1
|
Dilmore AH, Kuplicki R, McDonald D, Kumar M, Estaki M, Youngblut N, Tyakht A, Ackermann G, Blach C, MahmoudianDehkordi S, Dunlop BW, Bhattacharyya S, Guinjoan S, Mandaviya P, Ley RE, Kaddaruh-Dauok R, Paulus MP, Knight R. Medication use is associated with distinct microbial features in anxiety and depression. Mol Psychiatry 2025; 30:2545-2557. [PMID: 39794490 DOI: 10.1038/s41380-024-02857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing (16S) and shallow shotgun sequencing (WGS) were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and Neurocomputational Mechanisms of Affiliation and Personality Study Center for Biomedical Research Excellence (NeuroMAP CoBRE) cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. Though the effect sizes were larger in females than males, similar trends emerged for both sexes. These findings encourage future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Megha Kumar
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Tyakht
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | | - Pooja Mandaviya
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Rima Kaddaruh-Dauok
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| | | | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Agarwal V, Chaudhary R, Gupta A. Probiotics as a Treatment of Chronic Stress Associated Abnormalities. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10553-y. [PMID: 40285929 DOI: 10.1007/s12602-025-10553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Chronic stress is a widespread problem that significantly affects both physical and mental health, leading to numerous complications such as mood disorders, cognitive impairments, gastrointestinal issues, and chronic diseases. The dysregulation of the hypothalamic pituitary adrenal (HPA) axis and the gut-brain axis underlies several stress related disorders, leading to systemic inflammation, neuroinflammation, dysbiosis, and impaired gut barrier integrity. This review emphasizes the growing significance of probiotics as a potential treatment strategy for addressing chronic stress. Probiotics are living bacteria that provide health benefits when consumed in sufficient quantities, acting via several processes including restoration of gut microbial composition, augmentation of gut barrier integrity, and synthesis bioactive compounds such as neurotransmitters and short-chain fatty acids. These effects lead to reduced systemic and neuroinflammation, enhanced neuroplasticity, and the regulation of stress responsive pathways, including the HPA axis. Moreover, probiotics enhance parasympathetic nervous system activity by modulating vagus signaling. Current review indicates the promise of probiotics in alleviating chronic stress; nonetheless, substantial gaps exist regarding strain specific benefits, appropriate doses, and long-term safety. It is essential to address these constraints by comprehensive, large scale clinical studies and tailored therapies. This review highlights the significance of probiotics as a natural, non-invasive approach to chronic stress management, providing an innovative solution for the worldwide issue of stress related health problems.
Collapse
Affiliation(s)
- Vipul Agarwal
- MIT College of Pharmacy, Ram Ganga Vihar Phase-II, Moradabad, 244001, U.P, India.
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, U.P, India
| | - Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal, 462044, M.P, India.
| |
Collapse
|
3
|
Cho MY, Eom JH, Choi EM, Yang SJ, Lee D, Kim YY, Kim HS, Hwang I. Recent advances in therapeutic probiotics: insights from human trials. Clin Microbiol Rev 2025:e0024024. [PMID: 40261032 DOI: 10.1128/cmr.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
SUMMARYRecent advances in therapeutic probiotics have shown promising results across various health conditions, reflecting a growing understanding of the human microbiome's role in health and disease. However, comprehensive reviews integrating the diverse therapeutic effects of probiotics in human subjects have been limited. By analyzing randomized controlled trials (RCTs) and meta-analyses, this review provides a comprehensive overview of key developments in probiotic interventions targeting gut, liver, skin, vaginal, mental, and oral health. Emerging evidence supports the efficacy of specific probiotic strains and combinations in treating a wide range of disorders, from gastrointestinal (GI) and liver diseases to dermatological conditions, bacterial vaginosis, mental disorders, and oral diseases. We discuss the expanding understanding of microbiome-organ connections underlying probiotic mechanisms of action. While many clinical trials demonstrate significant benefits, we acknowledge areas requiring further large-scale studies to establish definitive efficacy and optimal treatment protocols. The review addresses challenges in standardizing probiotic research methodologies and emphasizes the importance of considering individual variations in microbiome composition and host genetics. Additionally, we explore emerging concepts such as the oral-gut-brain axis and future directions, including high-resolution microbiome profiling, host-microbe interaction studies, organoid models, and artificial intelligence applications in probiotic research. Overall, this review offers a comprehensive update on the current state of therapeutic probiotics across multiple domains of human health, providing insights into future directions and the potential for probiotics to revolutionize preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Mu-Yeol Cho
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Je-Hyun Eom
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Eun-Mi Choi
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | | | - Dahye Lee
- Department of Orthodontics, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Young Youn Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Hye-Sung Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Inseong Hwang
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| |
Collapse
|
4
|
Zhang B, Wang Q, Zhang Y, Wang H, Kang J, Zhu Y, Wang B, Feng S. Treatment of Insomnia With Traditional Chinese Medicine Presents a Promising Prospect. Phytother Res 2025. [PMID: 40251853 DOI: 10.1002/ptr.8495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Insomnia, a prevalent sleep disorder, significantly impacts global health. While Western medications provide temporary relief, their risks of dependency and cognitive impairment have spurred the search for safer alternatives. Traditional Chinese Medicine (TCM) offers a promising approach to treating insomnia by focusing on harmonizing the balance of Yin and Yang and the functions of internal organs. This review explores recent research advances in TCM for insomnia treatment, integrating classical theories with modern scientific understanding of key pathological mechanisms, including neurotransmitter regulation (GABA, monoamines), immune-inflammatory responses, the HPA axis, and interactions with the gut microbiota. Growing clinical evidence supports the effectiveness of classical TCM prescriptions and treatments like acupuncture in improving sleep quality, particularly when combined with Western medications to enhance efficacy and reduce dependency. However, TCM also has its limitations. Future research directions should focus on modernizing TCM applications, addressing comorbidities associated with insomnia, exploring the role of gut microbiota, and optimizing medicinal and edible homologous products. By integrating traditional knowledge with cutting-edge technologies, TCM holds great potential for advancing personalized and effective insomnia treatments globally.
Collapse
Affiliation(s)
- Boyi Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Yuhang Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hanyu Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingyu Kang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yandi Zhu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| |
Collapse
|
5
|
Chatsirisakul O, Leenabanchong N, Siripaopradit Y, Chang CW, Buhngamongkol P, Pongpirul K. Strain-Specific Therapeutic Potential of Lactiplantibacillus plantarum: A Systematic Scoping Review. Nutrients 2025; 17:1165. [PMID: 40218922 PMCID: PMC11990516 DOI: 10.3390/nu17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Objectives: This systematically scoping review aims to evaluate the therapeutic potential and clinical benefits of specific Lactiplantibacillus plantarum (L. plantarum) strains in human health, identifying their strain-specific effects across various medical conditions. Methods: Following the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines and employing the PICO framework, a comprehensive literature search was conducted in the PubMed and Embase databases to identify relevant studies published up to December 2023. Inclusion criteria were rigorously applied to ensure the selection of high-quality studies focusing on the clinical application of distinct L. plantarum stains. Results: This review analyzed several unique strains of L. plantarum across 69 studies, identifying several therapeutic benefits. L. plantarum 299v effectively improved gastrointestinal symptoms, enhanced oral health, and reduced systemic inflammation. L. plantarum IS-10506 exhibited notable immunomodulatory effects, especially in managing atopic dermatitis. L. plantarum LB931 showed promise in decreasing pathogenic colonization, supporting women's vaginal health. Additionally, L. plantarum CCFM8724 demonstrated potential in reducing early childhood caries, highlighting its promise in pediatric oral care. Conclusions: The therapeutic potential of L. plantarum is extensive, with certain strains exhibiting promising clinical benefits for specific health concerns. The findings of this review advocate for the integration of L. plantarum strains into clinical practice, emphasizing the need for further research to elucidate their mechanisms of action, optimal dosages, and long-term safety profiles.
Collapse
Affiliation(s)
- Oranut Chatsirisakul
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Natasha Leenabanchong
- Faculty of Medicine and Public Health, HRH Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Lak Si, Bangkok 10210, Thailand;
| | - Yada Siripaopradit
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Chun-Wei Chang
- College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Patsakorn Buhngamongkol
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
- Bumrungrad International Hospital, Bangkok 10110, Thailand
| |
Collapse
|
6
|
Nikel K, Stojko M, Smolarczyk J, Piegza M. The Impact of Gut Microbiota on the Development of Anxiety Symptoms-A Narrative Review. Nutrients 2025; 17:933. [PMID: 40289955 PMCID: PMC11945893 DOI: 10.3390/nu17060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
The gut microbiota plays a key role in mental health, with growing evidence linking its composition to anxiety and depressive disorders. Research on this topic has expanded significantly in recent years. This review explores alterations in the gut microbiota of individuals with anxiety disorders and examines the potential therapeutic effects of probiotics. Background/Objectives: This review aims to analyze the alterations in gut microbiota composition in individuals with anxiety disorders and evaluate the potential therapeutic effects of probiotics in mitigating symptoms. By examining recent research, this study seeks to highlight the gut-brain connection and its implications for mental health interventions. Materials and Methods: A literature search was conducted in PubMed, Embase, CINAHL, and Google Scholar, focusing on studies investigating the relationship between gut microbiota and anxiety disorders, as well as the impact of probiotics on symptom severity. Results: The reviewed studies suggest that individuals with anxiety disorders often exhibit gut microbiota alterations, including reduced microbial diversity and a lower abundance of short-chain fatty acid-producing bacteria. Additionally, probiotics, particularly those from the Lactobacillus genus, may help alleviate anxiety symptoms by modulating gut microbiota composition. Conclusions: Gut dysbiosis appears to be closely linked to anxiety disorders, and probiotic interventions could represent a promising therapeutic avenue. However, further research is needed to clarify underlying mechanisms and optimize treatment strategies.
Collapse
Affiliation(s)
- Kamil Nikel
- Students Scientific Association, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Michał Stojko
- Students Scientific Association, Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Joanna Smolarczyk
- Department of Psychoprophylaxis, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Magdalena Piegza
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
7
|
Yang Y, Zhang Y, Sun R, Du W, Liu Y, Zheng L, Ren Z, Li MD, Xu J. Preclinical Safety Assessment of the Oral Administration of Lactobacillus plantarum GUANKE in Animal Models. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10498-2. [PMID: 40032753 DOI: 10.1007/s12602-025-10498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Probiotics have a long history as fermented food or food supplements. The health benefits and safety profiles of probiotics are strain-specific and should be evaluated individually. The aim of this study was to assess the safety of the Lactobacillus plantarum GUANKE (GUANKE) strain by conducting pharmacological studies, oral toxicity assessments, and investigating the colonization and translocation of GUANKE in experimental animal models. Three pharmacological studies were conducted to examine the effects of oral administration of GUANKE on gastric emptying, bile secretion, and gastric juice secretion. In an acute toxicity study, rats were orally administrated with different doses of GUANKE and monitored for 14 days. In the subacute toxicity study, both rats and beagles were administrated with varying doses of GUANKE for 28 consecutive days to evaluate hematologic, biochemical, and histological effects. The results showed that GUANKE administration did not result in any adverse effect on hematological parameters, biochemical parameters, urinary parameters, and organ indices. Importantly, no translocation of GUANKE to extra-intestinal organs or blood was observed following administration of the CFDA-SE labeled strain. In summary, this study demonstrated the safety of GUANKE intake, which encourages its potential application as a probiotic in clinical trials.
