1
|
Rokni M, Khomeijani-Farahani M, Soltani T, Jamshidi A, Mahmoudi M, Farhadi E. Understanding the pleiotropic effects of CXCL10/IP-10 in the immunopathogenesis of inflammatory rheumatic diseases: Implications for better understanding disease mechanisms. Int Immunopharmacol 2025; 153:114456. [PMID: 40121742 DOI: 10.1016/j.intimp.2025.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Chemokines play a critical role in immune responses, acting as chemotactic factors and effectors in different immune processes. CXCL10/IFN-gamma-inducible protein 10 (IP-10) is an inflammatory chemokine that regulates immune cell activation and recruitment by binding to its receptor CXCR3. Additionally, CXCL10 inhibits angiogenesis by interacting with endothelial cells (ECs). In the context of inflammatory rheumatic diseases, CXCL10 influences multiple pathways including chemotaxis, angiostasis, bone destruction, joint inflammation, and regulation of fibroblast-like synoviocyte properties. High levels of CXCL10 have been detected in the serum and tissues of individuals with autoimmune conditions like systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and among others (ankylosing spondylitis, Behçet's syndrome). The CXCL10 may inhibit fibroblast recruitment after tissue injury, delaying wound healing; inhibiting angiogenesis, and uncontrolled pulmonary fibrosis in SSc. In RA disease, the CXCL10-CXCR3 axis could increase the inflammatory cell infiltration, including T lymphocytes and macrophages, into inflamed joints, enhancing arthritis severity and bone and cartilage destruction. The interaction between CXCR3 and ligand-CXCL10 on directing the CD4+ T lymphocytes polarization and observed that CXCL10 skew T lymphocytes polarization into Th1/Th17 effector cells that could lead to an increase in the inflammatory responses in the SLE. This study aims to explore the role of CXCL10 in rheumatic diseases and its potential as both a therapeutic target and a biomarker for these conditions. Understanding the involvement of CXCL10 in the immunopathogenesis of inflammatory rheumatic diseases may provide valuable insights for the development of targeted therapies and diagnostic strategies.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Taha Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cho S, Kim NY, Yang Y, Jung JH, Seo D, Jin S, Hwang SH, Kim Y. Protumor effect of CXCL10/CXCR3 axis in canine mammary gland tumor. J Vet Sci 2025; 26:e18. [PMID: 40183905 PMCID: PMC11972938 DOI: 10.4142/jvs.24278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Chemokines and their receptors play integral roles in carcinogenesis. CXC motif chemokine receptor 3 (CXCR3) in T cells mediates anti-tumor effects, whereas CXCR3 in malignant cells promotes proliferation and metastasis. Although the role of CXCR3 has been well-documented in human cancers, including breast cancer, its function in canine tumors remains largely unexplored. OBJECTIVE This study aimed to investigate the effects of CXCR3 and its ligand interaction in canine mammary gland tumor (cMGT) cells. METHODS CXCR3 expression in two cMGT cell lines, CIPp and CIPm, was evaluated using real-time quantitative polymerase chain reaction, western blotting, and flow cytometry. CXC motif chemokine ligand 10 (CXCL10)-induced changes in CXCR3 protein expression in cMGT cells were assessed using membrane fractionation assays. Cell proliferation and migration in response to CXCL10 treatment were analyzed using Cell Counting Kit-8 and wound-healing assays, respectively. Additionally, the downstream molecular mechanisms of the CXCL10/CXCR3 axis were examined. RESULTS CXCR3 expression was significantly higher in CIPm than in CIPp cells. In both the cMGT cell lines, CXCL10 treatment reduced CXCR3 expression on the cell membrane in a dose- and time-dependent manner. The CXCR10/CXCR3 axis promoted cell proliferation and migration in cMGT cells. CXCL10/CXCR3 interaction upregulated the phosphorylation of AKT1 and ERK. CONCLUSIONS AND RELEVANCE This study demonstrates that the CXCL10/CXCR3 axis may contribute to the pathogenesis of cMGTs by promoting tumor cell proliferation and migration. CXCR3 signaling represents a potential therapeutic target for cMGTs.
Collapse
Affiliation(s)
- Soyeon Cho
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK 21 FOUR Program for Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Na-Yon Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK 21 FOUR Program for Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jae-Ha Jung
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK 21 FOUR Program for Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Dansong Seo
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soyun Jin
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sung-Hyun Hwang
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
3
|
Zhou B, Zhou N, Jiang J, Zhang X, Zhao X, Duan Y, Zhang Y. Exosomal miR-25 from Mesenchymal stem cells inhibits T cells migration and Alleviates Type 1 diabetes mellitus by Targeting CXCR3 models. Gene 2025; 936:149098. [PMID: 39547359 DOI: 10.1016/j.gene.2024.149098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated promising therapeutic potential in the treatment of type 1 diabetes mellitus (T1DM); however, the underlying mechanism remains unclear. The primary pathological mechanism of T1DM involves activated T cells infiltrating the pancreas, leading to islet inflammation and the destruction of β-cells. However, the question of whether exosomes derived from MSCs can suppress the migration of T cells to the pancreas in the context of T1DM remains unresolved. In this study, we observed that miR-25 was highly expressed in MSCs exosomes and associated with signaling pathways related to cell migration. In vitro assay, we synthesized a miR-25 mimic and transiently transfected it into activated T cells, which revealed that miR-25 can effectively reduce the expression of CXCR3. Additionally, according to the in vivo T1DM mouse model, we found that there was a significant increase in miR-25 levels in T1DM mice treated with MSCs and the number of T cells decreased. Overall, our findings suggest that MSCs exosomes containing miR-25 can impede the infiltration of activated T cells into the pancreas in T1DM by repressing CXCR3 expression in these cells.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Mesenchymal Stem Cells/metabolism
- Exosomes/metabolism
- Exosomes/genetics
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Mice
- Cell Movement
- T-Lymphocytes/metabolism
- T-Lymphocytes/immunology
- Humans
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Male
- Disease Models, Animal
- Pancreas/metabolism
- Pancreas/pathology
Collapse
Affiliation(s)
- Bin Zhou
- Department of Neonatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Na Zhou
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiaxi Jiang
- Department of dermatology, People's Liberation Army 95829 Military Hospital, Wuhan 430014, China
| | - Xiaru Zhang
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinfeng Zhao
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Duan
- Department of Neonatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yi Zhang
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
4
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2025; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Sardarabadi P, Lee KY, Sun WL, Kojabad AA, Liu CH. Investigating T Cell Immune Dynamics and IL-6's Duality in a Microfluidic Lung Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4354-4367. [PMID: 39471283 PMCID: PMC11758792 DOI: 10.1021/acsami.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role. A flow-based microsystem was designed to investigate CD4+ T cell activation in response to different IL-6 gradients in an under-control 3D culture. The study found that cancer cells' response to varying IL-6 concentrations was dynamic and dose-sensitive, with immune cell migration rates showing sensitivity to the IL-6 gradient. A549 cell expansion increases gradually and time-dependently with 50 ng of IL-6, while Jurkat cell migration follows a time-dependent pattern. However, when a total of 100 ng IL-6 concentration is applied, A549 cells expand rapidly, potentially influencing Jurkat cell migration. Jurkat cell mobility is lower, possibly due to increased A549 cell presence and heightened cell-cell interactions. Different IL-6 concentration gradients can modulate the expression of some CD markers like CD69 and programed cell death protein 1 in CD4+ T cells, suggesting that IL-6 concentration gradients affect immune cell phenotypes. This suggests that IL-6 plays a crucial role in activating T helper cells and may be involved in the later phases of inflammation. Also, the increased levels of IFN-γ and TNF-α highlight IL-6's impact on T cell inflammatory response. This study emphasizes the intricate effects of IL-6 on T cell activation, phenotype, cytokine production, and phenotypic heterogeneity, providing valuable insights into immune response modulation in an experimental setting.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
| | - Kang-Yun Lee
- Division
of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho
Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C
- Division
of Pulmonary Medicine, Department of Internal Medicine, School of
Medicine, College of Medicine, Taipei Medical
University, Taipei 110, Taiwan, R.O.C
- TMU
Research Center for Thoracic Medicine, Taipei
Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Lun Sun
- Pythia
Biotech LTD., New Taipei City 23561, Taiwan,
R.O.C
| | - Amir Asri Kojabad
- Department
of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Cheng-Hsien Liu
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- Department
of Power Mechanical Engineering, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
6
|
Xu P, Liu T, Yang Z, Zang K, Gao X, Shi Y, Ye X, Dang Y. P2RY6 deletion promotes UVB-induced skin carcinogenesis by activating the PI3K/AKT signal pathway. Cancer Sci 2025; 116:56-66. [PMID: 39435731 PMCID: PMC11711044 DOI: 10.1111/cas.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Our previous research has demonstrated that P2RY6 functions as an oncogene in DMBA/TPA-induced two-stage chemical skin carcinogenesis in mice. However, considering that human skin cancer is predominantly attributed to UV radiation from sunlight, additional investigations are needed to elucidate the role of P2RY6 in UVB-induced skin carcinogenesis. Surprisingly, we found that P2ry6-deficient mice exhibited marked promotion to UVB-induced skin papilloma formation compared with wild-type mice, suggesting its tumor-suppressive role in UVB-induced skin cancer. Additionally, a P2ry6 gene knockout promoted skin hyperplasia induced by short-term UVB irradiation, while UDP, the ligand of P2RY6, could inhibit the short-term UVB-induced increase of epiderma thickness in mouse skin. Furthermore, UVB irradiation could significantly upregulate P2RY6 expression in human and mouse skin cells. These results indicated that P2RY6 may play a crucial protective role in resisting the UVB-induced formation of skin tumors. At the molecular level, the loss of the P2RY6 gene inhibits the ubiquitination modification and expression of XPC after UVB irradiation in skin keratinocytes, resulting in the accumulation of CPDs (cyclobutane pyrimidine dimers). We have also demonstrated that P2RY6 deletion activates the PI3K/AKT signaling pathway both in vitro and in vivo. The CPD accumulation and acute inflammatory response enhanced by the loss of the P2RY6 gene can be reversed by an AKT inhibitor. These findings suggest that P2RY6 may act as a tumor suppressor in UVB-induced skin cancer by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Peng Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
- Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Tanglin Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zile Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Kai Zang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xiaoxuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yuling Shi
- Psoriasis Treatment Center, Shanghai Dermatology HospitalTongji University School of MedicineShanghaiChina
| | - Xiyun Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yongyan Dang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
7
|
Tasis A, Papaioannou NE, Grigoriou M, Paschalidis N, Loukogiannaki C, Filia A, Katsiki K, Lamprianidou E, Papadopoulos V, Rimpa CM, Chatzigeorgiou A, Kourtzelis I, Gerasimou P, Kyprianou I, Costeas P, Liakopoulos P, Liapis K, Kolovos P, Chavakis T, Alissafi T, Kotsianidis I, Mitroulis I. Single-Cell Analysis of Bone Marrow CD8+ T Cells in Myeloid Neoplasms Reveals Pathways Associated with Disease Progression and Response to Treatment with Azacitidine. CANCER RESEARCH COMMUNICATIONS 2024; 4:3067-3083. [PMID: 39485042 PMCID: PMC11616010 DOI: 10.1158/2767-9764.crc-24-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Immunophenotypic analysis identified a BM CD57+CXCR3+ subset of CD8+ T cells associated with response to AZA in patients with MDS and AML. Single-cell RNA sequencing analysis revealed that IFN signaling is linked to the response to treatment, whereas TGF-β signaling is associated with treatment failure, providing insights into new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Tasis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikos E. Papaioannou
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Grigoriou
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Catherine Loukogiannaki
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Kyriaki Katsiki
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Maria Rimpa
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Ioannis Kyprianou
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Paul Costeas
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Panagiotis Liakopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Liapis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| | - Themis Alissafi
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Biology, School of Medicine, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| |
Collapse
|
8
|
Le Y, Geng MM, Dong BQ, Luo LF, Jiang S, Le Poole IC, Lei TC. Increased splicing of CXCR3 isoform B (CXCR3B) by impaired NRF2 signaling leads to melanocyte apoptosis in active vitiligo. Free Radic Biol Med 2024; 225:687-698. [PMID: 39471971 DOI: 10.1016/j.freeradbiomed.2024.10.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Apoptotic melanocytes (MCs) may release neoantigenic epitopes preceding epidermal infiltration by autoreactive CD8+ T cells in early vitiligo. However, the mechanism by which vitiligo MCs are prone to apoptosis under oxidative stress remains elusive. Pro-apoptotic receptor C-X-C motif chemokine receptor 3 isoform B (CXCR3B) is critical for inducing MC apoptosis in the inflammatory microenvironment of lesional vitiligo skin. Here, we show that C-X-C motif chemokine ligand 10 (CXCL10), a functional ligand for CXCR3B, is upregulated in primary dermal fibroblasts and in CD90+ reticular fibroblasts of vitiligo skin. The number of CXCR3B+ MCs was increased in active vitiligo skin compared with healthy skin and stable vitiligo skin. Mechanistically, impaired nuclear factor erythroid 2-related factor 2 (NRF2) signaling in oxidatively stressed MCs leads to the elevated expression of CXCR3B and increased apoptosis. The overexpression of NRF2 prevents MCs from CXCL10-induced apoptosis through upregulation of pro-survival receptor CXCR3 isoform A (CXCR3A). Overall, MCs expressing CXCR3B are more susceptible to apoptosis. Suppressing CXCR3B could be a promising therapeutic approach to extinguish inflammation in vitiligo skin.
