1
|
Figueroa AL, Ali K, Berman G, Xu W, Deng W, Girard B, Yeakey A, Slobod K, Miller J, Das R, Priddy F. Safety and immunogenicity of an mRNA-1273 vaccine booster in adolescents. Hum Vaccin Immunother 2025; 21:2436714. [PMID: 39836458 DOI: 10.1080/21645515.2024.2436714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Safety, immunogenicity, and effectiveness of an mRNA-1273 50-μg booster were evaluated in adolescents (12-17 years), with and without pre-booster SARS-CoV-2 infection. Participants who had received the 2-dose mRNA-1273 100-µg primary series in the TeenCOVE trial (NCT04649151) were offered the mRNA-1273 50-μg booster. Primary objectives included safety and inference of effectiveness by establishing noninferiority of neutralizing antibody (nAb) responses after the booster compared with the nAb post-primary series of mRNA-1273 among young adults in COVE (NCT04470427). Binding antibody (bAb) responses against SARS-CoV-2 variants of interest and COVID-19 incidence after vaccination were also evaluated. Median boosting interval was 315 days. The mRNA-1273 booster was well-tolerated, with an acceptable safety profile. Relative to pre-booster, nAb geometric mean levels increased after the booster by 17.8-fold and 4.7-fold among pre-booster SARS-CoV-2-negative and -positive participants, respectively. Effectiveness was successfully inferred based on noninferiority of nAb levels from mRNA-1273 booster dose (Day 29) compared with nAb levels after mRNA-1273 primary series (Day 57) among young adults in COVE. Further, the booster increased bAb levels relative to pre-booster baseline against SARS-CoV-2 variants (alpha [B.1.1.7], beta [B.1.351], gamma [P.1], and delta [B.1.617.2]), regardless of pre-booster SARS-CoV-2 status. COVID-19 incidence (cases per 1000 person-months) was lower among boosted (0 cases) than non-boosted (95.766 cases) participants in January 2022, a peak period during the early omicron transmission. In summary, the mRNA-1273 50-μg booster induced robust nAb responses in previously vaccinated adolescents, regardless of SARS-CoV-2 serostatus. Effectiveness was successfully inferred and the booster was well-tolerated, with no new safety concerns identified.
Collapse
Affiliation(s)
- Amparo L Figueroa
- Clinical Development, Infectious Diseases, Moderna, Inc., Cambridge, MA, USA
| | - Kashif Ali
- Kool Kids Pediatrics, DM Clinical Research, Houston, TX, USA
| | - Gary Berman
- Clinical Research Institute, Allergy and Immunology, Minneapolis, MN, USA
| | - Wenqin Xu
- Biostatistics, Moderna, Inc., Cambridge, MA, USA
| | - Weiping Deng
- Biostatistics, Moderna, Inc., Cambridge, MA, USA
| | | | | | - Karen Slobod
- Cambridge ID & Immunology Consulting, LLC, Somerville, MA, USA
| | - Jacqueline Miller
- Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA
| | - Rituparna Das
- Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA
| | - Frances Priddy
- Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA
| |
Collapse
|
2
|
Gomes SMR, Ribeiro-Alves M, Ribeiro RSDA, Brito ACDS, Lisboa VDC, de Azevedo SG, Nogueira JDS, Castilho LDR, Pôrto LCS, da Silva SAG, Dutra PML, Manfro WFP, Rodrigues LS. Evaluation of humoral and cellular immune responses in healthcare workers with varying levels of SARS-CoV-2 exposure: effects of CoronaVac vaccination followed by heterologous booster. Front Immunol 2025; 16:1576430. [PMID: 40406109 PMCID: PMC12095306 DOI: 10.3389/fimmu.2025.1576430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/16/2025] [Indexed: 05/26/2025] Open
Abstract
Background The COVID-19 pandemic demanded diverse vaccination strategies, and there is significant interest in their effectiveness in generating a robust immune response. In Brazil, the use of CoronaVac was crucial in reducing mortality; however, heterologous booster doses were necessary to enhance memory immune response. This study aimed to evaluate the humoral and cellular immunity in healthcare workers who were vaccinated with a complete regimen of CoronaVac and subsequently received heterologous booster doses over nearly one year. Methods A longitudinal study recruited healthcare professionals with varying levels of exposure to SARS-CoV-2 from the Health Complex of the Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil. Blood samples were collected at five time points, including baseline and after vaccination with CoronaVac and heterologous booster doses (ChAdOx1 nCov-19 or BNT162b2). The Th1/Th2/Th17 cytokine production was measured by Flow Cytometry, using whole blood samples stimulated or not with the SARS-CoV-2 Spike protein. In parallel, serum levels of IgG antibodies against Spike (anti-S) and Nucleocapsid (anti-N) proteins were assessed using an immunoassay. Adjustments were made for confounding factors, including age, sex, level of SARS-CoV-2 exposure, and COVID-19 infection status. Results Our results demonstrate that CoronaVac induced high anti-S IgG levels at all evaluated time points (P<0.01). Cytokine analysis revealed a sustained production of antigen-specific Th1 cytokines, including IL-2 (P<0.01) and IFN-γ (P<0.05) regardless of level of SARS-CoV-2 exposure or previous COVID-19 infection at any point during the study. Additionally, we identified six moderate to strong positive correlations (P<0.0001): IL-10 and IFN-γ (ρ=0.77), IL-6 and TNF (ρ=0.77), IL-2 and IFN-γ (ρ=0.71), IL-6 and IL-10 (ρ=0.66), anti-N IgG and anti-S IgG (ρ=0.62), and IL-2 and anti-S IgG (ρ=0.62). Conclusion The CoronaVac elicited an antigen-specific cellular immune response, characterized by enhancing the production of key cytokines such as IFN-γ and IL-2, with high levels of anti-S IgG. Furthermore, the administration of heterologous boosters significantly enhanced these immune responses, demonstrating induced-specific immunological response. These findings underscore the importance of primary vaccination and boosters in inducing immune protection against COVID-19, potentially informing future vaccination policies and approaches.