Collapse
Affiliation(s)
- Yuewen Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Yanlin Zhang
- JOINN Laboratories (China) Co. Ltd, Beijing Economic-Technological Development Area, No. 5, Rongjingdong Street, Beijing, 100176, China
| | - Ruixiang Sun
- Maiyata Research Institute for Beneficial Bacteria, Shaoxing, Zhejiang, China
| | - Wenjuan Du
- Maiyata Research Institute for Beneficial Bacteria, Shaoxing, Zhejiang, China
| | | | - Lijun Zheng
- Guangzhou Zhiyi Biotech Inc., Guangzhou, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| | - Ming Ding Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
8
|
Zandifar A, Badrfam R, Mohammaditabar M, Kargar B, Goodarzi S, Hajialigol A, Ketabforoush S, Heidari A, Fathi H, Shafiee A, Pourjafar H. The Effect of Prebiotics and Probiotics on Levels of Depression, Anxiety, and Cognitive Function: A Meta-Analysis of Randomized Clinical Trials. Brain Behav 2025; 15:e70401. [PMID: 40038860 PMCID: PMC11879892 DOI: 10.1002/brb3.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025] Open
Abstract
INTRODUCTION Recent studies have emphasized the relationship between mental health and the human intestine microbiota. In this study, we evaluate the effect of consuming Biotics, on levels of depression, anxiety, and cognitive function. METHODS This meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards. We searched MEDLINE (PubMed), Cochrane Library, Scopus, Web of Science, and ClinicalTrials.gov. All full-text articles and major reviews were manually searched for additional studies. RESULTS The initial analysis was based on the concept that consuming Biotics causes changes in anxiety, measured using various instruments. This analysis showed that consuming Biotics significantly reduced anxiety in our study participants (SMD = 0.2894, Z = 2.46, P = 0.0139, I^2 = 92.4%). The meta-analysis included 4295 samples (2194 in the experimental group and 2101 in the control group). In terms of depression, the analysis showed that consuming Biotics significantly reduced depression in our study participants (SMD = 0.2942, Z = 2.13, P = 0.0335, I^2 = 91.7%). The meta-analysis included 3179 samples (1603 in the experimental group and 1576 in the control group). Regarding cognitive function, the analysis showed that consuming Biotics significantly improved cognitive function in our study participants (SMD = 0.4819, Z = 3.00, P = 0.0027, I^2 = 77.9%). The meta-analysis included 915 samples (470 in the experimental group and 445 in the control group). CONCLUSIONS Our results indicate that most recent studies support the effectiveness of probiotics in reducing symptoms of anxiety, depression, and cognitive issues despite some discrepancies in the findings. People with mild symptoms may experience greater benefits from taking probiotics. TRIAL REGISTRATION PROSPERO registration ID: CRD42024589507.
Collapse
Affiliation(s)
- Atefeh Zandifar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
- Clinical Research Development Unit of Imam Hossein Medical Education CenterAlborz University of Medical SciencesKarajIran
- Social Determinants of Health Research CenterAlborz University of Medical SciencesKarajIran
| | - Rahim Badrfam
- Department of Psychosomatic MedicineShariati Hospital, Alborz University of Medical SciencesKarajAlborzIran
- Non‐communicable Diseases Research CenterAlborz University of Medical SciencesKarajAlborzIran
- Community Mental Health CenterAlborz University of Medical SciencesKarajAlborzIran
| | - Mahdi Mohammaditabar
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
- Alborz Office of Universal Scientific Education and Research Network (USERN)Alborz University of Medical SciencesKarajIran
| | - Bita Kargar
- Tehran Medical Sciences Islamic Azad UniversityTehranIran
| | - Saba Goodarzi
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Amirhossein Hajialigol
- Alborz Office of Universal Scientific Education and Research Network (USERN)Alborz University of Medical SciencesKarajIran
| | - Shera Ketabforoush
- Student Research CommitteeTehran Medical Sciences Islamic Azad UniversityTehranIran
| | - Afshin Heidari
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hanie Fathi
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Arman Shafiee
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| |
Collapse
|
9
|
Tzikos G, Chamalidou E, Christopoulou D, Apostolopoulou A, Gkarmiri S, Pertsikapa M, Menni AE, Theodorou IM, Stavrou G, Doutsini ND, Shrewsbury AD, Papavramidis T, Tsetis JK, Theodorou H, Konsta A, Kotzampassi K. Psychobiotics Ameliorate Depression and Anxiety Status in Surgical Oncology Patients: Results from the ProDeCa Study. Nutrients 2025; 17:857. [PMID: 40077722 PMCID: PMC11901992 DOI: 10.3390/nu17050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Psychological disorders are prevalent in patients having undergone gastrointestinal cancer surgery, and their emotional status may further deteriorate during subsequent chemotherapy. Psychobiotics are specific probiotics that have the unique characteristics of producing neuroactive substances that are thought to act on the brain-gut axis. The aim of the present study was to evaluate the benefits of a psychobiotic formula on depression and anxiety status, as well as on perceived stress, versus a placebo in patients on a chemotherapy course following gastrointestinal surgery for cancer. Patients: The enrolled patients, allocated to the psychobiotic and placebo groups, were assessed by means of these psychometric tests: Beck's Depression Inventory and the Hamilton Depression Rating 17-item Scale for depression; the General Anxiety Disorder-7 for anxiety; and the Perceived Stress Scale-14 Item for perceived stress at three time-points: upon allocation [T1], after one month of treatment [T2], and two months thereafter [T3]. Results: In total, 266 patients were included. One month of psychobiotic treatment improved [i] depression status by 60.4% [48 depressed patients at T1, reduced to 16 at T3]; [ii] anxiety by 57.0% [72 patients at T1, 26 at T3]; and [iii] stress by 60.4% [42 at T1, 14 at T3]. The placebo-treated patients experienced a deterioration in all parameters studied, i.e., depression increased by 62.9%, anxiety by 39.7%, and stress by 142.5%. Conclusions: Based on these findings, it can be recognized that psychobiotic treatment has great potential for every patient at risk of suffering from depression, anxiety, or stress during the course of surgery/chemotherapy for gastrointestinal cancer.
Collapse
Affiliation(s)
- Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Eleni Chamalidou
- Outpatient Surgical Oncology Unit, Chemotherapy Department, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Dimitra Christopoulou
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Aikaterini Apostolopoulou
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (S.G.); (M.P.)
| | - Sofia Gkarmiri
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (S.G.); (M.P.)
| | - Marianthi Pertsikapa
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (S.G.); (M.P.)
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | | | - George Stavrou
- Department of Surgery, 417 NIMTS (Army Share Fund Hospital), 11521 Athens, Greece;
| | - Nektaria-Dimitra Doutsini
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Theodosios Papavramidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | | | - Helen Theodorou
- Department of Sociology, School of Social Sciences, University of Crete, 74100 Rethymno, Greece;
| | - Anastasia Konsta
- First Department of Psychiatry, “Papageorgiou” General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| |
Collapse
|
10
|
Garzone S, Charitos IA, Mandorino M, Maggiore ME, Capozzi L, Cakani B, Dias Lopes GC, Bocchio-Chiavetto L, Colella M. Can We Modulate Our Second Brain and Its Metabolites to Change Our Mood? A Systematic Review on Efficacy, Mechanisms, and Future Directions of "Psychobiotics". Int J Mol Sci 2025; 26:1972. [PMID: 40076598 PMCID: PMC11899754 DOI: 10.3390/ijms26051972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Psychobiotics, live microorganisms that provide mental health by interacting with the gut microbiota, are emerging as a promising therapeutic option for psychiatric and neurodevelopmental disorders. Their effectiveness in addressing conditions such as depression, anxiety, insomnia, stress, autism spectrum disorder (ASD), and eating disorders were examined through a comprehensive analysis of existing studies up to the first half of 2024, based on data from reliable electronic databases. We found that psychobiotics can significantly reduce symptoms of various psychiatric disorders by influencing neurotransmitter levels, regulating the hypothalamic-pituitary-adrenal (HPA) axis, and improving gut barrier function through short-chain fatty acids (SCFAs) and other metabolites. However, several limitations were identified, including inconsistent study methodologies, small sample sizes, and a lack of data on long-term safety. Addressing these limitations through rigorous research is essential for establishing standardized protocols and fully confirming the therapeutic potential of psychobiotics. In conclusion, psychobiotics show great promise as complementary treatments for mental health conditions, but continued research is necessary to refine their application and integrate them into clinical practice effectively.
Collapse
Affiliation(s)
- Stefania Garzone
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy; (S.G.); (M.M.); (M.E.M.); (L.C.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Institute” of Bari, 70124 Bari, Italy
| | - Manuela Mandorino
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy; (S.G.); (M.M.); (M.E.M.); (L.C.)
| | - Maria Elena Maggiore
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy; (S.G.); (M.M.); (M.E.M.); (L.C.)
| | - Loredana Capozzi
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy; (S.G.); (M.M.); (M.E.M.); (L.C.)
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Bujar Cakani
- Department of Clinical Disciplines, “Alexander Xhuvani” University of Elbasan, 3001 Elbasan, Albania;
| | - Gabriel César Dias Lopes
- Department of Neuroscience and Mental Health, School of Science of Health, Logos University International (UNILOGOS), Miami, FL 33137, USA;
- Department of Neuroscience and Mental Health, School of Science of Health, European International University, 75018 Paris, France
| | - Luisella Bocchio-Chiavetto
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
- Department of Theoretical and Applied Sciences (DiSTA), eCampus University, 22060 Novedrate, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, 70124 Bari, Italy; (S.G.); (M.M.); (M.E.M.); (L.C.)