Collapse
Affiliation(s)
- Yue Le
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Meng-Meng Geng
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bing-Qi Dong
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Long-Fei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Northwestern University at Chicago, IL 60611, USA
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Leonard MR, Jones DM, Read KA, Pokhrel S, Tuazon JA, Warren RT, Yount JS, Oestreich KJ. Aiolos promotes CXCR3 expression on Th1 cells via positive regulation of IFN-γ/STAT1 signaling. JCI Insight 2024; 10:e180287. [PMID: 39560988 PMCID: PMC11721307 DOI: 10.1172/jci.insight.180287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
CD4+ T helper 1 (Th1) cells coordinate adaptive immune responses to intracellular pathogens, including viruses. Key to this function is the ability of Th1 cells to migrate within secondary lymphoid tissues, as well as to sites of inflammation, which relies on signals received through the chemokine receptor CXCR3. CXCR3 expression is driven by the Th1 lineage-defining transcription factor T-bet and the cytokine-responsive STAT family members STAT1 and STAT4. Here, we identify the Ikaros zinc finger (IkZF) transcription factor Aiolos (Ikzf3) as an additional positive regulator of CXCR3 both in vitro and in vivo using a murine model of influenza virus infection. Mechanistically, we found that Aiolos-deficient CD4+ T cells exhibited decreased expression of key components of the IFN-γ/STAT1 signaling pathway, including JAK2 and STAT1. Consequently, Aiolos deficiency resulted in decreased levels of STAT1 tyrosine phosphorylation and reduced STAT1 enrichment at the Cxcr3 promoter. We further found that Aiolos and STAT1 formed a positive feedback loop via reciprocal regulation of each other downstream of IFN-γ signaling. Collectively, our study demonstrates that Aiolos promotes CXCR3 expression on Th1 cells by propagating the IFN-γ/STAT1 cytokine signaling pathway.
Collapse
Affiliation(s)
- Melissa R. Leonard
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Combined Anatomic Pathology Residency/PhD Program, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Devin M. Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program and
| | - Kaitlin A. Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program and
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Jasmine A. Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert T. Warren
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Meriç N, Erkan PÇ, Kocabaş F. Deciphering avian hematopoietic stem cells by surface marker screening and gene expression profiling. Mol Immunol 2024; 175:20-30. [PMID: 39288684 DOI: 10.1016/j.molimm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Avian species have played a pivotal role in developmental hematopoiesis research, leading to numerous critical discoveries. Avian influenza, particularly the H5N1 strain, poses a significant threat to poultry and has zoonotic potential for humans. Infections often result in abnormal hematologic profiles, highlighting the complex interplay between avian diseases and hematopoiesis. Many avian diseases can suppress immune cells in the bone marrow (BM), impacting immune responses. Studying hematopoietic stem cells (HSCs) in avian BM is crucial for understanding these processes and developing effective vaccines and protection strategies for both avian and human health. METHODS This study adapted methods from mouse studies to isolate avian HSCs as Lineage-negative (Lin-) cells. These isolated cells were further identified as Lin-Sca1+c-Kit+ (LSK) and were found to be more prevalent than in control groups. RT-PCR analyses were conducted, showing that genes like MEIS1 and TSC1 were upregulated, while SIRT1, FOXO1, and AHR were downregulated in these stem cells. Screening for LSK markers revealed ten unique surface antigens in the Sca1+c-Kit+ cell populations, including highly enriched antigens such as CD178, CD227, and CD184. Additionally, studies on quail HSCs demonstrated that similar labeling techniques were effective in quail BM. RESULTS The research demonstrated that the identification of avian HSC-specific surface antigens provides valuable insights into the pathogenesis of avian influenza and other diseases, enhancing our understanding of how these diseases suppress HSC function. Notably, the upregulation of MEIS1 and TSC1 genes in LSK cells underscores their critical roles in regulating hematopoietic processes. Conversely, the downregulation of SIRT1, FOXO1, and AHR genes provides important clues about their roles in differentiation and immune response mechanisms. DISCUSSION The findings of this study deepen our understanding of the effects of avian diseases on the immune system by identifying surface markers specific to avian HSCs. The suppression of HSC function by pathogens such as influenza highlights the importance of understanding these cells in developing targeted vaccines. These results represent a significant step towards improving global health security by mitigating risks associated with avian pathogens.
Collapse
Affiliation(s)
- Neslihan Meriç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Kütahya, Türkiye.
| | - Pınar Çolakoğlu Erkan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye.
| |
Collapse
|
11
|
Brennan F. The Pathogenesis of CKD-Associated Pruritus: A Theoretical Model and Relevance for Treatment. KIDNEY360 2024; 5:1727-1738. [PMID: 39230964 DOI: 10.34067/kid.0000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Our understanding of the pathogenesis of uremic pruritus (also known as CKD-associated pruritus [CKD-aP]) remains elusive. Although multiple discrete changes in the immunochemical milieu of the skin of patients with CKD-aP have been described, a coherent theory of mechanism is absent. This article proposes a theoretical model of mechanism. It concentrates on the initiation phase of CKD-aP and its three parts: ( 1 ) genesis, triggered by first precipitants; ( 2 ) cascade of cytokine release that follows and the cross-talking of multiple skin cells with each other and afferent nerve fibers; and ( 3 ) enhancement. The limitation of the model will be described and ideas for future research proposed. Implications for management shall be examined.
Collapse
Affiliation(s)
- Frank Brennan
- Department of Nephrology, St George Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Morais JAV, Barros PHA, Brigido MDM, Marina CL, Bocca A, Mariano ADLES, Souza PEND, Paiva KLR, Simões MM, Bao SN, Camargo LC, Longo JPF, Morais AAC, Azevedo RBD, Fonseca MJP, Muehlmann LA. Direct and Abscopal Antitumor Responses Elicited by AlPcNE-Mediated Photodynamic Therapy in a Murine Melanoma Model. Pharmaceutics 2024; 16:1177. [PMID: 39339213 PMCID: PMC11435272 DOI: 10.3390/pharmaceutics16091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Melanoma, the most aggressive form of skin cancer, presents a major clinical challenge due to its tendency to metastasize and recalcitrance to traditional therapies. Despite advances in surgery, chemotherapy, and radiotherapy, the outlook for advanced melanoma remains bleak, reinforcing the urgent need for more effective treatments. Photodynamic therapy (PDT) has emerged as a promising alternative, leading to targeted tumor destruction with minimal harm to surrounding tissues. In this study, the direct and abscopal antitumor effects of PDT in a bilateral murine melanoma model were evaluated. Although only one of the two tumors was treated, effects were observed in both. Our findings revealed significant changes in systemic inflammation and alterations in CD4+ and CD8+ T cell populations in treated groups, as evidenced by blood analyses and flow cytometry. High-throughput RNA sequencing (RNA-Seq) further unveiled shifts in gene expression profiles in both treated and untreated tumors. This research sheds light on the novel antitumor and abscopal effects of nanoemulsion of aluminum chloride phthalocyanine (AlPcNE)-mediated PDT in melanoma, highlighting the potential of different PDT protocols to modulate immune responses and to achieve more effective and targeted cancer treatments.
Collapse
Affiliation(s)
- José Athayde Vasconcelos Morais
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia Ceilandia Sul, Brasilia 72220-275, DF, Brazil
- Laboratory of Gene Regulation and Mutagenesis, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Pedro H A Barros
- Laboratory of Molecular Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcelo de Macedo Brigido
- Laboratory of Molecular Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Clara Luna Marina
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Anamelia Bocca
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - André de Lima E Silva Mariano
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Paulo E N de Souza
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Karen L R Paiva
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marina Mesquita Simões
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Sonia Nair Bao
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luana C Camargo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - João P Figueiró Longo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Amanda Alencar Cabral Morais
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Ricardo B de Azevedo
- Laboratory of Nanoscience and Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcio J P Fonseca
- Laboratory of Gene Regulation and Mutagenesis, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luis A Muehlmann
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia Ceilandia Sul, Brasilia 72220-275, DF, Brazil
| |
Collapse
|
13
|
Kang S, Gil YG, Chae SY, Jang H, Min DH. Pt-Te-Nanorod-Based Photothermal Chemokine Immunotherapy for All Stages of Cancer via Adaptive and Innate Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37555-37568. [PMID: 39007297 DOI: 10.1021/acsami.4c06048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The chemokine (C-X-C) motif ligand 9 (CXCL9) is one of the lymphocyte-traffic-involved chemokines. Despite the immunotherapeutic potential of CXCL9 for recruiting effector T cells (cluster of differentiation 4+ (CD4+) and CD8+ T cells) and natural killer cells (NK cells) around the tumors, practical applications of CXCL9 have been limited because of its immune toxicity and lack of stability in vivo. To overcome these limitations, we designed and synthesized Pt-Te nanorods (PtTeNRs), which exhibited excellent photothermal conversion efficiency with stable CXCL9 payload characteristics under the physiological conditions of in vivo environments. We developed a CXCL9-based immunotherapy strategy by utilizing the unique physicochemical properties of developed PtTeNRs. The investigation revealed that the PtTeNR-loaded CXCL9 was effectively accumulated in the tumor, subsequently released in a sustained manner, and successfully recruited effector T cells for immunotherapy of the designated tumor tissue. In addition, a synergistic effect was observed between the photothermal (PT) therapy and antiprogrammed cell death protein 1 (aPD-1) antibody. In this study, we demonstrated that PtTeNR-based CXCL9, PT, and aPD-1 antibody trimodal therapy delivers an outstanding tumor suppression effect in all stages of cancer, including phases 1-4 and tumor recurrence.