Collapse
Affiliation(s)
- Shayane Martins Rodrigues Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, Medical Science Faculty, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on ISTs/AIDS, National Institute of Infectology Evandro Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Andréia Carolinne de Souza Brito
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, Medical Science Faculty, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Vinicius da Cunha Lisboa
- Laboratory of Immunopathology (LIP), Discipline of General Pathology, Medical Science Faculty, UERJ, Rio de Janeiro, Brazil
| | - Samara Galdino de Azevedo
- Laboratory of Immunopathology (LIP), Discipline of General Pathology, Medical Science Faculty, UERJ, Rio de Janeiro, Brazil
| | - Jeane de Souza Nogueira
- Laboratory of Histocompatibility and Cryopreservation, Tissue Repair and Histocompatibility Technologic Core, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Leda dos Reis Castilho
- Cell Culture Engineering Lab, Chemical Engineering Program, Coordination of Graduate Engineering Programs, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luís Cristóvão Sobrino Pôrto
- Laboratory of Histocompatibility and Cryopreservation, Tissue Repair and Histocompatibility Technologic Core, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Silvia Amaral Gonçalves da Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, Medical Science Faculty, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Patrícia Maria Lourenço Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, Medical Science Faculty, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Wânia Ferraz Pereira Manfro
- Discipline of Microbiology and Immunology, Department of Microbiology, Immunology and Parasitology, Medical Science Faculty, UERJ, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology (LIP), Discipline of General Pathology, Medical Science Faculty, UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Saha A, Ghosh Roy S, Dwivedi R, Tripathi P, Kumar K, Nambiar SM, Pathak R. Beyond the Pandemic Era: Recent Advances and Efficacy of SARS-CoV-2 Vaccines Against Emerging Variants of Concern. Vaccines (Basel) 2025; 13:424. [PMID: 40333293 PMCID: PMC12031379 DOI: 10.3390/vaccines13040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccination has been instrumental in curbing the transmission of SARS-CoV-2 and mitigating the severity of clinical manifestations associated with COVID-19. Numerous COVID-19 vaccines have been developed to this effect, including BioNTech-Pfizer and Moderna's mRNA vaccines, as well as adenovirus vector-based vaccines such as Oxford-AstraZeneca. However, the emergence of new variants and subvariants of SARS-CoV-2, characterized by enhanced transmissibility and immune evasion, poses significant challenges to the efficacy of current vaccination strategies. In this review, we aim to comprehensively outline the landscape of emerging SARS-CoV-2 variants of concern (VOCs) and sub-lineages that have recently surfaced in the post-pandemic years. We assess the effectiveness of existing vaccines, including their booster doses, against these emerging variants and subvariants, such as BA.2-derived sub-lineages, XBB sub-lineages, and BA.2.86 (Pirola). Furthermore, we discuss the latest advancements in vaccine technology, including multivalent and pan-coronavirus approaches, along with the development of several next-generation coronavirus vaccines, such as exosome-based, virus-like particle (VLP), mucosal, and nanomaterial-based vaccines. Finally, we highlight the key challenges and critical areas for future research to address the evolving threat of SARS-CoV-2 subvariants and to develop strategies for combating the emergence of new viral threats, thereby improving preparedness for future pandemics.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
| | - Sounak Ghosh Roy
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD 20910, USA;
| | - Richa Dwivedi
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Kamal Kumar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA;
| | - Shashank Manohar Nambiar
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
4
|
Letscher H, Guilligay D, Effantin G, Amen A, Sulbaran G, Burger JA, Bossevot L, Junges L, Leonec M, Morin J, Van Tilbeurgh M, Hérate C, Gallouët AS, Relouzat F, van der Werf S, Cavarelli M, Dereuddre-Bosquet N, van Gils MJ, Sanders RW, Poignard P, Le Grand R, Weissenhorn W. RBD-depleted SARS-CoV-2 spike generates protective immunity in cynomolgus macaques. NPJ Vaccines 2025; 10:63. [PMID: 40159504 PMCID: PMC11955555 DOI: 10.1038/s41541-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The SARS-CoV-2 pandemic revealed the rapid evolution of circulating strains. This led to new variants carrying mostly mutations within the receptor binding domain, which is immunodominant upon immunization and infection. In order to steer the immune response away from RBD epitopes to more conserved domains, we generated S glycoprotein trimers without RBD and stabilized them by formaldehyde cross-linking. The cryoEM structure demonstrated that SΔRBD folds into the native prefusion conformation, stabilized by one specific cross-link between S2 protomers. SΔRBD was coated onto lipid vesicles, to produce synthetic virus-like particles, SΔRBD-LV, which were utilized in a heterologous prime-boost strategy. Immunization of cynomolgus macaques either three times with the mRNA Comirnaty vaccine or two times followed by SΔRBD-LV showed that the SΔRBD-LV boost induced similar antibody titers and neutralization of different variants, including omicron. Upon challenge with omicron XBB.3, both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes conferred similar overall protection from infection for both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes. However, the SΔRBD-LV boost indicated better protection against lung infection than the Comirnaty strategy alone. Together our findings indicate that SΔRBD is highly immunogenic and provides improved protection compared to a third mRNA boost indicative of superior antibody-based protection.
Collapse
Affiliation(s)
- Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Axelle Amen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Guidenn Sulbaran
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Judith A Burger
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marco Leonec
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Matthieu Van Tilbeurgh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marit J van Gils
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Rogier W Sanders
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, USA
| | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
5
|
Kato Y, Kumanogoh A. The immune memory of innate immune systems. Int Immunol 2025; 37:195-202. [PMID: 39588905 DOI: 10.1093/intimm/dxae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Immune memory has long been considered a function specific to adaptive immune systems; however, adaptive immune memory alone has not fully explained the mechanism by which vaccines exert their protective effects against nontarget pathogens. Recently, trained immunity, in which human monocytes vaccinated with bacillus Calmette-Guérin become highly responsive to pathogens other than Mycobacterium tuberculosis, has been reported. However, a phenomenon called endotoxin tolerance is also known, in which monocyte responsiveness is attenuated after the first lipopolysaccharide stimulation. These phenomena represent an altered innate immune response after the initial exposure to the stimulus, indicating that memories are formed in the innate immune system. In this review, we discuss trained immunity and endotoxin tolerance, known as innate immune memory, and innate immune memory formation by mRNA vaccines, which have been newly used in the coronavirus disease 2019 (COVID-19) pandemic and are considered important vaccine modalities in the future.
