development of novel therapeutic concepts. In this review, we provide an overview on the role of key immune cells in plaque inception and progression, and discuss recently identified maladaptive immune phenomena that contribute to plaque destabilization, including epigenetically programmed trained immunity in myeloid cells, pathogenic conversion of autoreactive regulatory T-cells and expansion of altered leukocytes due to clonal hematopoiesis. From a more global perspective, the article discusses how systemic crises such as acute mental stress or infection abruptly raise plaque vulnerability and summarizes recent advances in understanding the increased cardiovascular risk associated with COVID-19 disease. Stepping outside the box, we highlight the role of gut dysbiosis in atherosclerosis progression and plaque vulnerability. The emerging differential role of the immune system in plaque rupture and plaque erosion as well as the limitations of animal models in studying plaque disruption are reviewed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Stapmanns
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
| | - David Manuel Leistner
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: David Manuel Leistner
| |
Collapse
|