Collapse
Affiliation(s)
- Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong-Gyu Gil
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Se-Youl Chae
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
14
|
Reschke R, Enk AH, Hassel JC. Chemokines and Cytokines in Immunotherapy of Melanoma and Other Tumors: From Biomarkers to Therapeutic Targets. Int J Mol Sci 2024; 25:6532. [PMID: 38928238 PMCID: PMC11203481 DOI: 10.3390/ijms25126532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Chemokines and cytokines represent an emerging field of immunotherapy research. They are responsible for the crosstalk and chemoattraction of immune cells and tumor cells. For instance, CXCL9/10/11 chemoattract effector CD8+ T cells to the tumor microenvironment, making an argument for their promising role as biomarkers for a favorable outcome. The cytokine Interleukin-15 (IL-15) can promote the chemokine expression of CXCR3 ligands but also XCL1, contributing to an important DC-T cell interaction. Recruited cytotoxic T cells can be clonally expanded by IL-2. Delivering or inducing these chemokines and cytokines can result in tumor shrinkage and might synergize with immune checkpoint inhibition. In addition, blocking specific chemokine and cytokine receptors such as CCR2, CCR4 or Il-6R can reduce the recruitment of tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) or regulatory T cells (Tregs). Efforts to target these chemokines and cytokines have the potential to personalize cancer immunotherapy further and address patients that are not yet responsive because of immune cell exclusion. Targeting cytokines such as IL-6 and IL-15 is currently being evaluated in clinical trials in combination with immune checkpoint-blocking antibodies for the treatment of metastatic melanoma. The improved overall survival of melanoma patients might outweigh potential risks such as autoimmunity. However, off-target toxicity needs to be elucidated.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Alexander H. Enk
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Quaade AS, Wang X, Sølberg JBK, McCauley BD, Thyssen JP, Becker C, Johansen JD. Inflammatory plasma signature of chronic hand eczema: Associations with aetiological and clinical subtypes. J Eur Acad Dermatol Venereol 2024; 38:1101-1111. [PMID: 38151335 DOI: 10.1111/jdv.19742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Chronic hand eczema (CHE) is a highly prevalent, heterogeneous, skin disease that encompasses different aetiological and clinical subtypes. Severe CHE without atopic dermatitis has been associated with systemic inflammation; yet it remains unknown if specific CHE subtypes leave distinct, systemic, molecular signatures. OBJECTIVES To characterize the inflammatory plasma signature of different aetiological and clinical CHE subtypes. METHODS We assessed expression levels of 266 inflammatory and cardiovascular disease risk plasma proteins as well as filaggrin gene mutation status in 51 well-characterized CHE patients without concomitant atopic dermatitis and 40 healthy controls. Plasma protein expression was compared between aetiological and clinical CHE subgroups and controls both overall and according to clinical CHE severity. Correlation analyses for biomarkers, clinical and self-reported variables were performed. RESULTS Very severe, chronic allergic contact dermatitis (ACD) on the hands was associated with a mixed Type 1/Type 2 systemic immune activation as compared with controls. Circulating levels of Type 1/Type 2 inflammatory biomarkers correlated positively with clinical disease severity among CHE patients with ACD. No biomarkers were found, that could discriminate between aetiological subtypes, for example, between ACD and irritant contact dermatitis. Hyperkeratotic CHE showed a distinct, non-atopic dermatitis-like, systemic footprint with upregulation of markers associated with Type 1 inflammation and tumour necrosis factor alpha, but not Type 2 inflammation. Increased levels of CCL19 and CXCL9/10 could discriminate hyperkeratotic CHE from both vesicular and chronic fissured CHE, whereas no difference was found between the latter two subtypes. CONCLUSION Profiling of systemic biomarkers showed potential for identifying certain CHE subtypes. Peripheral blood levels of inflammatory biomarkers were associated and correlated with the clinical disease severity of chronic ACD on the hands, underlining that this is a systemic disease. We question whether hyperkeratotic CHE should be classified as eczema.
Collapse
Affiliation(s)
- Anna Sophie Quaade
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital, Herlev-Gentofte, Hellerup, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Xing Wang
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Julie B K Sølberg
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital, Herlev-Gentofte, Hellerup, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Benjamin D McCauley
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jacob P Thyssen
- University of Copenhagen, Copenhagen, Denmark
- The National Allergy Research Centre, Copenhagen University Hospital, Herlev-Gentofte, Hellerup, Denmark
| | - Christine Becker
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jeanne Duus Johansen
- Department of Dermatology and Allergy, The National Allergy Research Centre, Copenhagen University Hospital, Herlev-Gentofte, Hellerup, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Paul S, Mukherjee T, Das K. Coagulation Protease-Driven Cancer Immune Evasion: Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2024; 16:1568. [PMID: 38672649 PMCID: PMC11048528 DOI: 10.3390/cancers16081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Blood coagulation and cancer are intrinsically connected, hypercoagulation-associated thrombotic complications are commonly observed in certain types of cancer, often leading to decreased survival in cancer patients. Apart from the common role in coagulation, coagulation proteases often trigger intracellular signaling in various cancers via the activation of a G protein-coupled receptor superfamily protease: protease-activated receptors (PARs). Although the role of PARs is well-established in the development and progression of certain types of cancer, their impact on cancer immune response is only just emerging. The present review highlights how coagulation protease-driven PAR signaling plays a key role in modulating innate and adaptive immune responses. This is followed by a detailed discussion on the contribution of coagulation protease-induced signaling in cancer immune evasion, thereby supporting the growth and development of certain tumors. A special section of the review demonstrates the role of coagulation proteases, thrombin, factor VIIa, and factor Xa in cancer immune evasion. Targeting coagulation protease-induced signaling might be a potential therapeutic strategy to boost the immune surveillance mechanism of a host fighting against cancer, thereby augmenting the clinical consequences of targeted immunotherapeutic regimens.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India;
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
17
|
Guo M, Guo H, Zhu J, Wang F, Chen J, Wan C, Deng Y, Wang F, Xu L, Chen Y, Li R, Liu S, Zhang L, Wang Y, Zhou J, Li S. A novel subpopulation of monocytes with a strong interferon signature indicated by SIGLEC-1 is present in patients with in recent-onset type 1 diabetes. Diabetologia 2024; 67:623-640. [PMID: 38349399 DOI: 10.1007/s00125-024-06098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 03/01/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a T cell-mediated autoimmune disease characterised by pancreatic beta cell destruction. In this study, we explored the pathogenic immune responses in initiation of type 1 diabetes and new immunological targets for type 1 diabetes prevention and treatment. METHODS We obtained peripheral blood samples from four individuals with newly diagnosed latent autoimmune diabetes in adults (LADA) and from four healthy control participants. Single-cell RNA-sequencing (scRNA-seq) was performed on peripheral blood mononuclear cells to uncover transcriptomic profiles of early LADA. Validation was performed through flow cytometry in a cohort comprising 54 LADA, 17 adult-onset type 2 diabetes, and 26 healthy adults, matched using propensity score matching (PSM) based on age and sex. A similar PSM method matched 15 paediatric type 1 diabetes patients with 15 healthy children. Further flow cytometry analysis was performed in both peripheral blood and pancreatic tissues of non-obese diabetic (NOD) mice. Additionally, cell adoptive transfer and clearance assays were performed in NOD mice to explore the role of this monocyte subset in islet inflammation and onset of type 1 diabetes. RESULTS The scRNA-seq data showed that upregulated genes in peripheral T cells and monocytes from early-onset LADA patients were primarily enriched in the IFN signalling pathway. A new cluster of classical monocytes (cluster 4) was identified, and the proportion of this cluster was significantly increased in individuals with LADA compared with healthy control individuals (11.93% vs 5.93%, p=0.017) and that exhibited a strong IFN signature marked by SIGLEC-1 (encoding sialoadhesin). These SIGLEC-1+ monocytes expressed high levels of genes encoding C-C chemokine receptors 1 or 2, as well as genes for chemoattractants for T cells and natural killer cells. They also showed relatively low levels of genes for co-stimulatory and HLA molecules. Flow cytometry analysis verified the elevated levels of SIGLEC-1+ monocytes in the peripheral blood of participants with LADA and paediatric type 1 diabetes compared with healthy control participants and those with type 2 diabetes. Interestingly, the proportion of SIGLEC-1+ monocytes positively correlated with disease activity and negatively with disease duration in the LADA patients. In NOD mice, the proportion of SIGLEC-1+ monocytes in the peripheral blood was highest at the age of 6 weeks (16.88%), while the peak occurred at 12 weeks in pancreatic tissues (23.65%). Adoptive transfer experiments revealed a significant acceleration in diabetes onset in the SIGLEC-1+ group compared with the SIGLEC-1- or saline control group. CONCLUSIONS/INTERPRETATION Our study identified a novel group of SIGLEC-1+ monocytes that may serve as an important indicator for early diagnosis, activity assessment and monitoring of therapeutic efficacy in type 1 diabetes, and may also be a novel target for preventing and treating type 1 diabetes. DATA AVAILABILITY RNA-seq data have been deposited in the GSA human database ( https://ngdc.cncb.ac.cn/gsa-human/ ) under accession number HRA003649.
