1
|
McMullen BN, Chen See J, Baker S, Wright JR, Anderson SLC, Yochum G, Koltun W, Portolese A, Jeganathan NA, Lamendella R. Metatranscriptomic analysis of colonic mucosal samples exploring the functional role of active microbial consortia in complicated diverticulitis. Microbiol Spectr 2025:e0243124. [PMID: 40401932 DOI: 10.1128/spectrum.02431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/28/2025] [Indexed: 05/23/2025] Open
Abstract
In this study, we investigated complicated diverticulitis, an inflammatory condition associated with abscesses, fistulas, intestinal obstructions, perforations, and primarily affects adults over the age of 60. Although the exact etiology remains unclear, the gut microbiome has been suggested as a contributing factor. Previous studies have used 16S rRNA gene analysis from patient fecal samples, which is limited to identifying the bacterial communities present. Herein, we employed shotgun metatranscriptomics on 40 patient-matched samples of diseased and adjacent normal colonic mucosal tissues from 20 patients with complicated diverticulitis to gain a more comprehensive understanding of active microbial taxa and gene expression patterns that may be involved in this disease state. Our findings revealed distinct beta diversity and a conglomerate of pathogenic microbiota in the diseased tissues, including Staphylococcus cohnii, Corynebacterium jeikeium, Kineococcus, Talaromyces rugulosus, Campylobacteraceae, and Ottowia, among others. The adjacent normal tissues were a stark contrast, harboring anti-inflammatory taxa such as Streptococcus salivarius and housekeeping genes and pathways such as the ABC-2 type transport system ATP-binding protein. These results align with previous amplicon sequencing studies and provide novel functional insights that may be crucial for understanding the etiology of complicated diverticulitis.IMPORTANCEComplicated diverticulitis is a virulent condition with no clear cause other than the association with colonic diverticulosis. We assessed the microbial gene expression in complicated diverticulitis patients using colonic tissue samples, revealing microbes in the diseased tissue known to exacerbate the diverticular condition and to live in extreme places, and microbes in patients' normal tissue known to maintain normal bodily functions. This functional information is therefore important for understanding what microbial taxa are present and what they are doing. It is possible clinicians could someday harness this information to more effectively treat complicated diverticulitis symptoms. For example, clinicians may suggest dietary changes and prescribe probiotics to increase beneficial bacteria. Clinicians may also prescribe targeted antibiotics or consider the emerging treatment option of fecal transplants in complicated diverticulitis patients. While not curing complicated diverticulitis, each potential treatment option mentioned addresses balancing out dysbiosis of the gut microbiome, therefore alleviating associated symptoms.
Collapse
Affiliation(s)
- Brittney N McMullen
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
- Wright Labs, LLC, Huntingdon, Pennsylvania, USA
| | | | - Samantha Baker
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | | | | | - Gregory Yochum
- Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Walter Koltun
- Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Austin Portolese
- Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
- Wright Labs, LLC, Huntingdon, Pennsylvania, USA
| |
Collapse
|
2
|
Ullah H. Gut-vitamin D interplay: key to mitigating immunosenescence and promoting healthy ageing. Immun Ageing 2025; 22:20. [PMID: 40390005 PMCID: PMC12087203 DOI: 10.1186/s12979-025-00514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/26/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Immunosenescence is the loss and change of immunological organs, as well as innate and adaptive immune dysfunction with ageing, which can lead to increased sensitivity to infections, age-related diseases, and cancer. Emerging evidence highlights the role of gut-vitamin D axis in the regulation of immune ageing, influencing chronic inflammation and systemic health. This review aims to explore the interplay between the gut microbiota and vitamin D in mitigating immunosenescence and preventing against chronic inflammation and age-related diseases. MAIN TEXT Gut microbiota dysbiosis and vitamin D insufficiency accelerate immunosenescence and risk of chronic diseases. Literature data reveal that vitamin D modulates gut microbiota diversity and composition, enhances immune resilience, and reduce systemic inflammation. Conversely, gut microbiota influences vitamin D metabolism to promote the synthesis of active vitamin D metabolites with implications for immune health. CONCLUSIONS These findings underscore the potential of targeting gut-vitamin D axis to modulate immune responses, delay the immune ageing, and mitigate age-related diseases. Further research is needed to integrate vitamin D supplementation and microbiome modulation into strategies aimed at promoting healthy ageing.
Collapse
Affiliation(s)
- Hammad Ullah
- School of Pharmacy, University of Management and Technology, Lahore, 54000, Pakistan.
| |
Collapse
|
3
|
Shen Y, Fan N, Ma S, Cheng X, Yang X, Wang G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm (Beijing) 2025; 6:e70168. [PMID: 40255918 PMCID: PMC12006732 DOI: 10.1002/mco2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut-brain axis, gut-liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Nairui Fan
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Shu‐xia Ma
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- International SchoolGuangzhou Huali College, ZengchengGuangzhouChina
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryGuangdong Second Provincial General HospitalSchool of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
4
|
Bellocchi C, Volkmann ER. Advancing Gastrointestinal Microbiota Research in Systemic Sclerosis: Lessons Learned from Prior Research and Opportunities to Accelerate Discovery. Rheum Dis Clin North Am 2025; 51:213-231. [PMID: 40246439 DOI: 10.1016/j.rdc.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Dysbiosis is a feature of patients with systemic sclerosis (SSc). While a causal relationship between the gastrointestinal (GI) microbiota and SSc pathogenesis has not been established, alterations in the GI microbiota are appreciated early in the SSc disease course. Moreover, recent research has illuminated specific microbial signatures that define SSc phenotypes. This review summarizes new research on the GI microbiome in SSc with a focus on technical advancements and the emerging study of the GI metabolome. This review also addresses diverse modalities for manipulating the GI microbiome with the hope of developing preventative treatment strategies to avert progression of SSc.
Collapse
Affiliation(s)
- Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, Dipartimento di Eccellenza 2023-2027, Milan, Italy; Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Via Pace 9, Milano 20122, Italy
| | - Elizabeth R Volkmann
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine, USA.
| |
Collapse
|
5
|
Muttiah B, Hanafiah A. Gut Microbiota and Cardiovascular Diseases: Unraveling the Role of Dysbiosis and Microbial Metabolites. Int J Mol Sci 2025; 26:4264. [PMID: 40362500 PMCID: PMC12072866 DOI: 10.3390/ijms26094264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Cardiovascular diseases (CVDs), including heart failure (HF), hypertension, myocardial infarction (MI), and atherosclerosis, are increasingly linked to gut microbiota dysbiosis and its metabolic byproducts. HF, affecting over 64 million individuals globally, is associated with systemic inflammation and gut barrier dysfunction, exacerbating disease progression. Similarly, hypertension and MI correlate with reduced microbial diversity and an abundance of pro-inflammatory bacteria, contributing to vascular inflammation and increased cardiovascular risk. Atherosclerosis is also influenced by gut dysbiosis, with key microbial metabolites such as trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFAs) playing crucial roles in disease pathogenesis. Emerging evidence highlights the therapeutic potential of natural compounds, including flavonoids, omega-3 fatty acids, resveratrol, curcumin, and marine-derived bioactives, which modulate the gut microbiota and confer cardioprotective effects. These insights underscore the gut microbiota as a critical regulator of cardiovascular health, suggesting that targeting dysbiosis may offer novel preventive and therapeutic strategies. Further research is needed to elucidate underlying mechanisms and optimize microbiome-based interventions for improved cardiovascular outcomes.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Zangeneh Z, Rostamian M, Motamedi H, Alvandi A, Abiri R. The potential effectiveness of probiotics in reducing multiple sclerosis progression in preclinical and clinical studies: A worldwide systematic review and meta-analysis. PLoS One 2025; 20:e0319755. [PMID: 40273120 PMCID: PMC12021188 DOI: 10.1371/journal.pone.0319755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/06/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Multiple Sclerosis (MS) is an immune-mediated disease characterized by nerve cell inflammation and demyelination. The effectiveness of probiotics in reducing inflammatory damage in MS. Therefore, the aim of this systematic review and meta-analysis was the potential effectiveness of probiotics in reducing Multiple Sclerosis progression in preclinical and clinical studies. METHODS PubMed, Scopus, Cochrane, and Google Scholar databases were searched using multiple relevant keywords, and screening was carried out based on the inclusion/exclusion criteria from January 2004 to August 16, 2024. RESULTS Based on our criteria, 269 papers were obtained, and after omission of unsuitable articles, 23 full-text articles consisting of 17 animal studies and six human models were selected. It was concluded that in an experimental autoimmune encephalomyelitis (EAE) animal model, probiotics such as Bifidobacterium, Prevotella, and Lactobacillus can decrease the T helper 1 (Th1)/Th17 ratio while inducing interferon gamma (IFN-γ) and interleukin (IL)-17 levels. In all cases, probiotics can modulate immune cells and cytokines and consequently decrease EAE signs and symptoms. In all human studies, single or multiple probiotics decreased the severity of disease and changed the gut microbiota population. CONCLUSION Our results showed that probiotics can control the development of MS by reducing inflammatory conditions, and may have beneficial effects in the prevention and treatment of MS.