Collapse
Affiliation(s)
- Yasuhiro Kato
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Kurmangaliyeva SS, Madenbayeva AM, Urazayeva ST, Bazargaliyev YS, Kudabayeva KI, Kurmangaliyev KB. The Role of Memory T-Cell Mediated Immunity in Long-term COVID-19: Effects of Vaccination Status. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:61-68. [PMID: 40026299 PMCID: PMC11870859 DOI: 10.30476/ijms.2024.104003.3744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 03/05/2025]
Abstract
T-cell-mediated immunity is essential for controlling severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection, preventing severe disease, and potentially reducing the risk of long-term coronavirus disease (COVID). This study investigated the impact of natural infection, vaccination, and hybrid immunity on T-cell responses, with a particular emphasis on the role of memory T-cells in long-term COVID-19. The present study reviewed current literature on T-cell responses, including memory T-cell development, in individuals with natural SARS-CoV-2 infection, those vaccinated with messenger RNA (mRNA) vaccines, and those with hybrid immunity. It examined studies that compared T-cell activity, immune regulation, and the prevalence of long-term COVID-19 across these groups. Natural infection induces variable T-cell responses, with severe cases showing stronger but sometimes dysregulated immunological activity, which may contribute to prolonged COVID-19. Vaccination, particularly with mRNA vaccines, elicits targeted and consistent T-cell responses, including memory T-cells, reducing disease severity, and the incidence of long-term COVID-19. Hybrid immunity combines natural infection and vaccination, provides the most robust protection, enhanceds memory T-cell responses, and reduces the risk of long-term COVID-19 through balanced immune regulation. Memory T-cells play a critical role in mitigating long-term COVID-19. Vaccination significantly enhances T-cell-mediated immunity, minimizing the risk of chronic symptoms compared to natural infection alone. Hybrid immunity provides the most effective defense, emphasizing the importance of vaccination, even after natural infection, to prevent long-term COVID-19.
Collapse
Affiliation(s)
- Saulesh S. Kurmangaliyeva
- Department of Microbiology, Virology, and Immunology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Akzhan M. Madenbayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saltanat T. Urazayeva
- Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Yerlan Sh. Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Khatimya I. Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Kairat B. Kurmangaliyev
- Department of Microbiology, Virology, and Immunology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
7
|
Zhao XJ, Ji B, Shang C, Li DY, Zhang S, Gu HJ, Peng HH, Qian C, Zhang CL, Shi C, Shen Y, Chen JJ, Xu Q, Lv CL, Jiang BG, Wang H, Li X, Wang GL, Fang LQ. Humoral and cellular immune responses following Omicron BA.2.2 breakthrough infection and Omicron BA.5 reinfection. iScience 2024; 27:110283. [PMID: 39040063 PMCID: PMC11260851 DOI: 10.1016/j.isci.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
The emergence of novel Omicron subvariants has raised concerns regarding the efficacy of immunity induced by prior Omicron subvariants breakthrough infection (BTI) or reinfection against current circulating Omicron subvariants. Here, we prospectively investigated the durability of antibody and T cell responses in individuals post Omicron BA.2.2 BTI, with or without subsequent Omicron BA.5 reinfection. Our findings reveal that the emerging Omicron subvariants, including CH.1.1, XBB, and JN.1, exhibit extensive immune evasion induced by previous infections. Notably, the level of IgG and neutralizing antibodies were found to correlate with subsequent Omicron BA.5 reinfection. Fortunately, T cell responses recognizing both Omicron BA.2 and CH.1.1 peptides were observed. Furthermore, Omicron BA.5 reinfection may alleviate immune imprinting induced by WT-vaccination, bolster virus-specific ICS+ T cell responses, and promote the phenotypic differentiation of virus-specific memory CD8+ T cells. Antigen-updated or T cell-conserved vaccines are needed to control the transmission of diverse emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Bin Ji
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - De-Yu Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Hong-Jing Gu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Hong-Hong Peng
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Cheng Qian
- Jiangyin Center for Disease Control and Prevention, Jiangyin, China
| | - Cui-Ling Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chao Shi
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yuan Shen
- Department of Disease Control, the Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| | - Li-Qun Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P.R. China
| |
Collapse
|
8
|
Eryilmaz M, Goncharov A, Han GR, Joung HA, Ballard ZS, Ghosh R, Zhang Y, Di Carlo D, Ozcan A. A Paper-Based Multiplexed Serological Test to Monitor Immunity against SARS-COV-2 Using Machine Learning. ACS NANO 2024; 18:16819-16831. [PMID: 38888985 PMCID: PMC11223469 DOI: 10.1021/acsnano.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
The rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels. Our platform not only tracked longitudinal immunity levels but also categorized COVID-19 immunity into three groups: protected, unprotected, and infected, based on the levels of IgG and IgM antibodies. We operated two xVFAs in parallel to detect IgG and IgM antibodies using a total of 40 μL of human serum sample in <20 min per test. After the assay, images of the paper-based sensor panel were captured using a mobile phone-based custom-designed optical reader and then processed by a neural network-based serodiagnostic algorithm. The serodiagnostic algorithm was trained with 120 measurements/tests and 30 serum samples from 7 randomly selected individuals and was blindly tested with 31 serum samples from 8 different individuals, collected before vaccination as well as after vaccination or infection, achieving an accuracy of 89.5%. The competitive performance of the xVFA, along with its portability, cost-effectiveness, and rapid operation, makes it a promising computational point-of-care (POC) serology test for monitoring COVID-19 immunity, aiding in timely decisions on the administration of booster vaccines and general public health policies to protect vulnerable populations.