Collapse
Affiliation(s)
- Mengqi Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianni Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ran Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Qingdao, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
18
|
Reidel IG, Curti CC, Dorémus L, Béré E, Delwail A, Russi RC, Lecron JC, Morel F, García MI, Müller DM, Jégou JF, Veaute CM. Liposomal co-encapsulation of a novel gemini lipopeptide and a CpG-ODN induces a strong Th1 response with the co-activation of a Th2/Th17 profile and high antibody levels. Vaccine 2024; 42:1953-1965. [PMID: 38378388 DOI: 10.1016/j.vaccine.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
A successful vaccine depends on its capacity to elicit a protective immune response against the target pathogen. The adjuvant used plays an important role in enhancing and directing the immune response. Liposomes are vaccine adjuvants that allow the co-encapsulation of antigens and immunostimulants. Our aim was to evaluate the adjuvanticity of a cationic liposome (Lip) formulated with a novel gemini lipopeptide (AG2-C16) alone or in combination with CpG-ODN as immunostimulants. To achieve this, we used the recombinant clumping factor of Staphylococcus aureus (rClfA) as a model antigen, in a murine model. We characterized the formulations by DLS, Cryo-SEM, and TEM, and analyzed the humoral and cellular immune responses induced in BALB/c and C57BL/6J mice injected with free rClfA and three formulations: Lip + CpG-ODN + rClfA, Lip + AG2-C16 + rClfA and Lip + AG2-C16 + CpG-ODN + rClfA. The addition of immunostimulants to the liposomes did not change the membrane diameter but affected their hydrodynamic diameter, z-potential, and homogeneity. All liposomal formulations were able to stimulate a specific humoral response, with high serum IgG, IgG1 and IgG2a or IgG2c titers in BALB/c or C57BL/6J mice, respectively. In addition, increased vaginal IgG levels were detected after injection, with no specific IgA. The cellular immunity induced by Lip + AG2-C16 + CpG-ODN + rClfA was characterized by a predominant Th1 profile, with the co-induction of Th2 and Th17 cells, and IFN-γ+ cytotoxic T cells. Furthermore, we studied the capacity of the different formulations to stimulate murine keratinocytes and fibroblasts in vitro. While no formulation activated keratinocytes, Lip + AG2-C16 + CpG-ODN increased the expression of CXCL9 in fibroblasts. These results suggest Lip + AG2-C16 + CpG-ODN as a promising adjuvant candidate to be used in vaccines against pathogens that require Th1/Th2/Th17 combined profiles, like S. aureus. Additionally, based on the IFN-γ+ cytotoxic T cells stimulation and the CXCL9 production by fibroblasts, we propose the use of this adjuvant formulation for the stimulation of a Th1 profile.
Collapse
Affiliation(s)
- Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Cecilia Carol Curti
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Léa Dorémus
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Emile Béré
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Adriana Delwail
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, CNRS, UMR 6041, 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, Poitiers, France
| | - Romina Cecilia Russi
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | - Franck Morel
- Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - María Inés García
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diana María Müller
- LAQUIMAP, Dto. Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jean-François Jégou
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Carolina Melania Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
19
|
Ribatti D. New insights into the role of mast cells as a therapeutic target in cancer through the blockade of immune checkpoint inhibitors. Front Med (Lausanne) 2024; 11:1373230. [PMID: 38482531 PMCID: PMC10933100 DOI: 10.3389/fmed.2024.1373230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 01/05/2025] Open
Abstract
Mast cells release different anti-and pro-inflammatory agents changing their role from protective to pro-inflammatory cells involved in the progression of different pathological conditions, including autoimmune diseases and tumors. Different mediators released by mast cells are involved in their biological activities which may be anti-tumorigenic and/or pro-tumorigenic. For these reasons, tumor mast cells have been considered a novel therapeutic target to prevent tumor progression and metastatic process. Many different agents have been suggested and used in the past pre-clinical and clinical settings. Among the novel immunotherapeutic approaches to cancer treatment, different immune checkpoint inhibitors targeting PD-1/PDL-1 have been used in the treatment of many human tumors improving overall survival. In this context, inhibition of mast cell activity may be considered a novel strategy to improve the efficacy of anti-PD-1/PDL-1 therapy. The blockade of the PD-1/PD-L1 interaction may be suggested as a useful and novel therapeutic approach in the treatment of tumors in which mast cells are involved.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
20
|
Kang M, Kang M, Kim TH, Jeong SU, Oh S. Pyromeconic acid-enriched Erigeron annuus water extract as a cosmetic ingredient for itch relief and anti-inflammatory activity. Sci Rep 2024; 14:4698. [PMID: 38409467 PMCID: PMC10897215 DOI: 10.1038/s41598-024-55365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Erigeron annuus (EA), traditionally used to treat disorders such as diabetes and enteritis, contains a variety of chemicals, including caffeic acid, flavonoids, and coumarins, providing antifungal and antioxidative benefits. However, the ingredients of each part of the EA vary widely, and there are few reports on the functionality of water extracts in skin inflammation and barrier protection. We assessed the therapeutic properties of the extract of EA without roots (EEA) and its primary ingredient, pyromeconic acid (PA), focusing on their antihistamine, anti-inflammatory, and antioxidative capabilities using HMC-1(human mast cells) and human keratinocytes (HaCaT cells). Our findings revealed that histamine secretion, which is closely related to itching, was notably reduced in HMC-1 cells following pretreatment with EEA (0.1% and 0.2%) and PA (corresponding concentration, 4.7 of 9.4 µg/mL). Similarly, they led to a marked decrease in the levels of pro-inflammatory cytokines, including IL-1β, IL-8, IL-6, and IFN-γ. Furthermore, EA and PA enhanced antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), reduced malondialdehyde (MDA) production, and showed reactive oxygen species (ROS) scavenging activity in HaCaT cells. Moreover, at the molecular level, elevated levels of the pro-inflammatory cytokines IL-1β, IL-6, TARC, and MDC induced by TNF-α/IFN-γ in HaCaT cells were mitigated by treatment with EEA and PA. We also revealed the protective effects of EEA and PA against SDS-induced skin barrier dysfunction in HaCaT cells by enhancing the expression of barrier-related proteins. Using NanoString technology, a comprehensive analysis of gene expression changes indicated significant modulation of autoimmune and inflammatory genes by EEA and PA. In summary, this study suggests that EEA and the corresponding concentration of PA as an active ingredient have functional cosmetic applications to alleviate itching and improve skin health.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Food and Nutrition, Jeonju University, Jeonju, 55069, Korea
| | - Minji Kang
- Department of Food and Nutrition, Jeonju University, Jeonju, 55069, Korea
| | | | | | - Sangnam Oh
- Department of Food and Nutrition, Jeonju University, Jeonju, 55069, Korea.
| |
Collapse
|
21
|
Dillemans L, Yu K, De Zutter A, Noppen S, Gouwy M, Berghmans N, Verhallen L, De Bondt M, Vanbrabant L, Brusselmans S, Martens E, Schols D, Verschueren P, Rosenkilde MM, Marques PE, Struyf S, Proost P. Natural carboxyterminal truncation of human CXCL10 attenuates glycosaminoglycan binding, CXCR3A signaling and lymphocyte chemotaxis, while retaining angiostatic activity. Cell Commun Signal 2024; 22:94. [PMID: 38308278 PMCID: PMC10835923 DOI: 10.1186/s12964-023-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Karen Yu
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lisa Verhallen
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Stef Brusselmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
23
|
Mei Y, Li X, He C, Zhang Y, Kong W, Xue R, Huang X, Shi Y, Tao G, Xing M, Wang X. Detrimental Role of CXCR3 in α-Naphthylisothiocyanate- and Triptolide-Induced Cholestatic Liver Injury. Chem Res Toxicol 2024; 37:42-56. [PMID: 38091573 DOI: 10.1021/acs.chemrestox.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The chemokine receptor CXCR3 is functionally pleiotropic, not only recruiting immune cells to the inflamed liver but also mediating the pathological process of cholestatic liver injury (CLI). However, the mechanism of its involvement in the CLI remains unclear. Both alpha-naphthylisothiocyanate (ANIT) and triptolide are hepatotoxicants that induce CLI by bile acid (BA) dysregulation, inflammation, and endoplasmic reticulum (ER)/oxidative stress. Through molecular docking, CXCR3 is a potential target of ANIT and triptolide. Therefore, this study aimed to investigate the role of CXCR3 in ANIT- and triptolide-induced CLI and to explore the underlying mechanisms. Wild-type mice and CXCR3-deficient mice were administered with ANIT or triptolide to compare CLI, BA profile, hepatic recruitment of IFN-γ/IL-4/IL-17+CD4+T cells, IFN-γ/IL-4/IL-17+iNKT cells and IFN-γ/IL-4+NK cells, and the expression of ER/oxidative stress pathway. The results showed that CXCR3 deficiency ameliorated ANIT- and triptolide-induced CLI. CXCR3 deficiency alleviated ANIT-induced dysregulated BA metabolism, which decreased the recruitment of IFN-γ+NK cells and IL-4+NK cells to the liver and inhibited ER stress. After triptolide administration, CXCR3 deficiency ameliorated dysregulation of BA metabolism, which reduced the migration of IL-4+iNKT cells and IL-17+iNKT cells and reduced oxidative stress through inhibition of Egr1 expression and AKT phosphorylation. Our findings suggest a detrimental role of CXCR3 in ANIT- and triptolide-induced CLI, providing a promising therapeutic target and introducing novel mechanisms for understanding cholestatic liver diseases.
Collapse
Affiliation(s)
- Yuan Mei
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Chao He
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London WC1E 6BT, U.K
| | - Weichao Kong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yaxiang Shi
- Department of Gastroenterology, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang 212003, China
| | - Gang Tao
- Department of Gastroenterology, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang 212003, China
| | - Mengtao Xing
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
Yuan Z. Research progress of CXCR3 inhibitors. Anticancer Drugs 2024; 35:36-45. [PMID: 37694856 DOI: 10.1097/cad.0000000000001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The human CXCR3 receptor was initially identified and cloned in the mid-1990s. In the process of understanding CXCR3, it gradually found that it plays an important role in the process of a variety of diseases, including inflammation, immune diseases, cancer, cardiovascular diseases, central nervous system diseases, etc., which attracted the attention of many researchers. Subsequently, some small molecule inhibitors targeting CXCR3 receptors were also developed. Unfortunately, no CXCR3 inhibitors have been approved for marketing by FDA. Up to now, only one CXCR3 small molecule inhibitor has entered the clinical trial stage, but it has not achieved ideal results in the end. Therefore, there is still much to think about and explore for the development of CXCR3 inhibitors. This article reviews the important role of CXCR3 in various physiological and pathological processes and some small molecule inhibitors of CXCR3.
