1
|
Ling L, Shi H. Association between dietary flavonoids and childhood asthma. J Asthma 2025; 62:954-961. [PMID: 39760652 DOI: 10.1080/02770903.2024.2449242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Dietary flavonoids in various green plants have anti-inflammatory, antioxidant, and immune-modulating properties. While numerous studies have confirmed that flavonoid substances benefit asthma, evidence remains limited in epidemiological research and human experiments. This study aimed to explore the relationship between childhood asthma and dietary flavonoids. METHODS Dietary flavonoids comprise isoflavones, anthocyanins, flavan-3-ols, flavanones, flavones, and flavonols. This study used data from the United States National Health and Nutrition Examination Survey, collected during interviews from 2007 to 2010 and 2017 to 2018. Asthma data were obtained from the survey questionnaire. The analysis included 7,913 participants under 20 years old. A multivariable logistic regression model was performed to investigate the correlation between flavonoids (as constant or category variables) and asthma frequency among children in the United States, with stratified analyses performed for each group. RESULTS After adjusting for potential confounding variables, a significant negative correlation was observed between asthma incidence and the highest intake group of anthocyanins compared to the lowest intake group (odds ratio [OR] = 0.83, 95% confidence interval [CI]: 0.72-0.97, and p = 0.0182). Similarly, asthma incidence indicated a significant negative association with the median flavonol intake group compared to the lowest intake group (OR = 0.83, 95% CI: 0.72-0.97, and p = 0.0165). In the stratified analysis, anthocyanin content demonstrated a significant negative correlation with asthma prevalence among males, non-Hispanic whites, nonsmoking families, and middle-income families (p < 0.05). CONCLUSION The intake of dietary flavonoids, including anthocyanins and flavonols, is correlated with asthma prevalence in children.
Collapse
Affiliation(s)
- Li Ling
- Pediatric Department, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hongbo Shi
- Pediatric Department, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Bustani G, Alghetaa H, Mohammed A, Nagarkatti M, Nagarkatti P. The aryl hydrocarbon receptor: a new frontier in male reproductive system. Reprod Biol Endocrinol 2025; 23:70. [PMID: 40369574 PMCID: PMC12076877 DOI: 10.1186/s12958-025-01401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically recognized for its role in the regulation of toxicity mediated by environmental chemicals. Recent research points to AhR's critical participation in male reproductive physiology, particularly in spermatogenesis, hormone signaling, and the maintenance of sperm quality. Both endogenous ligands (e.g., dietary and gut microbiota-derived metabolites) and exogenous pollutants (e.g., dioxins and benzo-α-pyrene) influence AhR-mediated pathways, making it a key link between environmental exposures and male fertility. RESULTS This review highlights AhR's influence on the male reproductive system, emphasizing the role of endogenous AhR ligands and AhR expression in the maturation and function of male reproductive organs. Environmental AhR agonists have been shown to induce oxidative stress, hormonal imbalance, and sperm DNA damage, which impact harmfully on the spermatogenesis process, which leads to reproductive abnormalities. Conversely, certain natural compounds such as resveratrol, curcumin, and lycopene appear to antagonize AhR activation and reduce its negative effects, thus offering potential protective benefits against male reproductive toxicity. Nevertheless, discrepancies persist regarding the exact interplay between AhR signaling and critical reproductive hormones such as testosterone and LH, and it remains unclear how transgenerational epigenetic changes triggered by AhR activation might affect long-term male fertility. CONCLUSION AhR is pivotal in male reproductive physiology, influencing spermatogenesis, sperm quality, and hormone regulation through its interactions with both endogenous and environmental ligands. Persistent pollutants such as dioxins and polycyclic aromatic hydrocarbons cause oxidative damage and hormonal disturbances via AhR, contributing to reduced sperm quality and fertility.
Collapse
Affiliation(s)
- Ghadeer Bustani
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
- The Islamic University, Najaf, Iraq
| | - Hasan Alghetaa
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq.
| | - Amira Mohammed
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
3
|
Silva RA, Nahas MJB, Bremer SDC, de Oliveira LW, de Souza AM, Rufino MN, Caetano HRDS, Keller R, Bremer-Neto H. Prebiotics improve parameters indicative of allergy-induced asthma in murines: a systematic review with meta-analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40346864 DOI: 10.1002/jsfa.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/19/2025] [Accepted: 04/13/2025] [Indexed: 05/12/2025]
Abstract
The prevalence of allergic asthma is increasing worldwide and it is important that new treatments are implemented. This study aimed to thoroughly investigate the effect of prebiotics on parameters indicative of allergic asthma induced by ovalbumin (OVA), house dust mites (HDM) and OVA + lipopolysaccharide (LPS). The review was registered in the Open Science Framework (registration ID: osf.io/du4ab). PRISMA and web-app Rayyan were used as tools for the selection of studies collected in seven databases: PubMed; ScienceDirect; Web of Science; Scielo; Scopus; EMBASE; and Google Scholar with the use of predetermined keywords and Medical Subject Heading terms of the National Library of Medicine. Eight studies involving 182 mice and rats were included in the meta-analysis. The results showed a significant reduction in the total number of inflammatory cells and in the isolated number of inflammatory cells, eosinophils, lymphocytes, macrophages and neutrophils (P < 0.05). The results also revealed a significant decrease in the concentration of interleukins 13 and 33 in lung tissue. The present study demonstrated that prebiotic supplementation in the diet of rats and mice, as preclinical models, mitigates indicative parameters, inflammatory cells and interleukins, of allergic asthma induced by OVA, HDM or OVA + LPS. These beneficial results encourage randomized clinical trials to be carried out aiming at the prevention/treatment of allergic asthma. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ricardo Augusto Silva
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| | - Maria Julia Brolezzi Nahas
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| | | | - Luiz Waldemar de Oliveira
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| | - Adriano Messias de Souza
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| | - Marcos Natal Rufino
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| | - Heliard Rodrigues Dos Santos Caetano
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| | - Rogéria Keller
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| | - Hermann Bremer-Neto
- Food, Nutrition and Basic, Experimental and Clinical Health Research Group, Department of Functional Sciences, Faculty of Medicine, Western São Paulo University (UNOESTE), São Paulo, Brazil
| |
Collapse
|
4
|
Li X, Liu Y, Liu N, Wu H, Cong K, Duan L, Chen T, Zhang J. Health benefits of medicinal plant natural products via microbiota-mediated different gut axes. Pharmacol Res 2025; 215:107730. [PMID: 40216049 DOI: 10.1016/j.phrs.2025.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
This review examines the multifaceted roles of medicinal plant natural products in influencing gut microbiota and their subsequent impact on various organ systems through established gut axes, including the gut-brain, gut-liver, gut-heart, gut-lung, and gut-kidney axes. Medicinal plant natural products have exhibited diverse pharmacological activities, including modulation of microbiota composition, enhancement of metabolic processes, and alleviation of inflammation and oxidative stress. Evidence suggests that these components can ameliorate conditions such as neurological disorders, metabolic syndrome, and chronic kidney disease by restoring microbial balance and improving gut barrier integrity. Furthermore, the review highlights the potential of medicinal plant natural products to foster beneficial microbial communities and improve gut health, which may lead to reduced disease severity and inflammation. By comprehensively analyzing current literature, this review provides a foundation for future research aim at exploring the therapeutic applications of medicinal plant natural products in disease prevention and treatment. The findings underscore the need for further studies to elucidate the underlying mechanisms of action and validate the clinical efficacy of medicinal plant natural products in managing chronic conditions through gut microbiota modulation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yufan Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ning Liu
- Department of The Second Section Office of Breast Tumor, Jilin Cancer Hospital, Changchun 130000, China
| | - Hanning Wu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kexin Cong
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Linnan Duan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tianli Chen
- Changchun University of Chinese Medicine, Changchun 130000, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Liu Y, Zhou Y, Zhang H, Zhao K, Yang D. Gut-lung Axis mediates asthma pathogenesis: Roles of dietary patterns and their impact on the gut microbiota. Exp Mol Pathol 2025; 142:104964. [PMID: 40194490 DOI: 10.1016/j.yexmp.2025.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
The gut-lung axis, a vital signaling network linking the gastrointestinal and pulmonary systems, regulates immune responses and the progression of respiratory diseases. Nutritional components can modulate the gut microbiome and regulate the synthesis of critical intestinal microbial metabolites, which are essential for maintaining immune homeostasis and supporting respiratory health. Conversely, poor dietary habits exacerbate asthma and other respiratory conditions through the modulation of systemic inflammation and immune responses. Dietary interventions, such as the Mediterranean diet, are reported to restore microbial balance and improve respiratory health by increasing the production of anti-inflammatory metabolites, potentiating immune responses, and preserving epithelial barrier integrity. In contrast, Western dietary patterns, which are characterized by high fat and low fiber intake, disrupt microbial diversity, resulting in increased levels of pro-inflammatory metabolites that aggravate airway inflammation and asthma severity. This review aimed to elucidate the mechanisms underlying the regulatory effects of gut microbes and their metabolites on asthma. Additionally, previous findings related to the gut-lung axis have been summarized, providing insights into potential therapeutic strategies for asthma management.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoyue Zhang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaixuan Zhao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Barakat N, Alkhen MA, Khater Y, Khirallah SM. Effect of Melatonin and Ginseng on rat testis and sperm quality against cadmium toxicity via inhibiting oxidative stress and autophagy pathways. J Trace Elem Med Biol 2025; 88:127614. [PMID: 39919550 DOI: 10.1016/j.jtemb.2025.127614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIM Infertility constitutes a significant global health concern. Cadmium (Cd), a hazardous element, exerts deleterious effects on the reproductive system. Consequently, it is essential to devise novel pharmaceutical strategies to mitigate this adverse effect. Melatonin is linked to the regulation of spermatogenesis across several animals. Ginseng is recognized for its antioxidant capabilities and has shown superior clinical efficacy in male reproductive health. This study aimed to inspect the preventive effects of Melatonin (Mel) and Ginseng (Gin) on the quality of epididymal sperm, as well as testicular function and structure, in rats subjected to cadmium exposure. METHODS Forty rats were allocated into four equal groups: Control group, Cadmium group: Rats were injected with 2.0 mg/kg, Melatonin group: animals were injected with 10 mg/kg and Ginseng group: Rats were oral gavage with 100 mg/kg. All treatments were maintained for 8 weeks. Testes were taken for histopathological examinations, sperm parameters analysis, biochemical and molecular studies. RESULTS The results revealed a significant decrease of sperm parameters in Cd group compared to the control group. Nevertheless, treatment with Mel and Gin significantly increased sperm concentration, motility, and viability compared to Cd group (p < 0.05). Besides, Cd treatment caused a significant decrease in SOD and CAT activities and an increase in NO and MDA levels which was significantly improved with Mel and Gin administration (p < 0.05). Apoptosis, inflammation and autophagy markers were significantly inhibited with Mel and Gin treatment. CONCLUSIONS Melatonin and Ginseng reduce testicular toxicity induced by Cd, via inhibiting oxidative stress, apoptosis, inflammation, and autophagy providing novel insights into combating cadmium toxicity.