Collapse
Affiliation(s)
- Zahra Zangeneh
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amirhooshang Alvandi
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Nemati MH, Yazdanpanah E, Kazemi R, Orooji N, Dadfar S, Oksenych V, Haghmorad D. Microbiota-Driven Mechanisms in Multiple Sclerosis: Pathogenesis, Therapeutic Strategies, and Biomarker Potential. BIOLOGY 2025; 14:435. [PMID: 40282300 PMCID: PMC12025160 DOI: 10.3390/biology14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a well-known, chronic autoimmune disorder of the central nervous system (CNS) involving demyelination and neurodegeneration. Research previously conducted in the area of the gut microbiome has highlighted it as a critical contributor to MS pathogenesis. Changes in the commensal microbiota, or dysbiosis, have been shown to affect immune homeostasis, leading to elevated levels of pro-inflammatory cytokines and disruption of the gut-brain axis. In this review, we provide a comprehensive overview of interactions between the gut microbiota and MS, especially focusing on the immunomodulatory actions of microbiota, such as influencing T-cell balance and control of metabolites, e.g., short-chain fatty acids. Various microbial taxa (e.g., Prevotella and Faecalibacterium) were suggested to lay protective roles, whereas Akkermansia muciniphila was associated with disease aggravation. Interventions focusing on microbiota, including probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary therapies to normalize gut microbial homeostasis, suppress inflammation and are proven to improve clinical benefits in MS patients. Alterations in gut microbiota represent opportunities for identifying biomarkers for early diagnosis, disease progression and treatment response monitoring. Further studies need to be conducted to potentially address the interplay between genetic predispositions, environmental cues, and microbiota composition to get the precise mechanisms of the gut-brain axis in MS. In conclusion, the gut microbiota plays a central role in MS pathogenesis and offers potential for novel therapeutic approaches, providing a promising avenue for improving clinical outcomes in MS management.
Collapse
Affiliation(s)
- Mohammad Hosein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Roya Kazemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Niloufar Orooji
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| |
Collapse
|
8
|
Charneca S, Hernando A, Almada-Correia I, Polido-Pereira J, Vieira A, Sousa J, Almeida AS, Motta C, Barreto G, Eklund KK, Alonso-Pérez A, Gómez R, Cicci F, Mauro D, Pinho SS, Fonseca JE, Costa-Reis P, Guerreiro CS. TASTY trial: protocol for a study on the triad of nutrition, intestinal microbiota and rheumatoid arthritis. Nutr J 2025; 24:52. [PMID: 40189532 PMCID: PMC11974026 DOI: 10.1186/s12937-025-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/06/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND The gut microbiota has been implicated in the onset and progression of Rheumatoid Arthritis (RA). It has been proposed that gut dysbiosis impairs gut barrier function, leading to alterations in mucosal integrity and immunity. This disruption allows bacterial translocation, contributing to the perpetuation of the inflammatory process. Since diet is recognised as a key environmental factor influencing the gut microbiota, nutritional interventions targeting RA activity are currently being explored. This study aims to investigate whether a dietary intervention based on a typical Mediterranean Diet enriched with fermented foods (MedDiet +) can impact the gut microbiota, intestinal permeability, and RA-related outcomes. METHODS One hundred RA patients are being recruited at Unidade Local de Saúde (ULS) Santa Maria in Lisbon, Portugal, and randomly assigned to either the intervention (MedDiet +) or the control group. The 12-week nutritional intervention includes a personalised dietary plan following the MedDiet + pattern, along with educational resources, food basket deliveries, and clinical culinary workshops, all developed and monitored weekly by registered dietitians. The control group receives standardised general healthy diet recommendations at baseline. The intervention's effects will be assessed by evaluating disease activity, functional status, quality of life, intestinal permeability, endotoxemia, inflammatory biomarkers, intestinal and oral microbiota, serum proteomics, and serum glycome profile characterisation. DISCUSSION We anticipate obtaining integrative insights into the interplay between diet, the gut, and RA, while also exploring the underlying mechanisms driving these changes. This study, conducted by a multidisciplinary research team of registered dietitians, rheumatologists, biologists, and immunologists, aims to bridge the current gap between nutrition-related knowledge and RA. TRIAL REGISTRATION Registered in ClinicalTrials.gov (NCT06758817; date of registry: January 6th 2025).
Collapse
Affiliation(s)
- Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana Hernando
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Inês Almada-Correia
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Joaquim Polido-Pereira
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Serviço de Reumatologia, ULS Santa Maria, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Adriana Vieira
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Joana Sousa
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana Santos Almeida
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Carla Motta
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Gonçalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, 00029, Finland.
| | - Kari K Eklund
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, 00029, Finland
- Department of Rheumatology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706, Santiago de Compostela, Spain
| | - Francesco Cicci
- Dipartimento di Medicina di Precisione, Università Della Campania L. Vanvitelli, Naples, Italy
| | - Daniele Mauro
- Dipartimento di Medicina di Precisione, Università Della Campania L. Vanvitelli, Naples, Italy
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Eurico Fonseca
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Serviço de Reumatologia, ULS Santa Maria, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Pediatric Rheumatology Unit, ULS Santa Maria, Lisbon, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Adil NA, Omo-Erigbe C, Yadav H, Jain S. The Oral-Gut Microbiome-Brain Axis in Cognition. Microorganisms 2025; 13:814. [PMID: 40284650 PMCID: PMC12029813 DOI: 10.3390/microorganisms13040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and neuronal loss, affecting millions worldwide. Emerging evidence highlights the oral microbiome-a complex ecosystem of bacteria, fungi, viruses, and protozoa as a significant factor in cognitive health. Dysbiosis of the oral microbiome contributes to systemic inflammation, disrupts the blood-brain barrier, and promotes neuroinflammation, processes increasingly implicated in the pathogenesis of AD. This review examines the mechanisms linking oral microbiome dysbiosis to cognitive decline through the oral-brain and oral-gut-brain axis. These interconnected pathways enable bidirectional communication between the oral cavity, gut, and brain via neural, immune, and endocrine signaling. Oral pathogens, such as Porphyromonas gingivalis, along with virulence factors, including lipopolysaccharides (LPS) and gingipains, contribute to neuroinflammation, while metabolic byproducts, such as short-chain fatty acids (SCFAs) and peptidoglycans, further exacerbate systemic immune activation. Additionally, this review explores the influence of external factors, including diet, pH balance, medication use, smoking, alcohol consumption, and oral hygiene, on oral microbial diversity and stability, highlighting their role in shaping cognitive outcomes. The dynamic interplay between the oral and gut microbiomes reinforces the importance of microbial homeostasis in preserving systemic and neurological health. The interventions, including probiotics, prebiotics, and dietary modifications, offer promising strategies to support cognitive function and reduce the risk of neurodegenerative diseases, such as AD, by maintaining a diverse microbiome. Future longitudinal research is needed to identify the long-term impact of oral microbiome dysbiosis on cognition.
Collapse
Affiliation(s)
- Noorul Ain Adil
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Christabel Omo-Erigbe
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Bezirtzoglou E, Plaza-Diaz J, Song J, Xie G, Stavropoulou E. Editorial: Rodent model organisms: therapeutic treatments and drugs interaction with the gut microbiome. Front Microbiol 2025; 16:1581166. [PMID: 40236477 PMCID: PMC11998031 DOI: 10.3389/fmicb.2025.1581166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Affiliation(s)
- Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Julio Plaza-Diaz
- School of Health Sciences, Universidad Internacional de La Rioja, Logroño, Spain
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | | | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
11
|
Hromić-Jahjefendić A, Mahmutović L, Sezer A, Bećirević T, Rubio-Casillas A, Redwan EM, Uversky VN. The intersection of microbiome and autoimmunity in long COVID-19: Current insights and future directions. Cytokine Growth Factor Rev 2025; 82:43-54. [PMID: 39179487 DOI: 10.1016/j.cytogfr.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Long COVID-19 affects a significant percentage of patients and is characterized by a wide range of symptoms, including weariness and mental fog as well as emotional symptoms like worry and sadness. COVID-19 is closely linked to the autoimmune disorders that are becoming more prevalent worldwide and are linked to immune system hyperactivation, neutrophil extracellular trap (NET) development, and molecular mimicry pathways. Long-term COVID-related autoimmune responses include a watchful immune system referring to the ability of immune system to constantly monitor the body for signs of infection, disease, or abnormal cells; altered innate and adaptive immune cells, autoantigens secreted by living or dead neutrophils, and high concentrations of autoantibodies directed against different proteins. The microbiome, which consists of billions of bacteria living in the human body, is essential for controlling immune responses and supporting overall health. The microbiome can affect the course of long COVID-associated autoimmunity, including the degree of illness, the rate of recovery, and the onset of autoimmune reactions. Although the precise role of the microbiome in long COVID autoimmunity is still being investigated, new studies indicate that probiotics, prebiotics, and dietary changes-interventions that target the microbiome-may be able to reduce autoimmune reactions and enhance long-term outcomes for COVID-19 survivors. More research is required to precisely understand how the microbiome affects COVID-19-related autoimmunity and to create tailored treatment plans.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina.
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina.
| | - Tea Bećirević
- Atrijum Polyclinic, Sarajevo, Bosnia and Herzegovina
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco 48900, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, USA.
| |
Collapse
|
12
|
Ju HJ, Song WH, Shin JH, Lee JH, Bae JM, Lee YB, Lee M. Characterization of Gut Microbiota in Patients with Active Spreading Vitiligo Based on Whole-Genome Shotgun Sequencing. Int J Mol Sci 2025; 26:2939. [PMID: 40243573 PMCID: PMC11988336 DOI: 10.3390/ijms26072939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Vitiligo is an autoimmune skin disease with a significant psychological burden and complex pathogenesis. While genetic factors contribute approximately 30% to its development, recent evidence suggests a crucial role of the gut microbiome in autoimmune diseases. This study investigated differences in gut microbiome composition and metabolic pathways between active spreading vitiligo patients and healthy controls using shotgun whole-genome sequencing in a Korean cohort. Taxonomic profiling reveals distinct characteristics in microbial community structure, with vitiligo patients showing an imbalanced proportion dominated by Actinomycetota and Bacteroidota. The vitiligo group exhibited significantly reduced abundance of specific species including Faecalibacterium prausnitzii, Faecalibacteriumduncaniae, and Meamonas funiformis, and increased Bifidobacterium bifidum compared to healthy controls. Metabolic pathway analysis identified significant enrichment in O-glycan biosynthesis pathways in vitiligo patients, while healthy controls showed enrichment in riboflavin metabolism and bacterial chemotaxis pathways. These findings provide new insights into the gut-skin axis in vitiligo pathogenesis and suggest potential therapeutic targets through microbiota modulation.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Woo Hyun Song
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| | - Ji Hae Shin
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Ji Hae Lee
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Jung Min Bae
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (H.J.J.); (J.H.S.); (J.H.L.); (J.M.B.)
