1
|
Wang T, Wang G, Wu M, Lan H, Liu J, Gong H, Zheng X. Maternal β-carotene supplementation improves offspring growth, development, immunity, and intestinal microbiota in chickens via immune-mediated and microbial-mediated maternal effects. Sci Rep 2025; 15:19149. [PMID: 40450070 DOI: 10.1038/s41598-025-03450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/20/2025] [Indexed: 06/03/2025] Open
Abstract
In poultry, maternal nutritional interventions affect the development and intestinal microbiota of embryos. β-carotene possesses immune-boosting and gut microbiota-regulating properties. We examined the influences of supplementing hen diets with β-carotene on offspring growth, development, and immunity to determine whether maternal β-carotene benefits offspring health. Our findings showed that β-carotene increased serum IgG, lysozyme, and beta-defensins in hens, subsequently elevated these parameters in the serum of their offspring, and promoted their growth and development. In offspring, there were significant positive correlations between body weights and intestinal development indices with serum lysozyme and beta-defensin levels. The augmentation of vertical transfer of lysozyme and beta-defensins may be linked to the increased expression of these genes in the maternal jejunum. The number of shared taxa between the magnum and offspring gut is higher than that between the maternal gut and offspring. Among the taxa, were increased in the maternal magnum and gut microbiome, only the Caloramator abundance was significantly elevated in the guts of 21-day-old offspring. In conclusion, maternal β-carotene inclusion improves offspring growth and development, potentially through enhancing maternal intestinal immunity and thereby promoting immune-mediated maternal effects. The vertical transfer of maternal microbes to offspring exhibits selectivity in chicken.
Collapse
Affiliation(s)
- Taiping Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University, Ministry of Education, Changchun, 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University, Ministry of Education, Changchun, 130118, China
| | - Min Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Hainan Lan
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China
| | - Haizhou Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225091, Jiangsu, China
| | - Xin Zheng
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China.
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University, Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
2
|
Kumar M, Yan Y, Jiang L, Sze CH, Kodithuwakku SP, Yeung WSB, Lee KF. Microbiome-Maternal Tract Interactions in Women with Recurrent Implantation Failure. Microorganisms 2025; 13:844. [PMID: 40284680 PMCID: PMC12029794 DOI: 10.3390/microorganisms13040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Microorganisms play an important role in regulating various biological processes in our bodies. In women, abnormal changes in the reproductive tract microbiome are associated with various gynecological diseases and infertility. Recent studies suggest that patients with recurrent implantation failure (RIF) have a reduced genus Lactobacillus population, a predominant bacterial species in the vagina and uterus that protects the reproductive tract from pathogenic bacterial growth via the production of various metabolites (e.g., lactic acid, bacteriocin, and H2O2). Moreover, a higher percentage of pathogenic bacteria genera, including Atopobium, Gardnerella, Prevotella, Pseudomonas, and Streptococcus, was found in the uterus of RIF patients. This review aimed to examine the role of pathogenic bacteria in RIF, determine the factors altering the endometrial microbiome, and assess the impact of the microbiome on embryo implantation in RIF. Several factors can influence microbial balance, including the impact of extrinsic elements such as semen and antibiotics, which can lead to dysbiosis in the female reproductive tract and affect implantation. Additionally, probiotics such as Lacticaseibacillus rhamnosus were reported to have clinical potential in RIF patients. Future studies are needed to develop targeted probiotic therapies to restore microbial balance and enhance fertility outcomes. Research should also focus on understanding the mechanisms by which microorganisms generate metabolites to suppress pathogenic bacteria for embryo implantation. Identifying these interactions may contribute to innovative microbiome-based interventions for reproductive health.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Yang Yan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynaecology Hospital, Fudan University, Shanghai 200032, China;
| | - Luhan Jiang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Ching-Ho Sze
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Suranga P. Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, The University of Peradeniya, Peradeniya 20400, Sri Lanka;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, 51014 Tartu, Estonia
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
3
|
Xu J, Wu D, Yang J, Zhao Y, Liu X, Chang Y, Tang Y, Sun F, Zhao Y. Adult Outpatients with Long COVID Infected with SARS-CoV-2 Omicron Variant. Part 1: Oral Microbiota Alterations. Am J Med 2025; 138:732-741.e2. [PMID: 39151680 DOI: 10.1016/j.amjmed.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Many individuals experience long COVID after SARS-CoV-2 infection. As microbiota can influence health, it may change with COVID-19. This study investigated differences in oral microbiota between COVID-19 patients with and without long COVID. METHODS Based on a prospective follow-up investigation, this nested case-control study evaluated the differences in oral microbiota in individuals with and without long COVID (Symptomatic and Asymptomatic groups), which were assessed by 16S rRNA sequencing on tongue coating samples. A predictive model was established using machine learning based on specific differential microbial communities. RESULTS One-hundred-and-eight patients were included (n=54 Symptomatic group). The Symptomatic group had higher Alpha diversity indices (observed_otus, Chao1, Shannon, and Simpson indices), differences in microbial composition (Beta diversity), and microbial dysbiosis with increased diversity and relative abundance of pathogenic bacteria. Marker bacteria (c__Campylobacterota, o__Coriobacteriales, o__Pseudomonadales, and o__Campylobacterales) were associated with long COVID by linear discriminant analysis effect size and receiver operating characteristic curves (AUC 0.821). CONCLUSION There were distinct variations in oral microbiota between COVID-19 patients with and without long COVID. Changes in oral microbiota may indicate long COVID.
Collapse
Affiliation(s)
- Jianchao Xu
- Hebei University of Chinese Medicine, Shijiazhuang, China; Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Di Wu
- Hebei University of Chinese Medicine, Shijiazhuang, China; The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jie Yang
- Hebei General Hospital, Shijiazhuang, China
| | - Yinuo Zhao
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Xuzhao Liu
- Handan Hospital of Integrated Chinese and Western Medicine, Handan, China
| | - Yingying Chang
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yao Tang
- Wuhan Metware Biotechnology Co, Ltd, Wuhan, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Beijing, China
| | - Yubin Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, China; Shijiazhuang People's Hospital, Shijiazhuang, China; Shijiazhuang College of Applied Technology, China.
| |
Collapse
|
4
|
Zhong B, Liang W, Zhao Y, Li F, Zhao Z, Gao Y, Yang G, Li S. Combination of Lactiplantibacillus Plantarum ELF051 and Astragalus Polysaccharides Improves Intestinal Barrier Function and Gut Microbiota Profiles in Mice with Antibiotic-Associated Diarrhea. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10368-3. [PMID: 39354215 DOI: 10.1007/s12602-024-10368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
The purpose of this study was to investigate the improvement of the intestinal barrier and gut microbiota in mice with antibiotic-associated diarrhea (AAD) using Lactiplantibacillus plantarum ELF051 combined with Astragalus polysaccharides. The amoxicillin, clindamycin, and streptomycin triple-mixed antibiotic-induced AAD models were administered with L. plantarum ELF051 or Astragalus polysaccharides or L. plantarum ELF051 + Astragalus polysaccharides for 14 days. Our findings revealed that the combination of L. plantarum ELF051 and Astragalus polysaccharides elevated the number of goblet cells and enhanced the proportion of mucous within the colon tissue. Furthermore, the expression of sIgA and IgG were upregulated, while the levels of IL-17A, IL-4, DAO, D-LA, LPS, and TGF-β1 were downregulated. L. plantarum ELF051 combined with Astragalus polysaccharides elevated the expression of tight junction (TJ) proteins, facilitating intestinal mucosal repair via Smad signaling nodes. Furthermore, their combination effectively increased the relative abundance of lactic acid bacteria (LAB) and Allobaculum, and decreased the relative abundance of Bacteroides and Blautia. Spearman rank correlation analysis demonstrated that LAB were closely related to permeability factors, immune factors, and indicators of intestinal barrier function. In summary, the effect of combining L. plantarum ELF051 and Astragalus polysaccharides on AAD mice was achieved by enhancing intestinal barrier function and regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Bao Zhong
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
- College of Food Science and Nutritional Engineering, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
- Brewing Technology Innovation Center of Jilin Province, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
| | - Wei Liang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
- Anshan Hospital of Traditional Chinese Medicine, Anshan, 114004, P.R. China
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Fenglin Li
- College of Food Science and Nutritional Engineering, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
- Brewing Technology Innovation Center of Jilin Province, Jilin Agriculture Science and Technology University, Jilin, 132101, P.R. China
| | - Zijian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Ge Yang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, P.R. China.
