1
|
Sardar MA, Abbasian S, Moghavemi H, Karabi M. HIIT may ameliorate inter-organ crosstalk between liver and hypothalamus of HFD-induced MAFLD rats; A two-phase study to investigate the effect of exercise intensity as a stressor. Brain Res 2025; 1856:149591. [PMID: 40120709 DOI: 10.1016/j.brainres.2025.149591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Previous studies demonstrate that GDF15 and its related signaling activators may be affected by exercise training, leading to the suppression of inflammatory factors and the promotion of immune-metabolic balance. Therefore, the purpose of the study was to evaluate the effect of high-intensity interval training (HIIT) on amelioration of inter-organ crosstalk between liver and hypothalamus of the high-fat diet (HFD)-induced metabolic dysfunction-associated fatty liver disease (MAFLD) rats in a two-phase study. In this regard, rats were initially divided into two groups, the normal diet-inactive (NS) and the HFD groups. HFD course lasted 12 weeks to induce MAFLD in the latter group. After ensuring the induction of MAFLD, 25 rats were divided into three groups: the HFD-inactive group (HS), the HFD-HIIT group (HH), as well as the HFD-aerobic group (HA). The training interventions were consistently applied over a period of eight weeks, five days a week, with each session lasting 40-60 min, and the duration of the whole research was 21 weeks. The results of this study displayed that HIIT intervention promotes hypothalamic Gdf15 gene expression and there were similar alterations in genes expression of Foxo1 and Akt2. Moreover, our results confirmed that HIIT ameliorated hypothalamic NFKB gene expression and there was a similar trend in genes expression of Tnfa and Il1b following both HIIT as well as aerobic training protocols. Taking these findings together, it is concluded that interventions, particularly exercise training, uniquely contribute to the reduction of hypothalamic-associated inflammatory responses that result in prolonged and chronic increases in GDF15.
Collapse
Affiliation(s)
- Mohammad Ali Sardar
- Department of General Courses, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Abbasian
- Department of Physical Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| | - Hamid Moghavemi
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Karabi
- Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad, Iran
| |
Collapse
|
2
|
Fernandes M, Placidi F, Izzi F, Nuccetelli M, Bernardini S, Mercuri NB, Liguori C. Persistent blood-brain barrier dysregulation in patients with obstructive sleep apnea following long-term continuous positive airway pressure treatment. Neurobiol Aging 2025; 151:89-94. [PMID: 40267730 DOI: 10.1016/j.neurobiolaging.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Blood-brain barrier (BBB) dysfunction has been hypothesized to be a triggering factor in neurodegeneration. This study compared moderate-severe obstructive sleep apnea (OSA) patients with controls to evaluate the effects of this sleep disorder on BBB integrity, as well as explore the impact of continuous positive airway pressure (CPAP) treatment on BBB. METHODS This study included moderate-severe OSA patients, OSA patients being treated with CPAP for at least 12 months (OSA-CPAP), and a control group with no neurological or psychiatric diseases. Participants underwent neurological examination, cognitive assessment (to exclude cognitive impairment) and lumbar puncture for cerebrospinal-fluid (CSF) biomarkers analysis [β-amyloid42 (Aβ42), total-tau, phosphorylated tau, ratio between CSF and serum albumin levels (Qalb)]. RESULTS 38 moderate-severe OSA patients (mean age 65.50 ± 9.16), 12 patients with OSA treated with CPAP (OSA-CPAP, mean age 65.42 ± 6.45) and 25 controls (mean age 65.64 ± 8.10) were included. Moderate-severe OSA patients showed higher Qalb than controls (p = 0.026); also OSA-CPAP patients presented higher Qalb than controls (p = 0.044). Qalb did not differ comparing moderate-severe OSA and OSA-CPAP groups. OSA patients showed lower CSF Aβ42 levels compared to both controls (p < 0.001) and the OSA-CPAP patients (p < 0.001). CONCLUSIONS These findings confirmed CSF Aβ42 alteration and documented BBB dysfunction, as indicated by the higher Qalb, in OSA patients. The metabolic and oxidative damage caused by hypoxia could account for these phenomenona; however, the BBB impairment seems to be not reversible, as OSA-CPAP patients presented the BBB alteration although normal CSF Aβ42 levels. Further studies exploring BBB function and its clinical implication for neurodegeneration in OSA are needed.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Yu Y, Shen H, Qin Q, Wang J, Nie Y, Wen L, Tang Y, Qu M. The investigation of peripheral inflammatory and oxidative stress biomarkers in dementia with Lewy Bodies, compared with Alzheimer's Disease, and mild cognitive impairment. Neuroscience 2025; 568:209-218. [PMID: 39800047 DOI: 10.1016/j.neuroscience.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/05/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Although inflammation and oxidative stress have been increasingly recognised as components of Alzheimer's disease (AD) and Parkinson's disease (PD) pathologies. Few studies have investigated peripheral inflammation, and none have examined oxidative stress in Dementia with Lewy bodies (DLB). The purpose of our study was to characterize and compare those biomarkers in DLB with those in AD and amnestic mild cognitive impairment (aMCI). Plasma samples were obtained from Chinese patients with DLB (n = 50), AD (n = 59), and aMCI (n = 30), and healthy controls (HCs) (n = 54). Peripheral inflammatory biomarkers, including interferon-gamma (IFN-γ), interleukins (IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-17A), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP). Oxidative stress markers, such as superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px), were also assessed. The findings revealed that DLB patients had higher IL-6 levels than AD and HCs and elevated IL-10 and IL-17A levels compared to HCs. In terms of oxidative stress, the levels of SOD were significantly lower and MDA were significantly higher in the DLB and AD compared with HCs. Significant positive correlations were found between Unified Parkinson's Disease Rating Scale (UPDRS) scores and CRP levels. Our study identifies a unique peripheral immune and oxidative stress profile in DLB, characterized by elevated IL-6, MDA, and reduced SOD levels, distinguishing it from AD. These findings, linked to α-synuclein (α-Syn) pathology, provide novel insights into DLB mechanisms and highlight potential biomarkers for disease monitoring, targeted therapies, and future clinical trials.