Collapse
Affiliation(s)
- Merve Eryilmaz
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Artem Goncharov
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Gyeo-Re Han
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Hyou-Arm Joung
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Zachary S. Ballard
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Rajesh Ghosh
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Yijie Zhang
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Dino Di Carlo
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, Bioengineering Department, California NanoSystems
Institute (CNSI), Department of Surgery, University of California, Los Angeles, California 90095 United States
| |
Collapse
|
9
|
Tarke A, Ramezani-Rad P, Alves Pereira Neto T, Lee Y, Silva-Moraes V, Goodwin B, Bloom N, Siddiqui L, Avalos L, Frazier A, Zhang Z, da Silva Antunes R, Dan J, Crotty S, Grifoni A, Sette A. SARS-CoV-2 breakthrough infections enhance T cell response magnitude, breadth, and epitope repertoire. Cell Rep Med 2024; 5:101583. [PMID: 38781962 PMCID: PMC11228552 DOI: 10.1016/j.xcrm.2024.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS2) vaccine breakthrough infections (BTIs) on the magnitude and breadth of the T cell repertoire after exposure to different variants. We studied samples from individuals who experienced symptomatic BTIs during Delta or Omicron waves. In the pre-BTI samples, 30% of the donors exhibited substantial immune memory against non-S (spike) SARS2 antigens, consistent with previous undiagnosed asymptomatic SARS2 infections. Following symptomatic BTI, we observed (1) enhanced S-specific CD4 and CD8 T cell responses in donors without previous asymptomatic infection, (2) expansion of CD4 and CD8 T cell responses to non-S targets (M, N, and nsps) independent of SARS2 variant, and (3) generation of novel epitopes recognizing variant-specific mutations. These variant-specific T cell responses accounted for 9%-15% of the total epitope repertoire. Overall, BTIs boost vaccine-induced immune responses by increasing the magnitude and by broadening the repertoire of T cell antigens and epitopes recognized.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Parham Ramezani-Rad
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | | | - Yeji Lee
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Vanessa Silva-Moraes
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Benjamin Goodwin
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Nathaniel Bloom
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Leila Siddiqui
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Liliana Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Zeli Zhang
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | | | - Jennifer Dan
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Campos GRF, Almeida NBF, Filgueiras PS, Corsini CA, Gomes SVC, de Miranda DAP, de Assis JV, Silva TBDS, Alves PA, Fernandes GDR, de Oliveira JG, Rahal P, Grenfell RFQ, Nogueira ML. Second booster dose improves antibody neutralization against BA.1, BA.5 and BQ.1.1 in individuals previously immunized with CoronaVac plus BNT162B2 booster protocol. Front Cell Infect Microbiol 2024; 14:1371695. [PMID: 38638823 PMCID: PMC11024236 DOI: 10.3389/fcimb.2024.1371695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction SARS-CoV-2 vaccines production and distribution enabled the return to normalcy worldwide, but it was not fast enough to avoid the emergence of variants capable of evading immune response induced by prior infections and vaccination. This study evaluated, against Omicron sublineages BA.1, BA.5 and BQ.1.1, the antibody response of a cohort vaccinated with a two doses CoronaVac protocol and followed by two heterologous booster doses. Methods To assess vaccination effectiveness, serum samples were collected from 160 individuals, in 3 different time points (9, 12 and 18 months after CoronaVac protocol). For each time point, individuals were divided into 3 subgroups, based on the number of additional doses received (No booster, 1 booster and 2 boosters), and a viral microneutralization assay was performed to evaluate neutralization titers and seroconvertion rate. Results The findings presented here show that, despite the first booster, at 9m time point, improved neutralization level against omicron ancestor BA.1 (133.1 to 663.3), this trend was significantly lower for BQ.1.1 and BA.5 (132.4 to 199.1, 63.2 to 100.2, respectively). However, at 18m time point, the administration of a second booster dose considerably improved the antibody neutralization, and this was observed not only against BA.1 (2361.5), but also against subvariants BQ.1.1 (726.1) and BA.5 (659.1). Additionally, our data showed that, after first booster, seroconvertion rate for BA.5 decayed over time (93.3% at 12m to 68.4% at 18m), but after the second booster, seroconvertion was completely recovered (95% at 18m). Discussion Our study reinforces the concerns about immunity evasion of the SARS-CoV-2 omicron subvariants, where BA.5 and BQ.1.1 were less neutralized by vaccine induced antibodies than BA.1. On the other hand, the administration of a second booster significantly enhanced antibody neutralization capacity against these subvariants. It is likely that, as new SARS-CoV-2 subvariants continue to emerge, additional immunizations will be needed over time.
Collapse
Affiliation(s)
- Guilherme R. F. Campos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | | | - Priscilla Soares Filgueiras
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Camila Amormino Corsini
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Sarah Vieira Contin Gomes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Daniel Alvim Pena de Miranda
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | - Thaís Bárbara de Souza Silva
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto Rene Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Gabriel da Rocha Fernandes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
| | | | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - Rafaella Fortini Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
- Hospital de Base, São José do Rio Preto, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Aoki H, Kitabatake M, Abe H, Xu P, Tsunoda M, Shichino S, Hara A, Ouji-Sageshima N, Motozono C, Ito T, Matsushima K, Ueha S. CD8 + T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep 2024; 43:113887. [PMID: 38458195 DOI: 10.1016/j.celrep.2024.113887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan; Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Haruka Abe
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Peng Xu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Mikiya Tsunoda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto City, Kumamoto 8600811, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan.