| |
Collapse
|
5
|
Chen K, Dai Z, Zhang Y, Wu S, Liu L, Wang K, Shen D, Li C. Effects of Microencapsulated Essential Oils on Growth and Intestinal Health in Weaned Piglets. Animals (Basel) 2024; 14:2705. [PMID: 39335294 PMCID: PMC11428891 DOI: 10.3390/ani14182705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The study investigated the effects of microencapsulated essential oils (MEO) on the growth performance, diarrhea, and intestinal microenvironment of weaned piglets. The 120 thirty-day-old weaned piglets (Duroc × Landrace × Yorkshire, 8.15 ± 0.07 kg) were randomly divided into four groups and were fed with a basal diet (CON) or CON diet containing 300 (L-MEO), 500 (M-MEO), and 700 (H-MEO) mg/kg MEO, respectively, and data related to performance were measured. The results revealed that MEO supplementation increased the ADG and ADFI in weaned piglets (p < 0.05) compared with CON, and reduced diarrhea rates in nursery pigs (p < 0.05). MEO supplementation significantly increased the duodenum's V:C ratio and the jejunal villi height of weaned piglets (p < 0.05). The addition of MEO significantly increased the T-AOC activity in the jejunum of piglets (p < 0.05), but only L-MEO decreased the MDA concentration (p < 0.01). H-MEO group significantly increases the content of isobutyric acid (p < 0.05) in the piglet colon, but it does not affect the content of other acids. In addition, MEO supplementation improved appetite in the nursery and increased the diversity and abundance of beneficial bacteria in the intestinal microbiome. In conclusion, these findings indicated that MEO supplementation improves growth and intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Ketian Chen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Zhiqi Dai
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Yijian Zhang
- Shanghai Menon Animal Nutrition Technology Co., Ltd., Shanghai 201800, China; (Y.Z.); (S.W.)
| | - Sheng Wu
- Shanghai Menon Animal Nutrition Technology Co., Ltd., Shanghai 201800, China; (Y.Z.); (S.W.)
| | - Le Liu
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Kai Wang
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Dan Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| |
Collapse
|
6
|
Chen Z, Xu W, Luo J, Liu L, Peng X. Lonicera japonica Fermented by Lactobacillus plantarum Improve Multiple Patterns Driven Osteoporosis. Foods 2024; 13:2649. [PMID: 39272415 PMCID: PMC11393950 DOI: 10.3390/foods13172649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and functional snacks. The composition of honeysuckle changed significantly after fermentation, and 376 metabolites were enriched. In this study, we used dexamethasone to induce OP in the rat model. Research has confirmed the ability of FS (fermented Lonicera japonica solution) to enhance bone mineral density (BMD), repair bone microarchitectural damage, and increase blood calcium levels. Markers such as tartrate-resistant acid phosphatase-5b (TRACP-5b) and pro-inflammatory cytokines (TNF-α and IL-6) were notably decreased, whereas osteocalcin (OCN) levels increased after FS treatment. FS intervention in OP rats restored the abundance of 6 bacterial genera and the contents of 17 serum metabolites. The results of the Spearman correlation analysis showed that FS may alleviate OP by restoring the abundance of 6 bacterial genera and the contents of 17 serum metabolites, reducing osteoclast differentiation, promoting osteoblast differentiation, and reducing the inflammatory response. This study revealed that Lactobacillus plantarum-fermented honeysuckle alleviated OP through intestinal bacteria and serum metabolites and provided a theoretical basis for the development of related functional foods.
Collapse
Affiliation(s)
- Zimin Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Weiye Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Sun S, Zhang Q, Li D, Li H, Ma H, Wu X, Li Y, Wang P, Liu R, Feng H, Zhang Y, Sang Y, Fang B, Wang R. Heat-killed Bifidobacterium longum BBMN68 and inulin protect against high-fat diet-induced obesity by modulating gut microbiota. Front Nutr 2024; 11:1406070. [PMID: 39206310 PMCID: PMC11351561 DOI: 10.3389/fnut.2024.1406070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Obesity, a pervasive global epidemic, has heightened susceptibility to chronic ailments and diminished the overall life expectancy on a global scale. Probiotics and inulin (IN) have been documented to mitigate obesity by exerting an influence on the composition of the gut microbiota. Whether heat-killed Bifidobacterium longum BBMN68 (MN68) and IN have an anti-obesity effect remains to be investigated. METHODS In this study, Wistar rats were fed a high-fat diet (HFD), and orally administered heat-killed MN68 (2 × 1011 CFU/kg) and/or inulin (0.25 kg/kg) for 12 weeks. Histological analysis, serology analysis and 16S rRNA gene sequencing were performed. RESULTS Heat-killed MN68 + IN treatment showed an enhanced effect on preventing weight gain, diminishing fat accumulation, and regulating lipid metabolism, compared to either heat-killed MN68 treatment or inulin treatment. Gut microbiota results showed that heat-killed MN68 + IN treatment significantly increased the relative abundance of Bacteroidota, Oscillospira, Intestinimonas, Christensenella, and Candidatus_Stoquefichus, and reduced the relative abundance of Enterococcus. Furthermore, heat-killed MN68 + IN significantly increased the SCFA levels, which were correlated with changes in the gut microbiota. DISCUSSION This research provides support for the application of heat-killed MN68 and IN in the treatment of obesity, and highlights the combination of heat-killed BBMN68 and IN as functional food ingredients.
Collapse
Affiliation(s)
- Siyuan Sun
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dongdong Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, Inner Mongolia, China
| | - Hongliang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, Inner Mongolia, China
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing, China
| | - Hairan Ma
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing, China
| | - Xiuying Wu
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Haihong Feng
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Yongxiang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yue Sang
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Du C, Zhang T, Feng C, Sun Q, Chen Z, Shen X, Liu Y, Dai G, Zhang X, Tang N. The effects of venlafaxine on depressive-like behaviors and gut microbiome in cuprizone-treated mice. Front Psychiatry 2024; 15:1347867. [PMID: 38899045 PMCID: PMC11186413 DOI: 10.3389/fpsyt.2024.1347867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background Cuprizone (CPZ)-treated mice show significant demyelination, altered gut microbiome, and depressive-like behaviors. However, the effects of venlafaxine (Ven) on the gut microbiome and depressive-like behavior of CPZ-treated mice are largely unclear. Methods Male C57BL/6J mice were fed a chow containing 0.2% cuprizone (w/w) for 5 weeks to induce a model of demyelination. Meanwhile, the gut microbiota and depressive-like behaviors were assessed after the mice were fed with Ven (20 mg/kg/day) or equal volumes of distilled water for 2 weeks by oral gavage from the third week onward during CPZ treatment. Results CPZ treatment decreased the sucrose preference rate in the sucrose preference test and increased the immobility time in the tail-suspension test, and it also induced an abnormality in β-diversity and changes in microbial composition. Ven alleviated the depressive-like behavior and regulated the composition of the gut microbiota, such as the increase of Lactobacillus and Bifidobacterium in CPZ-treated mice. Conclusion The anti-depressant effects of Ven might be related to the regulation of gut microbiota in the CPZ-treated mice.