Collapse
Affiliation(s)
- Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Al-Adwi Y, Atzeni IM, Doornbos-van der Meer B, van der Leij MJ, Varkevisser RDM, Kroesen BJ, Stel A, Timens W, Gan CT, van Goor H, Westra J, Mulder DJ. High serum C-X-C motif chemokine ligand 10 (CXCL10) levels may be associated with new onset interstitial lung disease in patients with systemic sclerosis: evidence from observational, clinical, transcriptomic and in vitro studies. EBioMedicine 2023; 98:104883. [PMID: 37995465 PMCID: PMC10708993 DOI: 10.1016/j.ebiom.2023.104883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc. There is an unmet need for predictive biomarkers to identify patients with SSc at risk of ILD. Previous studies have shown that interferon (IFN) pathways may play a role in SSc. We assessed the use of C-X-C motif chemokine ligand 10 (CXCL10) as a predictive biomarker for new onset of ILD in patients with SSc. METHODS One-hundred-sixty-five (Female, N = 130) patients with SSc (SSc-ILD, N = 41) and 13 (Female, N = 8) healthy controls were investigated retrospectively. CXCL10 protein levels were measured by ELISA. We performed log rank analysis with baseline CXCL10 serum levels. CXCL10 nanoString data from lung tissues obtained from transplanted patients with SSc-ILD were extracted. Fifteen (Female, N = 10) patients with SSc (SSc-ILD, N = 7) were recruited for bronchoalveolar lavage (BAL) procedure. Lung fibroblasts were treated with BAL-fluid or serum from patients with SSc with or without ILD. Inflammatory/fibrotic genes were assessed. FINDINGS Serum CXCL10 levels were higher in patients with SSc-ILD compared to SSc patients without ILD [Median (IQR):126 pg/ml (66-282.5) vs. 78.5 pg/ml (50-122), P = 0.029, 95% CI: 1.5 × 10-6 to 0.4284]. Survival analysis showed that baseline CXCL10 levels >78.5 pg/ml have a 2.74-fold increased risk of developing new onset of ILD (Log-rank: P = 0.119) on follow-up. CXCL10 levels in BAL supernatant were not different in patients with SSc-ILD compared to SSc without ILD [76.1 pg/ml (7.2-120.8) vs. 22.3 pg/ml (12.1-43.7), P = 0.24, 95% CI: -19.5 to 100]. NanoString showed that CXCL10 mRNA expression was higher in inflammatory compared to fibrotic lung tissues [4.7 (4.2-5.6) vs. 4.3 (3.6-4.7), P = 0.029]. Fibroblasts treated with SSc-ILD serum or BAL fluids overexpressed CXCL10. INTERPRETATIONS Clinical, transcriptomic, and in vitro data showed that CXCL10 is potentially involved in early SSc-ILD. More research is needed to confirm whether CXCL10 can be classified as a prospective biomarker to detect patients with SSc at higher risk of developing new onset ILD. FUNDING This collaborative project is co-financed by the Ministry of Economic Affairs and Climate Policy of the Netherlands utilizing the PPP-allowance made available by the Top Sector Life Sciences & Health to stimulate public-private partnerships (PPP-2019_007). Part of this study is financially supported by Sanofi Genzyme (NL8921).
Collapse
Affiliation(s)
- Yehya Al-Adwi
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands.
| | - Isabella Maria Atzeni
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands
| | - Berber Doornbos-van der Meer
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Marcel John van der Leij
- University of Groningen, University Medical Centre Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | | | - Bart-Jan Kroesen
- University of Groningen, University Medical Centre Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - Alja Stel
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Wim Timens
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Christiaan Tji Gan
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, the Netherlands
| | - Harry van Goor
- Department of Endocrinology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Douwe Johannes Mulder
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands
| |
Collapse
|
26
|
Pradhan R, Yu OHY, Platt RW, Azoulay L. Dipeptidyl peptidase-4 inhibitors and the risk of skin cancer among patients with type 2 diabetes: a UK population-based cohort study. BMJ Open Diabetes Res Care 2023; 11:e003550. [PMID: 37949470 PMCID: PMC10649616 DOI: 10.1136/bmjdrc-2023-003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION The dipeptidyl peptidase-4 (DPP-4) enzyme significantly influences carcinogenic pathways in the skin. The objective of this study was to determine whether DPP-4 inhibitors are associated with the incidence of melanoma and nonmelanoma skin cancer, compared with sulfonylureas. RESEARCH DESIGN AND METHODS Using the United Kingdom Clinical Practice Research Datalink, we assembled two new-user active comparator cohorts for each skin cancer outcome from 2007 to 2019. For melanoma, the cohort included 96 739 DPP-4 inhibitor users and 209 341 sulfonylurea users, and 96 411 DPP-4 inhibitor users and 208 626 sulfonylurea users for non-melanoma skin cancer. Propensity score fine stratification weighted Cox proportional hazards models were used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs of melanoma and non-melanoma skin cancer, separately. RESULTS Overall, DPP-4 inhibitors were associated with a 23% decreased risk of melanoma compared with sulfonylureas (49.7 vs 65.3 per 100 000 person-years, respectively; HR 0.77, 95% CI 0.61 to 0.96). The HR progressively reduced with increasing cumulative duration of use (0-2 years HR 1.14, 95% CI 0.84 to 1.54; 2.1-5 years HR 0.44, 95% CI 0.29 to 0.66; >5 years HR 0.33, 95% CI 0.14 to 0.74). In contrast, these drugs were not associated with the incidence of non-melanoma skin cancer, compared with sulfonylureas (448.1 vs 426.1 per 100 000 person-years, respectively; HR 1.06, 95% CI 0.98 to 1.15). CONCLUSIONS In this large, population-based cohort study, DPP-4 inhibitors were associated with a reduced risk of melanoma but not non-melanoma skin cancer, compared with sulfonylureas.
Collapse
Affiliation(s)
- Richeek Pradhan
- Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Oriana H Y Yu
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, Québec, Canada
| | - Robert W Platt
- Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Laurent Azoulay
- Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| |
Collapse
|
27
|
Dahabreh D, Jung S, Renert-Yuval Y, Bar J, Del Duca E, Guttman-Yassky E. Alopecia Areata: Current Treatments and New Directions. Am J Clin Dermatol 2023; 24:895-912. [PMID: 37606849 DOI: 10.1007/s40257-023-00808-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 08/23/2023]
Abstract
Alopecia areata is an autoimmune hair loss disease that is non-scarring and is characterized by chronic inflammation at the hair follicle level. Clinically, patients' presentation varies from patchy, circumscribed scalp involvement to total body and scalp hair loss. Current management is guided by the degree of scalp and body involvement, with topical and intralesional steroid injections as primarily first-line for mild cases and broad immunosuppressants as the mainstay for more severe cases. Until recently, the limited number of blinded, randomized, placebo-controlled clinical trials for this disease had made establishing an evidence-based treatment paradigm challenging. However, growing insights into the pathogenesis of alopecia areata through blood and tissue analysis of human lesions have identified several promising targets for therapy. T-helper (Th) 1/interferon skewing has traditionally been described as the driver of disease; however, recent investigations suggest activation of additional immune mediators, including the Th2 pathway, interleukin (IL)-9, IL-23, and IL-32, as contributors to alopecia areata pathogenesis. The landscape of alopecia areata treatment has the potential to be transformed, as several novel targeted drugs are currently undergoing clinical trials. Given the recent US FDA approval of baricitinib and ritlecitinib, Janus kinase (JAK) inhibitors are a promising drug class for treating severe alopecia areata cases. This article will review the efficacy, safety, and tolerability of current treatments for alopecia areata, and will provide an overview of the emerging therapies that are leading the revolution in the management of this challenging disease.
Collapse
Affiliation(s)
- Dante Dahabreh
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 E. 98th Street, New York, NY, 10029, USA
| | - Seungyeon Jung
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 E. 98th Street, New York, NY, 10029, USA
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Yael Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Jonathan Bar
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 E. 98th Street, New York, NY, 10029, USA
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 E. 98th Street, New York, NY, 10029, USA
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 E. 98th Street, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Smart CD, Fehrenbach DJ, Wassenaar JW, Agrawal V, Fortune NL, Dixon DD, Cottam MA, Hasty AH, Hemnes AR, Doran AC, Gupta DK, Madhur MS. Immune profiling of murine cardiac leukocytes identifies triggering receptor expressed on myeloid cells 2 as a novel mediator of hypertensive heart failure. Cardiovasc Res 2023; 119:2312-2328. [PMID: 37314125 PMCID: PMC10597637 DOI: 10.1093/cvr/cvad093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling. METHODS AND RESULTS Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages. The DOCA-salt model results in differential expression of several known and novel genes in cardiac macrophages, including up-regulation of Trem2, which has been recently implicated in obesity and atherosclerosis. The role of Trem2 in hypertensive heart failure, however, is unknown. We found that mice with genetic deletion of Trem2 exhibit increased cardiac hypertrophy, diastolic dysfunction, renal injury, and decreased cardiac capillary density after DOCA-salt treatment compared to wild-type controls. Moreover, Trem2-deficient macrophages have impaired expression of pro-angiogenic gene programmes and increased expression of pro-inflammatory cytokines. Furthermore, we found that plasma levels of soluble TREM2 are elevated in DOCA-salt treated mice and humans with heart failure. CONCLUSIONS Together, our data provide an atlas of immunological alterations that can lead to improved diagnostic and therapeutic strategies for HFpEF. We provide our dataset in an easy to explore and freely accessible web application making it a useful resource for the community. Finally, our results suggest a novel cardioprotective role for Trem2 in hypertensive heart failure.
Collapse
Affiliation(s)
- Charles Duncan Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
| | - Daniel J Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), 2215 Garland Avenue, P415D MRB IV, Nashville, TN 37232, USA
| | - Jean W Wassenaar
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
| | - Vineet Agrawal
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
| | - Niki L Fortune
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Debra D Dixon
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Amanda C Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center (VUMC), Medical Center North A-5121, 1161 21st Ave South, Nashville, TN 37232, USA
| | - Deepak K Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meena S Madhur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), 2215 Garland Avenue, P415D MRB IV, Nashville, TN 37232, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center (VUMC), 1311 Medical Center Dr, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center (VUMC), Medical Center North A-5121, 1161 21st Ave South, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Mulder PP, Vlig M, Elgersma A, Rozemeijer L, Mastenbroek LS, Middelkoop E, Joosten I, Koenen HJ, Boekema BK. Monocytes and T cells incorporated in full skin equivalents to study innate or adaptive immune reactions after burn injury. Front Immunol 2023; 14:1264716. [PMID: 37901218 PMCID: PMC10611519 DOI: 10.3389/fimmu.2023.1264716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Thermal injury often leads to prolonged and excessive inflammation, which hinders the recovery of patients. There is a notable absence of suitable animal-free models for investigating the inflammatory processes following burn injuries, thereby impeding the development of more effective therapies to improve burn wound healing in patients. Methods In this study, we established a human full skin equivalent (FSE) burn wound model and incorporated human peripheral blood-derived monocytes and T cells. Results Upon infiltration into the FSEs, the monocytes differentiated into macrophages within a span of 7 days. Burn-injured FSEs exhibited macrophages with increased expression of HLA-DR+ and elevated production of IL-8 (CXCL8), in comparison to uninjured FSEs. Among the T cells that actively migrated into the FSEs, the majority were CD4+ and CD25+. These T cells demonstrated augmented expression of markers associated with regulatory T cell, Th1, or Th17 activity, which coincided with significant heightened cytokine production, including IFN-γ, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IP-10 (CXCL10), and TGF-β1. Burn injury did not impact the studied effector T cell subsets or cytokine levels. Discussion Collectively, this study represents a significant advancement in the development of an immunocompetent human skin model, specifically tailored for investigating burn-induced innate or adaptive immune reactions at the site of burn injury.
