1
|
Del Campo J, Valsesia S, Nikly E, Ruiu R, Iacoviello A, Quaglino E, Cavallo F, Hannani D, Boucher E, Nicolas F, Le Vert A, Doro F. OligoDOM TM: a T-cell response-enhancing platform applied to cancer immunotherapy. Front Immunol 2025; 16:1549112. [PMID: 40160825 PMCID: PMC11951937 DOI: 10.3389/fimmu.2025.1549112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Background Neoepitopes derived (0) from tumors are attractive cancer immunotherapy targets, especially when combined with immune checkpoint inhibitors (CPIs). Vaccines using lipid nanoparticle (LNP)-encapsulated mRNA to deliver neoepitopes have shown encouraging results in patients and animal models, due to T cell-dependent responses. However, a low mutational burden is often a predictor of poor CPI response: the immune response against the few available mutations can be insufficient. An enhanced response to these few mutations could increase CPI efficacy. Here, we investigate the potential of oligoDOM™, a self-assembling sequence, to improve neoepitope immunogenicity and antitumor efficacy in murine cancer models. Methods LNP-formulated mRNA constructs encoding short epitope strings fused with oligoDOM™ were tested. Immune responses in mice were compared between constructs with oligoDOM™ and their controls. Specific T-cell responses against four tumor models (MC38, CT26, TC-1, B16-OVA) were measured using ELISpot in naïve mice. Two models (TC-1 and B16-OVA) were further selected for tumor growth efficacy testing. Results LNP-formulated neoepitope-oligoDOM™ mRNA constructs induced a significantly superior immune response as compared with the control groups in four neoantigens tested. This increased specific immunogenicity is linked to antitumor growth effects in murine syngeneic cancer models such as the B16-OVA and TC-1. The induced T-cell immune response significantly correlated with tumor growth rate reduction. Discussion Combining oligoDOM™ and LNP-mRNA technologies offers a versatile platform that allows for efficient short neoepitope strings delivery. This approach represents a feasible, potentially effective strategy for personalized cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Mice
- Cancer Vaccines/immunology
- Cancer Vaccines/administration & dosage
- Immunotherapy/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Female
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Nanoparticles
- Mice, Inbred C57BL
- RNA, Messenger/immunology
- RNA, Messenger/genetics
- RNA, Messenger/administration & dosage
- Disease Models, Animal
- Immune Checkpoint Inhibitors/pharmacology
- Liposomes
Collapse
Affiliation(s)
| | | | | | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Antonella Iacoviello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Dalil Hannani
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, University Grenoble Alpes, Grenoble, France
| | - Emilie Boucher
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, University Grenoble Alpes, Grenoble, France
| | | | | | | |
Collapse
|
2
|
Noble CCA, McDonald E, Nicholson S, Biering-Sørensen S, Pittet LF, Byrne AL, Croda J, Dalcolmo M, Lacerda MVG, Lucas M, Lynn DJ, Prat Aymerich C, Richmond PC, Warris A, Curtis N, Messina NL. Characterising the SARS-CoV-2 nucleocapsid (N) protein antibody response. J Infect 2025; 90:106436. [PMID: 39922387 DOI: 10.1016/j.jinf.2025.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVES SARS-CoV-2 nucleocapsid (N) protein antibodies can be used to identify the serological response to natural infection in those who have previously received a COVID-19 spike-based vaccine. Anti-N antibody responses can also be induced by inactivated whole SARS-CoV-2 virus vaccines, such as CoronaVac. We aimed to characterise antibody responses to the N protein following COVID-19 and following vaccination with CoronaVac. METHODS Using participants from an international randomised controlled trial, we investigated the evolution of anti-N antibody responses over time in two separate groups: adults following COVID-19, and in adults following vaccination with CoronaVac. RESULTS In 212 participants who had COVID-19, the anti-N seroconversion rate was 96.9% in those infected following an incomplete course of COVID-19 (spike-based) vaccinations and 88.2% in those infected following a complete course. Anti-N antibody indices were highly variable between participants, and higher in participants who had more severe COVID-19 symptoms, were aged ≥60 years, were unvaccinated, had comorbidities and those resident in Brazil. Most participants remained seropositive after 12 months. In 317 separate participants, the anti-N seroconversion rate was 63.5% following CoronaVac vaccination, with variable antibody indices. CONCLUSIONS Anti-N responses to COVID-19 and CoronaVac are highly variable but persistent. A prior complete course of COVID-19 spike-based vaccination reduced both anti-N seroconversion and antibody indices following COVID-19.