- Department of Theoretical and Applied Sciences (DiSTA), eCampus University, 22060 Novedrate, Italy
| |
Collapse
|
11
|
Peña-Durán E, García-Galindo JJ, López-Murillo LD, Huerta-Huerta A, Balleza-Alejandri LR, Beltrán-Ramírez A, Anaya-Ambriz EJ, Suárez-Rico DO. Microbiota and Inflammatory Markers: A Review of Their Interplay, Clinical Implications, and Metabolic Disorders. Int J Mol Sci 2025; 26:1773. [PMID: 40004236 PMCID: PMC11854938 DOI: 10.3390/ijms26041773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The human microbiota, a complex ecosystem of microorganisms, plays a pivotal role in regulating host immunity and metabolism. This review investigates the interplay between microbiota and inflammatory markers, emphasizing their impact on metabolic and autoimmune disorders. Key inflammatory biomarkers, such as C-reactive protein (CRP), interleukin-6 (IL-6), lipopolysaccharides (LPS), zonulin (ZO-1), and netrin-1 (Ntn1), are discussed in the context of intestinal barrier integrity and chronic inflammation. Dysbiosis, characterized by alterations in microbial composition and function, directly modulates the levels and activity of these biomarkers, exacerbating inflammatory responses and compromising epithelial barriers. The disruption of microbiota is further correlated with increased intestinal permeability and chronic inflammation, serving as a precursor to conditions like type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease. Additionally, this review examines therapeutic strategies, including probiotics and prebiotics, designed to restore microbial balance, mitigate inflammation, and enhance metabolic homeostasis. Emerging evidence positions microbiota-targeted interventions as critical components in the advancement of precision medicine, offering promising avenues for diagnosing and treating inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Emiliano Peña-Durán
- Licenciatura en Médico Cirujano y Partero, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jesús Jonathan García-Galindo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas II, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
| | - Luis Daniel López-Murillo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas I, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
| | - Alfredo Huerta-Huerta
- Hospital Medica de la Ciudad, Santa Catalina, Calle. Pablo Valdez 719, La Perla, Guadalajara 44360, Mexico
| | - Luis Ricardo Balleza-Alejandri
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Alberto Beltrán-Ramírez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas I, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
| | - Elsa Janneth Anaya-Ambriz
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46708, Mexico
| | - Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas II, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
12
|
Yang MY, Chen HY, Ho CH, Huang WC. Impact of Probiotic Supplementation and High-Intensity Interval Training on Primary Dysmenorrhea: A Double-Blind, Randomized Controlled Trial Investigating Inflammation and Hormonal Modulation. Nutrients 2025; 17:622. [PMID: 40004951 PMCID: PMC11858197 DOI: 10.3390/nu17040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Dysmenorrhea, categorized as primary (PD) or secondary (SD), significantly affects females during their reproductive years, impairing quality of life, performance, and social relationships. Alongside medical treatment, exercise and probiotics are complementary measures for managing PD and promoting health. This study examined the impact of probiotic supplementation and high-intensity interval training (HIIT) on PD severity, physiological modulation, and physical fitness. Methods: Participants, recruited according to the primary dysmenorrhea criteria, were divided into non-PD (control) and PD groups, with the PD group further classified into dysmenorrhea (Dysmen), dysmenorrhea with probiotics (DysmenPro), dysmenorrhea with exercise (DysmenEx), and dysmenorrhea with both (DysmenExPro). Interventions included 10 weeks of HIIT and probiotics. Pre- and post-intervention assessments included questionnaires on premenstrual and menstrual symptoms, physical fitness evaluations, and blood sample analyses for biochemical, hormonal, and prostaglandin levels. Results: HIIT significantly reduced premenstrual symptoms, menstrual distress, and pain severity, likely due to hormone (estradiol, prolactin, progesterone, cortisol) modulation and decreased inflammation (high-sensitivity C-reactive protein, PGE2, PGF2α). Cardiovascular endurance and explosive strength showed improvement through high-intensity interval training (HIIT), whereas probiotics had no significant effect on these aspects of physical fitness. While probiotics reduced premenstrual and menstrual distress symptoms, they had no notable impact on pain, inflammation, or hormone levels. Dysmenorrhea-related discomforts were correlated significantly with inflammation and hormones. Conclusions: The intervention strategy involving probiotics and HIIT exercise may be utilized as an alternative and complementary treatment to alleviate PD symptoms. Furthermore, this strategy could also be incorporated into educational health plans to promote women's health and potentially prevent gynecological disorders in the adolescent population.
Collapse
Affiliation(s)
- Min-Yi Yang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, No. 365, Ming-te Road, Peitou District, Taipei City 112303, Taiwan; (M.-Y.Y.); (H.-Y.C.)
| | - Hao-Yu Chen
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, No. 365, Ming-te Road, Peitou District, Taipei City 112303, Taiwan; (M.-Y.Y.); (H.-Y.C.)
| | - Chi-Hong Ho
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei City 11217, Taiwan;
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, No. 365, Ming-te Road, Peitou District, Taipei City 112303, Taiwan; (M.-Y.Y.); (H.-Y.C.)
| |
Collapse
|
13
|
Bertollo AG, Santos CF, Bagatini MD, Ignácio ZM. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Front Neurosci 2025; 19:1541075. [PMID: 39981404 PMCID: PMC11839829 DOI: 10.3389/fnins.2025.1541075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) and gut-brain axes are vital biological pathways in depression. The HPA axis regulates the body's stress response, and chronic stress can lead to overactivation of the HPA axis, resulting in elevated cortisol levels that contribute to neuronal damage, particularly in regions such as the hippocampus and prefrontal cortex, both of which are involved in mood regulation and mental disorders. In parallel, the gut-brain axis, a bidirectional communication network between the gut microbiota and the central nervous system, influences emotional and cognitive functions. Imbalances in gut microbiota can affect the HPA axis, promoting inflammation and increasing gut permeability. This allows endotoxins to enter the bloodstream, contributing to neuroinflammation and altering neurotransmitter production, including serotonin. Since the majority of serotonin is produced in the gut, disruptions in this pathway may be linked to depressive symptoms. This review explores the interplay between the HPA axis and the gut-brain axis in the context of depression.
Collapse
|
14
|
Pan B, Pan Y, Huang YS, Yi M, Hu Y, Lian X, Shi HZ, Wang M, Xiang G, Yang WY, Liu Z, Xia F. Efficacy and safety of gut microbiome-targeted treatment in patients with depression: a systematic review and meta-analysis. BMC Psychiatry 2025; 25:64. [PMID: 39838303 PMCID: PMC11753086 DOI: 10.1186/s12888-024-06438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The study aimed to comprehensively analyze and establish a framework for evaluating the efficacy of microbiome-targeted treatment (MTT) for depression. METHODS We searched PubMed, Embase, Cochrane Library, Web of Science, and the Chinese National Knowledge Infrastructure database for randomized controlled trials (RCTs) on MTT in treating depression until October 19, 2023. A meta-analysis was conducted to evaluate the efficacy and safety of MTT. Comprehensive subgroup analyses were undertaken to explore factors influencing MTT's efficacy in treating depression. This study was registered with PROSPERO (CRD42023483649). RESULTS The study selection process identified 51,570 studies, of which 34 met the inclusion criteria. The overall pooled estimates showed that MTT significantly improved depression symptoms (SMD -0.26, 95% CI [-0.32, -0.19], I2 = 54%) with acceptable safety. Subgroup analyses by geography showed that effectiveness was demonstrated in Asia (SMD -0.46, 95% CI [-0.56, -0.36], I2 = 36%), while no evidence of effectiveness was found in Europe (SMD -0.07, 95% CI [-0.19, 0.05], I2 = 55%), America (SMD -0.33, 95% CI [-0.67, 0.02], I2 = 60%), and Oceania (SMD 0.00, 95% CI [-0.18, 0.18], I2 = 0%). Besides, the efficacy was shown in depressed patients without comorbidities (SMD -0.31, 95% CI [-0.40, -0.22], I2 = 0%), whereas effectiveness was poor in those with digestive disorders, such as irritable bowel syndrome (SMD -0.37, 95% CI [-0.89, 0.16], I2 = 74%), chronic diarrhea (SMD -0.34, 95% CI [-0.73, 0.05]), and chronic constipation (SMD -0.23, 95% CI [-0.57, 0.11], I2 = 0%). In perinatal depressed patients, MTT was not effective (SMD 0.16, 95% CI [0.01, 0.31], I2 = 0%). It was found that < 8 weeks (SMD -0.33, 95% CI [-0.45, -0.22], I2 = 0%) and 8-12 weeks (SMD -0.34, 95% CI [-0.44, -0.23], I2 = 57%) MTT were effective, while > 12 weeks (SMD 0.02, 95% CI [-0.12, 0.17], I2 = 68%) MTT was ineffective. CONCLUSIONS Despite the overall effectiveness of MTT in treating depression and its acceptable safety profile, caution is warranted in drawing this conclusion due to limitations posed by the small sample size of included studies and heterogeneity. The efficacy of MTT for depression exhibits variation influenced by geography, patient comorbidities, and duration of administration.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Yiming Pan
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Yu-Song Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd 100, Shanghai, 200080, China
| | - Meng Yi
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
| | - Yuwei Hu
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Xiaoyu Lian
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Hui-Zhong Shi
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| | - Mingwei Wang
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Guifen Xiang
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd 100, Shanghai, 200080, China.
| | - Zhong Liu
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China.
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Fangfang Xia
- Department of Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
15
|
Feng C, Pan H, Zhang Y, Ye Z, Zhou Y, Zou H, Wang K. Electroacupuncture Alleviates Neuropathic Pain and Negative Emotion in Mice by Regulating Gut Microbiota. J Pain Res 2025; 18:341-352. [PMID: 39867538 PMCID: PMC11761536 DOI: 10.2147/jpr.s501642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
Background Neuropathic pain (NP) is a prevalent chronic condition frequently accompanied by adverse emotional states. Previous research has demonstrated the clinical efficacy of electroacupuncture (EA) in mitigating neuropathic pain and its associated mood disorders. Recent studies have underscored a correlation between gut microbiota and both NP and negative emotional states. Nevertheless, the relationship between the modulation of gut microbiota by EA and the amelioration of NP remains inadequately understood. Methods Mice were randomly assigned to one of the three groups: the Control (Con) group, the EA group, and the Chronic Constrictive Injury (CCI) group (n = 12 each). Starting from the 8th day post-CCI induction, the EA group underwent EA treatment once every two days, for a total of 20 sessions. To investigate the impact of gut microbiota on CCI mice, we employed a variety of methods, including various behavioral tests and 16S ribosomal DNA (rDNA) sequencing. Results The results indicated that EA significantly ameliorated mechanical allodynia and emotional dysfunction induced by CCI in mice. Analysis through 16S rDNA sequencing revealed that the gut microbiota of NP model mice exhibited a marked increase in diversity. However, EA could partially reverse changes in the diversity of gut microbiota. The abundance of Alloprevotella, A2, Roseburia, Muribaculum, Ruminiclostridium, and Rikenella was increased, and the abundance levels of Bacteroides were decreased at the genus level in CCI mice. Following EA treatment, the relative abundance of Alistipes, A2, Roseburia, and Rikenella was decreased, whereas the relative abundance of Alloprevotella and Parabacteroides was increased in EA group when compared with the CCI group. Conclusion These findings suggested that EA exerted a significant therapeutic effect on NP, potentially through modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chenchen Feng
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haotian Pan
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, People’s Republic of China
| | - Zi Ye
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yiren Zhou
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hong Zou
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Guo L, Ding Q, Li Q, Zheng D, Guo L, Cao X, Mou Q. Anxiety disorders and the gut microbiota: a bibliometric and visual analysis. Front Psychiatry 2025; 15:1517508. [PMID: 39902242 PMCID: PMC11788897 DOI: 10.3389/fpsyt.2024.1517508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Anxiety disorder is a common mental illness, yet its specific mechanisms remain unclear. Recent research has revealed a connection between gut microbiota and anxiety disorders. This study aims to assess the current global research landscape, highlight current topics of interest, and explore future research directions in the field of anxiety disorders and gut microbiota. Methods We extracted research review articles related to anxiety and gut microbiota from the Web of Science, covering the period from 2004 to 2023. We used VOSviewer 1.6.18.0, Scimago Graphica, and CiteSpace 6.2. R2 to visualize the contributions of countries, institutions, journals, authors, citations, and keywords in this field. Result A total of 1198 articles were included in this bibliometric analysis. Over the past two decades, both publications and citations have shown a steady increase. China, the United States, and Canada were the top three countries in terms of publication output. John Cryan from University College Cork had the highest number of publications and citation impact in this area of research. The journal Nutrients had the highest number of publications, while Brain Behavior and Immunity had the most citations. Key research themes in recent years have included anxiety, gut microbiota, depression, stress, gut-brain axis, and probiotics, all of which are likely to be important future research directions. Conclusion This analysis has key research areas and emerging trends, including risk factors, stressors, inflammatory responses, the gut-brain axis, and probiotics. These insights can guide researchers towards a more comprehensive understanding of recent advancements in this field, help shape future research directions and facilitate the identification of new therapeutic targets for anxiety disorder, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Linli Guo
- Department of Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qin Ding
- Department of West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
- Department of Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Li
- Department of Outpatient Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danping Zheng
- Department of West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linglin Guo
- Department of West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
- Department of Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaotao Cao
- Department of Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Mou
- Department of Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Zhang Z, Niu H, Qu Q, Guo D, Wan X, Yang Q, Mo Z, Tan S, Xiang Q, Tian X, Yang H, Liu Z. Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39745813 DOI: 10.1080/10408398.2024.2448562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The exploration of microorganisms in fermented products has become a pivotal area of scientific research, primarily due to their widespread availability and profound potential to improve human health. Among these, Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) stands out as a versatile lactic acid bacterium, prevalent across diverse ecological niches. Its appeal extends beyond its well-documented probiotic benefits to include the remarkable plasticity of its genome, which has captivated both scientific and industrial stakeholders. Despite this interest, substantial challenges persist in fully understanding and harnessing the potential of L. plantarum. This review aims to illuminate the probiotic attributes of L. plantarum, consolidate current advancements in gene editing technologies, and explore the multifaceted applications of both wild-type and genetically engineered strains.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haorui Niu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qu
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Tan
- Department of Biotechnology, Wuhan No. 2 High School, Wuhan, China
| | - Qian Xiang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Goel R, Gupta B, Satodiya VN, Vala AU, Dabhi H, Mittal A. Association of Gut-Microbiome and mental health and effects of probiotics on psychiatric disorders: A Meta-analysis and systematic review. Niger Med J 2025; 66:13-25. [PMID: 40309529 PMCID: PMC12038616 DOI: 10.71480/nmj.v66i1.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Background A correlation between gut microbiome and mental health has drawn significant attention lately. The effects of microbiome microorganisms and their byproducts on disease states represent a complex and dynamic field of study. The objective of this article is to review the association of gut microbes and mental health and the effects of probiotics on psychiatric disorders, if any. Methodology This meta-analysis was conducted using the PRISMA standards. We have compiled the most recent advancements in the field according to human research published in this Systematic review and meta-analysis. Results The forest plot analysis revealed that probiotics or probiotics combined with other intervention modalities did significantly reduce some extent of mental disorders in comparison to the control group (Standardized mean difference) SMD = 0.95, 95% Confidence Interval (CI): -6.52 to 8.42, P value< 0.01. Conclusion Overall, the reviewed literature supports the importance of gut microbiota-brain interaction in human mental illnesses, including the impact of probiotics on mental health outcomes and brain connection.