| |
Collapse
|
12
|
Samanta S, Banerjee J, Das A, Das S, Ahmed R, Das S, Pal A, Ali KM, Mukhopadhyay R, Giri B, Dash SK. Enhancing Immunological Memory: Unveiling Booster Doses to Bolster Vaccine Efficacy Against Evolving SARS-CoV-2 Mutant Variants. Curr Microbiol 2024; 81:91. [PMID: 38311669 DOI: 10.1007/s00284-023-03597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
A growing number of re-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals has sparked discussions about the potential need for a booster vaccine dosage to counteract declining antibody levels and new strains. The protective immunity produced by vaccinations, and past illnesses relies on immunological memory. CD4 + T cells, CD8 + T cells, B cells, and long-lasting antibody responses are all components of the adaptive immune system that can generate and maintain this immunological memory. Since novel mutant variants have emerged one after the other, the world has been hit by repeated waves. Various vaccine formulations against SARS-CoV-2 have been administered across the globe. Thus, estimating the efficacy of those vaccines against gradually developed mutant stains is the essential parameter regarding the fate of those vaccine formulations and the necessity of booster doses and their frequency. In this review, focus has also been given to how vaccination stacks up against moderate and severe acute infections in terms of the longevity of the immune cells, neutralizing antibody responses, etc. However, hybrid immunity shows a greater accuracy of re-infection of variants of concern (VOCs) of SARS-CoV-2 than infection and immunization. The review conveys knowledge of detailed information about several marketed vaccines and the status of their efficacy against specific mutant strains of SARS-CoV-2. Furthermore, this review discusses the status of immunological memory after infection, mixed infection, and vaccination.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Aparna Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sourav Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Amitava Pal
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Kazi Monjur Ali
- Department of Nutrition, Maharajadhiraj Uday Chand Women's College, B.C. Road, Bardhaman, 713104, West Bengal, India
| | - Rupanjan Mukhopadhyay
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
13
|
Selvavinayagam TS, Somasundaram A, Selvam JM, Sampath P, Vijayalakshmi V, Kumar CAB, Subramaniam S, Kumarasamy P, Raju S, Avudaiselvi R, Prakash V, Yogananth N, Subramanian G, Roshini A, Dhiliban DN, Imad S, Tandel V, Parasa R, Sachdeva S, Ramachandran S, Malani A. Contribution of infection and vaccination to population-level seroprevalence through two COVID waves in Tamil Nadu, India. Sci Rep 2024; 14:2091. [PMID: 38267448 PMCID: PMC10808562 DOI: 10.1038/s41598-023-50338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
This study employs repeated, large panels of serological surveys to document rapid and substantial waning of SARS-CoV-2 antibodies at the population level and to calculate the extent to which infection and vaccination separately contribute to seroprevalence estimates. Four rounds of serological surveys were conducted, spanning two COVID waves (October 2020 and April-May 2021), in Tamil Nadu (population 72 million) state in India. Each round included representative populations in each district of the state, totaling ≥ 20,000 persons per round. State-level seroprevalence was 31.5% in round 1 (October-November 2020), after India's first COVID wave. Seroprevalence fell to 22.9% in round 2 (April 2021), a roughly one-third decline in 6 months, consistent with dramatic waning of SARS-Cov-2 antibodies from natural infection. Seroprevalence rose to 67.1% by round 3 (June-July 2021), with infections from the Delta-variant induced second COVID wave accounting for 74% of the increase. Seroprevalence rose to 93.1% by round 4 (December 2021-January 2022), with vaccinations accounting for 63% of the increase. Antibodies also appear to wane after vaccination. Seroprevalence in urban areas was higher than in rural areas, but the gap shrunk over time (35.7 v. 25.7% in round 1, 89.8% v. 91.4% in round 4) as the epidemic spread even in low-density rural areas.
Collapse
Affiliation(s)
- T S Selvavinayagam
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | | | - Jerard Maria Selvam
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - P Sampath
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - V Vijayalakshmi
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - C Ajith Brabhu Kumar
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | | | - Parthipan Kumarasamy
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - S Raju
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - R Avudaiselvi
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - V Prakash
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - N Yogananth
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - Gurunathan Subramanian
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - A Roshini
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - D N Dhiliban
- Directorate of Public Health and Preventative Medicine, Government of Tamil Nadu, Chennai, Tamil Nadu, India
| | - Sofia Imad
- Artha Global, Mumbai, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
14
|
Sanna G, Marongiu A, Firinu D, Piras C, Palmas V, Galdiero M, Atzori L, Caria P, Campagna M, Perra A, Costanzo G, Coghe F, Littera R, Chessa L, Manzin A. Humoral responses to wild type and ancient BA.1 SARS-CoV-2 variant after heterologous priming vaccination with ChAdOx1 nCoV-19 and BNT162b2 booster dose. Clin Exp Med 2024; 24:12. [PMID: 38244064 PMCID: PMC10799790 DOI: 10.1007/s10238-023-01276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/22/2024]
Abstract
Several countries have recommended a booster dose of Pfizer BNT162b2 vaccine for subjects under the age of 60, who have already received the first dose of ChAdOx1. This is due to several ChAdOx1 vaccine-associated adverse vascular events and thrombocytopenia. Neutralization assay and quantitative IgG anti-SARS-CoV-2 Spike antibody (anti-S-IgG) were conducted to investigate the long-term responses to vaccine treatment in a cohort of Sardinian participants, who have received heterologous Prime-Boost Vaccination via ChAdOx1 vector vaccine and a booster dose via BNT162b2. The obtained results were compared with those of a cohort of healthcare workers (HCW) who received homologous BNT162b2 (BNT/BNT/BNT) vaccination. One month (T2) and five months after the second and before the third dose (T3), anti-spike antibody or neutralizing titers in the subjects vaccinated with ChAdOx1-S/BNT162b2 were significantly higher than those who experienced the ChAdOx1-S/ChAdOx1-S or BNT162b2/BNT162b2 schedule. These results suggest that a ChAdOx1-S/BNT162b2 regimen provides a more robust antibody response than either of the homologous regimens. However, the anti-spike antibodies or neutralizing titers after the third injection (mRNA vaccine) of ChAdOx1-S as a second dose and BNT162b2 were not statistically different. Homologous and heterologous vaccination provided a strong antibody response. Neutralizing activities were also described against the Omicron BA.1 variant in a sub-group (40) representative of the three vaccination regimens among our cohort.