Collapse
Affiliation(s)
- Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mona A Alkhen
- Chemistry Department (Biochemistry Division), Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Yomna Khater
- Medical Expermental Research Center, Faculty of Medicine, Mansoura University, Egypt
| | - Salma M Khirallah
- Chemistry Department (Biochemistry Division), Faculty of Science, Port Said University, Port Said 42526, Egypt.
| |
Collapse
|
7
|
Li F, Peng X, Li W. The interaction between various food components and intestinal microbiota improves human health through the gut-X axis: independently or synergistically. Food Funct 2025; 16:2172-2193. [PMID: 39996355 DOI: 10.1039/d4fo04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Food contains various components that improve health by affecting the gut microbiota, primarily by modulating its abundance or altering its diversity. Active substances in food have different effects on the gut microbiota when they act alone or in synergy, resulting in varying impacts on health. The bioactive compounds in food exert different effects on various gut microbiota through multiple pathways, thereby delaying or preventing different kinds of disease. The combination of two or more active compounds may have a synergistic effect, which can more effectively alter the gut microbiota and alleviate diseases through the microbiota-gut-organ axis. According to reports, multiple different food components have similar effects, some of which have been shown to have a synergistic effect on the gut microbiota to promote health. However, there is currently no systematic review of its synergistic effects and mechanisms. There may be more compounds with synergistic effects that have not yet been discovered, while their mechanisms of synergy and ways of impacting host health through the gut microbiota deserve further investigation. The purpose of this review is to systematically summarize the effects of different food components on intestinal flora and health, and further analyze the potential synergies between different food components. PubMed and Google Scholar databases were searched in this review.
Collapse
Affiliation(s)
- Fenfa Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd, Guangzhou 510405, China.
| |
Collapse
|
8
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Bao Y, Chang Q, Zhang H, Ding H, Gao J, Zhang C, Chi B, Xia Y, Zhao Y, Zhang H. Dietary patterns, nutrients, and risk of expiratory airflow limitation in children and adolescents. Eur J Nutr 2025; 64:85. [PMID: 39932587 DOI: 10.1007/s00394-025-03604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Increasing global pediatric respiratory diseases require understanding modifiable factors affecting lung function. We explored the association between dietary patterns, nutrients and the risk of expiratory airflow limitation (EAL) in children and adolescents. METHODS Dietary intake was collected using a validated food frequency questionnaire (FFQ) with 110 food items. Factor analysis was employed to determine dietary patterns. Pulmonary function was measured using a medical-grade pulmonary function analyzer. EAL was defined as the ratio of Forced Expiratory Volume in one second to Forced Vital Capacity (FEV1/FVC) < 0.8. RESULTS A total of 611 EAL cases occurred in 3,204 participants, with a prevalence of 19.07%. Four primary dietary patterns were identified (animal, healthy, sweet, and plant foods), which explained 44% of the variance in food consumption. The plant foods pattern (fourth quartile vs. first quartile intake) was associated with a reduced risk of EAL (Odds Ratio [OR] = 0.71, 95% Confidence Interval [CI]: 0.53, 0.94; Pfor trend < 0.02). Higher fruit consumption (high vs. low) in plant foods pattern was associated with lower EAL risk (OR = 0.79, 95% CI: 0.62, 0.99, Pfor trend = 0.04). Every standard deviation increase in foods (Chinese sauerkraut, pickled foods) and nutrients (total dietary fiber, soluble dietary fiber, and pyridoxine) in plant foods was all positively associated with FEV1 /FVC (all P < 0.05). CONCLUSIONS Long-term intake of plant foods pattern enriched with dietary fiber and pyridoxine is promising for lung function protection in children and adolescents.
Collapse
Affiliation(s)
- Yijing Bao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Han Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiyuan Ding
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Jing Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Chuyang Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Baofeng Chi
- Inner Mongolia Medical University, Inner Mongolia, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China.
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| | - Hehua Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China.
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, No. 36, Sanhao Street, Shenyang, 110004, Liaoning, China.
- Clinical Trials and Translation Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Xia Z, Zhao X, Wang L, Huang L, Yang Y, Yin X, He L, Aga Y, Kahaer A, Yang S, Hao L, Chen C. Amelioration of Inflammation in Rats with Experimentally Induced Asthma by Spenceria ramalana Trimen Polyphenols via the PI3K/Akt Signaling Pathway. Int J Mol Sci 2024; 26:165. [PMID: 39796021 PMCID: PMC11720363 DOI: 10.3390/ijms26010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Asthma is a chronic inflammatory respiratory disease that affects millions globally and poses a serious public health challenge. Current therapeutic strategies, including corticosteroids, are constrained by variable patient responses and adverse effects. In this study, a polyphenolic extract derived from the Tibetan medicinal plant Spenceria ramalana Trimen (SRT) was employed and shown to improve experimentally (ovalbumin + cigarette smoke, OVA + CS) induced asthma in rats. Initially, the potential therapeutic mechanism of the polyphenolic components in SRT on OVA + CS-induced asthma was predicated by network pharmacology analysis. Subsequently, in vivo experiments identified that SRT polyphenols exhibit significant anti-asthmatic activities, primarily mediated by lowering inflammatory cell counts such as the WBC (white blood cell), eosinophils, and neutrophils, decreasing the expression of inflammatory cytokines (IL-4, IL-5, IL-13, and TNF-α), alleviating lung histological damage (reduced inflammation, collagen deposition, and mucus secretion), and enhancing the epithelial barrier integrity (upregulation of ZO-1, occludin, and claudin-1). Additionally, SRT polyphenols downregulated the PI3K/Akt (Phosphoinositide 3-kinase/protein kinase B) signaling pathway, improved gut microbiota disruption, and regulated fecal metabolites (glucose-6-glutamate, PS (16:0/0:0), 8-aminocaprylic acid, galactonic acid, Ascr#10, 2,3,4,5,6,7-hexahydroxyheptanoic acid, phosphodimethylethanolamine, muramic acid, 9-oxohexadeca-10e-enoic acid, and sedoheptulose) in asthmatic rats. In conclusion, SRT polyphenols exerted multifaceted protective effects against OVA + CS-induced asthma in rats, highlighting their potential value in preventing asthma via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhaobin Xia
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Xing Zhao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lu Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Lin Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Yanwen Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Xiangyu Yin
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Luyu He
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Yuebumo Aga
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Ankaer Kahaer
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Shiyu Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lili Hao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Chaoxi Chen
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
11
|
Wang Y, Li N, Hu J, Zhao Y, Zhou W, Li S, Yi G, Bian H, Cao F, Yao S. A network pharmacology approach-based decoding of Resveratrol's anti-fibrotic mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156092. [PMID: 39368340 DOI: 10.1016/j.phymed.2024.156092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Inhalation of crystalline silica (CS) frequently leads to chronic lung inflammation and pulmonary fibrosis (PF), a condition with limited effective treatments. Resveratrol (Res) has demonstrated potential in PF treatment; however, its underlying mechanisms remain incompletely elucidated. PURPOSE This study represents the first comprehensive attempt to uncover the novel mechanisms underlying Res's anti-fibrotic effects against PF through an innovative, integrated approach combining network pharmacology and experimental validation. METHODS We employed network pharmacology to investigate the holistic pharmacological mechanism of Res, then validated the predicted pharmacological effects using in vivo and in vitro studies. RESULTS In total, 216 genes were identified to be simultaneously associated with PF and Res. An integrated bioinformatics analysis implicated a crucial role of the autophagy signaling pathway in dominating PF, with AMPK and mTOR showing high docking scores. Animal studies revealed that Res significantly alleviated silica-induced lung damage in silicotic mice, with decreased collagen I (Col-I) levels and reduced expression of vimentin and α-SMA. In-depth investigation demonstrated that Res modulated CS-dysregulated autophagy by targeting the AMPK/mTOR pathway. in vitro, Res treatment significantly reduced lactate dehydrogenase (LDH), TNF-α, and TGF-β levels and improved cell viability of Raw264.7 cells post-CS exposure. Notably, Res was demonstrated to suppress fibroblast-to-myofibroblast transition via mediating macrophage autophagy through the AMPK/mTOR pathway. CONCLUSION Res can alleviate CS-induced PF by targeting AMPK in the autophagy signaling pathway, which sheds light on Res' therapeutic potential in treating PF.