| | - Young Bok Lee
- Department of Dermatology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| |
Collapse
|
13
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 PMCID: PMC11847308 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
14
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
15
|
Pietrasanta C, Ronchi A, Carlosama C, Lizier M, Silvestri A, Fornasa G, Melacarne A, D'Ambrosi F, Lutterotti M, Carbone E, Cetin I, Fumagalli M, Ferrazzi E, Penna G, Mosca F, Pugni L, Rescigno M. Effect of prenatal antibiotics on breast milk and neonatal IgA and microbiome: a case-control translational study protocol. Pediatr Res 2025:10.1038/s41390-025-03922-4. [PMID: 39966546 DOI: 10.1038/s41390-025-03922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Up to 25-35% of women receive antibiotics (ABX) during pregnancy, but little is known about the consequences on a key mucosal interface such as the mammary gland, and on the development of the neonatal gut's microbiota and IgA. We hypothesize that prenatal ABX negatively affect the immune functionality of mammary gland, the composition of breast milk microbiota, the development of neonatal fecal microbiota and the abundance of neonatal fecal IgA. METHODS Case-control translational cohort study on women and neonates in the presence or absence (N = 41 + 41 pairs) of exposure to prenatal ABX for at least 7 consecutive days after 32 weeks of gestation. RESULTS We will evaluate IgA concentration in breast milk and in neonatal feces up to one year after delivery. We will also evaluate clinical parameters, neurodevelopment and the composition of the IgA-coated and uncoated fractions of breast milk and fecal microbiota by means of magnetic-activated cell sorting (MACS) coupled with shotgun metagenomics. Finally, we will measure the concentration of the chemokine CCL28 on maternal serum and breast milk, as a marker of activity of the entero-mammary pathway. CONCLUSIONS Our results might support a data-driven evaluation of breast milk immune function in women exposed to prenatal ABX. IMPACT Breast milk IgA and microbiota are critical to determine the positive effects of breastfeeding in infants. This research protocol will investigate breast milk IgA, microbiota, and the IgA+ / IgA- fractions of neonatal fecal microbiota upon exposure to prenatal antibiotics. Fecal IgA and microbiota in infants exposed or not exposed to prenatal antibiotics will be analyzed up to 1 year after birth. This research will clarify the impact of prenatal antibiotics on the immune function of breast milk. This, in turn, might support the selective evaluation of breast milk IgA/microbiota in mothers exposed to prenatal antibiotics, or in donor human milk.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy.
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Andrea Ronchi
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | - Francesco D'Ambrosi
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elisa Carbone
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Cetin
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Monica Fumagalli
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enrico Ferrazzi
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Pugni
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
16
|
Mafe AN, Büsselberg D. Microbiome Integrity Enhances the Efficacy and Safety of Anticancer Drug. Biomedicines 2025; 13:422. [PMID: 40002835 PMCID: PMC11852609 DOI: 10.3390/biomedicines13020422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The intricate relationship between anticancer drugs and the gut microbiome influences cancer treatment outcomes. This review paper focuses on the role of microbiome integrity in enhancing the efficacy and safety of anticancer drug therapy, emphasizing the pharmacokinetic interactions between anticancer drugs and the gut microbiota. It explores how disruptions to microbiome composition, or dysbiosis, can alter drug metabolism, immune responses, and treatment side effects. By examining the mechanisms of microbiome disruption caused by anticancer drugs, this paper highlights specific case studies of drugs like cyclophosphamide, 5-fluorouracil, and irinotecan, and their impact on microbial diversity and clinical outcomes. The review also discusses microbiome-targeted strategies, including prebiotics, probiotics, postbiotics, and fecal microbiota transplantation (FMT), as promising interventions to enhance cancer treatment. Furthermore, the potential of microbiome profiling in personalizing therapy and integrating these interventions into clinical practice is explored. Finally, this paper proposes future research directions, including developing novel biomarkers and a deeper comprehension of drug-microbiome interactions, to respond to current gaps in knowledge and improve patient outcomes in cancer care.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Doha P.O. Box 22104, Qatar
| |
Collapse
|
17
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2025; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
18
|
Tovo PA, Ribaldone DG, Caviglia GP, Calvi C, Montanari P, Tizzani M, Pitoni D, Frara S, Tribocco E, Gambarino S, Guariglia M, Galliano I, Bergallo M. Patients with Irritable Bowel Syndrome Exhibit Aberrant Expression of Endogenous Retroviruses and SETDB1. Cells 2025; 14:196. [PMID: 39936987 PMCID: PMC11817187 DOI: 10.3390/cells14030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common disease, whose etiopathogenesis is poorly understood. Human endogenous retroviruses (HERVs) originate from ancient infections of germinal cells and represent 8% of our DNA. Most HERVs have become defective due to the accumulated mutations; some can, however, still be activated, and their altered expressions have been associated with a number of chronic inflammatory and immune-mediated disorders, including gastrointestinal diseases. Retroviral transcription is modulated by TRIM28 and SETDB1, which also participate in the regulation of epigenetic mechanisms and in shaping the immune system. Expressions of HERVs and TRIM28/SETDB1 have not been investigated in patients affected by IBS. Using a PCR real-time Taqman amplification assay, we explored the RNA levels of HERV-H-pol, HERV-K-pol, and HERV-W-pol; syncytin 1 (SYN1), SYN2, and HERV-W-env; and TRIM28 and SETDB1 in the peripheral blood of 37 IBS patients and healthy controls (HCs) of similar age. The transcript levels were higher in IBS patients than in HCs for all HERVs except for HERV-W-pol, with significant p-values for HERV-H-pol, HERV-K-pol, and SYN1 and borderline p-values for SYN2 and HERV-W-env. The RNA levels of SETDB1 were significantly enhanced in IBS patients, while those of TRIM28 were in the normal range. Patients with severe disease had significant upregulation of SETDB1 compared to those with mild or moderate symptoms. These findings suggest that overexpression of HERVs and SETDB1 may contribute to the development of IBS and open the way to innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, Piazza Polonia 94, 10126 Turin, Italy;
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (M.T.); (D.P.); (S.F.); (E.T.); (M.G.)
| | - Gian Paolo Caviglia
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (M.T.); (D.P.); (S.F.); (E.T.); (M.G.)
| | - Cristina Calvi
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (C.C.); (P.M.); (S.G.); (M.B.)
| | - Paola Montanari
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (C.C.); (P.M.); (S.G.); (M.B.)
| | - Marco Tizzani
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (M.T.); (D.P.); (S.F.); (E.T.); (M.G.)
| | - Demis Pitoni
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (M.T.); (D.P.); (S.F.); (E.T.); (M.G.)
| | - Simone Frara
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (M.T.); (D.P.); (S.F.); (E.T.); (M.G.)
| | - Elisa Tribocco
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (M.T.); (D.P.); (S.F.); (E.T.); (M.G.)
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (C.C.); (P.M.); (S.G.); (M.B.)
| | - Marta Guariglia
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, 10123 Turin, Italy; (D.G.R.); (G.P.C.); (M.T.); (D.P.); (S.F.); (E.T.); (M.G.)
| | - Ilaria Galliano
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (C.C.); (P.M.); (S.G.); (M.B.)
| | - Massimiliano Bergallo
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy; (C.C.); (P.M.); (S.G.); (M.B.)
| |
Collapse
|
19
|
Guerrero Aznar MD, Villanueva Guerrero MD, Beltrán García M, Hernández Cruz B. Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood-Could the Comparison Between Diets Be Improved? Nutrients 2025; 17:493. [PMID: 39940351 PMCID: PMC11819864 DOI: 10.3390/nu17030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Diet is considered a possible cofactor, which affects the immune system and potentially causes dysregulation of intestinal homeostasis and inflammation. This study aimed to review the quality of evidence on the effects of specific diet composition on symptoms of immune-mediated inflammatory diseases (IMIDs), including rheumatoid arthritis (RA), spondyloarthritis, multiple sclerosis (MS), inflammatory bowel disease (IBD) [remission maintenance of Crohn's disease and ulcerative colitis], psoriasis and psoriatic arthritis in adult patients. We conducted a review of meta-analyses and Cochrane systematic reviews using PubMed and EMBASE, from inception to September 2024, and Google Scholar. The methodological quality of the meta-analyses was assessed using the AMSTAR 2 rating system. Three Cochrane systematic reviews and eight meta-analyses were evaluated. Some specific composition diets have been shown to reduce the symptoms of RA, IBD, and MS and improve activity parameters in IBD and RA, with critically low or low levels of evidence. The reduction in inflammatory biomarker levels is unclear. This review summarizes the global evidence for specific dietary interventions, mostly with anti-inflammatory properties due to their components, to improve IMID symptoms, clarifying the weaknesses of clinical trials and dietary meta-analyses with critically low or low levels of evidence; and shows the need to use indices such as the Dietary Inflammatory Index, which allows diets to be classified by their pro-inflammatory or anti-inflammatory food content, to better compare diet groups in clinical trials. The difficulty of obtaining high-level evidence from dietary studies is apparent and may delay the application of the results. Clinicians should be aware of the role of diets with anti-inflammatory properties as a complement to pharmacological treatments in IMIDs.