Collapse
Affiliation(s)
- Chunhai Du
- Department of Oncology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China
| | - Tian Zhang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Chong Feng
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Qian Sun
- Department of Oncology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China
| | - ZhiGuo Chen
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Xin Shen
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Ying Liu
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Gengwu Dai
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China
| | - Nailong Tang
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| |
Collapse
|
9
|
Li S, Li S, Liu S, Lu S, Li J, Cheng S, Zhang S, Huang S, Li J, Jian F. Portulaca oleracea exhibited anti-coccidian activity, fortified the gut microbiota of Hu lambs. AMB Express 2024; 14:50. [PMID: 38700828 PMCID: PMC11068709 DOI: 10.1186/s13568-024-01705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/13/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidia of the genus Eimeria are important pathogens that cause coccidiosis in livestock and poultry. Due to the expansion of intensive farming, coccidiosis has become more difficult to control. In addition, the continued use of anti-coccidiosis drugs has led to drug resistance and residue. Some herbs used in traditional Chinese medicine (TCM) have been shown to alleviate the clinical symptoms of coccidiosis, while enhancing immunity and growth performance (GP) of livestock and poultry. Previous in vitro and in vivo studies have reported that the TCM herb Portulaca oleracea exhibited anti-parasitic activities. In total, 36 female Hu lambs were equally divided into six treatment groups: PL (low-dose P. oleracea), PH (high-dose P. oleracea), PW (P. oleracea water extract), PE (P. oleracea ethanol extract), DIC (diclazuril), and CON (control). The treatment period was 14 days. The McMaster counting method was used to evaluate the anti-coccidiosis effects of the different treatments. Untargeted metabolomics and 16S rRNA gene sequencing were used to investigate the effects of treatment on the gut microbiota (GM) and GP. The results showed that P. oleracea ameliorated coccidiosis, improved GP, increased the abundances of beneficial bacteria, and maintained the composition of the GM, but failed to completely clear coccidian oocysts. The Firmicutes to Bacteroides ratio was significantly increased in the PH group. P. oleracea increased metabolism of tryptophan as well as some vitamins and cofactors in the GM and decreased the relative content of arginine, tryptophan, niacin, and other nutrients, thereby promoting intestinal health and enhancing GP. As an alternative to the anti-coccidiosis drug DIC, P. oleracea effectively inhibited growth of coccidia, maintained the composition of the GM, promoted intestinal health, and increased nutrient digestibility.
Collapse
Affiliation(s)
- Shiheng Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Senyang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, China
| | - Shuaiqi Liu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shunli Lu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Jing Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shuqi Cheng
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Sumei Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shucheng Huang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Junqiang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Fuchun Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
10
|
Shi E, Wang X, Jing H, Xu Y, Feng L, He F, Li D, Dai Z. Synergistic effect of chitosan and β-carotene in inhibiting MNU-induced retinitis pigmentosa. Int J Biol Macromol 2024; 268:131671. [PMID: 38641272 DOI: 10.1016/j.ijbiomac.2024.131671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this study, N-Methyl-N-nitrosourea (MNU) was intraperitoneally injected to construct a mouse retinitis pigmentosa (RP) model to evaluate the protective effect of chitosan and β-carotene on RP. The results demonstrated that chitosan synergized with β-carotene significantly reduced retinal histopathological structural damage in RP mice. The co-treatment group of β-carotene and chitosan restored the retinal thickness and outer nuclear layer thickness better than the group treated with the two alone, and the thickness reached the normal level. The content of β-carotene and retinoids in the liver of chitosan and β-carotene co-treated group increased by 46.75 % and 20.69 %, respectively, compared to the β-carotene group. Chitosan and β-carotene supplement suppressed the expressions of Bax, Calpain2, Caspase3, NF-κB, TNF-α, IL-6, and IL-1β, and promoted the up-regulation of Bcl2. Chitosan and β-carotene interventions remarkably contributed to the content of SCFAs and enhanced the abundance of Ruminococcaceae, Rikenellaceae, Odoribacteraceae and Helicobacteraceae. Correlation analysis demonstrated a strong association between gut microbiota and improvement in retinitis pigmentosa. This study will provide a reference for the study of the gut-eye axis.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operative, Jinan 250014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fatao He
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operative, Jinan 250014, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
11
|
Scully S, Earley B, Smith PE, McAloon C, Waters SM. Health-associated changes of the fecal microbiota in dairy heifer calves during the pre-weaning period. Front Microbiol 2024; 15:1359611. [PMID: 38737409 PMCID: PMC11082272 DOI: 10.3389/fmicb.2024.1359611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Neonatal calf diarrhea is a multifactorial condition that occurs in early life when calves are particularly susceptible to enteric infection and dysbiosis of the gut microbiome. Good calf health is dependent on successful passive transfer of immunity from the dam through colostrum. There are limited studies on the developing gut microbiota from birth to weaning in calves. Methodology Therefore, the objective of this study was to examine the effect of immune status and diarrheal incidence on the development of the fecal microbiota in Jersey (n = 22) and Holstein (n = 29) heifer calves throughout the pre-weaning period. Calves were hand-fed a colostrum volume equivalent to 8.5% of their birthweight, from either the calf's dam (n = 28) or re-heated mixed colostrum (≤2 cows, ≤1d; n = 23) within 2 h of birth. All calves were clinically assessed using a modified Wisconsin-Madison calf health scoring system and rectal temperature at day (d) 0, d7, d21, or disease manifestation (DM) and weaning (d83). Weights were recorded at d0, d21, and d83. Calf blood samples were collected at d7 for the determination of calf serum IgG (sIgG). Fecal samples were obtained at d7, d21/DM [mean d22 (SE 0.70)], and at weaning for 16S rRNA amplicon sequencing of the fecal microbiota. Data were processed in R using DADA2; taxonomy was assigned using the SILVA database and further analyzed using Phyloseq and MaAsLin 2. Results and discussion Significant amplicon sequence variants (ASVs) and calf performance data underwent a Spearman rank-order correlation test. There was no effect (p > 0.05) of colostrum source or calf breed on serum total protein. An effect of calf breed (p < 0.05) was observed on sIgG concentrations such that Holstein calves had 6.49 (SE 2.99) mg/ml higher sIgG than Jersey calves. Colostrum source and calf breed had no effect (p > 0.05) on health status or the alpha diversity of the fecal microbiota. There was a relationship between health status and time interaction (p < 0.001), whereby alpha diversity increased with time; however, diarrheic calves had reduced microbial diversity at DM. No difference (p > 0.05) in beta diversity of the microbiota was detected at d7 or d83. At the genus level, 33 ASVs were associated (adj.p < 0.05) with health status over the pre-weaning period.
Collapse
Affiliation(s)
- Sabine Scully
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Meath, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Meath, Ireland
| | - Paul E. Smith
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Meath, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Sinéad M. Waters
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
12
|
Marnpae M, Balmori V, Kamonsuwan K, Nungarlee U, Charoensiddhi S, Thilavech T, Suantawee T, Sivapornnukul P, Chanchaem P, Payungporn S, Dahlan W, Hamid N, Nhujak T, Adisakwattana S. Modulation of the gut microbiota and short-chain fatty acid production by gac fruit juice and its fermentation in in vitro colonic fermentation. Food Funct 2024; 15:3640-3652. [PMID: 38482709 DOI: 10.1039/d3fo04318e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study aimed to investigate the effects of gac fruit juice and its probiotic fermentation (FGJ) utilizing Lactobacillus paracasei on the modulation of the gut microbiota and the production of short-chain fatty acids (SCFAs). We conducted a comparison between FGJ, non-fermented gac juice (GJ), and control samples through in vitro digestion and colonic fermentation using the human gut microbiota derived from fecal inoculum. Our findings revealed that both GJ and FGJ led to an increase in the viability of Lactobacilli, with FGJ exhibiting even higher levels compared to the control. The results from the 16S rDNA amplicon sequencing technique showed that both GJ and FGJ exerted positive impact on the gut microbiota by promoting beneficial bacteria, notably Lactobacillus mucosae and Bacteroides vulgatus. Additionally, both GJ and FGJ significantly elevated the levels of SCFAs, particularly acetic, propionic, and n-butyric acids, as well as lactic acid, in comparison to the control. Notably, FGJ exhibited a more pronounced effect on the gut microbiota compared to GJ. This was evident in its ability to enhance species richness, reduce the Firmicutes to Bacteroidetes (F/B) ratio, promote Akkermansia, and inhibit pathogenic Escherichia coli. Moreover, FGJ displayed enhanced production of SCFAs, especially acetic and lactic acids, in contrast to GJ. Our findings suggest that the probiotic fermentation of gac fruit enhances its functional attributes in promoting a balanced gut microbiota. This beverage demonstrates potential as a functional food with potential advantages for sustaining intestinal health.