Collapse
Affiliation(s)
- Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women' s Diseases and Fertility Preservation, Jinan 250001, China
| | - Jiahao Hu
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Yuhan Zhao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Wenxin Zhou
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Shuang Li
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Guan Yi
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hongying Bian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Fuyuan Cao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China; Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
12
|
Du C, Zhang Y, Zhang H, Zhang H, Liu J, Shen N. Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome. Pathogens 2024; 13:996. [PMID: 39599549 PMCID: PMC11597221 DOI: 10.3390/pathogens13110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The lung microbiome has emerged as a pivotal area of research in human health. Despite the increasing number of publications, there is a lack of research that comprehensively and objectively presents the current status of lung microbiome-related studies. Thus, this study aims to address this gap by examining over two decades of publications through bibliometric analysis. The original bibliographic data of this study were obtained from the Web of Science Core Collection, focusing on publications from 2003 to 2023. The analysis included the data extraction and examination of authors, affiliations, countries, institutions, abstracts, keywords, references, publication dates, journals, citations, H-indexes, and journal impact factors. A total of 845 publications were identified, showing an increasing trend in both publications and citations over the years, particularly in the last decade. The analysis highlighted the most productive authors, institutions, and countries/regions, and identified potential partners for interested researchers. Co-citation analysis revealed that lung microbiome- and infectious/pulmonary disease-related studies are at the forefront of the field. The hotspots and frontiers of the lung microbiome field have progressed from basic composition to exploring specific mechanisms and the clinical value of diseases. In conclusion, this study provides a comprehensive overview of the current research status and trends in the field of the lung microbiome over the past two decades and highlights the areas that need more attention and research efforts. It offers valuable insights for researchers and institutions and identifies key hotspots and frontiers, which can serve as references for related researchers and future research.
Collapse
Affiliation(s)
- Chunjing Du
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hanwen Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
13
|
Zhang W, Zhang Y, Li L, Chen R, Shi F. Unraveling heterogeneity and treatment of asthma through integrating multi-omics data. FRONTIERS IN ALLERGY 2024; 5:1496392. [PMID: 39563781 PMCID: PMC11573763 DOI: 10.3389/falgy.2024.1496392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Asthma has become one of the most serious chronic respiratory diseases threatening people's lives worldwide. The pathogenesis of asthma is complex and driven by numerous cells and their interactions, which contribute to its genetic and phenotypic heterogeneity. The clinical characteristic is insufficient for the precision of patient classification and therapies; thus, a combination of the functional or pathophysiological mechanism and clinical phenotype proposes a new concept called "asthma endophenotype" representing various patient subtypes defined by distinct pathophysiological mechanisms. High-throughput omics approaches including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome enable us to investigate the pathogenetic heterogeneity of diverse endophenotypes and the underlying mechanisms from different angles. In this review, we provide a comprehensive overview of the roles of diverse cell types in the pathophysiology and heterogeneity of asthma and present a current perspective on their contribution into the bidirectional interaction between airway inflammation and airway remodeling. We next discussed how integrated analysis of multi-omics data via machine learning can systematically characterize the molecular and biological profiles of genetic heterogeneity of asthma phenotype. The current application of multi-omics approaches on patient stratification and therapies will be described. Integrating multi-omics and clinical data will provide more insights into the key pathogenic mechanism in asthma heterogeneity and reshape the strategies for asthma management and treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Fei Shi
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
14
|
Mao W, Wang B, Chen F, Luo D, Li Y, Liu Y, Liu Y, Dong P, Huang R. Trans-resveratrol mitigates miR-204-3p mediated progression of allergic rhinitis by regulating the EGLN3/HIF-1α/IL33/ST2 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155967. [PMID: 39226709 DOI: 10.1016/j.phymed.2024.155967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is a multifactorial disease triggered by interactions between genes and the environment. Clinical evidence has shown that trans-resveratrol, a widely used drug, significantly ameliorates AR pathology. However, the precise mechanisms underlying this effect remain unclear. PURPOSE This study aimed to elucidate the pharmacological mechanisms of action of trans-resveratrol in patients with AR who exhibit hypoxic symptoms. This will be achieved through microRNA sequencing and signaling pathway screening combined with basic experiments to determine the effects of Trans-resveratrol intervention in this patient population. METHODS Network pharmacology was used to determine the therapeutic value of trans-resveratrol in AR. The micro-RNA miR-204-3p was pinpointed by sequencing. Quantitative reverse transcription polymerase chain reaction was used to quantify the expression levels. Haematoxylin and eosin, alcian blue-periodic acid-Schiff, and Masson's trichrome staining were used to assess the effects of hypoxia on nasal mucosa immunohistochemistry and immunofluorescence-localised target proteins. Egl nine homolog 3 (EGLN3) was screened using bioinformatics software. Protein expression was detected by western blotting. Cell growth and death were gauged via Cell Counting Kit-8 and terminal deoxynucleotidyl transferase dUTP nick end labelling staining, respectively. Cell migration was observed using a transwell assay. Enzyme-linked immunosorbent assay was used to measure interleukin (IL)33 levels in the cell supernatants. Flow cytometry was used to verify cell cycle and antigen levels. Electron microscopy was used to visualise the status of the nasal mucosa prior to in vivo expression analysis. RESULTS Patients with hypoxic AR demonstrated more pronounced nasal mucosal remodelling than that in patients with common AR. Sequencing results indicated that these patients had a reduced expression of miR-204-3p. Through a combination utilizing of bioinformatics analysis and experimental validation, EGLN3 has been identified as a direct target of HIF-1α. The low expression level of miR-204-3p represses EGLN3, resulting in the accumulation of HIF-1α and the activation of the IL33/ST2 signaling pathway. These stimulate the proliferation, survival, and migration of HNEpCs, ultimately contributing to mucosa remodeling and AR progression. Trans-resveratrol notably downregulated the levels of HIF-1α and IL33/ST2, while simultaneously increasing the expression of EGLN3. CONCLUSIONS Downregulation of miR-204-3p initiated a vicious cycle of hypoxic AR via EGLN3/HIF-1α/IL33/ST2. Trans-resveratrol reversed the pathological process of nasal mucosa remodeling of hypoxic AR by exhibiting anti-inflammatory and anti-angiogenic functions via the above signaling pathway. Our study uncovers the underlying mechanism by which hypoxia drives the progression of AR. It presents innovative strategies for addressing inflammatory and hypoxia-related diseases, bridging traditional and modern medicine, and highlighting the potential of natural compounds in clinical practice.