Collapse
Affiliation(s)
- M. Dolores Guerrero Aznar
- Pharmacy Health Management Unit, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.D.V.G.); (M.B.G.)
| | | | - Margarita Beltrán García
- Pharmacy Health Management Unit, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.D.V.G.); (M.B.G.)
| | - Blanca Hernández Cruz
- Rheumatology Health Management Unit, Virgen Macarena University Hospital, 41009 Seville, Spain;
| |
Collapse
|
20
|
Taitz JJ, Tan J, Ni D, Potier-Villette C, Grau G, Nanan R, Macia L. Antibiotic-mediated dysbiosis leads to activation of inflammatory pathways. Front Immunol 2025; 15:1493991. [PMID: 39850904 PMCID: PMC11754057 DOI: 10.3389/fimmu.2024.1493991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics. Methods Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control). Caecal microbiota composition was assessed via 16S rRNA sequencing and caecal metabolites were quantified with NMR spectroscopy. Immune profiles of spleen and mesenteric lymph nodes (MLNs) were assessed by flow cytometry, and splenocytes assessed for ex vivo cytokine production. A generalised additive model approach was used to examine the relationship between global antibiotic consumption and IBD incidence. Results Antibiotics significantly altered gut microbiota composition, reducing alpha-diversity. Acetate and butyrate were significantly reduced in antibiotic groups, while propionate and succinate increased in Vancomycin and PmB-treated mice, respectively. The MLNs and spleen showed changes only to DC numbers. Splenocytes from antibiotic-treated mice stimulated ex vivo exhibited increased production of TNF. Epidemiological analysis revealed a positive correlation between global antibiotic consumption and IBD incidence. Discussion Our findings demonstrate that antibiotic-mediated dysbiosis results in significantly altered short-chain fatty acid levels but immune homeostasis in spleen and MLNs at steady state is mostly preserved. Non-specific activation of splenocytes ex vivo, however, revealed mice with perturbed microbiota had significantly elevated production of TNF. Thus, this highlights antibiotic-mediated disruption of the gut microbiota may program the host towards dysregulated immune responses, predisposing to the development of TNF-associated autoimmune or chronic inflammatory disease.
Collapse
Affiliation(s)
- Jemma J. Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
22
|
Wang Q, Jin L, Yang H, Yu L, Cao X, Mao Z. Bacteria/Nanozyme Composites: New Therapeutics for Disease Treatment. SMALL METHODS 2025; 9:e2400610. [PMID: 38923867 DOI: 10.1002/smtd.202400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Bacterial therapy is recognized as a cost-effective treatment for several diseases. However, its development is hindered by limited functionality, weak inherent therapeutic effects, and vulnerability to harsh microenvironmental conditions, leading to suboptimal treatment activity. Enhancing bacterial activity and therapeutic outcomes emerges as a pivotal challenge. Nanozymes have garnered significant attention due to their enzyme-mimic activities and high stability. They enable bacteria to mimic the functions of gene-edited bacteria expressing the same functional enzymes, thereby improving bacterial activity and therapeutic efficacy. This review delineates the therapeutic mechanisms of bacteria and nanozymes, followed by a summary of strategies for preparing bacteria/nanozyme composites. Additionally, the synergistic effects of such composites in biomedical applications such as gastrointestinal diseases and tumors are highlighted. Finally, the challenges of bacteria/nanozyme composites are discussed and propose potential solutions. This study aims to provide valuable insights to offer theoretical guidance for the advancement of nanomaterial-assisted bacterial therapy.
Collapse
Affiliation(s)
- Qirui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinran Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang, Hangzhou, 310009, China
| |
Collapse
|
23
|
Guelfi G, Capaccia C, Tedeschi M, Bufalari A, Leonardi L, Cenci-Goga B, Maranesi M. Dog Aging: A Comprehensive Review of Molecular, Cellular, and Physiological Processes. Cells 2024; 13:2101. [PMID: 39768192 PMCID: PMC11675035 DOI: 10.3390/cells13242101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process is a multifactorial biological phenomenon starting at birth and persisting throughout life, characterized by a decline in physiological functions and adaptability. This decline results in the diminished capacity of aging organisms to respond to environmental changes and stressors, leading to reduced efficiency in metabolic, immune, and hormonal functions. As behavioral flexibility wanes, older individuals face longer recovery times and increased vulnerability to diseases. While early research proposed nine core hallmarks of mammalian aging, recent studies have expanded this framework to twelve key characteristics: epigenetic changes, genomic instability, telomere shortening, loss of proteostasis, altered metabolism, mitochondrial dysfunction, cellular senescence, disrupted intercellular communication, stem cell depletion, immune system dysfunction, accumulation of toxic metabolites, and dysbiosis. Given the growing interest in the aging area, we propose to add a new hallmark: impaired water homeostasis. This potential hallmark could play a critical role in aging processes and might open new directions for future research in the field. This review enhances our understanding of the physiological aspects of aging in dogs, suggesting new clinical intervention strategies to prevent and control issues that may arise from the pathological degeneration of these hallmarks.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | | |
Collapse
|
24
|
Chioma OS, Wiggins Z, Rea S, Drake WP. Infectious and non-infectious precipitants of sarcoidosis. J Autoimmun 2024; 149:103239. [PMID: 38821769 PMCID: PMC11607178 DOI: 10.1016/j.jaut.2024.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
Sarcoidosis is a chronic inflammatory disease that can affect any organ in the body. Its exact cause remains unknown, but it is believed to result from a combination of genetic and environmental factors. Some potential causes of sarcoidosis include genetics, environmental triggers, immune system dysfunction, the gut microbiome, sex, and race/ethnicity. Genetic mutations are associated with protection against disease progression or an increased susceptibility to more severe disease, while exposure to certain chemicals, bacteria, viruses, or allergens can trigger the formation of immune cell congregations (granulomas) in different organs. Dysfunction of the immune system, including autoimmune reactions, may also contribute. The gut microbiome and factors such as being female or having African American, Scandinavian, Irish, or Puerto Rican heritage are additional contributors to disease outcome. Recent research has suggested that certain drugs, such as anti-Programmed Death-1 (PD-1) and antibiotics such as tuberculosis (TB) drugs, may raise the risk of developing sarcoidosis. Hormone levels, particularly higher levels of estrogen and progesterone in women, have also been linked to an increased likelihood of sarcoidosis. The diagnosis of sarcoidosis involves a comprehensive assessment that includes medical history, physical examination, laboratory tests, and imaging studies. While there is no cure for sarcoidosis, the symptoms can often be effectively managed through various treatment options. Treatment may involve the use of medications, surgical interventions, or lifestyle changes. These disparate factors suggests that sarcoidosis has multiple positive and negative exacerbants on disease severity, some of which can be ameliorated and others which cannot.
Collapse
Affiliation(s)
- Ozioma S Chioma
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - ZaDarreyal Wiggins
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wonder P Drake
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Kang JH, Hong SW. Is autoimmunity associated with the development of premalignant oral conditions and the progression to oral squamous cell carcinoma?: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102139. [PMID: 39561876 DOI: 10.1016/j.jormas.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Oral potentially malignant disorders (OPMDs) are oral mucosal conditions that may progress to oral squamous cell carcinoma (OSCC). Although autoimmunity has linked to the malignant transformation potential of various precancerous conditions, its role in OPMD remains unclear. This review aimed to identify the role of systemic autoimmunity on OPMD development and their progression to OSCC. METHODS A comprehensive literature search was conducted using PubMed, Cochrane CENTRAL, and SCOPUS database for articles published up to January 2024. The key questions addressed by this review were "Is autoimmunity associated with the development of OPMD" and "How does systemic autoimmunity influence the potential for malignant transformation of OPMD?". This review followed the PRISMA guidelines for scoping reviews (PRISMA-ScR). RESULTS Of the 1265 articles initially identified, 21 fulfilled the search criteria. Three themes were emerged; 1) the prevalence and prognosis of oral cancers in patients with systemic autoimmune diseases, 2) circulating autoantibodies in OPMD patients, and 3) autoimmune-related markers linked to malignant transformation in OPMD patients. This review indicated that systemic autoimmunity may contribute to chronic inflammatory conditions, disruption of oral mucosal integrity, and interference with the DNA damage repair process, thus influencing malignant transformation in the oral epithelium of patients with OPMD. CONCLUSION The co-occurrence of OPMD with circulating autoantibodies or systemic autoimmune diseases underscores the importance of understanding these interactions for improved management of OPMD and early detection of OSCC.
Collapse
Affiliation(s)
- Jeong-Hyun Kang
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Korea (ROK); Clinic of Oral Medicine and Orofacial Pain, Institute of Oral Health Science, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Korea (ROK).
| | - Seok Woo Hong
- Department of Orthopedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-ro, Jongno-gu, Seoul, 03181, Korea (ROK)
| |
Collapse
|
26
|
Petrilla A, Nemeth P, Fauszt P, Szilagyi-Racz A, Mikolas M, Szilagyi-Tolnai E, David P, Stagel A, Gal F, Gal K, Sohajda R, Pham T, Stundl L, Biro S, Remenyik J, Paholcsek M. Comparative analysis of the postadmission and antemortem oropharyngeal and rectal swab microbiota of ICU patients. Sci Rep 2024; 14:27179. [PMID: 39516251 PMCID: PMC11549221 DOI: 10.1038/s41598-024-78102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Shotgun metabarcoding was conducted to examine the microbiota in a total of 48 samples from 12 critically ill patients, analyzing samples from both the oropharynx and rectum. We aimed to compare their postadmission microbiota, characterized as moderately dysbiotic, with the severely dysbiotic antemortem microbiota associated with patients' deaths. We found that, compared with postadmission samples, patient antemortem swab samples presented moderate but not significantly decreased diversity indices. The antemortem oropharyngeal samples presented an increase in biofilm-forming bacteria, including Streptococcus oralis, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis. Although the septic shock rate was 67%, no significant differences were detected in the potential pathogen ratios when the microbiota was analyzed. A notable strain-sharing rate between the oropharynx and intestine was noted. By comparing postadmission and antemortem samples, microbial biomarkers of severe dysbiosis were pinpointed through the analysis of differentially abundant and uniquely emerging species in both oropharyngeal and rectal swabs. Demonstrating strong interconnectivity along the oral-intestinal axis, these biomarkers could serve as indicators of the progression of dysbiosis. Furthermore, the microbial networks of the oropharyngeal microbiota in deceased patients presented the lowest modularity, suggesting a vulnerable community structure. Our data also highlight the critical importance of introducing treatments aimed at enhancing the resilience of the oral cavity microbiome, thereby contributing to better patient outcomes.