Collapse
Affiliation(s)
- Marisa Marnpae
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vernabelle Balmori
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Food Science and Technology, Southern Leyte State University, Southern Leyte 6606, Philippines
| | - Kritmongkhon Kamonsuwan
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Uarna Nungarlee
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Tanyawan Suantawee
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Winai Dahlan
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nazimah Hamid
- Department of Food Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Thumnoon Nhujak
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirichai Adisakwattana
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Hargett SE, Leslie EF, Chapa HO, Gaharwar AK. Animal models of postpartum hemorrhage. Lab Anim (NY) 2024; 53:93-106. [PMID: 38528231 DOI: 10.1038/s41684-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Postpartum hemorrhage (PPH)-heavy bleeding following childbirth-is a leading cause of morbidity and mortality worldwide. PPH can affect individuals regardless of risks factors and its incidence has been increasing in high-income countries including the United States. The high incidence and severity of this childbirth complication has propelled research into advanced treatments and alternative solutions for patients facing PPH; however, the development of novel treatments is limited by the absence of a common, well-established and well-validated animal model of PPH. A variety of animals have been used for in vivo studies of novel therapeutic materials; however, each of these animals differs considerably from the anatomy and physiology of a postpartum woman, and the methods used for achieving a postpartum hemorrhagic condition vary widely. Here we critically evaluate the various animal models of PPH presented in the literature and propose additional and alternative methods for modeling PPH in in vivo studies. We highlight how current animal models successfully or unsuccessfully mimic the anatomy and physiology of a postpartum woman and how this may impact treatment development. We aim to equip researchers with the necessary background information to select appropriate animal models for their research related to PPH solutions, while supporting the goals of refinement, reduction and replacement (3Rs) in preclinical animal studies.
Collapse
Affiliation(s)
- Sarah E Hargett
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - Elaine F Leslie
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - Hector O Chapa
- Medical Education, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Yu R, Luo J, Liu L, Peng X. Hypoglycemic Effect of Edible Fungi Polysaccharides Depends on Their Metabolites from the Fermentation of Human Fecal Microbiota. Foods 2023; 13:97. [PMID: 38201125 PMCID: PMC10778959 DOI: 10.3390/foods13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Edible fungi polysaccharides are widely sourced and have various physiological activities, including hypoglycemic. Current studies mainly focus on the hypoglycemic activity of polysaccharides themselves, while the strength of the hypoglycemic activity of edible fungi polysaccharides from different sources remained elusive. This study compared the hypoglycemic activity of different edible fungi polysaccharides after in vitro fermentation by fecal bacteria, combined with non-targeted metabolomics and 16S rDNA analysis, to screen out potential key metabolites related to the hypoglycemic activity. The results show that the fermentation supernatants of all four edible fungi polysaccharides significantly increased the glucose consumption and glycogen synthesis of IR-HepG2, also up-regulated the level of hexokinase and down-regulated the level of phosphoenolpyruvate carboxylase. All fermentation supernatants could alleviate the insulin resistance of IR-HepG2 cells by regulating the expression levels of genes related to the IRS-1/PI3K/Akt signaling pathway. Gingerglycolipid A, sphinganine 1-phosphate, matricin, tricarballylic acid, N-carbamoylputrescine, nomega-acetylhistamine, tyramine, and benzamide could be considered as potential key metabolites to evaluate the hypoglycemic effects. Their levels were strongly positively correlated with the abundance of Candidatus_Stoquefichu, Faecalibacterium, Coprococcus, Bacteroides, Eubacterium_ventriosum_group, Anaerostipes, Parabacteroides, and Agathobacter. These metabolites and microorganisms are closely related to the hypoglycemic activity of edible fungi polysaccharides.
Collapse
Affiliation(s)
| | | | | | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Shi E, Nie M, Wang X, Jing H, Feng L, Xu Y, Zhang Z, Zhang G, Li D, Dai Z. Polysaccharides affect the utilization of β-carotene through gut microbiota investigated by in vitro and in vivo experiments. Food Res Int 2023; 174:113592. [PMID: 37986456 DOI: 10.1016/j.foodres.2023.113592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the effects of six polysaccharides on the utilization of β-carotene from the perspective of gut microbiota using both in vitro simulated anaerobic fermentation systems and in vivo animal experiments. In the in vitro experiments, the addition of arabinoxylan, arabinogalactan, mannan, inulin, chitosan, and glucan led to a 31.07-79.12% decrease in β-carotene retention and a significant increase in retinol content (0.21-0.99-fold) compared to β-carotene alone. Among them, the addition of chitosan produced the highest level of retinol. In the in vivo experiments, mice treated with the six polysaccharides exhibited a significant increase (2.51-5.78-fold) in serum β-carotene content compared to the group treated with β-carotene alone. The accumulation of retinoids in the serum, liver, and small intestine increased by 13.56-21.61%, 12.64-56.27%, and 7.9%-71.69%, respectively. The expression of β-carotene cleavage enzymes was increased in the liver. Genetic analysis of small intestinal tissue revealed no significant enhancement in the expression of genes related to β-carotene metabolism. In the gut microbiota environment, the addition of polysaccharides generated more SCFAs and altered the structure and composition of the gut microbiota. The correlation analysis revealed a strong association between gut microbes (Ruminococcaceae and Odoribacteraceae) and β-carotene metabolism and absorption. Collectively, our findings suggest that the addition of polysaccharides may improve β-carotene utilization by modulating the gut microbiota.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guodong Zhang
- Jiangsu Aland Nutrition Co., Ltd., Taizhou 214500, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Zeng SY, Liu YF, Liu JH, Zeng ZL, Xie H, Liu JH. Potential Effects of Akkermansia Muciniphila in Aging and Aging-Related Diseases: Current Evidence and Perspectives. Aging Dis 2023; 14:2015-2027. [PMID: 37199577 PMCID: PMC10676789 DOI: 10.14336/ad.2023.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is an anaerobic bacterium that widely colonizes the mucus layer of the human and animal gut. The role of this symbiotic bacterium in host metabolism, inflammation, and cancer immunotherapy has been extensively investigated over the past 20 years. Recently, a growing number of studies have revealed a link between A. muciniphila, and aging and aging-related diseases (ARDs). Research in this area is gradually shifting from correlation analysis to exploration of causal relationships. Here, we systematically reviewed the association of A. muciniphila with aging and ARDs (including vascular degeneration, neurodegenerative diseases, osteoporosis, chronic kidney disease, and type 2 diabetes). Furthermore, we summarize the potential mechanisms of action of A. muciniphila and offer perspectives for future studies.
Collapse
Affiliation(s)
- Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Jiang-Hua Liu
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
17
|
Miao Q, Tang C, Yang Y, Zhao Q, Li F, Qin Y, Zhang J. Deposition and bioconversion law of β-carotene in laying hens after long-term supplementation under adequate vitamin A status in the diet. Poult Sci 2023; 102:103046. [PMID: 37708765 PMCID: PMC10502406 DOI: 10.1016/j.psj.2023.103046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
β-Carotene, because it is the precursor of vitamin A and has versatile biological roles, has been applied as a feed additive in the poultry industry for a long time. In this study, we investigated the deposition and bioconversion of β-carotene in laying hens. A total of 600 Hy-line brown laying hens at 40 wk of age were randomly divided into 5 dietary treatments, each group's dietary supplemental levels of β-carotene were 0, 15, 30, 60, 120 mg/kg feed, and the vitamin A levels were all 8,000 IU/kg. After 14-wk trial, samples were collected, then carotenoids and different forms of vitamin A were detected using the novel method developed by our laboratory. We found that dietary β-carotene treatment had no significant effects on laying hens' production performance and egg quality (P > 0.05), except the yolk color. The deposition of β-carotene in the body gradually increased (P < 0.01) with the supplemental dose, whereas the contents of lutein and zeaxanthin decreased (P < 0.05). When the β-carotene supplemental level was above 30 mg/kg in the diet, the different forms of vitamin A in in serum, liver, ovary, and yolks were increased compared to the control group (P < 0.05). However, these indicators decreased when the additional dose was 120 mg/kg. Moreover, the mRNA levels of the genes involved in β-carotene absorption, bioconversion, and negative feedback regulation in duodenal mucosa and liver were upregulated after long-term feeding (P < 0.05). Histological staining of the ovaries indicated that the deposition of β-carotene led to a lower rate of follicle atresia (P < 0.05), and this positive effects may be related to the antioxidant function of β-carotene, which caused a reduction of oxidation products in the ovary (P < 0.05). Altogether, β-carotene could accumulate in laying hens intactly and exert its biological functions in tissue. Meanwhile, a part of β-carotene could also be converted into vitamin A but this bioconversion has an upper limit and negative feedback regulation.