Collapse
Affiliation(s)
- Patrick P.G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Lotte Rozemeijer
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | | | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, Netherlands
- Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J.P.M. Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bouke K.H.L. Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Mikkelsen K, Dargahi N, Fraser S, Apostolopoulos V. High-Dose Vitamin B6 (Pyridoxine) Displays Strong Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Monocytes. Biomedicines 2023; 11:2578. [PMID: 37761018 PMCID: PMC10526783 DOI: 10.3390/biomedicines11092578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin B6 is shown to have anti-inflammatory properties, which makes it an interesting nutraceutical agent. Vitamin B6 deficiency is well established as a contributor to inflammatory-related conditions, whilst B6 supplementation can reverse these inflammatory effects. There is less information available regarding the effects of high-dose vitamin B6 supplementation as a therapeutic agent. This study set out to examine the effects of high-dose vitamin B6 on an LPS-stimulated monocyte/macrophage cell population via an analysis of protein and gene expression using an RT2 profiler PCR array for Human Innate and Adaptive Immune responses. It was identified that high-dose vitamin B6 has a global anti-inflammatory effect on lipopolysaccharide-induced inflammation in monocyte/macrophage cells by downregulating the key broad-spectrum inflammatory mediators CCL2, CCL5, CXCL2, CXCL8, CXCL10, CCR4, CCR5, CXCR3, IL-1β, IL-5, IL-6, IL-10, IL-18, IL-23-a, TNF-α, CSF2, DDX58, NLRP3, NOD1, NOD2, TLR-1 -2 -4 -5 -7 -8 -9, MYD88, C3, FOXP3, STAT1, STAT3, STAT6, LYZ, CASP-1, CD4, HLA-E, MAPK1, MAPK8 MPO, MX-1, NF-κβ, NF-κβ1A, CD14, CD40, CD40LG, CD86, Ly96, ICAM1, IRF3, ITGAM, and IFCAM2. The outcomes of this study show promise regarding vitamin B6 within the context of a potent broad-spectrum anti-inflammatory mediator and could prove useful as an adjunct treatment for inflammatory-related diseases.
Collapse
Affiliation(s)
| | | | | | - Vasso Apostolopoulos
- Immunology and Translational Research Group, Institute for Health and Sport, Werribee Campus, Victoria University, Melbourne, VIC 3030, Australia; (K.M.); (N.D.); (S.F.)
| |
Collapse
|
31
|
Majeed AY, Zulkafli NES, Ad'hiah AH. Serum profiles of pro-inflammatory and anti-inflammatory cytokines in non-hospitalized patients with mild/moderate COVID-19 infection. Immunol Lett 2023; 260:24-34. [PMID: 37339685 PMCID: PMC10276899 DOI: 10.1016/j.imlet.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
This study attempted to explore pro-inflammatory and anti-inflammatory responses in patients with mild/moderate coronavirus disease 19 (COVID-19). Eight pro-inflammatory (IL-1α, IL-1β, IL-12, IL-17A, IL-17E, IL-31, IFN-γ and TNF-α) and three anti-inflammatory (IL-1Ra, IL-10 and IL-13) cytokines, as well as two chemokines (CXCL9 and CXCL10), were analyzed in the serum from ninety COVID-19 patients and healthy controls. Cytokine/chemokine levels were measured using enzyme-linked immunosorbent assay kits. Results revealed that IL-1α, IL-1β, IL-10, IL-12, IL-13, IL-17A, IL-31, IFN-γ, TNF-α and CXCL10 were significantly higher in patients than in controls, while IL-1Ra levels were significantly lower in patients. IL-17E and CXCL9 levels showed no significant differences between patients and controls. Seven cytokines/chemokines recorded an area under the curve greater than 0.8: IL-12 (0.945), IL-17A (0.926), CXCL10 (0.909), IFN-γ (0.904), IL-1α (0.869), TNF-α (0.825) and IL-10 (0.821). As indicated by the odds ratio, elevated levels of nine cytokines/chemokines were associated with an increased risk of COVID-19: IL-1α (19.04), IL-10 (5.01), IL-12 (43.66), IL-13 (4.25), IL-17A (16.62), IL-31 (7.38), IFN-γ (13.55), TNF-α (12.00) and CXCL10 (11.18). Only one positive (IL-17E with TNF-α) and six negative (IL-1β, IL-17A and IL-17E with CXCL9, IL-10 with IL-17A, and IL-1β and IL-17A with CXCL10) correlations were found between these cytokines/chemokines. In conclusion, pro-inflammatory (IL-1α, IL-1β, IL-12, IL-13, IL-17A, IL-31, IFN-γ, TNF-α and CXCL10) and anti-inflammatory (IL-10 and IL-13) cytokines/chemokines were up-regulated in the serum of patients with mild/moderate COVID-19. Their potential as biomarkers for diagnosis and prognosis is suggested and the association with COVID-19 risk is indicated to give more insight on COVID-19 immunological responses among non-hospitalized patients.
Collapse
Affiliation(s)
- Abdulraheem Y Majeed
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia; AL-Anbar Directorate of Health, Iraqi Ministry of Health, Iraq
| | - Nor Effa S Zulkafli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, 10070, Al-Karrada, Baghdad, Iraq.
| |
Collapse
|
32
|
Pan M, Wei X, Xiang X, Liu Y, Zhou Q, Yang W. Targeting CXCL9/10/11-CXCR3 axis: an important component of tumor-promoting and antitumor immunity. Clin Transl Oncol 2023; 25:2306-2320. [PMID: 37076663 DOI: 10.1007/s12094-023-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/21/2023]
Abstract
Chemokines are chemotactic-competent molecules composed of a family of small cytokines, playing a key role in regulating tumor progression. The roles of chemokines in antitumor immune responses are of great interest. CXCL9, CXCL10, and CXCL11 are important members of chemokines. It has been widely investigated that these three chemokines can bind to their common receptor CXCR3 and regulate the differentiation, migration, and tumor infiltration of immune cells, directly or indirectly affecting tumor growth and metastasis. Here, we summarize the mechanism of how the CXCL9/10/11-CXCR3 axis affects the tumor microenvironment, and list the latest researches to find out how this axis predicts the prognosis of different cancers. In addition, immunotherapy improves the survival of tumor patients, but some patients show drug resistance. Studies have found that the regulation of CXCL9/10/11-CXCR3 on the tumor microenvironment is involved in the process of changing immunotherapy resistance. Here we also describe new approaches to restoring sensitivity to immune checkpoint inhibitors through the CXCL9/10/11-CXCR3 axis.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weibing Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
33
|
Zhang B, Huang B, Zhang X, Li S, Zhu J, Chen X, Song H, Shang D. PANoptosis-related molecular subtype and prognostic model associated with the immune microenvironment and individualized therapy in pancreatic cancer. Front Oncol 2023; 13:1217654. [PMID: 37519797 PMCID: PMC10382139 DOI: 10.3389/fonc.2023.1217654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background PANoptosis is an inflammatory type of programmed cell death regulated by PANopotosome. Mounting evidence has shown that PANoptosis could be involved in cancer pathogenesis and the tumor immune microenvironment. Nevertheless, there have been no studies on the mechanism of PANoptosis on pancreatic cancer (PC) pathogenesis. Methods We downloaded the data on transcriptomic and clinical features of PC patients from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Additionally, the data on copy number variation (CNV), methylation and somatic mutations of genes in 33 types of cancers were obtained from TCGA. Next, we identified the PANoptosis-related molecular subtype using the consensus clustering analysis, and constructed and validated the PANoptosis-related prognostic model using LASSO and Cox regression analyses. Moreover, RT-qPCR was performed to determine the expression of genes involved in the model. Results We obtained 66 PANoptosis-related genes (PANRGs) from published studies. Of these, 24 PC-specific prognosis-related genes were identified. Pan-cancer analysis revealed complex genetic changes, including CNV, methylation, and mutation in PANRGs were identified in various cancers. By consensus clustering analysis, PC patients were classified into two PANoptosis-related patterns: PANcluster A and B. In PANcluster A, the patient prognosis was significantly worse compared to PANcluster B. The CIBERSORT algorithm showed a significant increase in the infiltration of CD8+ T cells, monocytes, and naïve B cells, in patients in PANcluster B. Additionally, the infiltration of macrophages, activated mast cells, and dendritic cells were higher in patients in PANcluster A. Patients in PANcluster A were more sensitive to erlotinib, selumetinib and trametinib, whereas patients in PANcluster B were highly sensitive to irinotecan, oxaliplatin and sorafenib. Moreover, we constructed and validated the PANoptosis-related prognostic model to predict the patient's survival. Finally, the GEPIA and Human Protein Atlas databases were analyzed, and RT-qPCR was performed. Compared to normal tissues, a significant increase in CXCL10 and ITGB6 (associated with the model) expression was observed in PC tissues. Conclusion We first identified the PANoptosis-related molecular subtypes and established a PANoptosis-related prognostic model for predicting the survival of patients with PC. These results would aid in exploring the mechanisms of PANoptosis in PC pathogenesis.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shuang Li
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Zhu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Hicks C, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. Cell Chem Biol 2023; 30:362-382.e8. [PMID: 37030291 PMCID: PMC10147449 DOI: 10.1016/j.chembiol.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 04/10/2023]
Abstract
G protein-coupled receptor (GPCR)-biased agonism, selective activation of certain signaling pathways relative to others, is thought to be directed by differential GPCR phosphorylation "barcodes." At chemokine receptors, endogenous chemokines can act as "biased agonists", which may contribute to the limited success when pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomics studies. Mutation of CXCR3 phosphosites altered β-arrestin 2 conformation in cellular assays and was consistent with conformational changes observed in molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes, leading to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S Eiger
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Jeffrey S Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Dermatology Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Nicole M Knape
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Justin D Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Jana Selent
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
35
|
Ribatti D. Mast Cells and Resistance to Immunotherapy in Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:11. [PMID: 37038035 PMCID: PMC10085948 DOI: 10.1007/s00005-023-00676-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
Mast cells are involved in tumor growth and their mediators exert both pro- and anti-tumorigenic roles in different human cancers. The identification of defined immunosuppressive pathways that are present in the tumor microenvironment has pointed therapeutic strategies that may promote inflammation and/or innate immune activation in this context. Mast cells can contribute to the immune suppressive tumor microenvironment and may also enhance anti-tumor responses. This review article is focused on the analysis of the mechanisms of the role of mast cells in resistance to immunotherapy in cancer.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Piazza Giulio Cesare, 11, 70125, Bari, Italy.
| |
Collapse
|
36
|
Al-Adwi Y, Atzeni IM, Doornbos-van der Meer B, Abdulle AE, van Roon AM, Stel A, van Goor H, Smit AJ, Westra J, Mulder DJ. Release of High-Mobility Group Box-1 after a Raynaud's Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:antiox12040794. [PMID: 37107169 PMCID: PMC10134976 DOI: 10.3390/antiox12040794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Raynaud's Phenomenon (RP) leading to repetitive ischemia and reperfusion (IR) stress, is the first recognizable sign of systemic sclerosis (SSc) leading to increased oxidative stress. High-mobility group box-1 (HMGB1) is a nuclear factor released by apoptotic and necrotic cells after oxidative stress. Since HMGB1 can signal through the receptor for advanced glycation end products (RAGE), we investigated whether an RP attack promotes the release of HMGB1, leading to fibroblast activation and the upregulation of interferon (IFN)-inducible genes. A cold challenge was performed to simulate an RP attack in patients with SSc, primary RP (PRP), and healthy controls. We measured levels of HMGB1 and IFN gamma-induced Protein 10 (IP-10) at different time points in the serum. Digital perfusion was assessed by photoplethysmography. In vitro, HMGB1 or transforming growth factor (TGF-β1) (as control) was used to stimulate healthy human dermal fibroblasts. Inflammatory, profibrotic, and IFN-inducible genes, were measured by RT-qPCR. In an independent cohort, sera were obtained from 20 patients with SSc and 20 age- and sex-matched healthy controls to determine HMGB1 and IP-10 levels. We found that HMGB1 levels increased significantly 30 min after the cold challenge in SSc compared to healthy controls. In vitro stimulation with HMGB1 resulted in increased mRNA expression of IP-10, and interleukin-6 (IL-6) while TGF-β1 stimulation promoted IL-6 and Connective Tissue Growth Factor (CTGF). In serum, both HMGB1 and IP-10 levels were significantly higher in patients with SSc compared to healthy controls. We show that cold challenge leads to the release of HMGB1 in SSc patients. HMGB1 induces IP-10 expression in dermal fibroblasts partly through the soluble RAGE (sRAGE) axis suggesting a link between RP attacks, the release of HMGB1 and IFN-induced proteins as a putative early pathogenetic mechanism in SSc.