Collapse
Affiliation(s)
- C C A Noble
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - E McDonald
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - S Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| | - S Biering-Sørensen
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - L F Pittet
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Immunology, Vaccinology, Rheumatology and Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - A L Byrne
- St Vincent's Hospitals Sydney, Darlinghurst, New South Wales, Australia; Partners in Health, Socios En Salud, Peru; Thoracic Society of Australia & New Zealand (NSW/ACT Branch), Australia.
| | - J Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, Brazil; Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
| | - M Dalcolmo
- Centro de Referência Professor Hélio Fraga, ENSP/FIOCRUZ (Fundação Oswaldo Cruz), Rio de Janeiro, Brazil.
| | - M V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas & Maria Deane, Oswaldo Cruz Foundation Ministry of Health, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA.
| | - M Lucas
- Department of Immunology, Pathwest, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia; Department of Immunology, Perth Children's Hospital, Nedlands, Western Australia, Australia; Department of Immunology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia.
| | - D J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia.
| | - C Prat Aymerich
- University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, the Netherlands; ECRAID, European Clinical Research Alliance on Infectious Diseases, Utrecht, the Netherlands.
| | - P C Richmond
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia; Department of Immunology and General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia.
| | - A Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom; Department of Infectious Diseases, Great Ormond Street Hospital, London, United Kingdom.
| | - N Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia.
| | - N L Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Kim J, Kachko A, Selvaraj P, Rotstein D, Stauft CB, Rajasagi N, Zhao Y, Wang T, Major M. Combined immunization with SARS-CoV-2 spike and SARS-CoV nucleocapsid protects K18-hACE2 mice but increases lung pathology. NPJ Vaccines 2025; 10:30. [PMID: 39948345 PMCID: PMC11825953 DOI: 10.1038/s41541-025-01085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Vaccines against SARS-CoV-2 have targeted the spike protein and have been successful at preventing disease. However, with the emergence of variants, spike-specific vaccines become less effective. The nucleocapsid protein is relatively conserved among variants of SARS-CoV-2 and is a candidate for addition to spike in next generation vaccines for the induction of T cell protection. Previous studies on SARS-CoV have suggested that the induction of an immune response to nucleocapsid could result in enhanced disease. Using the K18-hACE2 mouse model we investigated immunization with a variant nucleocapsid, from SARS CoV (N1) alone or in combination with spike from SARS-CoV-2 and compared this to nucleocapsid from SARS-CoV-2 (N2). The spike-nucleocapsid-based vaccines conferred protection against SARS-CoV-2 in lungs and brain and decreased lung pathology compared to control mice. However, higher T and B cell immune responses were observed in N1-immunized mice prior to challenge, whether delivered alone or with spike, and immunization with N1 resulted in increased lung pathology compared to immunization with spike or N2. These findings suggest that spike-nucleocapsid-based vaccines are safe and effective, even with variant nucleocapsid sequences, but that viral control in this mouse model may be associated with higher lung pathology, compared to spike immunization alone, due to the immunogenic qualities of the nucleocapsid antigen.