Collapse
Affiliation(s)
- Wei Mao
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Baoxin Wang
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Feng Chen
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Dan Luo
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Yu Li
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Yuanyuan Liu
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China
| | - Yuying Liu
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China.
| | - Pin Dong
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China.
| | - Ruofei Huang
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85#Wujin Road, Hongkou, Shanghai, 200080, China.
| |
Collapse
|
15
|
Wang S, Zhao J, Xie J. Targeting Lipid Metabolism in Obese Asthma: Perspectives and Therapeutic Opportunities. Int Arch Allergy Immunol 2024; 186:280-294. [PMID: 39427653 DOI: 10.1159/000540405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Obese asthma represents a unique phenotype of asthma characterized by severe symptoms, poor medication controls, increased frequency of exacerbations, and an overall diminished quality of life. Numerous factors, including the complex interactions between environment, mechanical processes, inflammatory responses, and metabolites disturbance, contribute to the onset of obese asthma. SUMMARY Notably, multiple metabolomics studies in the last several years have revealed the significant abnormalities in lipid metabolism among obese asthmatic patients. Several bioactive lipid messengers participate in the development of obese asthma has also been observed. Here, we present and discuss the latest advances regarding how bioactive lipid molecules contribute to the pathogenic process and mechanisms underlying obese asthma. The key roles of potentially significant effector cells and the pathways by which they respond to diverse lipid metabolites are also described. We finally summarize current lipid-related therapeutic options for the treatment of obese asthma and discuss their application prospects. KEY MESSAGES This review underscores the impacts of abnormal lipid metabolism in the etiopathogenesis of obese asthma and asks for further investigation to elucidate the intricate correlations among lipids, obesity, and asthma.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Li N, Fan C, Li X, Su J. Dynamic changes of MMPs during cerebral aneurysm formation in rats and the effect of resveratrol on MMP expression. Am J Transl Res 2024; 16:5347-5356. [PMID: 39544733 PMCID: PMC11558362 DOI: 10.62347/lkiu6905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES To investigate the expression of matrix protein metalloenzymes (MMPs) during cerebral aneurysm (CA) formation and assess the effects of resveratrol (RES) on MMP expression and CA prevention. METHODS Male Sprague-Dawley rats were randomly divided into three groups: sham-operated, CA, and RES groups. CA models were constructed by ligating the renal and carotid arteries of SD rats. The RES group received a diet mixed with RES (50 mg/kg), while the CA group was given normal feed; the sham-operated group underwent simulated surgery without ligation and received normal feed. HE staining was used to observe the pathological changes in the cerebral artery aneurysm wall. Immunofluorescence (IF) staining and RT-PCR were used to detect the expression of MMP-2 and MMP-9, as well as oxidative stress markers in the cerebral artery wall tissues of rats at 1-, 2-, and 3-months post-surgery. RESULTS HE staining reveled that after ligation, the cerebral artery walls of SD rats exhibited irregular thickness, twisted morphology, abnormal nuclear morphology of the cells, and infiltration of inflammatory cells, confirming the successful establishment of CA model. Meanwhile, the infrared spectrogram of the RES purified from Tiger Balm closely matched that of the standard, confirming successful purification. IF staining indicated that MMP-2 and MMP-9 levels dynamically increased over time in the vessel wall of the CA rats. Subsequently, antioxidant assays showed that RES treatment enhanced antioxidant capacity, with increased levels of superoxide dismutase, glutathione peroxidase, and catalase in the vascular wall tissue. Moreover, after 3 months of RES treatment, IF staining showed a marked reduction in MMP-2 and MMP-9 levels in the vessel walls of CA rats. Meanwhile, HE staining also showed improvements in the wall structure, with a more intact wall and an increased vascular endothelial cell density. CONCLUSIONS RES effectively inhibits the expression of MMP-2 and MMP-9, thereby preventing and delaying the development of CA.
Collapse
Affiliation(s)
- Na Li
- Office of Post-graduation Education, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Chunyan Fan
- Department of Neurology, Hebei People’s HospitalShijiazhuang 050000, Hebei, China
| | - Xiaoyi Li
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Junhua Su
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| |
Collapse
|
17
|
Gao Y, Wang K, Lin Z, Cai S, Peng A, He L, Qi H, Jin Z, Qian X. The emerging roles of microbiome and short-chain fatty acids in the pathogenesis of bronchopulmonary dysplasia. Front Cell Infect Microbiol 2024; 14:1434687. [PMID: 39372498 PMCID: PMC11449852 DOI: 10.3389/fcimb.2024.1434687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects premature infants and leads to long-term pulmonary complications. The pathogenesis of BPD has not been fully elucidated yet. In recent years, the microbiome and its metabolites, especially short-chain fatty acids (SCFAs), in the gut and lungs have been demonstrated to be involved in the development and progression of the disease. This review aims to summarize the current knowledge on the potential involvement of the microbiome and SCFAs, especially the latter, in the development and progression of BPD. First, we introduce the gut-lung axis, the production and functions of SCFAs, and the role of SCFAs in lung health and diseases. We then discuss the evidence supporting the involvement of the microbiome and SCFAs in BPD. Finally, we elaborate on the potential mechanisms of the microbiome and SCFAs in BPD, including immune modulation, epigenetic regulation, enhancement of barrier function, and modulation of surfactant production and the gut microbiome. This review could advance our understanding of the microbiome and SCFAs in the pathogenesis of BPD, which also helps identify new therapeutic targets and facilitate new drug development.
Collapse
Affiliation(s)
- Yuan Gao
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zupan Lin
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Shujing Cai
- Neonatal Intensive Care Unit (NICU), Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Aohui Peng
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Le He
- Department of Pediatrics, Jinhua Hospital of TCM Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Hui Qi
- China National Clinical Research Center of Respiratory Diseases, Respiratory Department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xubo Qian
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Department of Pediatrics, Jinhua Hospital of TCM Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
18
|
Zou X, Zou X, Gao L, Zhao H. Gut microbiota and psoriasis: pathogenesis, targeted therapy, and future directions. Front Cell Infect Microbiol 2024; 14:1430586. [PMID: 39170985 PMCID: PMC11335719 DOI: 10.3389/fcimb.2024.1430586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Psoriasis is one of the most common autoimmune skin diseases. Increasing evidence shows that alterations in the diversity and function of microbiota can participate in the pathogenesis of psoriasis through various pathways and mechanisms. Objective To review the connection between microbial changes and psoriasis, how microbial-targeted therapy can be used to treat psoriasis, as well as the potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet, and Traditional Chinese Medicine as supplementary and adjunctive therapies. Methods Literature related to the relationship between psoriasis and gut microbiota was searched in PubMed and CNKI. Results Adjunct therapies such as dietary interventions, traditional Chinese medicine, and probiotics can enhance gut microbiota abundance and diversity in patients with psoriasis. These therapies stimulate immune mediators including IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-γ) along with the NF-kB pathway, thereby suppressing the release of pro-inflammatory cytokines and ameliorating systemic inflammatory conditions. Conclusion This article discusses the direction of future research and clinical treatment of psoriasis from the perspective of intestinal microbiota and the mechanism of traditional Chinese medicine, so as to provide clinicians with more comprehensive diagnosis and treatment options and bring greater hope to patients with psoriasis.
Collapse
Affiliation(s)
- Xinyan Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Xinfu Zou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Longxia Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Hanqing Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| |
Collapse
|
19
|
Wang L, Lv Z. Causal associations among gut microbiota, 1400 plasma metabolites, and asthma: a two-sample Mendelian randomization study. Front Mol Biosci 2024; 11:1370919. [PMID: 39104371 PMCID: PMC11298384 DOI: 10.3389/fmolb.2024.1370919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Background Emerging evidence indicates a correlation between imbalances in intestinal microbiota and changes in plasma metabolites in the progression of asthma. However, the causal link between these factors remains unclear. Methods A two-sample Mendelian randomization (MR) study was employed to evaluate the potential causal connection between gut microbiota, plasma metabolites, and asthma susceptibility. Gut microbiota data from expansive genome-wide genotype studies and 16S fecal microbiome datasets were examined by the MiBioGen Alliance. Asthma data were procured from the FinnGen biobank analysis, while comprehensive Genome-Wide Association Studies (GWAS) summary statistics for plasma metabolites were derived from the NHGRI-EBI GWAS Catalog. Fluctuations in intestinal flora and plasma metabolites in asthma patients were evaluated using the weighted mode method. Additionally, pleiotropic and heterogeneity analyses were performed to ascertain the reliability of the findings. Results Upon examining the gut microbiota through MR with the IVW method, alongside tests for heterogeneity and pleiotropy, findings reveal a negative association between the abundance of the Christensenellaceae R.7 group and asthma risk. In contrast, the Bifidobacterium and Prevotella 7 genera exhibit a positive association with asthma risk, indicating they may be potential risk factors (p < 0.05). Furthermore, MR analysis of 1,400 metabolites employing Weighted median, IVW, and Weighted mode methods resulted in p-values below 0.05. Subsequent tests for pleiotropy and heterogeneity showed that the levels of 3,5-dichloro-2,6-dihydroxybenzoic acid have a negative correlation with asthma, whereas the phenylalanine to phosphate ratio has a positive correlation, suggesting their potential as risk factors for asthma (p < 0.05). Conclusion The current Mendelian randomization study provides evidence supporting a potential causal link between specific gut microbiota taxa, plasma metabolites, and asthma. These findings offer novel perspectives for future research and the development of treatment and prevention strategies for asthma.