Collapse
Affiliation(s)
- Yehya Al-Adwi
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Isabella M Atzeni
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amaal Eman Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anniek M van Roon
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Alja Stel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Section Pathology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Andries J Smit
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
37
|
Meyer EA, Äänismaa P, Ertel EA, Hühn E, Strasser DS, Rey M, Murphy MJ, Martinic MM, Pouzol L, Froidevaux S, Keller MP, Caroff E. Discovery of Clinical Candidate ACT-777991, a Potent CXCR3 Antagonist for Antigen-Driven and Inflammatory Pathologies. J Med Chem 2023; 66:4179-4196. [PMID: 36883854 DOI: 10.1021/acs.jmedchem.3c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The CXCR3 chemokine receptor is a G protein-coupled receptor mainly expressed on immune cells from the lymphoid lineage, including activated T cells. Binding of its inducible chemokine ligands CXCL9, CXCL10, and CXCL11 leads to downstream signaling events and the migration of activated T cells to sites of inflammation. Herein, we report the third part of our CXCR3 antagonist program in the field of autoimmunity, culminating in the discovery of the clinical compound ACT-777991 (8a). A previously disclosed advanced molecule was exclusively metabolized by the CYP2D6 enzyme, and options to address the issue are described. ACT-777991 is a highly potent, insurmountable, and selective CXCR3 antagonist that showed dose-dependent efficacy and target engagement in a mouse model of acute lung inflammation. The excellent properties and safety profile warranted progress in the clinics.
Collapse
Affiliation(s)
- Emmanuel A Meyer
- Chemistry Immunology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Päivi Äänismaa
- DMPK, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Eric A Ertel
- Electrophysiology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Eva Hühn
- DMPK, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Daniel S Strasser
- Translational Biomarkers, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Markus Rey
- Cardiovascular Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Mark J Murphy
- Biology Immunology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Marianne M Martinic
- Pharmacology Immunology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Laetitia Pouzol
- Pharmacology Immunology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | | | - Marcel P Keller
- Biology Immunology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Eva Caroff
- Chemistry Immunology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| |
Collapse
|
38
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532634. [PMID: 36993369 PMCID: PMC10055163 DOI: 10.1101/2023.03.14.532634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptor (GPCR) biased agonism, the activation of some signaling pathways over others, is thought to largely be due to differential receptor phosphorylation, or "phosphorylation barcodes." At chemokine receptors, ligands act as "biased agonists" with complex signaling profiles, which contributes to the limited success in pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomic studies. Mutation of CXCR3 phosphosites altered β-arrestin conformation in cellular assays and was confirmed by molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes and lead to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S. Eiger
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S. Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710 USA
| | - Kevin Zheng
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Nicole M. Knape
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Justin D. Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
39
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Microbiota, Oxidative Stress, and Skin Cancer: An Unexpected Triangle. Antioxidants (Basel) 2023; 12:antiox12030546. [PMID: 36978794 PMCID: PMC10045429 DOI: 10.3390/antiox12030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mounting evidence indicates that the microbiota, the unique combination of micro-organisms residing in a specific environment, plays an essential role in the development of a wide range of human diseases, including skin cancer. Moreover, a persistent imbalance of microbial community, named dysbiosis, can also be associated with oxidative stress, a well-known emerging force involved in the pathogenesis of several human diseases, including cutaneous malignancies. Although their interplay has been somewhat suggested, the connection between microbiota, oxidative stress, and skin cancer is a largely unexplored field. In the present review, we discuss the current knowledge on these topics, suggesting potential therapeutic strategies.
Collapse
|
41
|
Subedi S, Park YP. Single-cell pair-wise relationships untangled by composite embedding model. iScience 2023; 26:106025. [PMID: 36824286 PMCID: PMC9941206 DOI: 10.1016/j.isci.2023.106025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, cell identity and functions are primed and refined through interactions with other surrounding cells. Here, we propose a scalable machine learning method, termed SPRUCE, which is designed to systematically ascertain common cell-cell communication patterns embedded in single-cell RNA-seq data. We applied our approach to investigate tumor microenvironments consolidating multiple breast cancer datasets and found seven frequently observed interaction signatures and underlying gene-gene interaction networks. Our results implicate that a part of tumor heterogeneity, especially within the same subtype, is better understood by differential interaction patterns rather than the static expression of known marker genes.
Collapse
Affiliation(s)
- Sishir Subedi
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
- BC Cancer Research, Part of Provincial Health Care Authority, Vancouver, BC, Canada
| | - Yongjin P. Park
- BC Cancer Research, Part of Provincial Health Care Authority, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Chen Y, Griffiths CEM, Bulfone-Paus S. Exploring Mast Cell-CD8 T Cell Interactions in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:1564. [PMID: 36675078 PMCID: PMC9861959 DOI: 10.3390/ijms24021564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The skin is exposed to environmental challenges and contains skin-resident immune cells, including mast cells (MCs) and CD8 T cells that act as sentinels for pathogens and environmental antigens. Human skin MCs and their mediators participate in the maintenance of tissue homeostasis and regulate the recruitment and activity of immune cells involved in the pathogenesis of skin diseases. The cutaneous CD8 T cell compartment is comprised of long-persisting resident memory T cells (TRM) and migratory or recirculating cells; both populations provide durable site immune surveillance. Several lines of evidence indicate that MC-derived products, such as CCL5 and TNF-α, modulate the migration and function of CD8 T cells. Conversely, activated CD8 T cells induce the upregulation of MC costimulatory molecules. Moreover, the close apposition of MCs and CD8 T cells has been recently identified in the skin of several dermatoses, such as alopecia areata. This review outlines the current knowledge about bidirectional interactions between human MCs and CD8 T cells, analyses the alteration of their communication in the context of three common skin disorders in which these cells have been found altered in number or function-psoriasis, atopic dermatitis, and vitiligo-and discusses the current unanswered questions.
Collapse
Affiliation(s)
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Dermatology Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
43
|
Eschke M, Moore PF, Chang H, Alber G, Keller SM. Canine peripheral blood TCRαβ T cell atlas: Identification of diverse subsets including CD8A + MAIT-like cells by combined single-cell transcriptome and V(D)J repertoire analysis. Front Immunol 2023; 14:1123366. [PMID: 36911660 PMCID: PMC9995359 DOI: 10.3389/fimmu.2023.1123366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
The dog is valued as a companion animal and increasingly recognized as a model for human disorders. Given the importance of T cells in health and disease, comprehensive knowledge of canine T cells can contribute to our understanding of pathogenesis mechanisms and inform the development of new treatment strategies. However, the diversity of canine T cells is still poorly understood mainly due to the lack of species-reactive antibodies for use in flow cytometry. The aim of this study was to generate a detailed atlas of peripheral blood TCRαβ+ T cells of healthy dogs using single-cell RNA-sequencing (scRNAseq) combined with immune repertoire sequencing. A total of 22 TCRαβ+ T cell clusters were identified, which were classified into three major groups: CD4-dominant (11 clusters), CD8A-dominant (8 clusters), and CD4/CD8A-mixed (3 clusters). Based on differential gene expression, distinct differentiation states (naïve, effector, memory, exhausted) and lineages (e.g. CD4 T helper and regulatory T cells) could be distinguished. Importantly, several T cell populations were identified, which have not been described in dogs before. Of particular note, our data provide first evidence for the existence of canine mucosa-associated invariant T cell (MAIT)-like cells, representing one of three newly identified FCER1G+ innate-like CD8A+ T cell populations in the peripheral blood of healthy dogs. In conclusion, using scRNAseq combined with immune repertoire sequencing we were able to resolve canine TCRαβ+ T cell populations at unprecedented resolution. The peripheral blood TCRαβ+ T cell atlas of healthy dogs generated here represents an important reference data set for future studies and is of relevance for identifying new targets for T cell-specific therapies.
Collapse
Affiliation(s)
- Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
44
|
Speeckaert R, Belpaire A, Speeckaert MM, van Geel N. A meta-analysis of chemokines in vitiligo: Recruiting immune cells towards melanocytes. Front Immunol 2023; 14:1112811. [PMID: 36911664 PMCID: PMC9999440 DOI: 10.3389/fimmu.2023.1112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Chemokine research offers insightful information on the pathogenesis of cutaneous immune disorders, such as vitiligo. Compared to cytokines, the higher detectable levels of chemokines display promising potential as future disease biomarkers. Nonetheless, some published study results are contradictory, which can be attributed to patient characteristics and methodological differences. In this study, a meta-analysis was performed to compare chemokine expression in blood and skin samples from vitiligo patients versus healthy controls. Furthermore, the relationship between chemokine expression and disease activity was evaluated. Chemokine levels were investigated in 15 articles in the circulation and in 9 articles in vitiligo skin. Overall, some clear trends were observed. CXCR3 signaling by CXCL10 and CXCL9 has been confirmed by several reports, although CXCL10 showed more robust findings in blood samples. In this meta-analysis, CCL5, CXCL8, CXCL12, and CXCL16 levels were also significantly elevated. This indicates a complex immune pathway activation in vitiligo that overall supports a Th1-dominant response. Chemokines linked to the Th2 and Th17 pathways were less prevalent. Despite these findings, study protocols that examine a broader range of chemokines are encouraged, because current research is mostly focused on a small number of chemokines that were differentially expressed in previous studies.