Collapse
Affiliation(s)
- Qixiang Miao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
18
|
Guo W, Cui S, Tang X, Zhang Q, Zhao J, Mao B, Zhang H. Intestinal Microbiomics and Metabolomics Insights into the Hepatoprotective Effects of Lactobacillus paracasei CCFM1222 Against the Acute Liver Injury in Mice. Probiotics Antimicrob Proteins 2023; 15:1063-1077. [PMID: 36056292 DOI: 10.1007/s12602-022-09986-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
In recent years, acute liver injury (ALI) has received wide-range attention in the world due to its relatively high morbidity and mortality. This study aimed to explore the hepatoprotective effect of Lactobacillus paracasei CCFM1222 against lipopolysaccharide (LPS)-induced ALI mice and further elaborate its mechanism of action from the perspective of intestinal microbiomics and metabolomics. The results displayed that L. paracasei CCFM1222 pretreatment significantly decreased the serum ALT, and AST levels, inhibited the releases of hepatic TNF-α, IL-1β, and IL-6 levels, and activated the SOD, CAT, and GSH-Px activities in LPS-treated mice. The cecal short-chain fatty acid (SCFAs) levels were increased in LPS-treated mice with L. paracasei CCFM1222 pretreatment. In addition, L. paracasei CCFM1222 pretreatment remarkably shifted the intestinal microbiota composition, including the higher abundance of Faecalibaculum, Bifidobacterium, and lower abundance of the Prevotellaceae NK3B31 group, which is positively associated with the cecal propionic, butyric, valeric, isobutyric, and isovaleric acids. The metabolomics based on UPLC-QTOF/MS revealed that L. paracasei CCFM1222 pretreatment significantly regulated the composition of feces metabolites in LPS-treated mice, especially the potential biomarker-related butanoate metabolism, vitamin B6 metabolism, D-glutamine and D-glutamate metabolism, tryptophan metabolism, caffeine metabolism, arginine biosynthesis, arginine, and proline metabolism. Moreover, L. paracasei CCFM1222 pretreatment remarkably regulated the expression of gene-associated ALI (including Tlr4, Myd88, Nf-kβ, iNOS, Cox2, Iκ-Bα, Nrf2, and Sirt-1). In conclusion, these results suggest the possibility that L. paracasei CCFM1222 supplementation has beneficial effects on preventing the occurrence and development of ALI by inhibiting the inflammatory responses and altering intestinal microbiota composition and their metabolites.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023; 64:12555-12573. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
20
|
Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int 2023; 169:112749. [PMID: 37254375 DOI: 10.1016/j.foodres.2023.112749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023]
Abstract
Vitamin C (VC), vitamin E (VE) and β-carotene (βC) are representative dietary antioxidants, which exist in daily diet and can increase the antioxidant capacity of body fluids, cells and tissues. The health benefits of vitamins like VC, VE and βC are widely demonstrated. Given that the strong associations between the gut microbiota and host health or a range of diseases has been extensively reported, it is important to explore the modulatory effects of known vitamins on the gut microbiota. Herein, this article reviews the effects of VC, VE and βC on the gut microbiota. Totally, 19 studies were included, of which eight were related to VC, nine to VE, and six to βC. Overall, VC, VE and βC can provide health benefits to the host by modulating the composition and metabolic activity of the gut microbiota, improving intestinal barrier function and maintaining the normal function of the immune system. Two perspectives are proposed for future studies: i) roles of known antioxidant activity of vitamins in regulating the gut microbiota and its molecular mechanism need to be further studied; ii) causal relationships between the regulatory effects of vitamins on gut microbiota and host health still remains to be further verified.
Collapse
Affiliation(s)
- Xin-Yu Li
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Lei Meng
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China; School of Life Sciences, Ludong University, Yantai, People's Republic of China.
| |
Collapse
|
21
|
Dje Kouadio DK, Wieringa F, Greffeuille V, Humblot C. Bacteria from the gut influence the host micronutrient status. Crit Rev Food Sci Nutr 2023; 64:10714-10729. [PMID: 37366286 DOI: 10.1080/10408398.2023.2227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Micronutrient deficiencies or "hidden hunger" remains a serious public health problem in most low- and middle-income countries, with severe consequences for child development. Traditional methods of treatment and prevention, such as supplementation and fortification, have not always proven to be effective and may have undesirable side-effects (i.e., digestive troubles with iron supplementation). Commensal bacteria in the gut may increase bioavailability of specific micronutrients (i.e., minerals), notably by removing anti-nutritional compounds, such as phytates and polyphenols, or by the synthesis of vitamins. Together with the gastrointestinal mucosa, gut microbiota is also the first line of protection against pathogens. It contributes to the reinforcement of the integrity of the intestinal epithelium and to a better absorption of micronutrients. However, its role in micronutrient malnutrition is still poorly understood. Moreover, the bacterial metabolism is also dependent of micronutrients acquired from the gut environment and resident bacteria may compete or collaborate to maintain micronutrient homeostasis. Gut microbiota composition can therefore be modulated by micronutrient availability. This review brings together current knowledge on this two-way relationship between micronutrients and gut microbiota bacteria, with a focus on iron, zinc, vitamin A and folate (vitamin B9), as these deficiencies are public health concerns in a global context.
Collapse
Affiliation(s)
- Dorgeles Kouakou Dje Kouadio
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Frank Wieringa
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Valérie Greffeuille
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Christèle Humblot
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| |
Collapse
|
22
|
Chen X, Cheng Y, Tian X, Li J, Ying X, Zhao Q, Wang M, Liu Y, Qiu Y, Yan X, Ren X. Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115010. [PMID: 37211000 DOI: 10.1016/j.ecoenv.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.
Collapse
Affiliation(s)
- Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiuyi Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuefeng Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
23
|
Akkermansia muciniphila Ameliorates Lung Injury in Smoke-Induced COPD Mice by IL-17 and Autophagy. Cell Microbiol 2023. [DOI: 10.1155/2023/4091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Objective. Smoking is a primary hazard factor for chronic obstructive pulmonary disease (COPD), which induced a decrease in intestinal Akkermansia muciniphila abundance and Th17 imbalance in COPD. This study analyzed the changes of gut microbiota metabolism and Akkermansia abundance in patients with smoking-related COPD and explored the potential function of Akkermansia muciniphila in smoke-induced COPD mice. Methods. Gut microbiota diversity and metabolic profile were analyzed by 16S rRNA sequence and metabolomics in COPD patients. The IL-1β, IL-17, TNF-α, and IL-6 levels were tested by ELISA. Lung tissue damage was observed by HE staining. The expression of cleave-caspase 3, trophoblast antigen 2 (TROP2), and LC3 in lung tissues were analyzed by IHC or IF. The p-mTOR, mTOR, p62, and LC3 expression in lung tissues were tested by western blot. Results. The levels of IL-17, IL-1β, TNF-α, and IL-6 in the peripheral blood of COPD patients increased significantly. The number and alpha diversity of gut microbiota were decreased in COPD patients. The abundance of Akkermansia muciniphila in gut of COPD patients was decreased, and the metabolic phenotype and retinol metabolism were changed. In the retinol metabolism, the retinol and retinal were significantly changed. Akkermansia muciniphila could improve the alveolar structure and inflammatory cell infiltration in lung tissue, reduce the IL-17, TNF-α, and IL-6 levels in peripheral blood, promote the p-mTOR expression, and inhibit the expression of autophagy-related proteins in smoke-induced COPD mice. Conclusion. The number and alpha diversity of gut microbiota were decreased in patients with smoking-related COPD, accompanied by decreased abundance of Akkermansia muciniphila, and altered retinol metabolism function. Gut Akkermansia muciniphila ameliorated lung injury in smoke-induced COPD mice by inflammation and autophagy.