Collapse
Affiliation(s)
- Jaekwan Kim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Alla Kachko
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David Rotstein
- Division of Food Compliance, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, USA
| | - Charles Brandon Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Naveen Rajasagi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yangqing Zhao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tony Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
4
|
Suzuki Okutani M, Okamura S, Gis T, Sasaki H, Lee S, Kashiwabara A, Goto S, Matsumoto M, Yamawaki M, Miyazaki T, Nakagawa T, Ikawa M, Kamitani W, Takekawa S, Yamanishi K, Ebina H. Immunogenicity and safety of a live-attenuated SARS-CoV-2 vaccine candidate based on multiple attenuation mechanisms. eLife 2025; 13:RP97532. [PMID: 39932490 PMCID: PMC11813227 DOI: 10.7554/elife.97532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
mRNA vaccines against SARS-CoV-2 were rapidly developed and were effective during the pandemic. However, some limitations remain to be resolved, such as the short-lived induced immune response and certain adverse effects. Therefore, there is an urgent need to develop new vaccines that address these issues. While live-attenuated vaccines are a highly effective modality, they pose a risk of adverse effects, including virulence reversion. In the current study, we constructed a live-attenuated vaccine candidate, BK2102, combining naturally occurring virulence-attenuating mutations in the NSP14, NSP1, spike, and ORF7-8 coding regions. Intranasal inoculation with BK2102 induced humoral and cellular immune responses in Syrian hamsters without apparent tissue damage in the lungs, leading to protection against a SARS-CoV-2 D614G and an Omicron BA.5 strains. The neutralizing antibodies induced by BK2102 persisted for up to 364 days, which indicated that they confer long-term protection against infection. Furthermore, we confirmed the safety of BK2102 using transgenic (Tg) mice expressing human ACE2 (hACE2) that are highly susceptible to SARS-CoV-2. BK2102 did not kill the Tg mice, even when virus was administered at a dose of 106 plaque-forming units (PFUs), while 102 PFU of the D614G strain or an attenuated strain lacking the furin cleavage site of the spike was sufficient to kill mice. These results suggest that BK2102 is a promising live-vaccine candidate strain that confers long-term protection without significant virulence.
Collapse
MESH Headings
- Animals
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/pathogenicity
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mesocricetus
- Humans
- Mice, Transgenic
- Immunogenicity, Vaccine
- Cricetinae
- Female
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Mie Suzuki Okutani
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Tang Gis
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hitomi Sasaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Suni Lee
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Akiho Kashiwabara
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Simon Goto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mai Matsumoto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mayuko Yamawaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Toshiaki Miyazaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Tatsuya Nakagawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of MedicineMaebashiJapan
| | - Shiro Takekawa
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Koichi Yamanishi
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for Microbial Diseases, Osaka UniversitySuitaJapan
| |
Collapse
|
5
|
Chentoufi AA, Ulmer JB, BenMohamed L. Antigen Delivery Platforms for Next-Generation Coronavirus Vaccines. Vaccines (Basel) 2024; 13:30. [PMID: 39852809 PMCID: PMC11769099 DOI: 10.3390/vaccines13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is in its sixth year and is being maintained by the inability of current spike-alone-based COVID-19 vaccines to prevent transmission leading to the continuous emergence of variants and sub-variants of concern (VOCs). This underscores the critical need for next-generation broad-spectrum pan-Coronavirus vaccines (pan-CoV vaccine) to break this cycle and end the pandemic. The development of a pan-CoV vaccine offering protection against a wide array of VOCs requires two key elements: (1) identifying protective antigens that are highly conserved between passed, current, and