Collapse
Affiliation(s)
- Ramita Goel
- MMIMSR (Maharishi Markandeshwar Institute of Medical Science and Research), Mullana, Haryana, India
| | - Bhupesh Gupta
- MMIMSR (Maharishi Markandeshwar Institute of Medical Science and Research), Mullana, Haryana, India
| | | | | | - Hetal Dabhi
- Government Medical College, Bhavnagar, Gujarat, India
| | - Anshu Mittal
- MMIMSR (Maharishi Markandeshwar Institute of Medical Science and Research), Mullana, Haryana, India
| |
Collapse
|
19
|
Asad A, Kirk M, Zhu S, Dong X, Gao M. Effects of Prebiotics and Probiotics on Symptoms of Depression and Anxiety in Clinically Diagnosed Samples: Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutr Rev 2024:nuae177. [PMID: 39731509 DOI: 10.1093/nutrit/nuae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024] Open
Abstract
CONTEXT The use of prebiotics and probiotics as a treatment for psychiatric conditions has gained interest due to their potential to modulate the gut-brain axis. This review aims to assess the effectiveness of these interventions in reducing symptoms of depression and anxiety in psychiatric populations. OBJECTIVE The aim was to comprehensively review and appraise the effectiveness of prebiotic, probiotic, and synbiotic interventions in reducing clinical depression and anxiety symptoms. DATA SOURCES Systematic searches were conducted across Embase, Medline, PsycINFO, CINAHL, Cochrane Library, and Science Citation Index from database inception to May 22, 2023. DATA EXTRACTION Randomized controlled trials investigating prebiotic, probiotic, or synbiotic interventions for treating clinical depression or anxiety symptoms in clinical samples were included. Data were extracted on study characteristics, intervention details, and outcome measures. The Cochrane Collaboration Tool was used to assess the risk of bias. DATA ANALYSIS The standardized mean difference (SMD) was calculated using Hedge's g as the metric of effect size. A random-effects model was applied to estimate pooled effect sizes with 95% CIs. Subgroup analyses were performed based on study characteristics, methodological factors, and intervention types. Sensitivity analyses excluded studies with a high risk of bias. RESULTS Twenty-three RCTs involving 1401 patients met the inclusion criteria, with 20 trials providing sufficient data for meta-analysis. Of these, 18 trials investigated probiotics for depression, 9 trials assessed probiotics for anxiety, and 3 trials examined prebiotics for depression. Probiotics demonstrated a significant reduction in depression symptoms (SMD: -0.96; 95% CI: -1.31, -0.61) and a moderate reduction in anxiety symptoms (SMD: -0.59; 95% CI: -0.98, -0.19). Prebiotics did not show a significant effect on depression (SMD: -0.28; 95% CI: -0.61, 0.04). High heterogeneity was observed across studies, and subgroup analyses indicated that study duration and probiotic formulations contributed to the variation in effect sizes. CONCLUSION Probiotics showed substantial reductions in depression symptoms and moderate reductions in anxiety symptoms. Prebiotics showed a nonsignificant trend toward reducing depression. An adjunctive mental health treatment approach that diagnoses, monitors, and treats the gut microbiome alongside traditional pharmacological treatment holds promise for clinical practice. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023424136.
Collapse
Affiliation(s)
- Afrida Asad
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Megan Kirk
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Sufen Zhu
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Xue Dong
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Min Gao
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
20
|
Gholian MM, Babaei A, Zendeboodi F, Mortazavian AM, Koushki V. Ameliorating effect of psychobiotics and para-psychobiotics on stress: A review on in vivo and clinical studies and mechanism of action. Heliyon 2024; 10:e40338. [PMID: 39687128 PMCID: PMC11648110 DOI: 10.1016/j.heliyon.2024.e40338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic stress can negatively affect cognitive ability, behavioral functions, and gut microbiota balance. The gut microbiota communicates with the brain through the gut-brain axis to influence brain responses and behavior. The positive effects of psychobiotics and para-psychobiotics (viable and non-viable probiotics, respectively) on decreasing stress and stress-related disorders have been approved, previously. It has been suggested that the benefits of such probiotics are provided through different probable routes including the hypothalamic-pituitary-adrenal (HPA) axis, the immune system modulation, and the production of neurotransmitters. The recent review aims to explore the different potentials of psychobiotics and para-psychobiotics based on recent literature. The recent literature revealed that psychobiotics and para-psychobiotics could be considered as an alternative to psychotropic drugs which present dependence and side effects compared to chemical drugs.
Collapse
Affiliation(s)
- Mohammad Mahdi Gholian
- Department of Grape Processing and Preservation, Research Institute for Grapes and Raisin, Malayer University, Malayer, Iran
| | - Arash Babaei
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Fatemeh Zendeboodi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4741, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Koushki
- Department of Grape Processing and Preservation, Research Institute for Grapes and Raisin, Malayer University, Malayer, Iran
| |
Collapse
|
21
|
de Albuquerque Lemos DE, de Brito Alves JL, de Souza EL. Probiotic therapy as a promising strategy for gestational diabetes mellitus management. Expert Opin Biol Ther 2024; 24:1207-1219. [PMID: 39323363 DOI: 10.1080/14712598.2024.2409880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) has become the most common pregnancy medical complication, and its prevalence has increased in recent years. The GDM treatment primarily relies on adopting healthy eating habits, physical exercise, and insulin therapy. However, using probiotics to modulate the gut microbiota has been the subject of clinical trials as a promising therapeutic strategy for GDM management. AREAS COVERED Due to the adverse effects of gut dysbiosis in women with GDM, strategies targeting the gut microbiota to mitigate hyperglycemia, low-grade inflammation, and adverse pregnancy outcomes have been explored. Probiotic supplementation may improve glucose metabolism, lipid profile, oxidative stress, inflammation, and blood pressure in women with GDM. Furthermore, decreased fasting blood glucose, insulin resistance, and inflammatory markers, such as TNF-α and CRP, as well as increased total antioxidant capacity, lipid profile modulation, and improved blood pressure in women with GDM, are some of the important results reported in the available literature. EXPERT OPINION To fill the knowledge gap, further studies are needed focusing on modulating gut microbiota composition and metabolic activity and their systemic repercussions in GDM.
Collapse
Affiliation(s)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
22
|
Lee DY, Baek JS, Shin YJ, Kim DH. Alleviation of Immobilization Stress or Fecal Microbiota-Induced Insomnia and Depression-like Behaviors in Mice by Lactobacillus plantarum and Its Supplement. Nutrients 2024; 16:3711. [PMID: 39519543 PMCID: PMC11547846 DOI: 10.3390/nu16213711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Insomnia (sleeplessness) is a potential symptom of stress-induced depression/anxiety (DA), which induces TNF-α expression. Therefore, this study aimed to examine the effect of Lactobacillus (Lactiplantibacillus) plantarum P72, isolated as a strain suppressing lipopolysaccharide-induced expression of TNF-α in Caco2 cells, on DA and insomnia in immobilization stress (IS)- or cultured fecal microbiota (cFM)-treated mice. Oral administration of live or heat-killed P72 (hP72) reduced IS- or cFM-induced DA-like behaviors. They also reduced sleep latency time (SLT) and enhanced sleep duration (SLD). Additionally, P72 upregulated γ-aminobutyric acid (GABA), GABAA receptor α1, serotonin, and 5-HT1A receptor expression, which were downregulated by IS or cFM. Hempseed oil (HO) alone was ineffective against IS-induced DA- and insomnia-like behaviors, but its combination with P72 (PH) or hP72 (hPH) showed enhanced efficacy, reducing DA- and insomnia-like behaviors more strongly than P72 or HO alone. These also reduced the number of NF-κB-positive cells and the expression of TNF-α in the prefrontal cortex and colon. These results imply that P72 and its combination with HO can alleviate DA and insomnia by upregulating serotonergic and GABAergic systems through the suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (D.-Y.L.); (J.-S.B.); (Y.-J.S.)
| | - Ji-Su Baek
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (D.-Y.L.); (J.-S.B.); (Y.-J.S.)
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (D.-Y.L.); (J.-S.B.); (Y.-J.S.)
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (D.-Y.L.); (J.-S.B.); (Y.-J.S.)