Collapse
|
24
|
Chen P, Li X, Yu Y, Zhang J, Zhang Y, Li C, Li J, Li K. Administration Time and Dietary Patterns Modified the Effect of Inulin on CUMS-Induced Anxiety and Depression. Mol Nutr Food Res 2023; 67:e2200566. [PMID: 36811233 DOI: 10.1002/mnfr.202200566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Indexed: 02/24/2023]
Abstract
SCOPE Prebiotics exert anxiolytic and antidepressant effects through the microbiota-gut-brain axis in animal models. However, the influence of prebiotic administration time and dietary pattern on stress-induced anxiety and depression is unclear. In this study, whether administration time can modify the effect of inulin on mental disorders within normal and high-fat diets are investigated. METHODS AND RESULTS Mice subjected to chronic unpredicted mild stress (CUMS) are administered with inulin in the morning (7:30-8:00 am) or evening (7:30-8:00 pm) for 12 weeks. Behavior, intestinal microbiome, cecal short-chain fatty acids, neuroinflammatory responses, and neurotransmitters are measured. A high-fat diet aggravated neuroinflammation and is more likely to induce anxiety and depression-like behavior (p < 0.05). Morning inulin treatment improves the exploratory behavior and sucrose preference better (p < 0.05). Both inulin treatments decrease the neuroinflammatory response (p < 0.05), with a more evident trend for the evening administration. Furthermore, morning administration tends to affect the brain-derived neurotrophic factor and neurotransmitters. CONCLUSION Administration time and dietary patterns seem to modify the effect of inulin on anxiety and depression. These results provide a basis for assessing the interaction of administration time and dietary patterns, providing guidance for the precise regulation of dietary prebiotics in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofang Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaming Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
25
|
Wang ZJ, Chen LH, Xu J, Xu QX, Xu W, Yang XW. Corylin ameliorates chronic ulcerative colitis via regulating the gut-brain axis and promoting 5-hydroxytryptophan production in the colon. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154651. [PMID: 36634380 DOI: 10.1016/j.phymed.2023.154651] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic ulcerative colitis (UC) is a lifelong disease, patients with chronic UC have a high prevalence of common mental disorders. The increasing interest in the role of gut-brain axis is seen in inflammatory bowel diseases. PURPOSE Corylin is a representative flavonoid compound isolated from the Psoraleae Fructus. This study aimed to identify the effects and mechanism of corylin on the inflammation interactions and 5-HT synthesis between the gut and brain in chronic UC. METHODS Dextran sulfate sodium (DSS) induced chronic UC mouse model was established to assess the therapeutic effect of corylin on chronic UC symptoms. The expression of inflammatory cytokines was detected in the colon and brain. The expression of tight junction (TJ) proteins of intestinal mucosal barrier and blood-brain barrier (BBB) and the ionized calcium-binding adaptor molecule 1 (Iba1) in the hippocampus were determined by western blotting and immunofluorescence staining. In addition, several tryptophan (Trp) metabolites and related neurotransmitters in faeces, colon, serum, and brain were detected by UPLC-MS/MS. The interaction between corylin and 5-hydroxytryptophan decarboxylase (5-HTPDC) was performed by molecular docking and surface plasmon resonance (SPR). Finally, the changes of gut microbiota composition were analyzed by 16S rRNA sequencing. RESULTS Corylin significantly alleviated colitis symptoms and inhibited inflammatory response in the colon and brain of DSS-induced chronic UC mice. The TJ proteins of intestinal mucosal barrier and BBB were improved and the expression of Iba1 in the hippocampus was normalized after corylin treatment. In addition, corylin treatment increased the expression of neurotransmitters in the brain, especially 5-hydroxytryptamine (5-HT) and 5-hydroxytryptophan (5-HTP), but the expression of 5-HT in the colon was inhibited. Further study firstly proved that corylin could bind to the 5-HTDPC, and then inhibit the expression of 5-HTDPC and VB6, resulting in the 5-HT reduction and 5-HTP accumulation in the colon. Moreover, the intake of corylin transformed the diversity and composition of intestinal microbiota, Bacteroides, Escherichia-Shigella, and Turicibacter were decreased but Dubosiella, Enterorhabdus, and Candidatus_Stoquefichus were increased. CONCLUSION Corylin administration ameliorated DSS-induced colitis and inhibited intestinal inflammation and neuroinflammation via regulating the inflammation interactions across gut-brain axis and increasing 5-HTP generation in the colon.
Collapse
Affiliation(s)
- Zhao-Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Health Science Centre, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Li-Hua Chen
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Health Science Centre, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jing Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Health Science Centre, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Qing-Xia Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Health Science Centre, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Health Science Centre, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Health Science Centre, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
26
|
Tang B, Hu Y, Chen J, Su C, Zhang Q, Huang C. Oral and fecal microbiota in patients with diarrheal irritable bowel syndrome. Heliyon 2023; 9:e13114. [PMID: 36711269 PMCID: PMC9880401 DOI: 10.1016/j.heliyon.2023.e13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Background This study aimed at investigating the characteristics and correlation between oral (tongue coating) and fecal microbiota in patients with diarrheal irritable bowel syndrome (IBS-D). Methods Fifty-two IBS-D patients were chosen, with ten healthy volunteers serving as the normal control group. Tongue coating samples and fecal samples of subjects were sequenced for the 16S rRNA gene (V4-V5). Bioinformatics analysis was done on the test data to investigate oral and fecal microbiota composition characteristics in IBS-D patients. Results The microbial richness of tongue coating in IBS-D group was lower than that in the normal control group (P < 0.05). The beta diversity of tongue coating microbiota and fecal microbiota was significantly different in the IBS-D group compared to the normal control group (P < 0.05). Pseudomonadales (Pseudomonadaceae and Pseudomonas), Moraxellaceae, Parvimonas, Peptostreptococcus, and Alloprevotella were considerably high in number the tongue coating samples of the IBS-D group in comparison to the normal control group. Similarly, the fecal samples from the IBS-D group were significantly enriched in Alphaproteobacteria, Pseudomonadales (Pseudomonadaceae and Pseudomonas), Acidaminococcaceae, Phascolarctobacterium, Alloprevotella, and Escherichia compared to the normal control group. Conclusions The oral and fecal microbiotas of IBS-D patients differ from those of the control group; hence studying IBS-D from the perspective of the oral-gut microbiome axis is an interesting research avenue.