future VOCs; and (2) developing a safe and efficient antigen delivery system for induction of broad-based and long-lasting B- and T-cell immunity. This review will (1) present the current state of antigen delivery platforms involving a multifaceted approach, including bioinformatics, molecular and structural biology, immunology, and advanced computational methods; (2) discuss the challenges facing the development of safe and effective antigen delivery platforms; and (3) highlight the potential of nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) as the platform that is well suited to the needs of a next-generation pan-CoV vaccine, such as the ability to induce broad-based immunity and amenable to large-scale manufacturing to safely provide durable protective immunity against current and future Coronavirus threats.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Sergeeva MV, Vasilev K, Romanovskaya-Romanko E, Yolshin N, Pulkina A, Shamakova D, Shurygina AP, Muzhikyan A, Lioznov D, Stukova M. Mucosal Immunization with an Influenza Vector Carrying SARS-CoV-2 N Protein Protects Naïve Mice and Prevents Disease Enhancement in Seropositive Th2-Prone Mice. Vaccines (Basel) 2024; 13:15. [PMID: 39852794 PMCID: PMC11769390 DOI: 10.3390/vaccines13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame. Methods: We generated several FluVec-N recombinant vectors by reverse genetics and confirmed the vector's genetic stability, antigen expression in vitro, attenuation, and immunogenicity in a mouse model. We tested the protective potential of FluVec-N intranasal immunization in naïve mice and seropositive Th2-prone mice, primed with aluminium-adjuvanted inactivated SARS-CoV-2. Immune response in immunized and challenged mice was analyzed through serological methods and flow cytometry. Results: Double intranasal immunization of naïve mice with FluVec-N reduced weight loss and viral load in the lungs following infection with the SARS-CoV-2 beta variant. Mice primed with alum-adjuvanted inactivated coronavirus experienced substantial early weight loss and eosinophilia in the lungs during infection, demonstrating signs of enhanced disease. A single intranasal boost immunization with FluVec-N prevented the disease enhancement in primed mice by modulating the local immune response. Protection was associated with the formation of specific IgA and the early activation of virus-specific effector and resident CD8+ lymphocytes in mouse lungs. Conclusions: Our study supports the potential of immunization with influenza vector vaccines to prevent respiratory diseases and associated immunopathology.
Collapse
Affiliation(s)
- Mariia V. Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| | | | | | | | | | | | | | | | | | - Marina Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| |
Collapse
|
7
|
Paradis NJ, Wu C. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Virus Evol 2024; 10:veae089. [PMID: 39584063 PMCID: PMC11584280 DOI: 10.1093/ve/veae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately identifying mutations under beneficial selection in viral genomes is crucial for understanding their molecular evolution and pathogenicity. Traditional methods like the Ka/Ks test, which assesses non-synonymous (Ka) versus synonymous (Ks) substitution rates, assume that synonymous substitutions at synonymous sites are neutral and thus is equal to the mutation rate (µ). Yet, evidence suggests that synonymous sites in translated regions (TRs) and untranslated regions (UTRs) can be under strong beneficial selection (Ks > µ) and strongly conserved (Ks ≈ 0), leading to false predictions of adaptive mutations from codon-by-codon Ka/Ks analysis. Our previous work used a relative substitution rate test (c/µ, c: substitution rate in UTR/TR, and µ: mutation rate) to identify adaptive mutations in SARS-CoV-2 genome without the neutrality assumption of the synonymous sites. This study refines the c/µ test by optimizing µ value, leading to a smaller set of nucleotide and amino acid sites under beneficial selection in both UTR (11 sites with c/µ > 3) and TR (69 nonsynonymous sites: c/µ > 3 and Ka/Ks > 2.5; 107 synonymous sites: Ks/µ > 3). Encouragingly, the top two mutations in UTR and 70% of the top nonsynonymous mutations in TR had reported or predicted effects in the literature. Molecular modeling of top adaptive mutations for some critical proteins (S, NSP11, and NSP5) was carried out to elucidate the possible molecular mechanism of their adaptivity.