Collapse
Affiliation(s)
- Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy.
| | - Alessandra Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy.
| | - Cristina Piras
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Andrea Perra
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Ferdinando Coghe
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Roberto Littera
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Luchino Chessa
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
15
|
Southworth T, Jackson N, Singh D. Airway and Systemic Immune Responses Following the Third COVID-19 Vaccination in COPD Patients. Int J Chron Obstruct Pulmon Dis 2023; 18:3027-3036. [PMID: 38143919 PMCID: PMC10749100 DOI: 10.2147/copd.s433269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Booster vaccinations are required to maintain protection against COVID-19. COPD patients are at higher risk of developing severe illness following SARS-CoV-2 infection. Previous cross-sectional analysis after the second COVID-19 booster showed similar immune responses in COPD patients and controls, but pre-vaccination samples were not available. This longitudinal study evaluated systemic and airway immune responses in COPD patients using samples obtained pre- and post-third COVID-19 vaccination. Methods Twelve COPD patients were recruited, with plasma, nasal and sputum (n = 10) samples collected pre-vaccination and 4- and 14-weeks post vaccination. Samples were analyzed for anti-spike IgA and IgG and cellular immunity. The ability of plasma and nasal samples to block ACE2-spike protein interaction was assessed for Wild type, Delta, and Omicron spike variants. Results Vaccinations increased anti-spike IgG in plasma (p < 0.001), nasal (IgG p < 0.001) and sputum (p = 0.002) samples, IgA in plasma (p < 0.001) and blood cellular immunity (p = 0.001). Plasma and nasal anti-spike IgA levels correlated (rho: 0.6, p = 0.02), with similar results for IgG (rho: 0.79, p = 0.003). Post-vaccination nasal (p = 0.002) and plasma (p < 0.001) samples were less effective at blocking Omicron spike binding to ACE2 compared to the Wild type spike variant. Discussion Airway and systemic immune responses against SARS-CoV-2 increased in COPD patients following a third COVID-19 vaccination. Nasal and systemic responses in COPD patients were less effective against Omicron variant compared to previous variants.
Collapse
Affiliation(s)
- Thomas Southworth
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester, UK
| | | | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
16
|
Koseki T, Teramachi M, Koga M, Ko MSH, Amano T, Yu H, Amano M, Leyder E, Badiola M, Ray P, Kim J, Ko AC, Achour A, Weng NP, Imai T, Yoshida H, Taniuchi S, Shintani A, Fujigaki H, Kondo M, Doi Y. A Phase I/II Clinical Trial of Intradermal, Controllable Self-Replicating Ribonucleic Acid Vaccine EXG-5003 against SARS-CoV-2. Vaccines (Basel) 2023; 11:1767. [PMID: 38140172 PMCID: PMC10747308 DOI: 10.3390/vaccines11121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have played a key role in reducing morbidity and mortality from coronavirus disease 2019 (COVID-19). We conducted a double-blind, placebo-controlled phase I/II trial to evaluate the safety, tolerability, and immunogenicity of EXG-5003, a two-dose, controllable self-replicating RNA vaccine against SARS-CoV-2. EXG-5003 encodes the receptor binding domain (RBD) of SARS-CoV-2 and was administered intradermally without lipid nanoparticles (LNPs). The participants were followed for 12 months. Forty healthy participants were enrolled in Cohort 1 (5 µg per dose, n = 16; placebo, n = 4) and Cohort 2 (25 µg per dose, n = 16; placebo, n = 4). No safety concerns were observed with EXG-5003 administration. SARS-CoV-2 RBD antibody titers and neutralizing antibody titers were not elevated in either cohort. Elicitation of antigen-specific cellular immunity was observed in the EXG-5003 recipients in Cohort 2. At the 12-month follow-up, participants who had received an approved mRNA vaccine (BNT162b2 or mRNA-1273) >1 month after receiving the second dose of EXG-5003 showed higher cellular responses compared with equivalently vaccinated participants in the placebo group. The findings suggest a priming effect of EXG-5003 on the long-term cellular immunity of approved SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Takenao Koseki
- Department of Pharmacotherapeutics and Informatics, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan;
| | - Mayumi Teramachi
- Center for Clinical Trial and Research Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan; (M.T.); (M.K.)
| | - Minako Koga
- KM Pharmaceutical Consulting, Washington, DC 20006, USA;
| | - Minoru S. H. Ko
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Tomokazu Amano
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Hong Yu
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Misa Amano
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Erica Leyder
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Maria Badiola
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Priyanka Ray
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Jiyoung Kim
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Akihiro C. Ko
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Achouak Achour
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA; (A.A.); (N.-p.W.)
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA; (A.A.); (N.-p.W.)
| | - Takumi Imai
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Hisako Yoshida
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Satsuki Taniuchi
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Hidetsugu Fujigaki
- Department of Advanced Diagnostic System Development, Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Japan
| | - Masashi Kondo
- Center for Clinical Trial and Research Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan; (M.T.); (M.K.)