Collapse
Affiliation(s)
- Binbin Tang
- Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China,Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunlian Hu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianhui Chen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China,Corresponding author. Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
| | - Chengxia Su
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China,Corresponding author. First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
| | - Qian Zhang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Chaoqun Huang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
27
|
Wang XS, Li PX, Wang BS, Zhang WD, Wang WH. Integrated omics analysis reveals the immunologic characteristics of cystic Peyer's patches in the cecum of Bactrian camels. PeerJ 2023; 11:e14647. [PMID: 36643630 PMCID: PMC9835693 DOI: 10.7717/peerj.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
Bactrian camels have specific mucosa-associated lymphoid tissue (MALT) throughout the large intestine, with species-unique cystic Peyer's patches (PPS) as the main type of tissue. However, detailed information about the molecular characteristics of PPS remains unclear. This study applied a transcriptomic analysis, untargeted metabolomics, and 16S rDNA sequencing to compare the significant differences between PPS and the adjacent normal intestine tissues (NPPS) during the healthy stage of three young Bactrian camels. The results showed that samples from PPS could be easily differentiated from the NPPS samples based on gene expression profile, metabolites, and microbial composition, separately indicated using dimension reduction methods. A total of 7,568 up-regulated and 1,266 down-regulated differentially expressed genes (DEGs) were detected, and an enrichment analysis found 994 DEGs that participated in immune-related functions, and a co-occurance network analysis identified nine hub genes (BTK, P2RX7, Pax5, DSG1, PTPN2, DOCK11, TBX21, IL10, and HLA-DOB) during multiple immunologic processes. Further, PPS and NPPS both had a similar pattern of most compounds among all profiles of metabolites, and only 113 differentially expressed metabolites (DEMs) were identified, with 101 of these being down-regulated. Deoxycholic acid (DCA; VIP = 37.96, log2FC = -2.97, P = 0), cholic acid (CA; VIP = 13.10, log2FC = -2.10, P = 0.01), and lithocholic acid (LCA; VIP = 12.94, log2FC = -1.63, P = 0.01) were the highest contributors to the significant dissimilarities between groups. PPS had significantly lower species richness (Chao1), while Firmicutes (35.92% ± 19.39%), Bacteroidetes (31.73% ± 6.24%), and Proteobacteria (13.96% ± 16.21%) were the main phyla across all samples. The LEfSe analysis showed that Lysinibacillus, Rikenellaceae_RC9_gut_group, Candidatus_Stoquefichus, Mailhella, Alistipes, and Ruminococcaceae_UCG_005 were biomarkers of the NPPS group, while Escherichia_Shigella, Synergistes, Pyramidobacter, Odoribacter, Methanobrevibacter, Cloacibacillus, Fusobacterium, and Parabacteroides were significantly higher in the PPS group. In the Procrustes analysis, the transcriptome changes between groups showed no significant correlations with metabolites or microbial communities, whereas the alteration of metabolites significantly correlated with the alteration of the microbial community. In the co-occurrence network, seven DEMs (M403T65-neg, M329T119-neg, M309T38-neg, M277T42-2-neg, M473T27-neg, M747T38-1-pos, and M482t187-pos) and 14 genera (e.g., Akkermansia, Candidatus-Stoquefichus, Caproiciproducens, and Erysipelatoclostridium) clustered much more tightly, suggesting dense interactions. The results of this study provide new insights into the understanding of the immune microenvironment of the cystic PPS in the cecum of Bactrian camels.
Collapse
Affiliation(s)
- Xiao shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pei xuan Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bao shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wang dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wen hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Huang S, Wu D, Hao X, Nie J, Huang Z, Ma S, Chen Y, Chen S, Wu J, Sun J, Ao H, Gao B, Tan C. Dietary fiber supplementation during the last 50 days of gestation improves the farrowing performance of gilts by modulating insulin sensitivity, gut microbiota, and placental function. J Anim Sci 2023; 101:skad021. [PMID: 36634095 PMCID: PMC9912709 DOI: 10.1093/jas/skad021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Our previous study found dietary konjac flour (KF) supplementation could improve insulin sensitivity and reproductive performance of sows, but its high price limits its application in actual production. This study aimed to investigate the effects of supplementation of a cheaper combined dietary fiber (CDF, using bamboo shoots fiber and alginate fiber to partially replace KF) from the last 50 days of gestation to parturition on farrowing performance, insulin sensitivity, gut microbiota, and placental function of gilts. Specifically, a total of 135 pregnant gilts with a similar farrowing time were blocked by backfat thickness and body weight on day 65 of gestation (G65d) and assigned to 1 of the 3 dietary treatment groups (n = 45 per group): basal diet (CON), basal diet supplemented with 2% KF or 2% CDF (CDF containing 15% KF, 60% bamboo shoots fiber, and 25% alginate fiber), respectively. The litter performance, insulin sensitivity and glucose tolerance parameters, placental vessel density, and short-chain fatty acids (SCFAs) levels in feces were assessed. The gut microbiota population in gilts during gestation was also assessed by 16S rDNA gene sequencing. Compared with CON, both KF and CDF treatments not only increased the piglet birth weight (P < 0.05) and piglet vitality (P < 0.01) but also decreased the proportion of piglets with birth weight ≤ 1.2 kg (P < 0.01) and increased the proportion of piglets with birth weight ≥ 1.5 kg (P < 0.01). In addition, KF or CDF supplementation reduced fasting blood insulin level (P < 0.05), homeostasis model assessment-insulin resistance (P < 0.05), serum hemoglobin A1c (P < 0.05), and the level of advanced glycation end products (P < 0.05) at G110d, and increased the placental vascular density (P < 0.05) at farrowing. Meanwhile, KF or CDF supplementation increased microbial diversity (P < 0.05) and SCFAs levels (P < 0.05) in feces at G110d. Notably, the production cost per live-born piglet was lower in CDF group (¥ 36.1) than KF group (¥ 41.3). Overall, KF or CDF supplementation from G65d to farrowing could improve the farrowing performance of gilts possibly by improving insulin sensitivity, regulating gut microbiota and metabolites, and increasing placental vascular density, with higher economic benefits and a similar effect for CDF vs. KF, suggesting the potential of CDF as a cheaper alternative to KF in actual production.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiling Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shengxing Chen
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jianyao Wu
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jihui Sun
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Huasun Ao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Binghui Gao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
29
|
Li C, Liu C, Li N. Causal associations between gut microbiota and adverse pregnancy outcomes: A two-sample Mendelian randomization study. Front Microbiol 2022; 13:1059281. [PMID: 36590417 PMCID: PMC9801412 DOI: 10.3389/fmicb.2022.1059281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Growing evidence indicates that gut microbiota could be closely associated with a variety of adverse pregnancy outcomes (APOs), but a causal link between gut microbiome and APOs has yet to be established. Therefore, in this study, we comprehensively investigated the relationship between gut microbiota and APOs to identify specific causal bacteria that may be associated with the development and occurrence of APOs by conducting a two-sample Mendelian randomization (MR) analysis. The microbiome genome-wide association study (GWAS) from the MiBioGen consortium was used as exposure data, and the GWAS for six common APOs was used as outcome data. Single-nucleotide polymorphisms (SNPs) that significantly correlated to exposure, data obtained from published GWAS, were selected as instrumental variables (IVs). We used the inverse variance-weighted (IVW) test as the main MR analysis to estimate the causal relationship. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were used to confirm the presence of horizontal pleiotropy and to exclude outlier SNPs. We performed Cochran's Q test to assess the heterogeneity among SNPs associated with each bacterium. The leave-one-out sensitivity analysis was used to evaluate whether the overall estimates were affected by a single SNP. Our analysis shows a causal association between specific gut microbiota and APOs. Our findings offer novel insights into the gut microbiota-mediated development mechanism of APOs.
Collapse
Affiliation(s)
- Chuang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
| | - Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China,*Correspondence: Na Li
| |
Collapse
|
30
|
Ma S, Pang X, Tian S, Sun J, Hu Q, Li X, Lu Y. The protective effects of sulforaphane on high-fat diet-induced metabolic associated fatty liver disease in mice via mediating the FXR/LXRα pathway. Food Funct 2022; 13:12966-12982. [PMID: 36448414 DOI: 10.1039/d2fo02341e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is becoming the key factor in causing chronic liver disease all over the world. Sulforaphane (SFN) has been proven to be effective in alleviating many metabolic diseases, such as obesity and type 2 diabetes. In this study, C57BL/6 mice were fed a high-fat diet for 12 weeks to induce MAFLD and given SFN (10 mg per kg bw) daily. Our results showed that SFN not only improved the excessive accumulation of fat in the liver cells but also ameliorated liver and serum inflammatory and antioxidant levels. In addition, SFN can regulate bile-acid metabolism and fatty-acid synthesis by affecting their farnesoid X receptor (FXR)/liver X receptor alpha (LXRα) signaling pathway, ultimately alleviating MAFLD. Our study provides a theoretical basis for the mechanism by which SFN alleviates hepatic steatosis.