Collapse
Affiliation(s)
- Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
- Department of Biological & Biomedical Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| |
Collapse
|
8
|
Rabdano SO, Ruzanova EA, Vertyachikh AE, Teplykh VA, Emelyanova AB, Rudakov GO, Arakelov SA, Pletyukhina IV, Saveliev NS, Lukovenko AA, Fakhretdinova LN, Safi AS, Zhirenkina EN, Polyakova IN, Belozerova NS, Klykov VV, Savelieva AP, Ekimov AA, Pokachalov KV, Merkulov VA, Yudin SM, Kruchko DS, Berzin IA, Skvortsova VI. N-protein vaccine is effective against COVID-19: Phase 3, randomized, double-blind, placebo-controlled clinical trial. J Infect 2024; 89:106288. [PMID: 39341405 DOI: 10.1016/j.jinf.2024.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Despite the success of first-generation COVID-19 vaccines targeting the spike (S) protein, emerging SARS-CoV-2 variants have led to immune escape, reducing the efficacy of these vaccines. Additionally, some individuals are unable to mount an effective immune response to S protein-based vaccines. This has created a need for alternative vaccine strategies that are less susceptible to mutations and capable of providing broad and durable protection. This study aimed to evaluate the efficacy and safety of a novel COVID-19 vaccine based on the full-length recombinant nucleocapsid (N) protein of SARS-CoV-2. METHODS We conducted a prospective, multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial (NCT05726084) in Russia. Participants (n = 5229) were adults aged 18 years and older, with a BMI of 18.5-30 kg/m², and without significant clinical abnormalities. They were randomized in a 2:1 ratio to receive a single intramuscular dose of either the N protein-based vaccine (50 µg) or placebo. Randomization was done through block randomization, and masking was ensured by providing visually identical formulations of vaccine and placebo. The primary outcome was the incidence of symptomatic COVID-19 confirmed by PCR more than 15 days after vaccination within a 180-day observation period, analyzed on an intention-to-treat basis. FINDINGS Between May 18, 2023, and August 9, 2023, 5229 participants were randomized, with 3486 receiving the vaccine and 1743 receiving the placebo. Eight cases of PCR-confirmed symptomatic COVID-19 occurred in the vaccine group (0.23%) compared to 27 cases in the placebo group (1.55%), yielding a vaccine efficacy of 85.2% (95% CI: 67.4-93.3; p < 0.0001). Adverse events were mostly mild and included local injection site reactions. There were no vaccine-related serious adverse events. INTERPRETATION The N protein-based COVID-19 vaccine demonstrated significant efficacy and a favorable safety profile, suggesting it could be a valuable addition to the global vaccination effort, particularly in addressing immune escape variants and offering an alternative for those unable to respond to S protein-based vaccines. These results support the continued development and potential deployment of N protein-based vaccines in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia.
| | - Ellina A Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Anastasiya E Vertyachikh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Valeriya A Teplykh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Alla B Emelyanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - German O Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Sergei A Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Iuliia V Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Nikita S Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Anna A Lukovenko
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Liliya N Fakhretdinova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Ariana S Safi
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Ekaterina N Zhirenkina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Irina N Polyakova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Natalia S Belozerova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Vladislav V Klykov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Arina P Savelieva
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Aleksey A Ekimov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Konstantin V Pokachalov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), Saint Petersburg, Russia
| | - Vadim A Merkulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Evaluation and Control of Finished Pharmaceutical Products, Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergei M Yudin
- Centre for Strategic Planning of FMBA of Russia Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russia
| | | | - Igor A Berzin
- Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | |
Collapse
|
9
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
10
|
Lee P, Kim J, Oh H, Kim CU, Jeong AY, Lee MS, Jang MS, Hong JJ, Park JE, Kim DJ. Coronavirus nucleocapsid-based vaccine provides partial protection against hetero-species coronavirus in murine models. Antiviral Res 2024; 231:105991. [PMID: 39181216 DOI: 10.1016/j.antiviral.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Most coronavirus vaccines focus on the spike (S) antigen, but the frequent mutations in S raise concerns about the vaccine efficacy against new variants. Although additional antigens with conserved sequences are have been tested, the extent to which these vaccines can provide immunity against different coronavirus species remains unclear. In this study, we assessed the potential of nucleocapsid (N) as a coronavirus vaccine antigen. Immunization with MERS-CoV N induced robust immune responses, providing significant protection against MERS-CoV. Notably, MERS-CoV N elicited cross-reactive T cell responses to SARS-CoV-2 N and significantly reduced lung inflammation following a SARS-CoV-2 challenge in the transient hACE2 mouse model. However, in K18-hACE transgenic mice, the vaccine showed limited protection. Collectively, our findings suggest that coronavirus N can be an effective vaccine antigen against homologous viruses, but its efficacy may vary across different coronaviruses, highlighting the need for further research on pan-coronavirus vaccines using conserved antigens.