Collapse
Affiliation(s)
- Lizhu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhe Lv
- Air Force Medical University Tangdu Hospital, Xi’an, China
| |
Collapse
|
20
|
Liu D, Hu L, Yang Y, Wang Y, Li Y, Su J, Wang G, Gong S. Saccharomyces boulardii alleviates allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner. Immunol Lett 2024; 267:106853. [PMID: 38513836 DOI: 10.1016/j.imlet.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Allergic asthma is a heterogeneous disease and new strategies are needed to prevent or treat this disease. Studies have shown that probiotic interventions are effective in preventing asthma. Here, we investigated the impact of Saccharomyces boulardii (S. boulardii) on ovalbumin (OVA)-induced allergic asthma in mice, as well as the underlying mechanisms. METHODS First, we constructed a mouse asthma model using OVA and given S. boulardii intervention. Next, we measured N6-methyladenosine (m6A) levels in lung injury tissues. 16 s rRNA was employed to identify different gut microbiota in fecal samples. The analysis of differential metabolites in feces was performed by non-targeted metabolomics. Pearson correlation coefficient was utilized to analyze correlation between gut microbiota, metabolites and methyltransferase-like 3 (METTL3). Finally, we collected mouse feces treated by OVA and S. boulardii intervention for fecal microbiota transplantation (FMT) and interfered with METTL3. RESULTS S. boulardii improved inflammation and oxidative stress and alleviated lung damage in asthmatic mice. In addition, S. boulardii regulated m6A modification levels in asthmatic mice. 16 s rRNA sequencing showed that S. boulardii remodeled gut microbiota homeostasis in asthmatic mice. Non-targeted metabolomics analysis showed S. boulardii restored metabolic homeostasis in asthmatic mice. There was a correlation between gut microbiota, differential metabolites, and METTL3 analyzed by Pearson correlation. Additionally, through FMT and interference of METTL3, we found that gut microbiota mediated the up-regulation of METTL3 by S. boulardii improved inflammation and oxidative stress in asthmatic mice, and alleviated lung injury. CONCLUSIONS S. boulardii alleviated allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner.
Collapse
Affiliation(s)
- Da Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China
| | - Lang Hu
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yue Yang
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Yayong Li
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Su
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China
| | - Guyi Wang
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
21
|
Prakash V, Bose C, Sunilkumar D, Cherian RM, Thomas SS, Nair BG. Resveratrol as a Promising Nutraceutical: Implications in Gut Microbiota Modulation, Inflammatory Disorders, and Colorectal Cancer. Int J Mol Sci 2024; 25:3370. [PMID: 38542344 PMCID: PMC10970219 DOI: 10.3390/ijms25063370] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 12/20/2024] Open
Abstract
Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Robin Mathew Cherian
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| |
Collapse
|
22
|
Wu R, Zhu X, Guan G, Cui Q, Zhu L, Xing Y, Zhao J. Association of dietary flavonoid intakes with prevalence of chronic respiratory diseases in adults. J Transl Med 2024; 22:205. [PMID: 38409037 PMCID: PMC10898189 DOI: 10.1186/s12967-024-04949-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND AND AIMS Flavonoids are a class of secondary plant metabolites that have been shown to have multiple health benefits, including antioxidant and anti-inflammatory. This study was to explore the association between dietary flavonoid consumption and the prevalence of chronic respiratory diseases (CRDs) in adults. METHODS AND RESULTS The six main types of flavonoids, including isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, and flavonols, were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 and 2017-2018 by the two 24-h recall interviews. The prevalence of CRDs, including asthma, emphysema, and chronic bronchitis, was determined through a self-administered questionnaire. The analysis included 15,753 participants aged 18 years or older who had completed a diet history interview. After adjustment for potential confounders, the inverse link was found with total flavonoids, anthocyanidins, flavanones, and flavones, with an OR (95%CI) of 0.86 (0.75-0.98), 0.84 (0.72-0.97), 0.80(0.69-0.92), and 0.85(0.73-0.98) for the highest group compared to the lowest group. WQS regression revealed that the mixture of flavonoids was negatively linked with the prevalence of CRDs (OR = 0.88 [0.82-0.95], P < 0.01), and the largest effect was mainly from flavanones (weight = 0.41). In addition, we found that flavonoid intake was negatively linked with inflammatory markers, and systemic inflammation significantly mediated the associations of flavonoids with CRDs, with a mediation rate of 12.64% for CRP (P < 0.01). CONCLUSION Higher flavonoid intake was related with a lower prevalence of CRDs in adults, and this relationship may be mediated through systemic inflammation.
Collapse
Affiliation(s)
- Runmiao Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710000, Shaanxi, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China.
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| | - Yujie Xing
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China.
| | - Jingsha Zhao
- Department of Intensive Care Unit, The Third People's Hospital of Chengdu, 82 Qinglong Road, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Xu C, Hao M, Zai X, Song J, Huang Y, Gui S, Chen J. A new perspective on gut-lung axis affected through resident microbiome and their implications on immune response in respiratory diseases. Arch Microbiol 2024; 206:107. [PMID: 38368569 DOI: 10.1007/s00203-024-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The highly diverse microbial ecosystem of the human body colonizes the gastrointestinal tract has a profound impact on the host's immune, metabolic, endocrine, and other physiological processes, which are all interconnected. Specifically, gut microbiota has been found to play a crucial role in facilitating the adaptation and initiation of immune regulatory response through the gastrointestinal tract affecting the other distal mucosal sites such as lungs. A tightly regulated lung-gut axis during respiratory ailments may influence the various molecular patterns that instructs priming the disease severity to dysregulate the normal function. This review provides a comprehensive summary of current research on gut microbiota dysbiosis in respiratory diseases including asthma, pneumonia, bronchopneumonia, COPD during infections and cancer. A complex-interaction among gut microbiome, associated metabolites, cytokines, and chemokines regulates the protective immune response activating the mucosal humoral and cellular response. This potential mechanism bridges the regulation patterns through the gut-lung axis. This paper aims to advance the understanding of the crosstalk of gut-lung microbiome during infection, could lead to strategize to modulate the gut microbiome as a treatment plan to improve bad prognosis in various respiratory diseases.
Collapse
Affiliation(s)
- Cong Xu
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengqi Hao
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaohu Zai
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jing Song
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuzhe Huang
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Juan Chen
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
| |
Collapse
|
24
|
Meng X, Shu Q. Novel primers to identify a wider diversity of butyrate-producing bacteria. World J Microbiol Biotechnol 2024; 40:76. [PMID: 38252387 DOI: 10.1007/s11274-023-03872-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Butyrate-producing bacteria are a functionally important part of the intestinal tract flora, and the resulting butyric acid is essential for maintaining host intestinal health, regulating the immune system, and influencing energy metabolism. However, butyrate-producing bacteria have not been defined as a coherent phylogenetic group. They are primarily identified using primers for key genes in the butyrate-producing pathway, and their use has been limited to the Bacillota and Bacteroidetes phyla. To overcome this limitation, we developed functional gene primers able to identify butyrate-producing bacteria through the butyrate kinase gene, which encodes the enzyme involved in the final step of the butyrate-producing pathway. Genomes extracted from human and rat feces were used to amplify the target genes through PCR. The obtained sequences were analyzed using BLASTX to construct a developmental tree using the MEGA software. The newly designed butyrate kinase gene primers allowed to recognize a wider diversity of butyrate-producing bacteria than that recognized using currently available primers. Specifically, butyrate-producing bacteria from the Synergistota and Spirochaetota phyla were identified for the first time using these primers. Thus, the developed primers provide a more accurate method for researchers and doctors to identify potential butyrate-producing bacteria and deepen our understanding of butyrate-producing bacterial species.