Collapse
Affiliation(s)
- Annamaria Petrilla
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Nemeth
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Fauszt
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Anna Szilagyi-Racz
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Maja Mikolas
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Emese Szilagyi-Tolnai
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Peter David
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Ferenc Gal
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Kristof Gal
- Department of Oncoradiology, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Reka Sohajda
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Trinh Pham
- Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520, Turku, Finland
| | - Laszlo Stundl
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
27
|
Khan IM, Nassar N, Chang H, Khan S, Cheng M, Wang Z, Xiang X. The microbiota: a key regulator of health, productivity, and reproductive success in mammals. Front Microbiol 2024; 15:1480811. [PMID: 39633815 PMCID: PMC11616035 DOI: 10.3389/fmicb.2024.1480811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The microbiota, intensely intertwined with mammalian physiology, significantly impacts health, productivity, and reproductive functions. The normal microbiota interacts with the host through the following key mechanisms: acting as a protective barrier against pathogens, maintain mucosal barrier integrity, assisting in nutrient metabolism, and modulating of the immune response. Therefore, supporting growth and development of host, and providing protection against pathogens and toxic substances. The microbiota significantly influences brain development and behavior, as demonstrated by comprehensive findings from controlled laboratory experiments and human clinical studies. The prospects suggested that gut microbiome influence neurodevelopmental processes, modulate stress responses, and affect cognitive function through the gut-brain axis. Microbiota in the gastrointestinal tract of farm animals break down and ferment the ingested feed into nutrients, utilize to produce meat and milk. Among the beneficial by-products of gut microbiota, short-chain fatty acids (SCFAs) are particularly noteworthy for their substantial role in disease prevention and the promotion of various productive aspects in mammals. The microbiota plays a pivotal role in the reproductive hormonal systems of mammals, boosting reproductive performance in both sexes and fostering the maternal-infant connection, thereby becoming a crucial factor in sustaining mammalian existence. The microbiota is a critical factor influencing reproductive success and production traits in mammals. A well-balanced microbiome improves nutrient absorption and metabolic efficiency, leading to better growth rates, increased milk production, and enhanced overall health. Additionally, it regulates key reproductive hormones like estrogen and progesterone, which are essential for successful conception and pregnancy. Understanding the role of gut microbiota offers valuable insights for optimizing breeding and improving production outcomes, contributing to advancements in agriculture and veterinary medicine. This study emphasizes the critical ecological roles of mammalian microbiota, highlighting their essential contributions to health, productivity, and reproductive success. By integrating human and veterinary perspectives, it demonstrates how microbial communities enhance immune function, metabolic processes, and hormonal regulation across species, offering insights that benefit both clinical and agricultural advancements.
Collapse
Affiliation(s)
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Hua Chang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maoji Cheng
- Fisugarpeptide Biology Engineering Co. Ltd., Lu’an, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
28
|
Rodrigues SO, Santiago FR, Silva MS, Lima ASG, Godoy LE, De Waard M, Fouad D, Batiha GE, Santos TL, Pagnossa JP. Macrolide resistance outcomes after the Covid-19 pandemic: A one health approach investigation. Biomed Pharmacother 2024; 180:117437. [PMID: 39303450 DOI: 10.1016/j.biopha.2024.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
During the Covid-19 pandemic period, the indiscriminate use of macrolide-class antibiotics was frequent among the Brazilian population due to the lack of knowledge and information with a scientific basis. Thus, the class of drugs that includes azithromycin, clarithromycin, and erythromycin, which alter metabolic reactions in the body and act on the immune system, was widely used without medical prescription. Samples of bacterial strains from hospital environments were obtained during the most extensive spread of Covid-19 and studied in the present article, emphasizing the investigation for macrolide resistance genes (erm and msr) and bacteria of the genus Staphylococcus isolated from urinary tract infections. In addition, the physiological, genetic, immunological, and socio-epidemiological aspects were highlighted with a focus on the One Health approach and implications on the gut-brain axis in this integrative research, revealing that the inappropriate use of antibiotics directly affects entire communities, representing a significant concern for public and environmental health.
Collapse
Affiliation(s)
- Sarah O Rodrigues
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Felipe R Santiago
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | | | | | | | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, Saint-Egrève 38120, France; L'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes F-44007, France; Université de Nice Sophia-Antipolis, LabEx (Ion Channels, Science & Therapeutics), Valbonne F-06560, France.
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia.
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt.
| | - Tamara L Santos
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Jorge P Pagnossa
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| |
Collapse
|
29
|
Pasricha PJ, McKnight M, Villatoro L, Barahona G, Brinker J, Hui K, Polydefkis M, Burns R, McMahan ZH, Gould N, Goodman B, Hentz J, Treisman G. Joint Hypermobility, Autonomic Dysfunction, Gastrointestinal Dysfunction, and Autoimmune Markers: Clinical Associations and Response to Intravenous Immunoglobulin Therapy. Am J Gastroenterol 2024; 119:2298-2306. [PMID: 38912927 PMCID: PMC11524627 DOI: 10.14309/ajg.0000000000002910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION We examined autoimmunity markers (AIM) and autonomic dysfunction in patients with chronic neurogastroenterological symptoms and their relationship to joint hypermobility/hypermobility spectrum disorder (JH/HSD). METHODS AIM positivity was defined as a diagnosis of known autoimmune/autoinflammatory disorder with at least 1 positive seromarker of autoimmunity or at least 2 positive seromarkers by themselves. Three cohorts were studied: (i) retrospective (n = 300), (ii) prospective validation cohort (n = 133), and (iii) treatment cohort (n = 40), administered open-label intravenous immunoglobulin (IVIG). RESULTS AIM positivity was found in 40% and 29% of the retrospective and prospective cohorts, the majority of whom (71% and 69%, respectively) had autoinflammatory disorder. Significantly more patients with AIM had elevations of C-reactive protein (31% vs 15%, P < 0.001) along with an increased proportion of cardiovascular autonomic dysfunction (48% vs 29%; P < 0.001), small fiber neuropathy (20% vs 9%; P = 0.002), and HLADQ8 positivity (24% vs 13%, P = 0.01). Patients with JH/HSD were more likely to have AIM (43% vs 15%, P = 0.001) along with more severe autonomic and gastrointestinal (GI) symptom scores. IVIG treatment was associated with robust improvement in pain, GI, and autonomic symptoms, but adverse events were experienced by 62% of patients. DISCUSSION Autoimmune markers and autonomic dysfunction are common in patients with unexplained GI symptoms, especially in those with JH/HSD. Many patients seem to respond to IVIG treatment, but this needs to be confirmed by controlled trials. These results highlight the need for vigilance for autoimmune and autonomic factors and JH/HSD in patients with neurogastroenterological disorders. Clinicaltrials.gov , NCT04859829.
Collapse
Affiliation(s)
| | - Megan McKnight
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | | | - Jeffrey Brinker
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Ken Hui
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | - Robert Burns
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | - Neda Gould
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | | | - Glenn Treisman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
30
|
Mousa WK, Al Ali A. The Gut Microbiome Advances Precision Medicine and Diagnostics for Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:11259. [PMID: 39457040 PMCID: PMC11508888 DOI: 10.3390/ijms252011259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiome emerges as an integral component of precision medicine because of its signature variability among individuals and its plasticity, which enables personalized therapeutic interventions, especially when integrated with other multiomics data. This promise is further fueled by advances in next-generation sequencing and metabolomics, which allow in-depth high-precision profiling of microbiome communities, their genetic contents, and secreted chemistry. This knowledge has advanced our understanding of our microbial partners, their interaction with cellular targets, and their implication in human conditions such as inflammatory bowel disease (IBD). This explosion of microbiome data inspired the development of next-generation therapeutics for treating IBD that depend on manipulating the gut microbiome by diet modulation or using live products as therapeutics. The current landscape of artificial microbiome therapeutics is not limited to probiotics and fecal transplants but has expanded to include community consortia, engineered probiotics, and defined metabolites, bypassing several limitations that hindered rapid progress in this field such as safety and regulatory issues. More integrated research will reveal new therapeutic targets such as enzymes or receptors mediating interactions between microbiota-secreted molecules that drive or modulate diseases. With the shift toward precision medicine and the enhanced integration of host genetics and polymorphism in treatment regimes, the following key questions emerge: How can we effectively implement microbiomics to further personalize the treatment of diseases like IBD, leveraging proven and validated microbiome links? Can we modulate the microbiome to manage IBD by altering the host immune response? In this review, we discuss recent advances in understanding the mechanism underpinning the role of gut microbes in driving or preventing IBD. We highlight developed targeted approaches to reverse dysbiosis through precision editing of the microbiome. We analyze limitations and opportunities while defining the specific clinical niche for this innovative therapeutic modality for the treatment, prevention, and diagnosis of IBD and its potential implication in precision medicine.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| |
Collapse
|
31
|
Mirhosseini SM, Mahdavi A, Yarmohammadi H, Razavi A, Rezaei M, Soltanipur M, Karimi Nemch M, Jafari Naeini S, Siadat SD. What is the link between the dietary inflammatory index and the gut microbiome? A systematic review. Eur J Nutr 2024; 63:2407-2419. [PMID: 39069586 DOI: 10.1007/s00394-024-03470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE One highlighted pathogenesis mechanism of diseases is the negative impact of pro-inflammatory diets (PD) on the gut microbiome. This systematic review aimed to study the link between dietary inflammatory index (DII), as an indicator of PD, and gut microbiome. METHODS A systematic search was done in PubMed and Scopus, adhering to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis. The assessment of the included studies' quality was performed using the critical appraisal checklist from the Joanna Briggs Institute. RESULTS Ten articles were included eight cross-sectional, one case-control, and, one cohort study. Seven and three included articles reported a weak and moderate relationship between gut microbiome and DII scores, respectively. DII scores were linked to variety in microbiome composition and diversity/richness. More importantly, anti-inflammatory diets as measured by lower DII scores were linked to a more desirable gut microbiome profile. Prevotella stercorea, Veillonella rogosae, Morganella morganii, Ruminococcus torques, Eubacterium nodatum, Alistipes intestine, Clostridium leptum, Morganellaceae family, Enterobacteriaceae family, and, Bacteroides thetaiotaomicron were related to higher DII scores. While, Butyrate-producing bacteria such as Ruminococcaceae and Lachnospiraceae families, Faecalibacterium prausnitzii, and Akkermansia muciniphila were related to lower DII scores. CONCLUSION An anti-inflammatory diet, as measured by a lower DII score, might be linked to variations in the composition and variety of the microbiome. Therefore, the DII score could be useful in microbiota research, however, this possibility needs to be investigated more precisely in future studies.