Collapse
Affiliation(s)
- Pureum Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | - Jihee Kim
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea
| | - Hanseul Oh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Veterinary Medicine, Cheongju, South Korea
| | - Chang-Ung Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ahn Young Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Princeton University, Princeton, NJ, USA
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | | | - Jung Joo Hong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| | - Jung-Eun Park
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea.
| | - Doo-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Medicine, Cheongju, South Korea; Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, South Korea.
| |
Collapse
|
11
|
Ramírez MA, Loaiza RA, Martínez-Balboa Y, Bruneau N, Ramírez E, González PA, Bueno SM, Kalergis AM. Co-administration of recombinant BCG and SARS-CoV-2 proteins leads to robust antiviral immunity. Vaccine 2024; 42:126203. [PMID: 39178767 DOI: 10.1016/j.vaccine.2024.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
SARS-CoV-2 is the causative virus of COVID-19, which has been responsible for millions of deaths worldwide since its discovery. After its emergence, several variants have been identified that challenge the efficacy of the available vaccines. Previously, we generated and evaluated a vaccine based on a recombinant Bacillus Calmette-Guérin (rBCG) expressing the nucleoprotein (N) of SARS-CoV-2 (rBCG-N-SARS-CoV-2). This protein is a highly immunogenic antigen and well conserved among variants. Here, we tested the administration of this vaccine with recombinant N and viral Spike proteins (S), or Receptor Binding Domain (RBD-Omicron variant), plus a booster with the recombinant proteins only, as a novel and effective strategy to protect against SARS-CoV-2 variants. METHODS BALB/c mice were immunized with rBCG-N-SARS-CoV-2 and recombinant SARS-CoV-2 proteins in Alum adjuvant, followed by a booster with recombinant proteins to assess the safety and virus-specific cellular and humoral immune responses against SARS-CoV-2 antigens. RESULTS Immunization with rBCG-N-SARS-CoV-2 + recombinant proteins as a vaccine was safe and promoted the activation of CD4+ and CD8+ T cells that recognize SARS-CoV-2 N, S, and RBD antigens. These cells were able to secrete cytokines with an antiviral profile. This immunization strategy also induced robust titers of specific antibodies against N, S, and RBD and neutralizing antibodies of SARS-CoV-2. CONCLUSIONS Co-administration of the rBCG-N-SARS-CoV-2 vaccine with recombinant SARS-CoV-2 proteins could be an effective alternative to control particular SARS-CoV-2 variants. Due to its safety and capacity to induce virus-specific immune responses, we believe the rBCG-N-SARS-CoV-2 + Proteins vaccine could be an attractive candidate to protect against this virus, especially in newborns.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Mice
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- BCG Vaccine/immunology
- BCG Vaccine/administration & dosage
- BCG Vaccine/genetics
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunization, Secondary
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunity, Humoral
- Recombinant Proteins/immunology
- Recombinant Proteins/genetics
- Coronavirus Nucleocapsid Proteins/immunology
- Coronavirus Nucleocapsid Proteins/genetics
- CD8-Positive T-Lymphocytes/immunology
- Phosphoproteins/immunology
- Phosphoproteins/genetics
- Adjuvants, Immunologic/administration & dosage
- Immunity, Cellular
Collapse
Affiliation(s)
- Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Yohana Martínez-Balboa
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Nicole Bruneau
- Sección Virus Oncogénicos y Sub-Departamento Enfermedades Virales, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Eugenio Ramírez
- Sección Virus Oncogénicos y Sub-Departamento Enfermedades Virales, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