- PBLbioLab, Inc., Seoul 03174, Republic of Korea
| |
Collapse
|
23
|
Venable KE, Lee CC, Francis J. Addressing Mental Health in Rural Settings: A Narrative Review of Blueberry Supplementation as a Natural Intervention. Nutrients 2024; 16:3539. [PMID: 39458533 PMCID: PMC11510281 DOI: 10.3390/nu16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Depression and anxiety are major public health issues; however, there is an unmet need for novel, effective, and accessible treatments, particularly in rural communities. Blueberries are an unexplored nutraceutical for these conditions due to their excellent nutritional profile, with particularly high levels of polyphenols and anthocyanins and benefits on mood, cognition, and health. Here, we present a narrative review of the literature concerning the etiology and treatments of major depressive disorder (MDD) and generalized anxiety disorder (GAD). In both animal and human studies, blueberry supplementation can ameliorate behavioral symptoms of both anxiety and depression. The mechanistic underpinnings of these behavioral improvements are not fully defined, but likely involve biochemical alterations in the gut-brain axis, including to inflammatory cytokines, reactive oxygen species, and growth factors. We also review the limitations of traditional therapies in rural settings. Finally, we assess the potential benefit of nutraceutical interventions, particularly blueberries, as novel therapeutics for these distinct, yet related mental health issues.
Collapse
Affiliation(s)
- Katy E. Venable
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.C.L.); (J.F.)
| | | | | |
Collapse
|
24
|
Yu B, Wang KY, Wang NR, Zhang L, Zhang JP. Effect of probiotics and paraprobiotics on patients with sleep disorders and sub-healthy sleep conditions: a meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1477533. [PMID: 39479010 PMCID: PMC11521871 DOI: 10.3389/fneur.2024.1477533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Background The microbial-gut-brain axis has received much attention in recent years, and regulating intestinal flora can effectively improve sleep disorders, which hints the potential effects of probiotics on sleep disorders, but lack of research evidence for meta-analysis. Therefore, this study aims to quantitatively evaluate the influence of probiotics on sleep disorders and sub-healthy sleep conditions. Methods Up to 2023, online databases including Pubmed, Embase, Cochrane library, Web of science have been searched for studies involving adults who consume probiotics or paraprobiotics in controlled trials, during which, changes in subjective and/or objective sleep parameters and contributing factors in sleeping quality are examined. We conduct a meta-analysis of 11 clinical randomized controlled studies. Results Probiotic supplementation improves sleep states to some extent in adults with sleep disorders and healthy adults with condition-induced sleep disorders (-0.34 [-0.56 to -0.13]; I 2 = 42.6%; p = 0.001). Meanwhile, subgroup analysis shows that the effect of probiotics on improving sleep disorders is influenced by other factors such as the health states of the subjects, the duration of the intervention, the type of strain, and the test criteria. Conclusion Probiotics and paraprobiotics have a significant positive effect on the sleep quality of adults with sleep disorders or sub-healthy sleep conditions. However, the therapeutic effects of probiotics on sleep problems need future additional trials. Systematic review registration https://inplasy.com/inplasy-2022-12-0066/, identifier 2022120066.
Collapse
Affiliation(s)
- Bei Yu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke-Yi Wang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning-Rui Wang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Ping Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Zhang H, Gao T, Zhao F, Wang N, Li Z, Qin X, Liu Y, Wang R. Integrated gut microbiome and metabolomic analyses elucidate the therapeutic mechanisms of Suanzaoren decoction in insomnia and depression models. Front Neurosci 2024; 18:1459141. [PMID: 39464422 PMCID: PMC11502468 DOI: 10.3389/fnins.2024.1459141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Insomnia and depression are psychiatric disorders linked to substantial health burdens. The gut microbiome and metabolomic pathways are increasingly recognized as key contributors to these conditions' pathophysiology. Suanzaoren Decoction (SZRD), a traditional Chinese herbal formulation, has demonstrated significant therapeutic benefits for both insomnia and depression. This study aims to elucidate the mechanistic effects of SZRD on insomnia and depression by integrating gut microbiome and metabolomic analyses and to assess the differential impacts of SZRD dosages. Using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS), we identified 66 chemical constituents within SZRD. Behavioral assays indicated that low-dose SZRD (LSZRD) significantly ameliorated insomnia symptoms in rat models, whereas high-dose SZRD (HSZRD) markedly improved depressive behaviors. 16S rRNA sequencing revealed that SZRD modulated gut microbiome dysbiosis induced by insomnia and depression, characterized by an increased abundance of short-chain fatty acid (SCFA)-producing genera. Metabolomic profiling demonstrated reduced plasma amino acid metabolites and disrupted γ-aminobutyric acid (GABA) and L-glutamic acid metabolism in the hippocampus of affected rats. SZRD administration restored fecal SCFA levels and ameliorated metabolic imbalances in both plasma and hippocampal tissues. These findings underscore the pivotal role of gut microbiome modulation and metabolic regulation in the therapeutic effects of SZRD, providing a scientific basis for its use in treating insomnia and depression.
Collapse
Affiliation(s)
- Hongxiong Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Taixiang Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feng Zhao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Nan Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhixuan Li
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ying Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
26
|
Zhang X, Yang Q, Huang J, Lin H, Luo N, Tang H. Association of the newly proposed dietary index for gut microbiota and depression: the mediation effect of phenotypic age and body mass index. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01912-x. [PMID: 39375215 DOI: 10.1007/s00406-024-01912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Gut microbiota and depression have garnered attention. The dietary index for gut microbiota (DI-GM) is a newly proposed index that reflects the diversity of gut microbiota, yet its association with depression remains unstudied. METHODS Data from the National Health and Nutrition Examination Survey were analyzed. Depression was assessed using Patient Health Questionnaire (PHQ-9). Dietary recall data were used to calculate the DI-GM (including components beneficial and unfavorable to gut microbiota). Multivariable weighted logistic and linear regression were employed to investigate the association of DI-GM with depression and total PHQ-9 score. The potential mediating role of phenotypic age and body mass index (BMI) was explored. Secondary analyses included subgroup analyses, restricted cubic spline (RCS), and multiple imputation. RESULTS A higher DI-GM and beneficial gut microbiota score were associated with a lower prevalence of depression (DI-GM: OR = 0.94, 95% CI = 0.89, 0.99; beneficial gut microbiota score: OR = 0.88, 95% CI = 0.82, 0.94) and lower total PHQ-9 score (DI-GM: β=-0.09, 95% CI=-0.14, -0.04; beneficial gut microbiota: β=-0.15, 95% CI=-0.21, -0.08). RCS indicated a non-linear relationship between DI-GM and depression. A significant mediating effect of phenotypic age (proportion of mediation: 19.81%, 95% CI: 12.86-63.00%) and BMI (proportion of mediation: 16.49%, 95% CI: 12.87-62.00%) was observed. CONCLUSIONS The newly proposed DI-GM was negatively associated with the prevalence of depression and total PHQ-9 score. Mediation analyses demonstrated a significant mediating effect of phenotypic age and BMI.
Collapse
Affiliation(s)
- Xuan Zhang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qinglong Yang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jingtao Huang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hanyuan Lin
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Nan Luo
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, Guangdong, China
| | - Haoxian Tang
- Shantou University Medical College, Shantou, Guangdong, China.
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
27
|
Xie S, Wang C, Song J, Zhang Y, Wang H, Chen X, Suo H. Lacticaseibacillus rhamnosus KY16 Improves Depression by Promoting Intestinal Secretion of 5-HTP and Altering the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21560-21573. [PMID: 39311539 DOI: 10.1021/acs.jafc.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Increasing research suggests a connection between gut microbiota and depressive disorders. Targeted changes to the intestinal flora may contribute to alleviating anxiety and depression. This study aimed to identify probiotics that could attenuate stress-induced abnormal behavior and explore potential mechanisms. The administration of LR.KY16 significantly reduced stress-induced abnormal behaviors and physiological dysfunction. The mechanism may be via regulating the structure of the intestinal microbiota in mice, increasing the abundance of Akkermansia muciniphila, prompting enterochromaffin cells to secrete 5-HTP in the gut, which enters the brain through the bloodstream and promotes the synthesis of 5-HT in the brain, and then activates brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) through the 5-HT1A receptor. In addition, LR.KY16 also increased the expression of claudin-7, occludin, and zonula occludens-1 (ZO-1) in the colon, inhibited microglial M1 polarization, and inhibited systemic inflammation.
Collapse
Affiliation(s)
- Shicai Xie
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
28
|
Xie F, Feng Z, Xu B. Metabolic Characteristics of Gut Microbiota and Insomnia: Evidence from a Mendelian Randomization Analysis. Nutrients 2024; 16:2943. [PMID: 39275260 PMCID: PMC11397146 DOI: 10.3390/nu16172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Insomnia is a common sleep disorder that significantly impacts individuals' sleep quality and daily life. Recent studies have suggested that gut microbiota may influence sleep through various metabolic pathways. This study aims to explore the causal relationships between the abundance of gut microbiota metabolic pathways and insomnia using Mendelian randomization (MR) analysis. This two-sample MR study used genetic data from the OpenGWAS database (205 gut bacterial pathway abundance) and the FinnGen database (insomnia-related data). We identified single nucleotide polymorphisms (SNPs) associated with gut bacterial pathway abundance as instrumental variables (IVs) and ensured their validity through stringent selection criteria and quality control measures. The primary analysis employed the inverse variance-weighted (IVW) method, supplemented by other MR methods, to estimate causal effects. The MR analysis revealed significant positive causal effects of specific carbohydrate, amino acid, and nucleotide metabolism pathways on insomnia. Key pathways, such as gluconeogenesis pathway (GLUCONEO.PWY) and TCA cycle VII acetate producers (PWY.7254), showed positive associations with insomnia (B > 0, p < 0.05). Conversely, pathways like hexitol fermentation to lactate, formate, ethanol and acetate pathway (P461.PWY) exhibited negative causal effects (B < 0, p < 0.05). Multivariable MR analysis confirmed the independent causal effects of these pathways (p < 0.05). Sensitivity analyses indicated no significant pleiotropy or heterogeneity, ensuring the robustness of the results. This study identifies specific gut microbiota metabolic pathways that play critical roles in the development of insomnia. These findings provide new insights into the biological mechanisms underlying insomnia and suggest potential targets for therapeutic interventions. Future research should further validate these causal relationships and explore how modulating gut microbiota or its metabolic products can effectively improve insomnia symptoms, leading to more personalized and precise treatment strategies.