Collapse
Affiliation(s)
- Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiaobin Hu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
31
|
Zhou Q, Lan F, Gu S, Li G, Wu G, Yan Y, Li X, Jin J, Wen C, Sun C, Yang N. Genetic and microbiome analysis of feed efficiency in laying hens. Poult Sci 2022; 102:102393. [PMID: 36805401 PMCID: PMC9958098 DOI: 10.1016/j.psj.2022.102393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Shuang Gu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Hu R, Tan J, Li Z, Wang L, Shi M, Li B, Liu M, Yuan X, He J, Wu X. Effect of dietary resveratrol on placental function and reproductive performance of late pregnancy sows. Front Nutr 2022; 9:1001031. [PMID: 36407549 PMCID: PMC9673905 DOI: 10.3389/fnut.2022.1001031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 09/13/2024] Open
Abstract
Placental function is vital to the fetal growth of sows, and resveratrol (RES) can protect cells against oxidative stress, which is one of the major factors impairing placental function. This study aimed to investigate the effect of dietary resveratrol (RES) on placental function and reproductive performance during late pregnancy in a sow model from the aspects of oxidative stress, insulin resistance, and gut microbiota. A total of 26 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into two groups (n = 13) and fed with a basal diet or a diet containing 200 mg/kg of resveratrol from day 85 of gestation until parturition. The dietary supplementation of RES increased the litter weight at parturition by 12.53% (p = 0.145), with ameliorated insulin resistance (HOMA-IR), increased triglyceride (TG) levels, and decreased interleukin (IL)-1β and IL-6 levels in serum (p < 0.05). Moreover, resveratrol increased the placental vascular density (p < 0.05) with the enhanced expression of nutrient transporter genes (SLC2A1 and SLC2A3) and antioxidant genes, such as superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) but declined the expression of inflammatory genes, such as IL-1β and IL-6 (p < 0.05). The characterization of the fecal microbiota revealed that resveratrol decreased the relative abundance of the Christensensllaceae R-7 group and Ruminococcaceae UCG-008 (p < 0.05), which had a positive linear correlation with the expression of IL-1β and IL-6 (p < 0.05), but had a negative linear correlation with the expression of SOD2, HO-1, SLC2A1, and SCL2A3 genes (p < 0.05). These data demonstrated that dietary supplementation with resveratrol can improve placental function with ameliorated insulin resistance, oxidative stress, and inflammation potentially by regulating Ruminococcaceae UCG-008 and the Christensensllaceae R-7 group in sows.
Collapse
Affiliation(s)
- Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhanfeng Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Wang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mingkun Shi
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Baizhen Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xupeng Yuan
- Hunan Xinguang'an Agricultural Husbandry Co., Ltd., Changsha, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaosong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
33
|
Han H, Wang M, Zhong R, Yi B, Schroyen M, Zhang H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23169350. [PMID: 36012616 PMCID: PMC9408850 DOI: 10.3390/ijms23169350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
34
|
Bao W, He Y, Yu J, Liu M, Yang X, Ta N, Zhang E, Liang C. Regulatory Effect of Lactiplantibacillus plantarum 2-33 on Intestinal Microbiota of Mice With Antibiotic-Associated Diarrhea. Front Nutr 2022; 9:921875. [PMID: 35757257 PMCID: PMC9218693 DOI: 10.3389/fnut.2022.921875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Diarrhea is one of the common adverse reactions in antibiotic treatment, which is usually caused by the imbalance of intestinal flora, and probiotics play an important role in the structure of intestinal flora. Therefore, this experiment studied the regulatory effect of Lactiplantibacillus plantarum 2-33 on antibiotic-associated diarrhea (AAD) mice. First, the AAD mice model was established by the mixed antibiotic solution of gentamicin sulfate and cefradine. Then, the physiological indexes and diarrhea of mice were observed and recorded by gastric perfusion of low dose (1.0 × 107 CFU/ml), medium dose (1.0 × 108CFU/ml), and high dose (1.0 × 109 CFU/ml) strain 2-33. 16S rRNA gene V3-V4 regions were sequenced in colon contents of mice in control group, model group, self-healing group, and experimental group, respectively, and the diversity of intestinal flora and gene function prediction were analyzed. The results showed that the intestinal flora of AAD mice was not significantly regulated by gastric perfusion of strain 2-33 to 7 days, but the relative abundance and diversity of intestinal flora of AAD mice were significantly improved by gastric perfusion to 14 days (p < 0.05). In addition, at the genus level, the relative abundance of Lactobacillus increased significantly, and the relative abundance of Enterococcus and Bacillus decreased significantly (p < 0.05). In addition, the regulation of strain 2-33 on intestinal flora of AAD mice was time- and dose-dependent, short-term gastric perfusion, and low dose had no significant effect (p > 0.05). Strain 2-33 can significantly increase the levels of anti-inflammatory cytokines IL-4 and IL-10, significantly decrease the levels of proinflammatory cytokines TNF-α and IFN-γ (p < 0.05), and can also adjust carbohydrate metabolism, amino acid metabolism, and energy metabolism to normal levels, thus accelerating the recovery of intestinal flora structure of AAD mice. In summary, strain 2-33 can improve the structure and diversity of intestinal flora of AAD mice, balance the level of substance and energy metabolism, and play a positive role in relieving diarrhea, maintaining and improving the intestinal microecological balance.
Collapse
Affiliation(s)
- Wuyundalai Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuxing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinghe Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingchao Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaofeng Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Na Ta
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Enxin Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Chengyuan Liang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
35
|
Gao Y, Wu A, Li Y, Chang Y, Xue C, Tang Q. The risk of carrageenan-induced colitis is exacerbated under high-sucrose/high-salt diet. Int J Biol Macromol 2022; 210:475-482. [PMID: 35483512 DOI: 10.1016/j.ijbiomac.2022.04.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
As a common used food additive, the threat of carrageenan to colon health is controversial, and is inseparable from personal eating habits. However, no detailed descriptions are available concerning the influence of different dietary patterns on the risk of carrageenan-induced colitis. In this study, we explored the risk of κ-carrageenan-induced colitis under high-sucrose or high-salt diet in mice. Intervention with carrageenan under high-sucrose diet significantly reduced colon length and induced more serious deepening of the crypts. In addition, the intake of carrageenan under high-sucrose/high-salt diet induced more serious goblet cell reduction and increased intestinal permeability. 16S rRNA sequencing and LC-MS based metabonomic approaches were conducted to explore the changes of gut microbiota and metabolites. It was found that the intake of carrageenan under high-sucrose/high-salt diet significantly reduced the abundance of anti-inflammatory bacterium and increased the abundance of harmful bacterium, which was significantly related to the decrease of anti-inflammatory metabolites in colon, such as methyl caffeate, spermine, oleanolic acid and senecionine. Overall, high-sucrose or high-salt diet increased the risk of carrageenan-induced colitis. This reminds us to maintain good eating habits, do not prefer high-sugar or high-salt foods, and try not to consume large amounts of carrageenan continuously to maintain gut health.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Axue Wu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuan Li
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yaoguang Chang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
36
|
Effects of Lacidophilin Tablets, Yogurt, and Bifid Triple Viable Capsules on the Gut Microbiota of Mice with Antibiotic-Associated Diarrhea. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:6521793. [PMID: 35360462 PMCID: PMC8964159 DOI: 10.1155/2022/6521793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic-associated diarrhea (AAD) is a common morbidity caused by antibiotic use and is characterized by the dysbiosis of the gut microbiota. Several clinical trials have shown that probiotics can prevent AAD. This study aimed at investigating the effects of Lacidophilin tablets (LB), yogurt (YG), and bifid triple viable capsules (BT) on the gut microbiota of mice with AAD. Mice with diarrhea were randomly allocated to treatment groups or the control group and were treated with either LB, YG, BT, or vehicle control. The body weight, diarrhea scores, cecum index, and cecal length were determined. Fecal samples of all mice were analyzed using 16S rRNA high-throughput sequencing. The results showed that LB, YG, and BT significantly decreased the diarrhea scores and inhibited increases in the cecum index and cecal length induced by AAD. In addition, they significantly changed the composition and richness of the gut microbiota. Specifically, they increased the abundance of the phylum Firmicutes and decreased the abundance of the phyla Bacteroidetes and the family Bacteroidaceae. Treatment with LB and YG also decreased the abundance of the phylum Proteobacteria and only LB could mediate the reduced levels of Lactobacillaceae in AAD mice. At the genus level, YG and BT treatment decreased the abundance of Bacteroides or Parasutterella. To our surprise, only LB treatment dramatically increased the abundance of Lactobacillus and decreased that of potential pathogens, such as Bacteroides, Parabacteroides, and Parasutterella, to almost normal values. Our findings indicate that LB, YG, and BT ameliorated diarrhea by regulating the composition and structure of the gut microbiota and that LB plays an important role in regulating the gut microbiota.
Collapse
|