López-Muñoz AD, Yewdell JW. Cell surface RNA virus nucleocapsid proteins: a viral strategy for immunosuppression? NPJ VIRUSES 2024; 2:41. [PMID: 40295865 PMCID: PMC11721653 DOI: 10.1038/s44298-024-00051-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/06/2024] [Indexed: 04/30/2025]
Abstract
Nucleocapsid protein (N), or nucleoprotein (NP) coats the genome of most RNA viruses, protecting and shielding RNA from cytosolic RNAases and innate immune sensors, and plays a key role in virion biogenesis and viral RNA transcription. Often one of the most highly expressed viral gene products, N induces strong antibody (Ab) and T cell responses. N from different viruses is present on the infected cell surface in copy numbers ranging from tens of thousands to millions per cell, and it can be released to bind to uninfected cells. Surface N is targeted by Abs, which can contribute to viral clearance via Fc-mediated cellular cytotoxicity. Surface N can modulate host immunity by sequestering chemokines (CHKs), extending prior findings that surface N interferes with innate and adaptive immunity. In this review, we consider aspects of surface N cell biology and immunology and describe its potential as a target for anti-viral intervention.
Collapse
Affiliation(s)
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID (NIH), Bethesda, MD, USA.
| |
Collapse
|
13
|
Schulte B, Richter E, Büning A, Baum M, Breuer A, Zorn J, König J, Geiger M, Eschbach-Bludau M, Heuser J, Zölzer D, Korencak M, Hollstein R, Beins E, Emmert D, Aldabbagh S, Eis-Hübinger AM, Streeck H. A longitudinal study on SARS-CoV-2 seroconversion, reinfection and neutralisation spanning several variant waves and vaccination campaigns, Heinsberg, Germany, April 2020 to November 2022. Euro Surveill 2024; 29:2300659. [PMID: 38940003 PMCID: PMC11212458 DOI: 10.2807/1560-7917.es.2024.29.26.2300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 06/29/2024] Open
Abstract
BackgroundSince its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.AimTo examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.MethodsUtilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age: 50 years, range: 2-103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.ResultsSARS-CoV-2 spike (S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+ CD4+ T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.ConclusionInfection and/or vaccination did not provide the population with cross-protection against Omicron variants.
Collapse
Affiliation(s)
- Bianca Schulte
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Enrico Richter
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Antonia Büning
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Maximilian Baum
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Annika Breuer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Jasmin Zorn
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Julia König
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Melanie Geiger
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | | | - Johanna Heuser
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dominik Zölzer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Marek Korencak
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Ronja Hollstein
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Eva Beins
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dorian Emmert
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Souhaib Aldabbagh
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | | | - Hendrik Streeck
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
14
|
Mendoza-Ramírez NJ, García-Cordero J, Shrivastava G, Cedillo-Barrón L. The Key to Increase Immunogenicity of Next-Generation COVID-19 Vaccines Lies in the Inclusion of the SARS-CoV-2 Nucleocapsid Protein. J Immunol Res 2024; 2024:9313267. [PMID: 38939745 PMCID: PMC11208798 DOI: 10.1155/2024/9313267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.