Collapse
Affiliation(s)
- Fuquan Xie
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
29
|
Yang L, Wu Y, Yang J, Li Y, Zhao X, Liang T, Li L, Jiang T, Zhang T, Zhang J, Zhong H, Xie X, Wu Q. Lactiplantibacillus plantarum P470 Isolated from Fermented Chinese Chives Has the Potential to Improve In Vitro the Intestinal Microbiota and Biological Activity in Feces of Coronary Heart Disease (CHD) Patients. Nutrients 2024; 16:2945. [PMID: 39275259 PMCID: PMC11397641 DOI: 10.3390/nu16172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Traditional fermented foods are known to offer cardiovascular health benefits. However, the potential of fermented Chinese chives (FCC) in reducing coronary heart disease (CHD) remains unclear. This study employed anaerobic fermentation to investigate Lactiplantibacillus plantarum (L. plantarum) P470 from FCC. The results indicated that L. plantarum P470 enhanced hydroxyl radical scavenging and exhibited anti-inflammatory effects on RAW264.7 macrophages in the fecal fermentation supernatant of CHD patients. These effects were attributed to the modulation of gut microbiota and metabolites, including short-chain fatty acids (SCFAs). Specifically, L. plantarum P470 increased the abundance of Bacteroides and Lactobacillus while decreasing Escherichia-Shigella, Enterobacter, Veillonella, Eggerthella, and Helicobacter in CHD patient fecal samples. Furthermore, L. plantarum P470 regulated the biosynthesis of unsaturated fatty acids and linoleic acid metabolism. These findings suggest that L. plantarum P470 from FCC can improve the fecal physiological status in patients with CHD by modulating intestinal microbiota, promoting SCFA production, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tong Jiang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tiantian Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haojie Zhong
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
30
|
Prescott SL, Holton KF, Lowry CA, Nicholson JJ, Logan AC. The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NEUROSCI 2024; 5:354-377. [PMID: 39483285 PMCID: PMC11477939 DOI: 10.3390/neurosci5030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Over the last decade there has been increasing interest in the links between the consumption of ultra-processed foods and various neuropsychiatric disorders, aggression, and antisocial behavior. Neurolaw is an interdisciplinary field that seeks to translate the rapid and voluminous advances in brain science into legal decisions and policy. An enhanced understanding of biophysiological mechanisms by which ultra-processed foods influence brain and behavior allows for a historical reexamination of one of forensic neuropsychiatry's most famous cases-The People v. White and its associated 'Twinkie Defense'. Here in this Viewpoint article, we pair original court transcripts with emergent research in neurolaw, including nutritional neuroscience, microbiome sciences (legalome), pre-clinical mechanistic research, and clinical intervention trials. Advances in neuroscience, and related fields such as the microbiome, are challenging basic assumptions in the criminal justice system, including notions of universal free will. Recent dismissals of criminal charges related to auto-brewery syndrome demonstrate that courts are open to advances at the intersection of neuromicrobiology and nutritional neuroscience, including those that relate to criminal intent and diminished capacity. As such, it is our contention that experts in the neurosciences will play an increasing role in shaping research that underpins 21st-century courtroom discourse, policy, and decision-making.
Collapse
Affiliation(s)
- Susan L Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA;
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathleen F Holton
- Departments of Health Studies and Neuroscience, American University, Washington, DC 20016, USA;
| | - Christopher A Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Jeffrey J Nicholson
- Law and Government, Humber College Institute of Technology & Advanced Learning, Toronto, ON M9W 5L7, Canada;
| | - Alan C Logan
- Nova Institute for Health, Baltimore, MD 21231, USA;
| |
Collapse
|
31
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
32
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
33
|
Cheng J, Wu Q, Sun R, Li W, Wang Z, Zhou M, Yang T, Wang J, Lyu Y, Yue C. Protective effects of a probiotic-fermented germinated grain complex on neurotransmitters and sleep quality in sleep-deprived mice. Front Microbiol 2024; 15:1438928. [PMID: 39135872 PMCID: PMC11317376 DOI: 10.3389/fmicb.2024.1438928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Objective To explore the effects of probiotic fermentation products of germinated grains on cognitive and sleep improvement in mice with sleep deprivation induced by chlorophenylalanine (PCPA), and to provide theoretical and experimental basis for the development of natural products to alleviate insomnia. Methods ELISA and high-performance liquid chromatography (HPLC) were used to determine the contents of γ-aminobutyric acid and L-theanine in fermentation products. Open Field Test was used to analyze the changes of emotional behavior between groups before and after intervention. ELISA was used to analyze the changes of hypothalamic serotonin, GABA, glutamate, and serum interleukin 6. 16S rRNA sequencing was used to analyze the changes of intestinal flora before and after the intervention of compound fermentation products. LC-MS/MS was used to analyze the changes of intestinal SCFAs before and after the intervention. Results The content of GABA and L-theanine in 7 L fermentation products was 12.555 μmol/L (1.295 mg/L) and 0.471 mg/mL by ELISA. Compared with the PCPA-induced Model group, the sleep duration of the KEY group was statistically significant (p < 0.0001). Compared with the PCPA-induced Model group, the number of crossing the central lattice in the KEY group was significantly increased, and the number of grooming was significantly reduced (all p < 0.05), suggesting that the anxiety behavior of the mice was improved. In addition, this study found that the compound fermentation products could significantly increase the content of neurotransmitters such as 5-HT, GABA and Glu in the hypothalamus of mice, reduce the content of inflammatory factors such as IL-6, IL-1β and TNF-α in serum, regulate the structure of intestinal flora and increase the content of short-chain fatty acids. Conclusion Probiotic fermentation products of germinated grains can significantly improve sleep deprivation in PCPA mice, which may be related to regulating the levels of neurotransmitters and inflammatory factors, improving the structure of intestinal flora, and increasing the content of short-chain fatty acids. This study provides new candidates and research directions for the development of natural drugs to alleviate insomnia.
Collapse
Affiliation(s)
- Jiahua Cheng
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Qiqi Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Rui Sun
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Clinical Laboratory, Xi’an Daxing Hospital, Xi’an, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhuoling Wang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Tian Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Yan’an University, Yan’an, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| |
Collapse
|
34
|
Ye M, Ji F, Huang C, Li F, Zhang C, Zhang Y, Wang R, Ma K, Lu X, Wang H. A novel probiotic formula, BLLL, ameliorates chronic stress-induced depression-like behaviors in mice by reducing neuroinflammation and increasing neurotrophic factors. Front Pharmacol 2024; 15:1398292. [PMID: 39130643 PMCID: PMC11310130 DOI: 10.3389/fphar.2024.1398292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction: Probiotics have been recognized for their various biological activities, including antioxidant and anti-inflammatory properties. This study investigates the therapeutic effect of a novel probiotic formula, BLLL, consisting of Bifidobacterium breve, Lactobacillus plantarum, Lactobacillus paracasei, and Lactobacillus helveticus, on chronic stress-induced depression-like behaviors in mice. Methods: The BLLL formula or phosphate-buffered saline (PBS) was given orally at a dose of 2, 4, or 8 × 1010 CFU/kg once daily for 10 days in mice treated with chronic unpredictable stress (CUS) treated or vehicle. Depression-like behaviors were assessed using the sucrose preference test (SPT), the forced swimming test (FST), and the tail suspension test (TST). The mRNA and/or protein expression of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), IL-4, IL-10, and chitinase-3-like protein 3 (CHI3L1, also known as Ym-1), as well as the concentration of nitrite, malondialdehyde (MDA), glutathione (GSH), and brain-derived neurotrophic factor (BDNF) in the hippocampus and medial prefrontal cortex were examined. Results: The BLLL formula treatment at a dose of 8 × 1010 CFU/kg, but not at a dose of 2 or 4 × 1010 CFU/kg, improved CUS-induced depression-like behaviors in mice, as shown by the decrease in immobility time in the TST and FST and the increase in sucrose intake in the SPT. Further analysis revealed that BLLL treatment suppressed the CUS-induced increase in IL-1β, IL-6, and TNF-α mRNA and protein levels, as well as the CUS-induced decrease in IL-4, IL-10, and Ym-1 mRNA and/or protein levels in the hippocampus and medial prefrontal cortex. In addition, treatment with the BLLL formula countered the CUS-induced increase in nitrite and MDA levels and the CUS-induced decrease in GSH content and BDNF concentration in the hippocampus and medial prefrontal cortex. Conclusion: These results demonstrate that the novel probiotic formula BLLL ameliorates chronic stress-induced depression-like behavior in mice by suppressing neuroinflammation and oxido-nitrosative stress in the brain.
Collapse
Affiliation(s)
- Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Feng Ji
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | | | - Yu Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Runxin Wang
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Kai Ma
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
35
|
Logan AC, Prescott SL, LaFata EM, Nicholson JJ, Lowry CA. Beyond Auto-Brewery: Why Dysbiosis and the Legalome Matter to Forensic and Legal Psychology. LAWS 2024; 13:46. [DOI: 10.3390/laws13040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
International studies have linked the consumption of ultra-processed foods with a variety of non-communicable diseases. Included in this growing body of research is evidence linking ultra-processed foods to mental disorders, aggression, and antisocial behavior. Although the idea that dietary patterns and various nutrients or additives can influence brain and behavior has a long history in criminology, in the absence of plausible mechanisms and convincing intervention trials, the topic was mostly excluded from mainstream discourse. The emergence of research across nutritional neuroscience and nutritional psychology/psychiatry, combined with mechanistic bench science, and human intervention trials, has provided support to epidemiological findings, and legitimacy to the concept of nutritional criminology. Among the emergent research, microbiome sciences have illuminated mechanistic pathways linking various socioeconomic and environmental factors, including the consumption of ultra-processed foods, with aggression and antisocial behavior. Here in this review, we examine this burgeoning research, including that related to ultra-processed food addiction, and explore its relevance across the criminal justice spectrum—from prevention to intervention—and in courtroom considerations of diminished capacity. We use auto-brewery syndrome as an example of intersecting diet and gut microbiome science that has been used to refute mens rea in criminal charges. The legalome—microbiome and omics science applied in forensic and legal psychology—appears set to emerge as an important consideration in matters of criminology, law, and justice.
Collapse
Affiliation(s)
| | - Susan L. Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Erica M. LaFata
- Center for Weight, Eating, and Lifestyle Science, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA
| | | | - Christopher A. Lowry
- Departments of Integrative Physiology and Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
36
|
Baek JS, Lee DY, Han SW, Kim DH. A probiotic NVP1704 alleviates stress-induced sleeplessness/depression-like symptoms in mice by upregulating serotonergic and GABAergic systems and downregulating NF-κB activation. Lett Appl Microbiol 2024; 77:ovae065. [PMID: 38977897 DOI: 10.1093/lambio/ovae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Sleeplessness (insomnia) is a potential symptom of depression. A probiotic NVP1704 alleviates depression-like behavior and neuroinflammation in mice. Therefore, to understand whether NVP1704 could be effective against sleeplessness in vivo, we exposed immobilization stress (IS) in mice, then orally administered NVP1704 for 5 days, and assayed depression/anxiety-like behavior in the open field, elevated plus maze, and tail suspension tests, sleeping latency time, and sleep duration, euthanized then by exposure to CO2, and analyzed their related biomarkers. Oral administration of NVP1704 decreased IS-induced depression/anxiety-like behavior and sleeping latency time and increased IS-suppressed sleeping duration. NVP1704 increased IS-suppressed expression of γ-aminobutyric acid (GABA), GABAA receptor α1 (GABAARα1) and α2 subunits (GABAARα2), serotonin, 5-HT receptors (5-HT1AR and 5-HT1BR), and melatonin receptors (MT1R and MT2R) in the prefrontal cortex and thalamus. NVP1704 also increased the IS-suppressed GABAARα1-positive cell population in the prefrontal cortex and decreased IS-induced corticosterone, TNF-α, and IL-6 expression and the NF-κB+Iba1+ cell population in the brain and myeloperoxidase, TNF-α, and IL-6 expression and the NF-κB+CD11c+ cell population in the colon. Based on these findings, NVP1704 may alleviate depression/anxiety/sleeplessness-like behaviors through the upregulation of serotonergic and GABAergic systems and downregulation of NF-κB activation.