Collapse
Affiliation(s)
| | - Azamalsadat Mahdavi
- Avicenna Fertility Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Hossein Yarmohammadi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Razavi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Masood Soltanipur
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammadreza Karimi Nemch
- Student Research Committee, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Oral and Dental Diseases Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Jafari Naeini
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
32
|
Rajasekaran S, Vasudevan G, Tangavel C, Ramachandran K, Nayagam SM, Muthurajan R, Gopalakrishnan C, Anand SV, Shetty AP, Kanna RM. Does the gut microbiome influence disc health and disease? The interplay between dysbiosis, pathobionts, and disc inflammation: a pilot study. Spine J 2024; 24:1952-1963. [PMID: 38925301 DOI: 10.1016/j.spinee.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND CONTEXT Gut microbiome alterations resulting in inflammatory responses have been implicated in many distant effects on different organs. However, its influence on disc health is still not fully investigated. PURPOSE Our objective was to document the gut biome in healthy volunteers and patients with disc degeneration and to understand the role of gut dysbiosis on human disc health. STUDY DESIGN Experimental case-control study. PATIENT SAMPLE We included 40 patients with disc degeneration (DG) and 20 healthy volunteers (HV). HV comprised of age groups 30 to 60 years with no known record of back pain and no clinical comorbidities, with normal MRI. Diseased group (DG) were patients in the same age group undergoing surgery for disc disease (disc herniation-25; discogenic stenosis-15) and without instability (with Modic-20; and non-Modic-20). OUTCOME MEASURES N/A. METHODS We analyzed 16S V3-V4 rDNA gut metagenome from 20 healthy volunteers (HV) and compared the top signature genera from 40 patients with disc degeneration (DG) across Modic and non-Modic groups. Norgen Stool DNA Kit was used for DNA extraction from ∼200 mg of each faecal sample collected using the Norgen Stool Collection Kit.16S V3-V4 rDNA amplicons were generated with universal bacterial primers 341F and 806R and amplified with Q5 High-Fidelity DNA Polymerase. Libraries were sequenced with 250×2 PE to an average of 0.1 million raw reads per sample (Illumina Novaseq 6000). Demultiplexed raw data was assessed with FastQC, and adapter trimmed reads >Q30 reads were processed in the QIME2 pipeline. Serum C-reactive protein (CRP) was measured by the immunoturbimetry method and Fatty acid-binding protein 5 (FABP5) was measured in albumin-globulin-depleted plasma through global proteome analysis. RESULTS We observed significant gut dysbiosis between HV and DG and also between the Modic and non-Modic groups. In the Modic group, commensals Bifidobacterium and Ruminococcus were significantly depleted, while pathobionts Streptococcus, Prevotella, and Butryvibrio were enriched. Firmicutes/Bacteroidetes ratio was decreased in DG (Modic-0.62, non-Modic-0.43) compared to HV (0.70). Bacteria-producing beneficial short-chain fatty acids were also depleted in DG. Elevated serum CRP and increased FABP5 were observed in DG. CONCLUSION The study revealed gut dysbiosis, an altered Firmicutes/Bacteroidetes ratio, reduced SCFA-producing bacteria, and increased systemic and local inflammation in association with disc disease, especially in Modic changes. The findings have considerable importance for our understanding and prevention of disc degeneration.
Collapse
Affiliation(s)
| | - Gowdaman Vasudevan
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Chitraa Tangavel
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Sharon Miracle Nayagam
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Rd, Coimbatore, Tamil Nadu, India
| | - Chellappa Gopalakrishnan
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Sri Vijay Anand
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Rishi Mugesh Kanna
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| |
Collapse
|
33
|
Qusty N, Sarhan A, Taha M, Alshanqiti A, Almuteb AM, Alfaraidi AT, Alkhairi HA, Alzahrani MM, Alamry AHA, Alomry TQB, Bannan OA, Almaashi MS. The Role of Gut Microbiota in the Efficacy and Side Effect Profile of Biologic Therapies for Autoimmune Diseases. Cureus 2024; 16:e71111. [PMID: 39525264 PMCID: PMC11548951 DOI: 10.7759/cureus.71111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The role of gut microbiota in influencing the efficacy and side effect profile of biological therapies for autoimmune diseases has gained increasing attention. Understanding these interactions is crucial for optimizing treatment outcomes and minimizing adverse events associated with biological therapies. This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We comprehensively analyzed studies involving human subjects with autoimmune diseases treated with biological therapies. Data on gut microbiota composition, therapeutic efficacy, and side effect profiles were extracted and synthesized to assess the impact of microbiota on treatment outcomes. Our review identified a significant relationship between gut microbiota composition and the efficacy of biological therapies. Specific bacterial taxa, such as Clostridiales and Roseburia inulinivorans, were associated with improved therapeutic responses, while alterations in microbiota were linked to increased adverse events. The predictive potential was demonstrated with microbiota signatures correlating with treatment success and side effects, highlighting the relevance of microbial profiles in therapeutic outcomes. The findings suggest that gut microbiota plays a pivotal role in modulating the efficacy and side effect profile of biological therapies for autoimmune diseases. Integrating microbiota assessments into clinical practice could enhance personalized treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Naeem Qusty
- Department of Clinical Laboratory Sciences, Umm Al-Qura University, Makkah, SAU
| | - Anas Sarhan
- Department of Internal Medicine, Umm Al-Qura University, Makkah, SAU
| | - Medhat Taha
- Department of Anatomy, Umm Al-Qura University, Al-Qunfudhah, SAU
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Luo Z, Lv S, Lou F, Yan L, Xu J, Kang N, Dong Y, Jin X. Roles of intralesional bacteria in the initiation and progression of oral squamous cell carcinoma. Cancer Med 2024; 13:e70209. [PMID: 39300932 PMCID: PMC11413416 DOI: 10.1002/cam4.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the predominant form of head and neck cancer, often diagnosed at late stages, resulting in a poor prognosis. Recent studies indicate a potential association between OSCC and microbial presence. Microorganisms have been identified in various tumors and lesions, including OSCC and oral potentially malignant disorders (OPMDs). Intralesional microbiota are considered important components of the tumor microenvironment (TME) and may contribute to carcinogenesis. METHODS Sources were collected through thorough searches of databases PubMed and Embase. The review focused on microbial characteristics, potential origins, and their impact on cancer progression. RESULTS Bacteria display varying abundance and diversity throughout the stages of OSCC and OPMDs. Intraleisional bacteria may have diverse sources, including not only oral plaque and saliva but also potentially the gut. Intralesional bacteria have both pro-carcinogenic and anti-carcinogenic effects, affecting processes like cell proliferation, invasion, and immune response. CONCLUSIONS Intralesional microbiota are crucial in OSCC and OPMDs, influencing both disease progression and treatments. Despite their significance, challenges like inconsistent sampling and microbial identification remain. Future research is required to fully understand their role and improve clinical applications.
Collapse
Affiliation(s)
- Zhuoyan Luo
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Shiping Lv
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Fangzhi Lou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Li Yan
- College of Medical InformaticsChongqing Medical UniversityChongqingChina
| | - Jingyi Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Ning Kang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Yunmei Dong
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Xin Jin
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| |
Collapse
|
35
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
36
|
Butler T, Davey MG, Kerin MJ. Molecular Morbidity Score-Can MicroRNAs Assess the Burden of Disease? Int J Mol Sci 2024; 25:8042. [PMID: 39125612 PMCID: PMC11312210 DOI: 10.3390/ijms25158042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. This is largely because patients with multimorbidity are systematically excluded from clinical trials. Accordingly, there is an urgent need to develop novel biomarkers and methods of prognostication for this cohort of patients. The hallmarks of ageing are now thought to potentiate the pathogenesis of multimorbidity. MicroRNAs are small, regulatory, noncoding RNAs which have been implicated in the pathogenesis and prognostication of numerous chronic diseases; there is a substantial body of evidence now implicating microRNA dysregulation with the different hallmarks of ageing in the aetiology of chronic diseases. This article proposes using the hallmarks of ageing as a framework to develop a panel of microRNAs to assess the prognostic burden of multimorbidity. This putative molecular morbidity score would have many potential applications, including assessing the efficacy of clinical interventions, informing clinical decision making and facilitating wider inclusion of patients with multimorbidity in clinical trials.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
- Department of Surgery, University Hospital Galway, Newcastle Road, H91 YR71 Galway, Ireland
| |
Collapse
|
37
|
Hasaniani N, Mostafa Rahimi S, Akbari M, Sadati F, Pournajaf A, Rostami-Mansoor S. The Role of Intestinal Microbiota and Probiotics Supplementation in Multiple Sclerosis Management. Neuroscience 2024; 551:31-42. [PMID: 38777135 DOI: 10.1016/j.neuroscience.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune disorder predominantly afflicting young adults. The etiology of MS is intricate, involving a variety of environmental and genetic factors. Current research increasingly focuses on the substantial contribution of gut microbiota in MS pathogenesis. The commensal microbiota resident within the intestinal milieu assumes a central role within the intricate network recognized as the gut-brain axis (GBA), wielding beneficial impact in neurological and psychological facets. As a result, the modulation of gut microbiota is considered a pivotal aspect in the management of neural disorders, including MS. Recent investigations have unveiled the possibility of using probiotic supplements as a promising strategy for exerting a positive impact on the course of MS. This therapeutic approach operates through several mechanisms, including the reinforcement of gut epithelial integrity, augmentation of the host's resistance against pathogenic microorganisms, and facilitation of mucosal immunomodulatory processes. The present study comprehensively explains the gut microbiome's profound influence on the central nervous system (CNS). It underscores the pivotal role played by probiotics in forming the immune system and modulating neurotransmitter function. Furthermore, the investigation elucidates various instances of probiotic utilization in MS patients, shedding light on the potential therapeutic advantages afforded by this intervention.