Collapse
Affiliation(s)
- Noe Juvenal Mendoza-Ramírez
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of Health, Rockville, MD, USA
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina MolecularCINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
15
|
Clever S, Limpinsel L, Meyer zu Natrup C, Schünemann LM, Beythien G, Rosiak M, Hülskötter K, Gregor KM, Tuchel T, Kalodimou G, Freudenstein A, Kumar S, Baumgärtner W, Sutter G, Tscherne A, Volz A. Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection. Viruses 2024; 16:417. [PMID: 38543782 PMCID: PMC10974247 DOI: 10.3390/v16030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
The sudden emergence of SARS-CoV-2 demonstrates the need for new vaccines that rapidly protect in the case of an emergency. In this study, we developed a recombinant MVA vaccine co-expressing SARS-CoV-2 prefusion-stabilized spike protein (ST) and SARS-CoV-2 nucleoprotein (N, MVA-SARS-2-ST/N) as an approach to further improve vaccine-induced immunogenicity and efficacy. Single MVA-SARS-2-ST/N vaccination in K18-hACE2 mice induced robust protection against lethal respiratory SARS-CoV-2 challenge infection 28 days later. The protective outcome of MVA-SARS-2-ST/N vaccination correlated with the activation of SARS-CoV-2-neutralizing antibodies (nABs) and substantial amounts of SARS-CoV-2-specific T cells especially in the lung of MVA-SARS-2-ST/N-vaccinated mice. Emergency vaccination with MVA-SARS-2-ST/N just 2 days before lethal SARS-CoV-2 challenge infection resulted in a delayed onset of clinical disease outcome in these mice and increased titers of nAB or SARS-CoV-2-specific T cells in the spleen and lung. These data highlight the potential of a multivalent COVID-19 vaccine co-expressing S- and N-protein, which further contributes to the development of rapidly protective vaccination strategies against emerging pathogens.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Katharina Manuela Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| |
Collapse
|
16
|
Prakash S, Dhanushkodi NR, Singer M, Quadiri A, Zayou L, Vahed H, Coulon PG, Ibraim IC, Tafoya C, Hitchcock L, Landucci G, Forthal DN, El Babsiri A, Tifrea DF, Figueroa CJ, Nesburn AB, Kuppermann BD, Gil D, Jones TM, Ulmer JB, BenMohamed L. A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580225. [PMID: 38405942 PMCID: PMC10888826 DOI: 10.1101/2024.02.14.580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Izabela Coimbra Ibraim
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Christine Tafoya
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Lauren Hitchcock
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Gary Landucci
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Donald N. Forthal
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Assia El Babsiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA 92697
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns & Critical Care, School of Medicine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| |
Collapse
|
17
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
18
|
Rak A, Isakova-Sivak I, Rudenko L. Overview of Nucleocapsid-Targeting Vaccines against COVID-19. Vaccines (Basel) 2023; 11:1810. [PMID: 38140214 PMCID: PMC10747980 DOI: 10.3390/vaccines11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The new SARS-CoV-2 coronavirus, which emerged in late 2019, is a highly variable causative agent of COVID-19, a contagious respiratory disease with potentially severe complications. Vaccination is considered the most effective measure to prevent the spread and complications of this infection. Spike (S) protein-based vaccines were very successful in preventing COVID-19 caused by the ancestral SARS-CoV-2 strain; however, their efficacy was significantly reduced when coronavirus variants antigenically different from the original strain emerged in circulation. This is due to the high variability of this major viral antigen caused by escape from the immunity caused by the infection or vaccination with spike-targeting vaccines. The nucleocapsid protein (N) is a much more conserved SARS-CoV-2 antigen than the spike protein and has therefore attracted the attention of scientists as a promising target for broad-spectrum vaccine development. Here, we summarized the current data on various N-based COVID-19 vaccines that have been tested in animal challenge models or clinical trials. Despite the high conservatism of the N protein, escape mutations gradually occurring in the N sequence can affect its protective properties. During the three years of the pandemic, at least 12 mutations have arisen in the N sequence, affecting more than 40 known immunogenic T-cell epitopes, so the antigenicity of the N protein of recent SARS-CoV-2 variants may be altered. This fact should be taken into account as a limitation in the development of cross-reactive vaccines based on N-protein.
Collapse
Affiliation(s)
- Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (I.I.-S.); (L.R.)
| | | | | |
Collapse
|