Collapse
Affiliation(s)
- Ji-Su Baek
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
37
|
Chen H, Zhang L, Li Y, Meng X, Chi Y, Liu M. Gut Microbiota and Its Metabolites: The Emerging Bridge Between Coronary Artery Disease and Anxiety and Depression? Aging Dis 2024; 16:1265-1284. [PMID: 39012662 PMCID: PMC12096936 DOI: 10.14336/ad.2024.0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
The increasing studies indicated that cardiovascular diseases, such as coronary artery disease (CAD), usually induce and exacerbate psychological problems, including anxiety and depression. These psychological issues are admitted as independent risk factors of heart disease as well. The interaction between CAD and anxiety and depression deteriorates the development and prognosis of CAD, which severely threatens the quality of life of patients. Although the existing mechanisms revealed the pathological relationship between CAD and anxiety and depression, there are few studies investigating the correlation between CAD and anxiety and depression from the aspect of gut microbiota (GM) and its metabolites. Therefore, in this review, we summarized whether GM and its metabolites are the emergent bridge between CAD and anxiety and depression. The results showed that there are four kinds of jointly up-regulated bacteria (i.e., Staphylococcus, Escherichia coli, Helicobacter pylori, and Shigella) and five kinds of jointly down-regulated bacteria (i.e., Prevotella, Lactobacillus, Faecalibacterium prausnitzii, Collinsella, and Bifidobacterium) in CAD as well as anxiety and depression. In addition, in CAD and anxiety and depression, the dysbiosis of the former four kinds of bacterium frequently leads to the outburst of inflammatory response, and the dysbiosis of the latter five kinds of bacterium is usually related to the metabolic abnormality of short-chain fatty acids, bile acids, and branched-chain amino acids. Therefore, we believe that GM and its metabolites act as the emergent bridge between CAD and anxiety and depression. The findings of this review provide novel insights and approaches for the clinical treatment of patients with both CAD and anxiety and depression.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Lijun Zhang
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yanwei Li
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- School of Clinical Medicine, Henan University, Kaifeng, China.
| | - Xiangxi Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yunpeng Chi
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Meiyan Liu
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Zhu R, Zhao X, Wu H, Zeng X, Wei J, Chen T. Psychobiotics Lactiplantibacillus plantarum JYLP-326: Antidepressant-like effects on CUMS-induced depressed mouse model and alleviation of gut microbiota dysbiosis. J Affect Disord 2024; 354:752-764. [PMID: 38537753 DOI: 10.1016/j.jad.2024.03.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Depression affects a significant portion of the global population and has emerged as one of the most debilitating conditions worldwide. Recent studies have explored the relationship between depression and the microbiota of the intestine, revealing potential avenues for effective treatment. METHODS To evaluate the potential alleviation of depression symptoms, we employed a depression C57BL/6 mice model induced by chronic unpredictable mild stress (CUMS). We administered Lactiplantibacillus plantarum JYLP-326 and conducted various animal behavior tests, including the open-field test (OFT), sucrose preference test (SPT), and tail-suspension test (TST). Additionally, we conducted immunohistochemistry staining and analyzed the hippocampal and colon parts of the mice. RESULTS The results of the behavior tests indicated that L. plantarum JYLP-326 alleviated spontaneous behavior associated with depression. Moreover, the treatment led to significant improvements in GFAP and Iba1, suggesting its potential neuroprotective effects. Analysis of the hippocampal region indicated that L. plantarum JYLP-326 administration upregulated p-TPH2, TPH2, and 5-HT1AR, while downregulating the expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. In the colon, the treatment inhibited the TLR4-MyD88-NF-κB pathway and increased the levels of occludin and ZO-1, indicating improved intestinal barrier function. Additionally, the probiotic demonstrated a regulatory effect on the HMGB1-RAGE-TLR4 signaling pathway. CONCLUSIONS Our findings demonstrate that L. plantarum JYLP-326 exhibits significant antidepressant-like effects in mice, suggesting its potential as a therapeutic approach for depression through the modulation of gut microbiota. However, further investigations and clinical trials are required to validate its safety and efficacy for human use.
Collapse
Affiliation(s)
- Ruizhe Zhu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuanqi Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Heng Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangdi Zeng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
39
|
Zhou F, Zhang Q, Zheng X, Shi F, Ma K, Ji F, Meng N, Li R, Lv J, Li Q. Antiaging Effects of Human Fecal Transplants with Different Combinations of Bifidobacterium bifidum LTBB21J1 and Lactobacillus casei LTL1361 in d-Galactose-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9818-9827. [PMID: 38647087 DOI: 10.1021/acs.jafc.3c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The feces of healthy middle-aged and old people were first transplanted into d-galactose-induced aging mice to construct humanized aging mice with gut microbiota (FMTC) to confirm the antiaging effect of probiotics produced from centenarians. The mouse model was then treated with centenarian-derived Bifidobacterium bifidum (FMTL), Lactobacillus casei (FMTB), and their mixtures (FMTM), and young mice were used as the control. Compared with the FMTC group, the results demonstrated that the probiotics and their combinations alleviated neuronal damage, increased antioxidant capacity, decreased inflammation, and enhanced cognitive and memory functions in aging mice. In the gut microbiota, the relative abundance of Lactobacillus, Ligilactobacillus, and Akkermansia increased and that of Desulfovibrio and Colidextribacter decreased in the FMTM group compared with that in the FMTC group. The three probiotic groups displayed significant changes in 15 metabolites compared with the FMTC group, with 4 metabolites showing increased expression and 11 metabolites showing decreased expression. The groups were graded as Control > FMTM > FMTB > FMTL > FMTC using a newly developed comprehensive quantitative scoring system that thoroughly analyzed the various indicators of this study. The beneficial antiaging effects of probiotics derived from centenarians were quantitatively described using a novel perspective in this study; it is confirmed that both probiotics and their combinations exert antiaging effects, with the probiotic complex group exhibiting a larger effect.
Collapse
Affiliation(s)
- Fan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qinren Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaohua Zheng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fengcui Shi
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong 250200, China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co.,Ltd, Jiangsu 214400, China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co.,Ltd, Jiangsu 214400, China
| | - Ning Meng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruiding Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jingwen Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
40
|
Mosquera FEC, Lizcano Martinez S, Liscano Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024; 16:1352. [PMID: 38732599 PMCID: PMC11085935 DOI: 10.3390/nu16091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.
Collapse
Affiliation(s)
- Freiser Eceomo Cruz Mosquera
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Santiago Lizcano Martinez
- Área Servicio de Alimentación, Área Nutrición Clínica Hospitalización UCI Urgencias Y Equipo de Soporte nutricional, Clínica Nuestra, Cali 760041, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
41
|
Bozzatello P, Novelli R, Montemagni C, Rocca P, Bellino S. Nutraceuticals in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2024; 25:4824. [PMID: 38732043 PMCID: PMC11084672 DOI: 10.3390/ijms25094824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Correct nutrition and diet are directly correlated with mental health, functions of the immune system, and gut microbiota composition. Diets with a high content of some nutrients, such as fibers, phytochemicals, and short-chain fatty acids (omega-3 fatty acids), seem to have an anti-inflammatory and protective action on the nervous system. Among nutraceuticals, supplementation of probiotics and omega-3 fatty acids plays a role in improving symptoms of several mental disorders. In this review, we collect data on the efficacy of nutraceuticals in patients with schizophrenia, autism spectrum disorders, major depression, bipolar disorder, and personality disorders. This narrative review aims to provide an overview of recent evidence obtained on this topic, pointing out the direction for future research.
Collapse
Affiliation(s)
- Paola Bozzatello
- Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (R.N.); (C.M.); (P.R.); (S.B.)
| | | | | | | | | |
Collapse
|
42
|
Xu MM, Qiu WH, Ma QY, Yu ZY, Yang WM, Hu TN, Guo Y, Chen XY. Improving precision management of anxiety disorders: a Mendelian randomization study targeting specific gut microbiota and associated metabolites. Front Microbiol 2024; 15:1380912. [PMID: 38655090 PMCID: PMC11035889 DOI: 10.3389/fmicb.2024.1380912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Background There is growing evidence of associations between the gut microbiota and anxiety disorders, where changes in gut microbiotas may affect brain function and behavior via the microbiota-gut-brain axis. However, population-level studies offering a higher level of evidence for causality are lacking. Our aim was to investigate the specific gut microbiota and associated metabolites that are closely related to anxiety disorders to provide mechanistic insights and novel management perspectives for anxiety disorders. Method This study used summary-level data from publicly available Genome-Wide Association Studies (GWAS) for 119 bacterial genera and the phenotype "All anxiety disorders" to reveal the causal effects of gut microbiota on anxiety disorders and identify specific bacterial genera associated with anxiety disorders. A two-sample, bidirectional Mendelian randomization (MR) design was deployed, followed by comprehensive sensitivity analyses to validate the robustness of results. We further conducted multivariable MR (MVMR) analysis to investigate the potential impact of neurotransmitter-associated metabolites, bacteria-associated dietary patterns, drug use or alcohol consumption, and lifestyle factors such as smoking and physical activity on the observed associations. Results Bidirectional MR analysis identified three bacterial genera causally related to anxiety disorders: the genus Eubacterium nodatum group and genus Ruminococcaceae UCG011 were protective, while the genus Ruminococcaceae UCG011 was associated with an increased risk of anxiety disorders. Further MVMR suggested that a metabolite-dependent mechanism, primarily driven by tryptophan, tyrosine, phenylalanine, glycine and cortisol, which is consistent with previous research findings, probably played a significant role in mediating the effects of these bacterial genera to anxiety disorders. Furthermore, modifying dietary pattern such as salt, sugar and processed meat intake, and adjusting smoking state and physical activity levels, appears to be the effective approaches for targeting specific gut microbiota to manage anxiety disorders. Conclusion Our findings offer potential avenues for developing precise and effective management approaches for anxiety disorders by targeting specific gut microbiota and associated metabolites.
Collapse
Affiliation(s)
- Ming-Min Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wen-Hui Qiu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qing-Yu Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yun Yu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wen-Miao Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Tian-Nuo Hu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiao-Yin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Dziedzic A, Maciak K, Bliźniewska-Kowalska K, Gałecka M, Kobierecka W, Saluk J. The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota-Gut-Brain Axis: A Literature Review. Nutrients 2024; 16:1054. [PMID: 38613087 PMCID: PMC11013390 DOI: 10.3390/nu16071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The microbiota-gut-brain (MGB) axis is a complex communication network linking the gut, microbiota, and brain, influencing various aspects of health and disease. Dysbiosis, a disturbance in the gut microbiome equilibrium, can significantly impact the MGB axis, leading to alterations in microbial composition and function. Emerging evidence highlights the connection between microbiota alterations and neurological and psychiatric disorders, including depression. This review explores the potential of psychobiotics in managing depressive disorders, emphasizing their role in restoring microbial balance and influencing the MGB axis. Psychobiotics exhibit positive effects on the intestinal barrier, immune response, cortisol levels, and the hypothalamic-pituitary-adrenal (HPA) axis. Studies suggest that probiotics may serve as an adjunct therapy for depression, especially in treatment-resistant cases. This review discusses key findings from studies on psychobiotics interventions, emphasizing their impact on the gut-brain axis and mental health. The increasing acceptance of the expanded concept of the MGB axis underscores the importance of microorganisms in mental well-being. As our understanding of the microbiome's role in health and disease grows, probiotics emerge as promising agents for addressing mental health issues, providing new avenues for therapeutic interventions in depressive disorders.