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Yohei Doi
- Departments of Microbiology and Infectious Diseases, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake 470-1192, Japan
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Overheu O, Lendowski S, Quast DR, Kühn D, Vidal Blanco E, Kraeft AL, Steinmann E, Kourti E, Lugnier C, Steinmann J, Reinacher-Schick A, Pfaender S. Longitudinal data on humoral response and neutralizing antibodies against SARS-CoV-2 Omicron BA.1 and subvariants BA.4/5 and BQ.1.1 after COVID-19 vaccination in cancer patients. J Cancer Res Clin Oncol 2023; 149:10633-10644. [PMID: 37300723 PMCID: PMC10257184 DOI: 10.1007/s00432-023-04961-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The SARS-CoV-2 Omicron variant of concern (VOC) and subvariants like BQ.1.1 demonstrate immune evasive potential. Little is known about the efficacy of booster vaccinations regarding this VOC and subvariants in cancer patients. This study is among the first to provide data on neutralizing antibodies (nAb) against BQ.1.1. METHODS Cancer patients at our center were prospectively enrolled between 01/2021 and 02/2022. Medical data and blood samples were collected at enrollment and before and after every SARS-CoV-2 vaccination, at 3 and 6 months. RESULTS We analyzed 408 samples from 148 patients (41% female), mainly with solid tumors (85%) on active therapy (92%; 80% chemotherapy). SARS-CoV-2 IgG and nAb titers decreased over time, however, significantly increased following third vaccination (p < 0.0001). NAb (ND50) against Omicron BA.1 was minimal prior and increased significantly after the third vaccination (p < 0.0001). ND50 titers against BQ.1.1 after the third vaccination were significantly lower than against BA.1 and BA.4/5 (p < 0.0001) and undetectable in half of the patients (48%). Factors associated with impaired immune response were hematologic malignancies, B cell depleting therapy and higher age. Choice of vaccine, sex and treatment with chemo-/immunotherapy did not influence antibody response. Patients with breakthrough infections had significantly lower nAb titers after both 6 months (p < 0.001) and the third vaccination (p = 0.018). CONCLUSION We present the first data on nAb against BQ.1.1 following the third vaccination in cancer patients. Our results highlight the threat that new emerging SARS-CoV-2 variants pose to cancer patients and support efforts to apply repeated vaccines. Since a considerable number of patients did not display an adequate immune response, continuing to exhibit caution remains reasonable.
Collapse
Affiliation(s)
- Oliver Overheu
- Department of Hematology and Oncology with Palliative Care, St. Josef Hospital, Ruhr University, Bochum, Germany.
| | - Simon Lendowski
- Department of Hematology and Oncology with Palliative Care, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - Daniel R Quast
- Department of Internal Medicine, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - Daniel Kühn
- Department of Molecular and Medical Virology, Ruhr University, Bochum, Germany
| | - Elena Vidal Blanco
- Department of Molecular and Medical Virology, Ruhr University, Bochum, Germany
| | - Anna-Lena Kraeft
- Department of Hematology and Oncology with Palliative Care, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University, Bochum, Germany
| | - Eleni Kourti
- Department of Hematology and Oncology with Palliative Care, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - Celine Lugnier
- Department of Hematology and Oncology with Palliative Care, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Anke Reinacher-Schick
- Department of Hematology and Oncology with Palliative Care, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University, Bochum, Germany
| |
Collapse
|
18
|
Asashima H, Kim D, Wang K, Lele N, Buitrago-Pocasangre NC, Lutz R, Cruz I, Raddassi K, Ruff WE, Racke MK, Wilson JE, Givens TS, Grifoni A, Weiskopf D, Sette A, Kleinstein SH, Montgomery RR, Shaw AC, Li F, Fan R, Hafler DA, Tomayko MM, Longbrake EE. Prior cycles of anti-CD20 antibodies affect antibody responses after repeated SARS-CoV-2 mRNA vaccination. JCI Insight 2023; 8:e168102. [PMID: 37606046 PMCID: PMC10543713 DOI: 10.1172/jci.insight.168102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUNDWhile B cell depletion is associated with attenuated antibody responses to SARS-CoV-2 mRNA vaccination, responses vary among individuals. Thus, elucidating the factors that affect immune responses after repeated vaccination is an important clinical need.METHODSWe evaluated the quality and magnitude of the T cell, B cell, antibody, and cytokine responses to a third dose of BNT162b2 or mRNA-1273 mRNA vaccine in patients with B cell depletion.RESULTSIn contrast with control individuals (n = 10), most patients on anti-CD20 therapy (n = 48) did not demonstrate an increase in spike-specific B cells or antibodies after a third dose of vaccine. A third vaccine elicited significantly increased frequencies of spike-specific non-naive T cells. A small subset of B cell-depleted individuals effectively produced spike-specific antibodies, and logistic regression models identified time since last anti-CD20 treatment and lower cumulative exposure to anti-CD20 mAbs as predictors of those having a serologic response. B cell-depleted patients who mounted an antibody response to 3 vaccine doses had persistent humoral immunity 6 months later.CONCLUSIONThese results demonstrate that serial vaccination strategies can be effective for a subset of B cell-depleted patients.FUNDINGThe NIH (R25 NS079193, P01 AI073748, U24 AI11867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974, R01 CA227473, U01CA260507, 75N93019C00065, K24 AG042489), NIH HIPC Consortium (U19 AI089992), the National Multiple Sclerosis Society (CA 1061-A-18, RG-1802-30153), the Nancy Taylor Foundation for Chronic Diseases, Erase MS, and the Claude D. Pepper Older Americans Independence Center at Yale (P30 AG21342).
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nikhil Lele
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachel Lutz
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Isabella Cruz
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Khadir Raddassi
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William E. Ruff
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | | | | | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, California, USA
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, and
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - David A. Hafler
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mary M. Tomayko
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
19
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
20
|
Kochanoff KD. Piecing together the subtle clues of common variable immunodeficiency. JAAPA 2023; 36:23-26. [PMID: 37229582 DOI: 10.1097/01.jaa.0000923544.76902.f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Common variable immunodeficiency (CVID) is a primary immunodeficiency disorder that results in decreased immunity and increased infection risk. This multisystem disorder often presents as recurrent, prolonged respiratory tract infections. Other manifestations include chronic lung disease, systemic granulomatous disease, malignancies, enteropathy, splenomegaly, and autoimmune disease including cytopenias. Diagnosis often is delayed, affecting patient quality of life, morbidity, and mortality. This article reviews the presentation, diagnosis, and management of patients with CVID.