Collapse
Affiliation(s)
| | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, Gent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
45
|
Shavit E, Menascu S, Achiron A, Gurevich M. Age-related blood transcriptional regulators affect disease progression in pediatric multiple sclerosis. Neurobiol Dis 2023; 176:105953. [PMID: 36493973 DOI: 10.1016/j.nbd.2022.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pediatric onset multiple sclerosis patients (POMS) are defined as multiple sclerosis with an onset before the age of 18 years. Compared to adult onset multiple sclerosis (AOMS), POMS has more severe disease activity at onset, but better recovery. Little is known about the molecular mechanism responsible for the differences in the clinical presentations. METHODS Peripheral Blood Mononuclear Cells samples were taken from 22 POMS patients (mean age 14.1 ± 2.4 years, 15 females, 7 male), and 16 AOMS patients, (mean age 30.8 ± 6.1 years,10 females, 6 males), and gene-expression were analyzed using Affymetrix Inc. HU-133-A2 microarrays. Differentially Expressed Genes (DEGs) that significantly distinguished between POMS and AOMS with pvalue <0.05 after false discovery rate correction were evaluated using Partek software. Twenty-one matched age and gender control was applied to clarify age-related changes. Clinical assessment was performed by analysis of expanded disability status scale (EDSS) and brain MRI lesion loads. Gene functional analysis was performed by Ingenuity Pathway Analysis software. RESULTS Compared to AOMS, POMS had higher EDSS (3.0 IQR 2.0-3.0 and 2.0 IQR 2.0-3.0, p = 0.005), volume of T1 (2.72 mm3, IQR 0.44-8.39 mm3 and 0.5 mm3 IQR 0-1.29 mm3 respectively, p = 0.04) and T2 (3.70 mm3, IQR 1.3-9.6 and 0.96 mm3, IQR 0.24-4.63 respectively, p = 0.02) brain MRI lesions. The POMS transcriptional profile was characterized by 551 DEGs, enriched by cell cycling, B lymphocyte signaling and senescent pathways (p < 0.02). Of these, 183 DEGs significantly correlated with T2 lesions volume. The POMS MRI correlated DEGs (n = 183) and their upstream regulators (n = 718) has overlapped with age related DEGs obtained from healthy subjects (n = 497). This evaluated common DEGs (n = 29) defined as POMS age-related regulators, suggesting to promote effect on disease severity. CONCLUSION Our finding of higher transcriptional levels of genes involved in cell cycle, cell migration and B cell proliferation that promoted by transcriptional level of age-associated genes and transcription factors allows better understanding of the more aggressive clinical course that defines the POMS.
Collapse
Affiliation(s)
- Eitan Shavit
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; St. George's Hospital Medical School, University of London, London, United Kingdom; Arrow project for medical research education, Sheba Medical Center, Ramat-Gan, Israel.
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Zheng X, Higdon L, Gaudet A, Shah M, Balistieri A, Li C, Nadai P, Palaniappan L, Yang X, Santo B, Ginley B, Wang XX, Myakala K, Nallagatla P, Levi M, Sarder P, Rosenberg A, Maltzman JS, de Freitas Caires N, Bhalla V. Endothelial Cell-Specific Molecule-1 Inhibits Albuminuria in Diabetic Mice. KIDNEY360 2022; 3:2059-2076. [PMID: 36591362 PMCID: PMC9802554 DOI: 10.34067/kid.0001712022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023]
Abstract
Background Diabetic kidney disease (DKD) is the most common cause of kidney failure in the world, and novel predictive biomarkers and molecular mechanisms of disease are needed. Endothelial cell-specific molecule-1 (Esm-1) is a secreted proteoglycan that attenuates inflammation. We previously identified that a glomerular deficiency of Esm-1 associates with more pronounced albuminuria and glomerular inflammation in DKD-susceptible relative to DKD-resistant mice, but its contribution to DKD remains unexplored. Methods Using hydrodynamic tail-vein injection, we overexpress Esm-1 in DKD-susceptible DBA/2 mice and delete Esm-1 in DKD-resistant C57BL/6 mice to study the contribution of Esm-1 to DKD. We analyze clinical indices of DKD, leukocyte infiltration, podocytopenia, and extracellular matrix production. We also study transcriptomic changes to assess potential mechanisms of Esm-1 in glomeruli. Results In DKD-susceptible mice, Esm-1 inversely correlates with albuminuria and glomerular leukocyte infiltration. We show that overexpression of Esm-1 reduces albuminuria and diabetes-induced podocyte injury, independent of changes in leukocyte infiltration. Using a complementary approach, we find that constitutive deletion of Esm-1 in DKD-resistant mice modestly increases the degree of diabetes-induced albuminuria versus wild-type controls. By glomerular RNAseq, we identify that Esm-1 attenuates expression of kidney disease-promoting and interferon (IFN)-related genes, including Ackr2 and Cxcl11. Conclusions We demonstrate that, in DKD-susceptible mice, Esm-1 protects against diabetes-induced albuminuria and podocytopathy, possibly through select IFN signaling. Companion studies in patients with diabetes suggest a role of Esm-1 in human DKD.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Lauren Higdon
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Alexandre Gaudet
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Manav Shah
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Angela Balistieri
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Catherine Li
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Patricia Nadai
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Latha Palaniappan
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, California
| | - Xiaoping Yang
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Briana Santo
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Brandon Ginley
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Xiaoxin X. Wang
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | - Moshe Levi
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Avi Rosenberg
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan S. Maltzman
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Nathalie de Freitas Caires
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
- Biothelis, Lille, France
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
47
|
Guerrero D, Vo HTM, Lon C, Bohl JA, Nhik S, Chea S, Man S, Sreng S, Pacheco AR, Ly S, Sath R, Lay S, Missé D, Huy R, Leang R, Kry H, Valenzuela JG, Oliveira F, Cantaert T, Manning JE. Evaluation of cutaneous immune response in a controlled human in vivo model of mosquito bites. Nat Commun 2022; 13:7036. [PMID: 36396947 PMCID: PMC9672097 DOI: 10.1038/s41467-022-34534-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne viruses are a growing global threat. Initial viral inoculation occurs in the skin via the mosquito 'bite', eliciting immune responses that shape the establishment of infection and pathogenesis. Here we assess the cutaneous innate and adaptive immune responses to controlled Aedes aegypti feedings in humans living in Aedes-endemic areas. In this single-arm, cross-sectional interventional study (trial registration #NCT04350905), we enroll 30 healthy adult participants aged 18 to 45 years of age from Cambodia between October 2020 and January 2021. We perform 3-mm skin biopsies at baseline as well as 30 min, 4 h, and 48 h after a controlled feeding by uninfected Aedes aegypti mosquitos. The primary endpoints are measurement of changes in early and late innate responses in bitten vs unbitten skin by gene expression profiling, immunophenotyping, and cytokine profiling. The results reveal induction of neutrophil degranulation and recruitment of skin-resident dendritic cells and M2 macrophages. As the immune reaction progresses T cell priming and regulatory pathways are upregulated along with a shift to Th2-driven responses and CD8+ T cell activation. Stimulation of participants' bitten skin cells with Aedes aegypti salivary gland extract results in reduced pro-inflammatory cytokine production. These results identify key immune genes, cell types, and pathways in the human response to mosquito bites and can be leveraged to inform and develop novel therapeutics and vector-targeted vaccine candidates to interfere with vector-mediated disease.
Collapse
Affiliation(s)
- David Guerrero
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Jennifer A Bohl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sreynik Nhik
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Somnang Man
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Andrea R Pacheco
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sokna Ly
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Rathanak Sath
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sokchea Lay
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34000, Montpellier, France
| | - Rekol Huy
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center of Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Hok Kry
- Kampong Speu Provincial District, Ministry of Health, Phnom Penh, Cambodia
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tineke Cantaert
- Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Jessica E Manning
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
48
|
Roewe J, Walachowski S, Sharma A, Berthiaume KA, Reinhardt C, Bosmann M. Bacterial polyphosphates induce CXCL4 and synergize with complement anaphylatoxin C5a in lung injury. Front Immunol 2022; 13:980733. [PMID: 36405694 PMCID: PMC9669059 DOI: 10.3389/fimmu.2022.980733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
Polyphosphates are linear polymers of inorganic phosphates that exist in all living cells and serve pleiotropic functions. Bacteria produce long-chain polyphosphates, which can interfere with host defense to infection. In contrast, short-chain polyphosphates are released from platelet dense granules and bind to the chemokine CXCL4. Here, we report that long-chain polyphosphates induced the release of CXCL4 from mouse bone marrow-derived macrophages and peritoneal macrophages in a dose-/time-dependent fashion resulting from an induction of CXCL4 mRNA. This polyphosphate effect was lost after pre-incubation with recombinant exopolyphosphatase (PPX) Fc fusion protein, demonstrating the potency of long chains over monophosphates and ambient cations. In detail, polyphosphate chains >70 inorganic phosphate residues were required to reliably induce CXCL4. Polyphosphates acted independently of the purinergic P2Y1 receptor and the MyD88/TRIF adaptors of Toll-like receptors. On the other hand, polyphosphates augmented LPS/MyD88-induced CXCL4 release, which was explained by intracellular signaling convergence on PI3K/Akt. Polyphosphates induced Akt phosphorylation at threonine-308. Pharmacologic blockade of PI3K (wortmannin, LY294002) antagonized polyphosphate-induced CXCL4 release from macrophages. Intratracheal polyphosphate administration to C57BL/6J mice caused histologic signs of lung injury, disruption of the endothelial-epithelial barrier, influx of Ly6G+ polymorphonuclear neutrophils, depletion of CD11c+SiglecF+ alveolar macrophages, and release of CXCL4. Long-chain polyphosphates synergized with the complement anaphylatoxin, C5a, which was partly explained by upregulation of C5aR1 on myeloid cells. C5aR1-/- mice were protected from polyphosphate-induced lung injury. C5a generation occurred in the lungs and bronchoalveolar lavage fluid (BALF) of polyphosphate-treated C57BL/6J mice. In conclusion, we demonstrate that polyphosphates govern immunomodulation in macrophages and promote acute lung injury.
Collapse
Affiliation(s)
- Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Sarah Walachowski
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kayleigh A. Berthiaume
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
49
|
Human complete NFAT1 deficiency causes a triad of joint contractures, osteochondromas, and B-cell malignancy. Blood 2022; 140:1858-1874. [PMID: 35789258 DOI: 10.1182/blood.2022015674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.
Collapse
|
50
|
Gurrea-Rubio M, Fox DA. The dual role of CD6 as a therapeutic target in cancer and autoimmune disease. Front Med (Lausanne) 2022; 9:1026521. [PMID: 36275816 PMCID: PMC9579686 DOI: 10.3389/fmed.2022.1026521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Autoimmune disease involves loss of tolerance to self-antigen, while progression of cancer reflects insufficient recognition and response of the immune system to malignant cells. Patients with immune compromised conditions tend to be more susceptible to cancer development. On the other hand, cancer treatments, especially checkpoint inhibitor therapies, can induce severe autoimmune syndromes. There is recent evidence that autoimmunity and cancer share molecular targets and pathways that may be dysregulated in both types of diseases. Therefore, there has been an increased focus on understanding these biological pathways that link cancer and its treatment with the appearance of autoimmunity. In this review, we hope to consolidate our understanding of current and emerging molecular targets used to treat both cancer and autoimmunity, with a special focus on Cluster of Differentiation (CD) 6.
Collapse
|