Collapse
Affiliation(s)
- Angela Dziedzic
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Karina Maciak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | | | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, Aleksandrowska 159, 91-229 Lodz, Poland;
| | - Weronika Kobierecka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Joanna Saluk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| |
Collapse
|
44
|
Dilmore AH, Kuplicki R, McDonald D, Kumar M, Estaki M, Youngblut N, Tyakht A, Ackermann G, Blach C, MahmoudianDehkordi S, Dunlop BW, Bhattacharyya S, Guinjoan S, Mandaviya P, Ley RE, Kaddaruh-Dauok R, Paulus MP, Knight R, Alzheimer Gut Microbiome Project Consortium. Medication Use is Associated with Distinct Microbial Features in Anxiety and Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585820. [PMID: 38562901 PMCID: PMC10983923 DOI: 10.1101/2024.03.19.585820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Megha Kumar
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Nicholas Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Tyakht
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
| | | | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | | - Pooja Mandaviya
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Rima Kaddaruh-Dauok
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
| | | | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
45
|
Toader C, Dobrin N, Costea D, Glavan LA, Covache-Busuioc RA, Dumitrascu DI, Bratu BG, Costin HP, Ciurea AV. Mind, Mood and Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2024; 25:3340. [PMID: 38542314 PMCID: PMC10970241 DOI: 10.3390/ijms25063340] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/30/2025] Open
Abstract
Psychiatric disorders represent a primary source of disability worldwide, manifesting as disturbances in individuals' cognitive processes, emotional regulation, and behavioral patterns. In the quest to discover novel therapies and expand the boundaries of neuropharmacology, studies from the field have highlighted the gut microbiota's role in modulating these disorders. These alterations may influence the brain's processes through the brain-gut axis, a multifaceted bidirectional system that establishes a connection between the enteric and central nervous systems. Thus, probiotic and prebiotic supplements that are meant to influence overall gut health may play an insightful role in alleviating psychiatric symptoms, such as the cognitive templates of major depressive disorder, anxiety, or schizophrenia. Moreover, the administration of psychotropic drugs has been revealed to induce specific changes in a microbiome's diversity, suggesting their potential utility in combating bacterial infections. This review emphasizes the intricate correlations between psychiatric disorders and the gut microbiota, mentioning the promising approaches in regard to the modulation of probiotic and prebiotic treatments, as well as the antimicrobial effects of psychotropic medication.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Neurosurgical Clinic, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iași, Romania;
| | - Daniel Costea
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
46
|
Merkouris E, Mavroudi T, Miliotas D, Tsiptsios D, Serdari A, Christidi F, Doskas TK, Mueller C, Tsamakis K. Probiotics' Effects in the Treatment of Anxiety and Depression: A Comprehensive Review of 2014-2023 Clinical Trials. Microorganisms 2024; 12:411. [PMID: 38399815 PMCID: PMC10893170 DOI: 10.3390/microorganisms12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Changes in the gut microbiome can affect cognitive and psychological functions via the microbiota-gut-brain (MGB) axis. Probiotic supplements are thought to have largely positive effects on mental health when taken in sufficient amounts; however, despite extensive research having been conducted, there is a lack of consistent findings on the effects of probiotics on anxiety and depression and the associated microbiome alterations. The aim of our study is to systematically review the most recent literature of the last 10 years in order to clarify whether probiotics could actually improve depression and anxiety symptoms. Our results indicate that the majority of the most recent literature suggests a beneficial role of probiotics in the treatment of depression and anxiety, despite the existence of a substantial number of less positive findings. Given probiotics' potential to offer novel, personalized treatment options for mood disorders, further, better targeted research in psychiatric populations is needed to address concerns about the exact mechanisms of probiotics, dosing, timing of treatment, and possible differences in outcomes depending on the severity of anxiety and depression.
Collapse
Affiliation(s)
- Ermis Merkouris
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Theodora Mavroudi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Daniil Miliotas
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
- 3rd Neurology Department, Aristotle University, 54124 Thessaloniki, Greece
| | - Aspasia Serdari
- Department of Child and Adolescent Psychiatry, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Foteini Christidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | | | - Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Konstantinos Tsamakis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Institute of Medical and Biomedical Education, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
47
|
dos Santos A, Galiè S. The Microbiota-Gut-Brain Axis in Metabolic Syndrome and Sleep Disorders: A Systematic Review. Nutrients 2024; 16:390. [PMID: 38337675 PMCID: PMC10857497 DOI: 10.3390/nu16030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Over recent decades, a growing body of evidence has emerged linking the composition of the gut microbiota to sleep regulation. Interestingly, the prevalence of sleep disorders is commonly related to cardiometabolic comorbidities such as diabetes, impaired lipid metabolism, and metabolic syndrome (MetS). In this complex scenario, the role of the gut-brain axis as the main communicating pathway between gut microbiota and sleep regulation pathways in the brain reveals some common host-microbial biomarkers in both sleep disturbances and MetS. As the biological mechanisms behind this complex interacting network of neuroendocrine, immune, and metabolic pathways are not fully understood yet, the present systematic review aims to describe common microbial features between these two unrelated chronic conditions. RESULTS This systematic review highlights a total of 36 articles associating the gut microbial signature with MetS or sleep disorders. Specific emphasis is given to studies evaluating the effect of dietary patterns, dietary supplementation, and probiotics on MetS or sleep disturbances. CONCLUSIONS Dietary choices promote microbial composition and metabolites, causing both the amelioration and impairment of MetS and sleep homeostasis.
Collapse
Affiliation(s)
- Adriano dos Santos
- Integrative Medicine Nutrition Department, ADS Vitality B.V., 2517 AS The Hague, The Netherlands
| | - Serena Galiè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milano, Italy;
| |
Collapse
|
48
|
Ma X, Shin JW, Cho JH, Han SW, Kim DH. IL-6 expression-suppressing Lactobacillus reuteri strains alleviate gut microbiota-induced anxiety and depression in mice. Lett Appl Microbiol 2024; 77:ovad144. [PMID: 38126116 DOI: 10.1093/lambio/ovad144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Fecal microbiota transplantation from patients with depression/inflammatory bowel disease (PDI) causes depression with gut inflammation in mice. Here, we investigated the effects of six Lactobacillus reuteri strains on brain-derived neurotropic factor (BDNF), serotonin, and interleukin (IL)-6 expression in neuronal or macrophage cells and PDI fecal microbiota-cultured microbiota (PcM)-induced depression in mice. Of these strains, L6 most potently increased BDNF and serotonin levels in corticosterone-stimulated SH-SY5Y and PC12 cells, followed by L3. L6 most potently decreased IL-6 expression in lipopolysaccharide (LPS)-stimulated macrophages. When L1 (weakest in vitro), L3, and L6 were orally administered in mice with PcM-induced depression, L6 most potently suppressed depression-like behaviors and hippocampal TNF-α and IL-6 expression and increased hippocampal serotonin, BDNF, 5HT7, GABAARα1, and GABABR1b expression, followed by L3 and L1. L6 also suppressed TNF-α and IL-6 expression in the colon. BDNF or serotonin levels in corticosterone-stimulated neuronal cells were negatively correlated with depression-related biomarkers in PcM-transplanted mice, while IL-6 levels in LPS-stimulated macrophage were positively correlated. These findings suggest that IL-6 expression-suppressing and BDNF/serotonin expression-inducing LBPs in vitro, particularly L6, may alleviate gut microbiota-involved depression with colitis in vivo.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Jeong-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Hyun Cho
- PB Department, NVP Healthcare, Inc., Suwon 16209, South Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, South Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| |
Collapse
|
49
|
Shah AB, Baiseitova A, Zahoor M, Ahmad I, Ikram M, Bakhsh A, Shah MA, Ali I, Idress M, Ullah R, Nasr FA, Al-Zharani M. Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024; 16:2431643. [PMID: 39582101 PMCID: PMC11591481 DOI: 10.1080/19490976.2024.2431643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
A rising corpus of research has shown the beneficial effects of probiotic Lactobacilli on human health, contributing to the growing popularity of these microorganisms in recent decades. The gastrointestinal and urinary tracts are home to these bacteria, which play a vital role in the microbial flora of both humans and animals. The Lactobacillus probiotic, i.e, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus bulgaricus, are highly recognized for their remarkable probiotic qualities. The current study aims to highlight the beneficial effects of probiotics in different health conditions, point out the research gap, and highlight the future directives for the safe use of these probiotics in several health issues. Most importantly, we have added the most recent literature related to the characteristics and usage of these probiotics in clinical and pre-clinical settings. Based on the above statement, we believe that this is the first report on the application of probiotics in human diseases. By providing a deeper knowledge of the complex functions these probiotics play in both human and animal health, our analysis will direct future studies and developments in this rapidly developing field.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Aizhamal Baiseitova
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Hayatabad, Pakistan
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murad Ali Shah
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Imdad Ali
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Bellaterra, Spain
- Department of Plant Biotechnology, Faculty of Pharmacy, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Muhammad Idress
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Önning G, Montelius C, Hillman M, Larsson N. Intake of Lactiplantibacillus plantarum HEAL9 Improves Cognition in Moderately Stressed Subjects: A Randomized Controlled Study. Nutrients 2023; 15:3466. [PMID: 37571403 PMCID: PMC10421450 DOI: 10.3390/nu15153466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The usage of probiotics has expanded beyond the areas of gut and immune health improvement. Several studies have shown the positive impact associated between probiotics and stress, cognition, and mood; a relationship referred to as the gut-brain axis. METHOD The aim of this exploratory study was to evaluate the effect of the probiotic strain Lactiplantibacillus plantarum HEAL9 (LPHEAL9) on the gut-brain axis in subjects with moderate stress. One hundred and twenty-nine subjects aged 21-52 years completed the study, randomized to consume either LPHEAL9 (n = 65) or placebo (n = 64) for 12 weeks. RESULTS Perceived stress and awakening cortisol were significantly reduced over time in both groups. A significant improvement in four cognition tests after consumption of LPHEAL9 compared to placebo was observed (rapid information processing test, numeric working memory test, paired associated learning, and word recall, p < 0.05). There was a tendency for a significantly better improvement in the LPHEAL9 group for three mood subscales (Confusion-Bewilderment, Anger-Hostility, and Depression-Dejection) and for fewer subjects with poor sleep in the LPHEAL9 group compared to placebo (p < 0.10). CONCLUSIONS Intake of LPHEAL9 significantly improved cognitive functions compared to the placebo, potentially by ameliorating aspects of mood and sleep.
Collapse
Affiliation(s)
- Gunilla Önning
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 222 00 Lund, Sweden
- Probi AB, 223 70 Lund, Sweden; (C.M.)
| | | | - Magnus Hillman
- Diabetes Research Laboratory, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden;
| | | |
Collapse
|