Collapse
Affiliation(s)
- Kimberly DeVore Kochanoff
- Kimberly DeVore Kochanoff is director of clinical education and an assistant professor at Arizona School of Health Sciences in Mesa, Ariz., and a student in the doctor of medical science program at A.T. Still University. The author has disclosed no potential conflicts of interest, financial or otherwise
| |
Collapse
|
21
|
Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1183-1197. [PMID: 37068300 PMCID: PMC10111205 DOI: 10.4049/jimmunol.2200914] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 04/19/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially identified in humans and mice with cancer where they profoundly suppress T cell- and NK cell-mediated antitumor immunity. Inflammation is a central feature of many pathologies and normal physiological conditions and is the dominant driving force for the accumulation and function of MDSCs. Therefore, MDSCs are present in conditions where inflammation is present. Although MDSCs are detrimental in cancer and conditions where cellular immunity is desirable, they are beneficial in settings where cellular immunity is hyperactive. Because MDSCs can be generated ex vivo, they are being exploited as therapeutic agents to reduce damaging cellular immunity. In this review, we discuss the detrimental and beneficial roles of MDSCs in disease settings such as bacterial, viral, and parasitic infections, sepsis, obesity, trauma, stress, autoimmunity, transplantation and graft-versus-host disease, and normal physiological settings, including pregnancy and neonates as well as aging. The impact of MDSCs on vaccination is also discussed.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany, and Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
22
|
Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, De Rosa FG, Camussi G. Plant-Derived Extracellular Vesicles as a Delivery Platform for RNA-Based Vaccine: Feasibility Study of an Oral and Intranasal SARS-CoV-2 Vaccine. Pharmaceutics 2023; 15:pharmaceutics15030974. [PMID: 36986835 PMCID: PMC10058531 DOI: 10.3390/pharmaceutics15030974] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Plant-derived extracellular vesicles (EVs) may represent a platform for the delivery of RNA-based vaccines, exploiting their natural membrane envelope to protect and deliver nucleic acids. Here, EVs extracted from orange (Citrus sinensis) juice (oEVs) were investigated as carriers for oral and intranasal SARS-CoV-2 mRNA vaccine. oEVs were efficiently loaded with different mRNA molecules (coding N, subunit 1 and full S proteins) and the mRNA was protected from degrading stress (including RNase and simulated gastric fluid), delivered to target cells and translated into protein. APC cells stimulated with oEVs loaded with mRNAs induced T lymphocyte activation in vitro. The immunization of mice with oEVs loaded with S1 mRNA via different routes of administration including intramuscular, oral and intranasal stimulated a humoral immune response with production of specific IgM and IgG blocking antibodies and a T cell immune response, as suggested by IFN-γ production by spleen lymphocytes stimulated with S peptide. Oral and intranasal administration also triggered the production of specific IgA, the mucosal barrier in the adaptive immune response. In conclusion, plant-derived EVs represent a useful platform for mRNA-based vaccines administered not only parentally but also orally and intranasally.
Collapse
Affiliation(s)
- Margherita A. C. Pomatto
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| | - Chiara Gai
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | | | | | - Maria Chiara Deregibus
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Grange
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giovanni Camussi
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| |
Collapse
|
23
|
Bellavite P, Ferraresi A, Isidoro C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023; 11:451. [PMID: 36830987 PMCID: PMC9953067 DOI: 10.3390/biomedicines11020451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus responsible for the COVID-19 disease) uses the Spike proteins of its envelope for infecting target cells expressing on the membrane the angiotensin converting enzyme 2 (ACE2) enzyme that acts as a receptor. To control the pandemic, genetically engineered vaccines have been designed for inducing neutralizing antibodies against the Spike proteins. These vaccines do not act like traditional protein-based vaccines, as they deliver the message in the form of mRNA or DNA to host cells that then produce and expose the Spike protein on the membrane (from which it can be shed in soluble form) to alert the immune system. Mass vaccination has brought to light various adverse effects associated with these genetically based vaccines, mainly affecting the circulatory and cardiovascular system. ACE2 is present as membrane-bound on several cell types, including the mucosa of the upper respiratory and of the gastrointestinal tracts, the endothelium, the platelets, and in soluble form in the plasma. The ACE2 enzyme converts the vasoconstrictor angiotensin II into peptides with vasodilator properties. Here we review the pathways for immunization and the molecular mechanisms through which the Spike protein, either from SARS-CoV-2 or encoded by the mRNA-based vaccines, interferes with the Renin-Angiotensin-System governed by ACE2, thus altering the homeostasis of the circulation and of the cardiovascular system. Understanding the molecular interactions of the Spike protein with ACE2 and the consequent impact on cardiovascular system homeostasis will direct the diagnosis and therapy of the vaccine-related adverse effects and provide information for development of a personalized vaccination that considers pathophysiological conditions predisposing to such adverse events.
Collapse
Affiliation(s)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
24
|
Brunetti JE, Kitsera M, Muñoz-Fontela C, Rodríguez E. Use of Hu-PBL Mice to Study Pathogenesis of Human-Restricted Viruses. Viruses 2023; 15:228. [PMID: 36680271 PMCID: PMC9866769 DOI: 10.3390/v15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Different humanized mouse models have been developed to study human diseases such as autoimmune illnesses, cancer and viral infections. These models are based on the use of immunodeficient mouse strains that are transplanted with human tissues or human immune cells. Among the latter, mice transplanted with hematopoietic stem cells have been widely used to study human infectious diseases. However, mouse models built upon the transplantation of donor-specific mature immune cells are still under development, especially in the field of viral infections. These models can retain the unique immune memory of the donor, making them suitable for the study of correlates of protection upon natural infection or vaccination. Here, we will review some of these models and how they have been applied to virology research. Moreover, the future applications and the potential of these models to design therapies against human viral infections are discussed.
Collapse
Affiliation(s)
| | - Maksym Kitsera
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| | - Estefanía Rodríguez
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| |
Collapse
|