Collapse
Affiliation(s)
- Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mostafa Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Marziyeh Akbari
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fahimeh Sadati
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
38
|
Djouina M, Ollivier A, Waxin C, Kervoaze G, Pichavant M, Caboche S, Achour D, Grare C, Beury D, Hot D, Anthérieu S, Lo-Guidice JM, Dubuquoy L, Launay D, Vignal C, Gosset P, Body-Malapel M. Chronic Exposure to Both Electronic and Conventional Cigarettes Alters Ileum and Colon Turnover, Immune Function, and Barrier Integrity in Mice. J Xenobiot 2024; 14:950-969. [PMID: 39051349 PMCID: PMC11270428 DOI: 10.3390/jox14030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Although the effects of cigarette smoke (CS) on the development of several intestinal diseases is well documented, the impact of e-cigarette aerosol (e-cig) on digestive health is largely unknown. To compare the effects of e-cig and CS on mouse ileum and colon, animals were chronically exposed for 6 months by nose-only inhalation to e-cig at 18 or 30 W power, or to 3R4F CS. Results showed that e-cig exposure decreased colon cell proliferation. Several other proliferative defects were observed in response to both e-cig and CS exposure, including up- and down-regulation of cyclin D1 protein levels in the ileum and colon, respectively. E-cig and CS exposure reduced myeloperoxidase activity in the ileum. In the colon, both exposures disrupted gene expression of cytokines and T cell transcription factors. For tight junction genes, ZO-1- and occludin-protein expression levels were reduced in the ileum and colon, respectively, by e-cig and CS exposure. The 16S sequencing of microbiota showed specific mild dysbiosis, according to the type of exposure. Overall, e-cig exposure led to altered proliferation, inflammation, and barrier function in both the ileum and colon, and therefore may be a gut hazard on par with conventional CS.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Anaïs Ollivier
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Gwenola Kervoaze
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Muriel Pichavant
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France; (S.C.); (D.B.); (D.H.)
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS—IMPact de l’Environnement Chimique sur la Santé, F-59000 Lille, France; (D.A.); (C.G.); (S.A.); (J.-M.L.-G.)
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| | - Philippe Gosset
- Univ. Lille, CNRS, INSERM, Institut Pasteur de Lille, CHU Lille, Center for Infection and Immunity of Lille (CIIL), UMR9017-U1019, F-59000 Lille, France; (A.O.); (G.K.); (M.P.); (P.G.)
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.D.); (C.W.); (L.D.); (D.L.); (C.V.)
| |
Collapse
|
39
|
Du HX, Yue SY, Niu D, Liu XH, Li WY, Wang X, Chen J, Hu DK, Zhang LG, Guan Y, Ji DX, Chen XG, Zhang L, Liang CZ. Alcohol intake exacerbates experimental autoimmune prostatitis through gut microbiota driving cholesterol biosynthesis-mediated Th17 differentiation. Int Immunopharmacol 2024; 139:112669. [PMID: 39029231 DOI: 10.1016/j.intimp.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is very common worldwide, and alcohol consumption is a notable contributing factor. Researches have shown that gut microbiota can be influenced by alcohol consumption and is an important mediator in regulating Th17 cell immunity. However, it is still unclear the exact mechanism by which alcohol exacerbates the CP/CPPS and the role of gut microbiota in this process. METHOD We first constructed the most-commonly used animal model for CP/CPPS, the experimental autoimmune prostatitis (EAP) model, through immunoassay. Based on this, mice were divided into EAP group and alcohol-consuming EAP group. By 16S rRNA sequencing and non-targeted metabolomics analysis, differential gut microbiota and their metabolites between the two groups were identified. Subsequently, metabolomics detection targeting cholesterols was carried out to identify the exact difference in cholesterol. Furthermore, multiple methods such as flow cytometry and immunohistochemistry were used to detect the differentiation status of Th17 cells and severity of prostatitis treated with 27-hydroxycholesterol (the differential cholesterol) and its upstream regulatory factor-sterol regulatory element-binding protein 2 (SREBP2). Lastly, fecal transplantation was conducted to preliminary study on whether alcohol intake exacerbates EAP in immune receptor mice. RESULTS Alcohol intake increased the proportion of Th17 cells and levels of related inflammatory factors. It also led to an altered gut bacterial richness and increased gut permeability. Further metabolomic analysis showed that there were significant differences in a variety of metabolites between EAP and alcohol-fed EAP mice. Metabolic pathway enrichment analysis showed that the pathways related to cholesterol synthesis and metabolism were significantly enriched, which was subsequently confirmed by detecting the expression of metabolic enzymes. By targeting cholesterol synthesis, 27-hydroxycholesterol was significantly increased in alcohol-fed EAP mice. Subsequent mechanistic research showed that supplementation with 27-hydroxycholesterol could aggravate EAP and promote Th17 cell differentiation both in vivo and in vitro, which is regulated by SREBP2. In addition, we observed that fecal transplantation from mice with alcohol intake aggravated EAP in immunized recipient mice fed a normal diet. CONCLUSION Our study is the first to show that alcohol intake promotes Th17 cell differentiation and exacerbates EAP through microbiota-derived cholesterol biosynthesis.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Hong Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Wei-Yi Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xu Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Jia Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - De-Kai Hu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Li-Gang Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Duo-Xu Ji
- Clinical Medical College, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Guo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
40
|
Mahla RS, Jones EL, Dustin LB. Ro60-Roles in RNA Processing, Inflammation, and Rheumatic Autoimmune Diseases. Int J Mol Sci 2024; 25:7705. [PMID: 39062948 PMCID: PMC11277228 DOI: 10.3390/ijms25147705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The Ro60/SSA2 autoantigen is an RNA-binding protein and a core component of nucleocytoplasmic ribonucleoprotein (RNP) complexes. Ro60 is essential in RNA metabolism, cell stress response pathways, and cellular homeostasis. It stabilises and mediates the quality control and cellular distribution of small RNAs, including YRNAs (for the 'y' in 'cytoplasmic'), retroelement transcripts, and misfolded RNAs. Ro60 transcriptional dysregulation or loss of function can result in the generation and release of RNA fragments from YRNAs and other small RNAs. Small RNA fragments can instigate an inflammatory cascade through endosomal toll-like receptors (TLRs) and cytoplasmic RNA sensors, which typically sense pathogen-associated molecular patterns, and mount the first line of defence against invading pathogens. However, the recognition of host-originating RNA moieties from Ro60 RNP complexes can activate inflammatory response pathways and compromise self-tolerance. Autoreactive B cells may produce antibodies targeting extracellular Ro60 RNP complexes. Ro60 autoantibodies serve as diagnostic markers for various autoimmune diseases, including Sjögren's disease (SjD) and systemic lupus erythematosus (SLE), and they may also act as predictive markers for anti-drug antibody responses among rheumatic patients. Understanding Ro60's structure, function, and role in self-tolerance can enhance our understanding of the underlying molecular mechanisms of autoimmune conditions.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| | | | - Lynn B. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
41
|
Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol 2024; 15:1380713. [PMID: 39040079 PMCID: PMC11260943 DOI: 10.3389/fphys.2024.1380713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
42
|
Chang YW, Sun YL, Chu E, Hung YY, Liao WC, Tsai SM, Lu TH, Huang PC, Yu CH, Lee SY, Chang HH, Lin DPC. Streptococcus thermophilus iHA318 Improves Dry Eye Symptoms by Mitigating Ocular Surface Damage in a Mouse Model. Microorganisms 2024; 12:1306. [PMID: 39065074 PMCID: PMC11279365 DOI: 10.3390/microorganisms12071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Dry eye is a complicated ocular surface disease that causes discomfort, visual disturbance, and frequently observed ocular surface damage. Emerging hypotheses suggest probiotics may help relieve dry eye symptoms by modulating inflammation and oxidative stress. This study aimed to investigate the therapeutic effects of Streptococcus thermophilus iHA318 probiotics on dry eye using in vitro assays and an in vivo murine model of ultraviolet B (UVB) radiation-induced dry eye. In vitro analyses revealed that S. thermophilus iHA318® exhibited antioxidant activity and anti-inflammatory effects by inhibiting reactive oxygen species production and suppressing inflammatory cytokines. For the in vivo study, female ICR mice were assigned to normal control, UVB-induced dry eye, and UVB+iHA318 treatment groups. UVB exposure significantly decreased tear volume and tear film breakup time (TBUT) compared to normal controls. Supplementation with S. thermophilus iHA318® via oral gavage markedly improved tear production and TBUT on day 7 post-UVB exposure. Ocular surface photography demonstrated improved gradings of corneal opacity, smoothness, and lissamine green staining in the iHA318 group versus the UVB group. Topographical analysis further revealed improvement in the UVB-induced corneal irregularities by iHA318 treatment. Collectively, these results indicate that S. thermophilus iHA318 exerts a protective effect against dry eye symptoms by mitigating oxidative stress and inflammation, thereby preserving tear film stability and ocular surface integrity. This probiotic strain represents a promising therapeutic approach for managing dry eye syndrome.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Yen-Ling Sun
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Evelyn Chu
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Yi-Yun Hung
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Wei-Chieh Liao
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Su-Min Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Tsung-Han Lu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Pin-Chao Huang
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Chin-Hsiu Yu
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Shao-Yu Lee
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
43
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
44
|
Boncheva I, Poudrier J, Falcone EL. Role of the intestinal microbiota in host defense against respiratory viral infections. Curr Opin Virol 2024; 66:101410. [PMID: 38718575 DOI: 10.1016/j.coviro.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
Viral infections, including those affecting the respiratory tract, can alter the composition of the intestinal microbiota, which, in turn, can significantly influence both innate and adaptive immune responses, resulting in either enhanced pathogen clearance or exacerbation of the infection, possibly leading to inflammatory complications. A deeper understanding of the interplay between the intestinal microbiota and host immune responses in the context of respiratory viral infections (i.e. the gut-lung axis) is necessary to develop new treatments. This review highlights key mechanisms by which the intestinal microbiota, including its metabolites, can act locally or at distant organs to combat respiratory viruses. Therapeutics aimed at harnessing the microbiota to prevent and/or help treat respiratory viral infections represent a promising avenue for future investigation.