Collapse
Affiliation(s)
- Xianbin Meng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Qinglong Shu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
25
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
26
|
He Q, Liu W, Chen Z, Wei G, Jiang J, Zhang L, Zhou L. Resveratrol modulates the Nrf2/NF-κB pathway and inhibits TSLP-mediated atopic march. Allergol Immunopathol (Madr) 2024; 52:1-8. [PMID: 38186188 DOI: 10.15586/aei.v52i1.963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Resveratrol has been found to have anti-inflammatory and anti-allergic properties. The effects of resveratrol on thymic stromal lymphopoietin (TSLP)-mediated atopic march remain unclear. PURPOSE To explore the potential role of resveratrol in TSLP-mediated atopic march. METHODS The atopic march mouse model was established by topical application of MC903 (a vitamin D3 analog). Following the treatment with resveratrol, airway resistance in mice was discovered by pulmonary function apparatus, and the number of total cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid was counted. The histopathological features of pulmonary and ear skin tissues, inflammation, and cell infiltration were determined by hematoxylin and eosin staining. The messenger RNA (mRNA) levels of TSLP, immunoglobulin E, interleukin (IL)-4, IL-5, and IL-13 were measured by real-time quantitative polymerase chain reaction. The protein expression of nuclear factor kappa B (NF-κB)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling-associated molecules (p-p65, p65, p-I kappa B kinase alpha (IκBα), IκBα, Nrf2, and TSLP) in lung and ear skin tissues were assessed by Western blot analysis. RESULTS Resveratrol attenuated airway resistance and infiltration of total cells, eosinophils, and neutrophils in both lung and ear skin tissues. Resveratrol ameliorates serum inflammatory markers in allergic mice. Moreover, the phosphorylation levels of NF-κB pathway-related proteins were significantly reduced by administration of resveratrol in allergic lung and ear skin tissues. Similarly, the protein expression of TSLP in both lung and ear skin tissues was reduced by resveratrol, and Nrf2, a protector molecule, was increased with resveratrol treatment. CONCLUSION Resveratrol attenuates TSLP-reduced atopic march through ameliorating inflammation and cell infiltration in pulmonary and ear skin tissues by inhibiting the abnormal activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Quan He
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfei Wei
- Clinical Research Center (CRC), Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liuchao Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China;
| |
Collapse
|
27
|
Barosova R, Baranovicova E, Hanusrichterova J, Mokra D. Metabolomics in Animal Models of Bronchial Asthma and Its Translational Importance for Clinics. Int J Mol Sci 2023; 25:459. [PMID: 38203630 PMCID: PMC10779398 DOI: 10.3390/ijms25010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bronchial asthma is an extremely heterogenous chronic respiratory disorder with several distinct endotypes and phenotypes. These subtypes differ not only in the pathophysiological changes and/or clinical features but also in their response to the treatment. Therefore, precise diagnostics represent a fundamental condition for effective therapy. In the diagnostic process, metabolomic approaches have been increasingly used, providing detailed information on the metabolic alterations associated with human asthma. Further information is brought by metabolomic analysis of samples obtained from animal models. This article summarizes the current knowledge on metabolomic changes in human and animal studies of asthma and reveals that alterations in lipid metabolism, amino acid metabolism, purine metabolism, glycolysis and the tricarboxylic acid cycle found in the animal studies resemble, to a large extent, the changes found in human patients with asthma. The findings indicate that, despite the limitations of animal modeling in asthma, pre-clinical testing and metabolomic analysis of animal samples may, together with metabolomic analysis of human samples, contribute to a novel way of personalized treatment of asthma patients.
Collapse
Affiliation(s)
- Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
28
|
Alghetaa H, Mohammed A, Singh NP, Bloomquist RF, Chatzistamou I, Nagarkatti M, Nagarkatti P. Estrobolome dysregulation is associated with altered immunometabolism in a mouse model of endometriosis. Front Endocrinol (Lausanne) 2023; 14:1261781. [PMID: 38144564 PMCID: PMC10748389 DOI: 10.3389/fendo.2023.1261781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Endometriosis is a painful disease that affects around 5% of women of reproductive age. In endometriosis, ectopic endometrial cells or seeded endometrial debris grow in abnormal locations including the peritoneal cavity. Common manifestations of endometriosis include dyspareunia, dysmenorrhea, chronic pelvic pain and often infertility and symptomatic relief or surgical removal are mainstays of treatment. Endometriosis both promotes and responds to estrogen imbalance, leading to intestinal bacterial estrobolome dysregulation and a subsequent induction of inflammation. Methods In the current study, we investigated the linkage between gut dysbiosis and immune metabolic response in endometriotic mice. Ovariectomized BALB/c mice received intraperitoneal transplantation of endometrial tissue from OVX donors (OVX+END). Control groups included naïve mice (Naïve), naïve mice that received endometrial transplants (Naive+END) and OVX mice that received the vehicle (OVX+VEH). Colonic content was collected 2 weeks post-transplantation for 16s rRNA pyrosequencing and peritoneal fluid was collected to determine the phenotype of inflammatory cells by flow cytometry. Results We noted a significant increase in the number of peritoneal fluid cells, specifically, T cells, natural killer (NK) cells, and NKT cells in OVX+END mice. Phylogenetic taxonomy analysis showed significant dysbiosis in OVX+END mice, with an increase in abundance of Phylum Tenericutes, Class Mollicutes, Order Aneroplasmatales, and Genus Aneroplasma, and a decrease in Order Clostridiales, and Genus Dehalobacterium, when compared to OVX+VEH controls. The metabolomic profile showed an increase in some tricarboxylic acid cycle (TCA)-related metabolites accompanied by a reduction in short-chain fatty acids (SCFA) such as butyric acid in OVX+END mice. Additionally, the mitochondrial and ATP production of immune cells was enforced to a maximal rate in OVX+END mice when compared to OVX+VEH mice. Conclusion The current study demonstrates that endometriosis alters the gut microbiota and associated immune metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
29
|
Ji Y, Yang Y, Wu Z. Programming of metabolic and autoimmune diseases in canine and feline: linkage to the gut microbiome. Microb Pathog 2023; 185:106436. [PMID: 37913827 DOI: 10.1016/j.micpath.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Metabolic and autoimmune disorders have long represented challenging health problems because of their growing prevalence in companion animals. The gut microbiome, made up of trillions of microorganisms, is implicated in multiple physiological and pathological processes. Similar to human beings, the complicated microbiome harbored in the gut of canines and felines emerges as a key factor determining a wide range of normal and disease conditions. Evidence accumulated from recent findings on canine and feline research uncovered that the gut microbiome is actively involved in host metabolism and immunity. Notably, the composition, abundance, activity, and metabolites of the gut microbiome are all elements that shape clinical outcomes concerning metabolism and immune function. This review highlights the implications of the gut microbiome for metabolic disorders (obesity, diabetes, and hepatic lipidosis) and autoimmune diseases (inflammatory bowel disease, osteoarthritis, asthma, and myasthenia gravis) in canine and feline animals, providing novel strategies and therapeutic targets for the prevention and treatment of pet diseases.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
30
|
Dębińska A, Sozańska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023; 15:4823. [PMID: 38004216 PMCID: PMC10674996 DOI: 10.3390/nu15224823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In light of the constantly increasing prevalence of allergic diseases, changes in dietary patterns have been suggested as a plausible environmental explanation for the development and progression of these diseases. Nowadays, much attention has been paid to the development of dietary interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols have been studied extensively as one of the most prominent natural bioactive compounds with well-documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification; however, these issues need to be elucidated in detail. This paper reviews the current evidence from experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin, resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and therefore could be used either for preventive approaches or therapeutic interventions in relation to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future research directions are also discussed.
Collapse
Affiliation(s)
- Anna Dębińska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland;
| | | |
Collapse
|
31
|
Bourumeau W, Tremblay K, Jourdan G, Girard C, Laprise C. Bacterial Biomarkers of the Oropharyngeal and Oral Cavity during SARS-CoV-2 Infection. Microorganisms 2023; 11:2703. [PMID: 38004715 PMCID: PMC10673573 DOI: 10.3390/microorganisms11112703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Individuals with COVID-19 display different forms of disease severity and the upper respiratory tract microbiome has been suggested to play a crucial role in the development of its symptoms. (2) Methods: The present study analyzed the microbial profiles of the oral cavity and oropharynx of 182 COVID-19 patients compared to 75 unaffected individuals. The samples were obtained from gargle screening samples. 16S rRNA amplicon sequencing was applied to analyze the samples. (3) Results: The present study shows that SARS-CoV-2 infection induced significant differences in bacterial community assemblages, with Prevotella and Veillonella as biomarkers for positive-tested people and Streptococcus and Actinomyces for negative-tested people. It also suggests a state of dysbiosis on the part of the infected individuals due to significant differences in the bacterial community in favor of a microbiome richer in opportunistic pathogens. (4) Conclusions: SARS-CoV-2 infection induces dysbiosis in the upper respiratory tract. The identification of these opportunistic pathogenic biomarkers could be a new screening and prevention tool for people with prior dysbiosis.
Collapse
Affiliation(s)
- William Bourumeau
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada; (W.B.); (C.G.)
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| | - Karine Tremblay
- Pharmacology-Physiology Department, Université de Sherbrooke, Saguenay, QC J1K 2R1, Canada;
- Research Centre of Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay–Lac-Saint-Jean (CIUSSS-SLSJ), Saguenay, QC G7H 7K9, Canada
| | - Guillaume Jourdan
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| | - Catherine Girard
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada; (W.B.); (C.G.)
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada; (W.B.); (C.G.)
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada;
| |
Collapse
|
32
|
Neamah WH, Rutkovsky A, Abdullah O, Wilson K, Bloomquist R, Nagarkatti P, Nagarkatti M. Resveratrol Attenuates 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Mediated Induction of Myeloid-Derived Suppressor Cells (MDSC) and Their Functions. Nutrients 2023; 15:4667. [PMID: 37960320 PMCID: PMC10650545 DOI: 10.3390/nu15214667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Previously, we showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) ligand and a potent and persistent toxicant and carcinogenic agent, induces high levels of murine myeloid-derived suppressor cell (MDSC) when injected into mice. In the current study, we demonstrate that Resveratrol (3,4,5-trihydroxy-trans-stilbene; RSV), an AhR antagonist, reduces TCDD-mediated MDSC induction. RSV decreased the number of MDSCs induced by TCDD in mice but also mitigated the immunosuppressive function of TCDD-induced MDSCs. TCDD caused a decrease in F4/80+ macrophages and an increase in CD11C+ dendritic cells, while RSV reversed these effects. TCDD caused upregulation in CXCR2, a critical molecule involved in TCDD-mediated induction of MDSCs, and Arginase-1 (ARG-1), involved in the immunosuppressive functions of MDSCs, while RSV reversed this effect. Transcriptome analysis of Gr1+ MDSCs showed an increased gene expression profile involved in the metabolic pathways in mice exposed to TCDD while RSV-treated mice showed a decrease in such pathways. The bio-energetic profile of these cells showed that RSV treatment decreased the energetic demands induced by TCDD. Overall, the data demonstrated that RSV decreased TCDD-induced MDSC induction and function by altering the dynamics of various myeloid cell populations involving their numbers, phenotype, and immunosuppressive potency. Because MDSCs play a critical role in tumor growth and metastasis, our studies also support the potential use of RSV to attenuate the immunosuppressive properties of MDSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29228, USA; (W.H.N.); (A.R.); (O.A.); (K.W.); (R.B.); (P.N.)
| |
Collapse
|
33
|
Xie Y, Zhang Y, Wang T, Liu Y, Ma J, Wu S, Duan C, Qiao W, Cheng K, Lu L, Zhuang R, Bian K. Ablation of CD226 on CD4+ T cells modulates asthma progress associated with altered IL-10 response and gut microbiota. Int Immunopharmacol 2023; 118:110051. [PMID: 36989896 DOI: 10.1016/j.intimp.2023.110051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
To investigate the role of the costimulatory molecule CD226 in asthma pathogenesis, we produced a CD4+ T-cell-specific CD226 knockout mice model (Cd226ΔCD4) and induced airway allergic inflammation by administering ovalbumin (OVA). Our results revealed alleviated lung inflammation, decreased levels of OVA-specific IgE, and increased levels of IL-10 in the serum of Cd226ΔCD4 mice (P < 0.05). Moreover, IL-10 levels in CD4+ T cells were significantly elevated in the mediastinal lymph node, spleen, and Peyer's patches in the Cd226ΔCD4 mice compared with those in controls (P < 0.05 to P < 0.01). Notably, there was a significantly higher IL-10 mRNA levels in the large intestine of the mice (P < 0.05). The protective effect of CD226 deficiency is also associated with the accumulation of gut TCRγδ+ intraepithelial lymphocytes and reversion of the gut microbiome dysbiosis. The Bacteroidetes-to-Firmicutes ratio and the abundance of Akkermansia increased in the absence of CD226 after OVA treatment. Our data reveal the synchronous changes in the lung and intestine in OVA-treated CD226-knockout mice, supporting the gut-lung axis concept and providing evidence for novel therapeutic approaches for asthma.
Collapse
|
34
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
35
|
Carlucci CD, Hui Y, Chumanevich AP, Robida PA, Fuseler JW, Sajish M, Nagarkatti P, Nagarkatti M, Oskeritzian CA. Resveratrol Protects against Skin Inflammation through Inhibition of Mast Cell, Sphingosine Kinase-1, Stat3 and NF-κB p65 Signaling Activation in Mice. Int J Mol Sci 2023; 24:6707. [PMID: 37047680 PMCID: PMC10095068 DOI: 10.3390/ijms24076707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammation is pathogenic to skin diseases, including atopic dermatitis (AD) and eczema. Treatment for AD remains mostly symptomatic with newer but costly options, tainted with adverse side effects. There is an unmet need for safe therapeutic and preventative strategies for AD. Resveratrol (R) is a natural compound known for its anti-inflammatory properties. However, animal and human R studies have yielded contrasting results. Mast cells (MCs) are innate immune skin-resident cells that initiate the development of inflammation and progression to overt disease. R's effects on MCs are also controversial. Using a human-like mouse model of AD development consisting of a single topical application of antigen ovalbumin (O) for 7 days, we previously established that the activation of MCs by a bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) initiated substantial skin remodeling compared to controls. Here, we show that daily R application normalized O-mediated epidermal thickening, ameliorated cell infiltration, and inhibited skin MC activation and chemokine expression. We unraveled R's multiple mechanisms of action, including decreased activation of the S1P-producing enzyme, sphingosine kinase 1 (SphK1), and of transcription factors Signal Transducer and Activator of Transcription 3 (Stat3) and NF-κBp65, involved in chemokine production. Thus, R may be poised for protection against MC-driven pathogenic skin inflammation.
Collapse
Affiliation(s)
- Christopher D Carlucci
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alena P Chumanevich
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Piper A Robida
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - John W Fuseler
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
36
|
Xue C, Li G, Gu X, Su Y, Zheng Q, Yuan X, Bao Z, Lu J, Li L. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. RESEARCH (WASHINGTON, D.C.) 2023; 6:0107. [PMID: 37040299 PMCID: PMC10079265 DOI: 10.34133/research.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Sun Y, Chen Y, Wang J, Yuan W, Xue R, Li C, Xia Q, Hu L, Wei Y, He M, Lai K. Intratracheally administered iron oxide nanoparticles induced murine lung inflammation depending on T cells and B cells. Food Chem Toxicol 2023; 175:113735. [PMID: 36935073 DOI: 10.1016/j.fct.2023.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Iron oxide nanoparticles (Fe2O3 NPs), produced in track traffic system and a wide range of industrial production, poses a great threat to human health. However, there is little research about the mechanism of Fe2O3 NPs toxicity on respiratory system. Rag1-/- mice which lack functional T and B cells were intratracheally challenged with Fe2O3 NPs, and interleukin (IL)-33 as an activator of group 2 innate lymphoid cells (ILC2s) to observe ILC2s changes. The lung inflammatory response to Fe2O3 NPs was alleviated in Rag1-/- mice compared with wild type (WT) mice. Infiltration of inflammatory cells and collagen deposition in tissue, leukocyte numbers (neutrophils, macrophages and lymphocytes), cytokine levels, such as IL-6, IL-13 and thymic stromal lymphopoietin (TSLP), and expression of Toll-like receptor (TLR)2, TLR4, and downstream myeloid differentiation factor (MyD)88, nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α were decreased in lungs. Fe2O3 NPs markedly elevated ILC2s compared with the control, but ILC2s numbers were much lower compared with IL-33 in both WT and Rag1-/- mice. Furthermore, ILC2s amounts were strongly greater in Rag1-/- mice than WT mice. Our results suggested that Fe2O3 NPs induced sub-chronic pulmonary inflammation, which is majorly dependent on T cells and B cells rather than ILC2s.
Collapse
Affiliation(s)
- Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China.
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
38
|
Alghetaa H, Mohammed A, Singh N, Wilson K, Cai G, Putluri N, Nagarkatti M, Nagarkatti P. Resveratrol attenuates staphylococcal enterotoxin B-activated immune cell metabolism via upregulation of miR-100 and suppression of mTOR signaling pathway. Front Pharmacol 2023; 14:1106733. [PMID: 36909201 PMCID: PMC9999031 DOI: 10.3389/fphar.2023.1106733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is triggered by a variety of insults, such as bacterial and viral infections, including SARS-CoV-2, leading to high mortality. In the murine model of ARDS induced by Staphylococcal enterotoxin-B (SEB), our previous studies showed that while SEB triggered 100% mortality, treatment with Resveratrol (RES) completely prevented such mortality by attenuating inflammation in the lungs. In the current study, we investigated the metabolic profile of SEB-activated immune cells in the lungs following treatment with RES. RES-treated mice had higher expression of miR-100 in the lung mononuclear cells (MNCs), which targeted mTOR, leading to its decreased expression. Also, Single-cell RNA-seq (scRNA seq) unveiled the decreased expression of mTOR in a variety of immune cells in the lungs. There was also an increase in glycolytic and mitochondrial respiration in the cells from SEB + VEH group in comparison with SEB + RES group. Together these data suggested that RES alters the metabolic reprogramming of SEB-activated immune cells, through suppression of mTOR activation and its down- and upstream effects on energy metabolism. Also, miR-100 could serve as novel potential therapeutic molecule in the amelioration of ARDS.