Collapse
Affiliation(s)
- Idia Boncheva
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Johanne Poudrier
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Emilia L Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada; Department of Microbiology and Infectious Diseases, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
45
|
Murdaca G, Tagliafico L, Page E, Paladin F, Gangemi S. Gender Differences in the Interplay between Vitamin D and Microbiota in Allergic and Autoimmune Diseases. Biomedicines 2024; 12:1023. [PMID: 38790985 PMCID: PMC11117902 DOI: 10.3390/biomedicines12051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The synergic role of vitamin D and the intestinal microbiota in the regulation of the immune system has been thoroughly described in the literature. Vitamin D deficiency and intestinal dysbiosis have shown a pathogenetic role in the development of numerous immune-mediated and allergic diseases. The physiological processes underlying aging and sex have proven to be capable of having a negative influence both on vitamin D values and the biodiversity of the microbiome. This leads to a global increase in levels of systemic inflammatory markers, with potential implications for all immune-mediated diseases and allergic conditions. Our review aims to collect and analyze the relationship between vitamin D and the intestinal microbiome with the immune system and the diseases associated with it, emphasizing the effect mediated by sexual hormones and aging.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Luca Tagliafico
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elena Page
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Paladin
- Elderly and Disabeld Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
46
|
Nayak G, Dimitriadis K, Pyrpyris N, Manti M, Kamperidis N, Kamperidis V, Ziakas A, Tsioufis K. Gut Microbiome and Its Role in Valvular Heart Disease: Not a "Gutted" Relationship. Life (Basel) 2024; 14:527. [PMID: 38672797 PMCID: PMC11051562 DOI: 10.3390/life14040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The role of the gut microbiome (GM) and oral microbiome (OM) in cardiovascular disease (CVD) has been increasingly being understood in recent years. It is well known that GM is a risk factor for various CVD phenotypes, including hypertension, dyslipidemia, heart failure and atrial fibrillation. However, its role in valvular heart disease (VHD) is less well understood. Research shows that, direct, microbe-mediated and indirect, metabolite-mediated damage as a result of gut dysbiosis and environmental factors results in a subclinical, chronic, systemic inflammatory state, which promotes inflammatory cell infiltration in heart valves and subsequently, via pro-inflammatory molecules, initiates a cascade of reaction, resulting in valve calcification, fibrosis and dysfunction. This relationship between GM and VHD adds a pathophysiological link to the pathogenesis of VHD, which can be aimed therapeutically, in order to prevent or regress any risk for valvular pathologies. Therapeutic interventions include dietary modifications and lifestyle interventions, in order to influence environmental factors that can promote gut dysbiosis. Furthermore, the combination of probiotics and prebiotics, as well as fecal m transplantation and targeted treatment with inducers or inhibitors of microbial enzymes have showed promising results in animal and/or clinical studies, with the potential to reduce the inflammatory state and restore the normal gut flora in patients. This review, thus, is going to discuss the pathophysiological links behind the relationship of GM, CVD and VHD, as well as explore the recent data regarding the effect of GM-altering treatment in CVD, cardiac function and systemic inflammation.
Collapse
Affiliation(s)
- Gyanaranjan Nayak
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| | - Magdalini Manti
- St Mark’s Hospital, Imperial College London, London HA1 3UJ, UK (N.K.)
| | | | - Vasileios Kamperidis
- First Cardiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54453 Thessaloniki, Greece; (V.K.); (A.Z.)
| | - Antonios Ziakas
- First Cardiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54453 Thessaloniki, Greece; (V.K.); (A.Z.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (G.N.); (N.P.); (K.T.)
| |
Collapse
|
47
|
Srinath A, Nakamura A, Haroon N. Sequence of Events in the Pathogenesis of Axial Spondyloarthritis: A Current Review-2023 SPARTAN Meeting Proceedings. Curr Rheumatol Rep 2024; 26:133-143. [PMID: 38324125 DOI: 10.1007/s11926-024-01136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW Over the past two decades, significant progress has been made to untangle the etiology of inflammation and new bone formation (NBF) associated with axial spondyloarthritis (axSpA). However, exact mechanisms as to how the disease initiates and develops remain elusive. RECENT FINDINGS Type 3 immunity, centered around the IL-23/IL-17 axis, has been recognized as a key player in the pathogenesis of axSpA. Multiple hypotheses associated with HLA-B*27 have been proposed to account for disease onset and progression of axSpA, potentially by driving downstream T cell responses. However, HLA-B*27 alone is not sufficient to fully explain the development of axSpA. Genome-wide association studies (GWAS) identified several genes that are potentially relevant to disease pathogenesis leading to a better understanding of the immune activation seen in axSpA. Furthermore, gut microbiome studies suggest an altered microbiome in axSpA, and animal studies suggest a pathogenic role for immune cells migrating from the gut to the joint. Recent studies focusing on the pathogenesis of new bone formation (NBF) have highlighted the importance of endochondral ossification, mechanical stress, pre-existing inflammation, and activated anabolic signaling pathways during the development of NBF. Despite the complex etiology of axSpA, recent studies have shed light on pivotal pieces that could lead to a better understanding of the pathogenic events in axSpA.
Collapse
Affiliation(s)
- Archita Srinath
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada
- School of Medicine, Translational Institute of Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Science Centre, Kingston, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
48
|
Ra YE, Bang YJ. Balancing Act of the Intestinal Antimicrobial Proteins on Gut Microbiota and Health. J Microbiol 2024; 62:167-179. [PMID: 38630349 DOI: 10.1007/s12275-024-00122-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 05/15/2024]
Abstract
The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound effects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled inflammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune effectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufficient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, offering enhanced treatments for a wide range of gut-related diseases.
Collapse
Affiliation(s)
- Ye Eun Ra
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
49
|
Wang Y, Wang Z, Lu Q. Microbiome dynamics in rheumatic diseases. Curr Opin Rheumatol 2024; 36:134-141. [PMID: 37976078 DOI: 10.1097/bor.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Rheumatic disease are characterized by their autoimmune nature, frequently affecting joints, bones, muscles, blood vessels, and connective tissues. The onset of these conditions typically unfolds gradually and subtly. It is noteworthy that individuals with rheumatic diseases often experience shifts in their microbiome, specifically on mucosal surfaces. The purpose of this review is to delve into the intricate interplay between the microbiome, encompassing bacteria, viruses and fungi, and its role in the development and aggravation of various rheumatic diseases. Additionally, it aims to offer insights into microbiome-centered therapeutic approaches for patients in the field of rheumatology. RECENT FINDINGS The advent of next-generation sequencing has significantly improved our understanding of microbiome changes. Numerous studies have consistently revealed a strong link between rheumatism and the microbiome, especially in the oral and gut microbiota. SUMMARY A deeper comprehension of the microbiome's connection to rheumatism holds potential for enhancing disease diagnosis and treatment. Targeted therapeutic approaches, including probiotics, fecal microbiota transplantation, and combination therapies with medications, offer promising avenues for disease management.
Collapse
Affiliation(s)
- Yiqing Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University
| | - Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University
| |
Collapse
|
50
|
Vijayan S, Kandi V, Palacholla PS, Rajendran R, Jarugu C, Ca J, Pravallika M, Reddy SC, Sucharitha AS. Probiotics in Allergy and Immunological Diseases: A Comprehensive Review. Cureus 2024; 16:e55817. [PMID: 38590477 PMCID: PMC10999892 DOI: 10.7759/cureus.55817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Allergy and immunological disorders like autoimmune diseases are vastly prevalent worldwide. These conditions account for a substantial amount of personal and social burden. Such illnesses have lengthy, uncertain, and spotted courses with unpredictable exacerbations. A definite tendency for improving the overall quality of life of individuals suffering from such diseases is crucial to tackling these diseases, especially through diet or lifestyle modification. Further, interventions like microbiome-based therapeutics such as prebiotics or probiotics were explored. Changes in the microbial population were evident during the flare-up of autoimmune and allergic conditions. The realization that the human microbiome is a central player in immunological diseases is a hallmark of its potential usefulness in therapy for such illnesses. This review focuses on the intricate symphony in the orchestra of the human microbiome and the immune system. New therapeutic strategies involving probiotics appear to be the future of personalized medicine. Through this review, we explore the narrative of probiotics and reaffirm their use as therapeutic and preventive agents in immunological disorders.
Collapse
Affiliation(s)
- Swapna Vijayan
- Pediatrics, Sir Chandrasekhara Venkata (CV) Raman General Hospital, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Pratyusha S Palacholla
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Chandrasagar Jarugu
- General Practice, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Mundla Pravallika
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Shruthi C Reddy
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Atul S Sucharitha
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|