Collapse
Affiliation(s)
- Hasan Alghetaa
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Amira Mohammed
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Goushuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
39
|
Deng L, Ma M, Li S, Zhou L, Ye S, Wang J, Yang Q, Xiao C. Protective effect and mechanism of baicalin on lung inflammatory injury in BALB/cJ mice induced by PM2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114329. [PMID: 36442400 DOI: 10.1016/j.ecoenv.2022.114329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The public health harms caused by fine particulate matter (PM2.5) have become a global focus, with PM2.5 exposure recognized as a critical risk factor for global morbidity and mortality. Chronic inflammation is the common pathophysiological feature of respiratory diseases induced by PM2.5 and is the most critical cause of all these diseases. However, presently there is a lack of effective preventive and therapeutic approaches for inflammatory lung injuries caused by PM2.5 exposure. Baicalin is a herb-derived effective flavonoid compound with multiple health benefits. This study established a murine lung inflammatory injury model via inhalation of PM2.5 aerosols. The data showed that after baicalin intervention, lung injury pathological score of baicalin (4.16 ± 0.54, 3.33 ± 0.76, 4.00 ± 0.45) and claricid (3.00 ± 0.78) treatments were markedly lower than PM2.5-treated mice (6.17 ± 0.31), and pathological damage was alleviated. Compared to the PM2.5 group, the spleen and lung indexes in the baicalin and claricid groups were significantly reduced. The inflammatory cytokines of TNF-α, IL-18, and IL-1β in serum, alveolar lavage fluid, and lung tissue were significantly decreased in the baicalin and claricid groups. The expressions of inflammatory pathway-related genes and proteins HMGB1, NLRP3, ASC, and caspase-1 were up-regulated in the PM2.5 group. The expressions of these genes and proteins were significantly decreased following baicalin treatment. The lung function indicators showed that the MV (65.94 ± 8.19 mL), sRaw (1.79 ± 0.08 cm H2O.s), and FRC (0.52 ± 0.01 mL) in the PM2.5 group were higher than in the control and baicalin groups, and respiratory function was improved by baicalin. PM2.5 exposure markedly altered the bacterial composition at the genus level. The dominant flora relative abundances of uncultured_bacterium_f_Muribaculaceae, Streptococcus, and Lactobacillus, were decreased from the control group (9.20%, 8.53%, 6.21%) to PM2.5 group (6.26%, 5.49%, 4.77%), respectively. Following baicalin intervention, the relative abundances were 9.72%, 6.65%, and 3.57%, respectively. Therefore, baicalin could potentially prevent and improve mice lung inflammatory injury induced by PM2.5 exposure. Baicalin might provide a protective role by balancing oropharyngeal microbiota and affecting the expression of the HMGB1/Caspase1 pathway.
Collapse
Affiliation(s)
- Lili Deng
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; Department of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China; Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Shuying Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Lin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Sun Ye
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Juan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Qiaoqiao Yang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Chunling Xiao
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China; School of Health Management, Shenyang Polytechnic College, Shenyang, Liaoning, 110045, China.
| |
Collapse
|
40
|
Crosstalk between Resveratrol and Gut Barrier: A Review. Int J Mol Sci 2022; 23:ijms232315279. [PMID: 36499603 PMCID: PMC9739931 DOI: 10.3390/ijms232315279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
The plant-based nutraceuticals are receiving increasing interest in recent time. The high attraction to the phytochemicals is associated with their anti-inflammatory and antioxidant activities, which can lead to reduced risk of the development of cardiovascular and other non-communicable diseases. One of the most disseminated groups of plant bioactives are phenolic compounds. It was recently hypothesized that phenolic compounds can have the ability to improve the functioning of the gut barrier. The available studies showed that one of the polyphenols, resveratrol, has great potential to improve the integrity of the gut barrier. Very promising results have been obtained with in vitro and animal models. Still, more clinical trials must be performed to evaluate the effect of resveratrol on the gut barrier, especially in individuals with increased intestinal permeability. Moreover, the interplay between phenolic compounds, intestinal microbiota and gut barrier should be carefully evaluated in the future. Therefore, this review offers an overview of the current knowledge about the interaction between polyphenols with a special emphasis on resveratrol and the gut barrier, summarizes the available methods to evaluate the intestinal permeability, discusses the current research gaps and proposes the directions for future studies in this research area.
Collapse
|
41
|
Cortés A, Martin J, Rosa BA, Stark KA, Clare S, McCarthy C, Harcourt K, Brandt C, Tolley C, Lawley TD, Mitreva M, Berriman M, Rinaldi G, Cantacessi C. The gut microbial metabolic capacity of microbiome-humanized vs. wild type rodents reveals a likely dual role of intestinal bacteria in hepato-intestinal schistosomiasis. PLoS Negl Trop Dis 2022; 16:e0010878. [PMID: 36279280 PMCID: PMC9633004 DOI: 10.1371/journal.pntd.0010878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/03/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows that the host gut microbiota might be involved in the immunological cascade that culminates with the formation of tissue granulomas underlying the pathophysiology of hepato-intestinal schistosomiasis. In this study, we investigated the impact of Schistosoma mansoni infection on the gut microbial composition and functional potential of both wild type and microbiome-humanized mice. In spite of substantial differences in microbiome composition at baseline, selected pathways were consistently affected by parasite infection. The gut microbiomes of infected mice of both lines displayed, amongst other features, enhanced capacity for tryptophan and butyrate production, which might be linked to the activation of mechanisms aimed to prevent excessive injuries caused by migrating parasite eggs. Complementing data from previous studies, our findings suggest that the host gut microbiome might play a dual role in the pathophysiology of schistosomiasis, where intestinal bacteria may contribute to egg-associated pathology while, in turn, protect the host from uncontrolled tissue damage.
Collapse
Affiliation(s)
- Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, València, Spain
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Klara A. Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Clare
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Catherine McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charlotte Tolley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Trevor D. Lawley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TDJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms 2022; 10:1428. [PMID: 35889147 PMCID: PMC9316266 DOI: 10.3390/microorganisms10071428] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
Collapse
Affiliation(s)
- Gael Urait Varela-Trinidad
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Karla Solórzano-Castanedo
- Doctorado en Ciencias de la Nutrición Traslacional, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
| | - Teresita de Jesús Hernández-Flores
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
- Departamento de Disciplinas Filosóficas Metodológicas e Intrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| |
Collapse
|
43
|
Yu T, Xie Y, Yuan J, Gao J, Xiao Z, Wu Y, Chen H. The Nutritional Intervention of Resveratrol Can Effectively Alleviate the Intestinal Inflammation Associated With Celiac Disease Induced by Wheat Gluten. Front Immunol 2022; 13:878186. [PMID: 35450077 PMCID: PMC9017684 DOI: 10.3389/fimmu.2022.878186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Wheat gluten is a critical trigger for celiac disease, often causing inflammatory lesions and oxidative stress damage in the intestines of patients. In daily life, it is difficult for celiac disease patients to strictly avoid the dietary intake of gluten, which makes complementary preventive therapy particularly urgent. As such, we investigated the alleviating effects of resveratrol in vivo and in vitro models of celiac disease. Methods We established in vivo and in vitro models of gluten protein-induced celiac disease. The intervention effect of resveratrol was defined well based on relevant indicators of inflammation, immunity and oxidative stress, and its possible involvement in signaling pathways and genes were also identified. Results Resveratrol was effective in reducing intestinal oxidative stress and inflammatory damage induced by wheat gluten in both cell and mouse models for celiac disease. We identified correlations between the genes (Fgf15, Nr0b2, Aire and Ubd) and signaling pathways (PPAR, AMPK and FoxO) in which resveratrol performed critical roles. Conclusions Resveratrol contributed to regulate development of autoimmunity through up-regulation of Aire and Ubd genes and promote nutrient absorption in intestine through down-regulation of Fgf15 and Nr0b2 genes, as well as played a role in regulating complex response system of oxidative stress, inflammatory response and immune response in intestine by activating PPAR, AMPK and FoxO signaling pathways, thus effectively alleviating the intestinal symptoms of celiac disease.
Collapse
Affiliation(s)
- Tian Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yiting Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhiwen Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|