Collapse
Affiliation(s)
- Yueyi Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huixin Shen
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuting Nie
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Lulu Wen
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Miao Qu
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Sun M, Li F, Wang Y, Miao M, Lu Z, Chen WM, Wu SY, Zhang J. Postoperative sepsis and its sequential impact on dementia. Crit Care 2025; 29:66. [PMID: 39915868 PMCID: PMC11800527 DOI: 10.1186/s13054-025-05276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Postoperative sepsis is a severe complication associated with increased mortality and potential long-term cognitive decline, including dementia. However, the relationship between postoperative sepsis and dementia remains poorly understood. METHODS This retrospective cohort study used data from the National Database in Taiwan, covering the period from January 1, 2005, to December 31, 2022. The index period for surgeries was set between January 1, 2008, and December 31, 2013, allowing the identification of patients without prior dementia. A landmark period of 12 months following surgery was defined to capture the number of postoperative sepsis events, which were then analyzed for their impact on dementia risk. After 1:4 propensity score matching (PSM), dementia and mortality were evaluated using Cox proportional hazards and Fine-Gray competing risk models. RESULTS Following PSM, 778 patients were in the postoperative sepsis group and 3,112 in the non-postoperative sepsis group. Dementia incidence was higher in the postoperative sepsis group (26%) compared to the non- postoperative sepsis group (13.6%), with a hazard ratio (HR) of 1.25 (95% CI, 1.03-1.52). A dose-response relationship was observed, with dementia rates of 24.5% for one postoperative sepsis event and 34.9% for two or more events, the latter showing an HR of 1.77 (95% CI, 1.17-2.66). Mortality was also elevated in the postoperative sepsis group (40.5% vs. 31.6%; HR 1.45, 95% CI, 1.28-1.65). CONCLUSIONS Postoperative sepsis is significantly associated with increased dementia risk in a dose-dependent manner. These findings highlight the importance of enhancing perioperative infection control to reduce both immediate and long-term cognitive complications.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Fangfang Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Zhongyuan Lu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, No. 83, Nanchang St., Luodong Township, Yilan County, 265, Taiwan.
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan.
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan.
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan.
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Puoyan‐Majd S, Parnow A, Rashno M, Heidarimoghadam R, komaki A. Effects of Pretreatment With Coenzyme Q10 (CoQ10) and High-Intensity Interval Training (HIIT) on FNDC5, Irisin, and BDNF Levels, and Amyloid-Beta (Aβ) Plaque Formation in the Hippocampus of Aβ-Induced Alzheimer's Disease Rats. CNS Neurosci Ther 2025; 31:e70221. [PMID: 39957598 PMCID: PMC11831071 DOI: 10.1111/cns.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
AIMS Physical exercise has been shown to protect against cognitive decline in Alzheimer's disease (AD), likely through the upregulation of brain-derived neurotrophic factor (BDNF). Recent studies have reported that exercise activates the FNDC5/irisin pathway in the hippocampus of mice, triggering a neuroprotective gene program that includes BDNF. This study aimed to investigate the effects of 8 weeks of pretreatment with coenzyme Q10 (CoQ10) and high-intensity interval training (HIIT), both individually and in combination, on FNDC5, irisin, BDNF, and amyloid-beta (Aβ) plaque formation in the hippocampus of Aβ-related AD rats. METHODS In this study, 72 male Wistar rats were randomly assigned to one of the following groups: control, sham, HIIT (low intensity: 3 min running at 50%-60% VO2max; high intensity: 4 min running at 85%-90% VO2max), Q10 (50 mg/kg, orally administered), Q10 + HIIT, AD, AD + HIIT, AD + Q10, and AD + Q10 + HIIT. RESULTS Aβ injection resulted in a trend toward decreased levels of FNDC5, irisin, and BDNF, alongside increased Aβ plaque formation in the hippocampus of Aβ-induced AD rats. However, pretreatment with CoQ10, HIIT, or their combination significantly restored hippocampal levels of FNDC5, irisin, and BDNF, while also inhibiting Aβ plaque accumulation in these rats. CONCLUSION Pretreatment with CoQ10 and HIIT improved the Aβ-induced reduction in BDNF levels probably through the FNDC5/irisin pathway and preventing Aβ plaque formation.
Collapse
Affiliation(s)
- Samira Puoyan‐Majd
- Bio‐Sciences Department, Physical Education and Sport Sciences FacultyRazi UniversityKermanshahIran
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
| | - Abdolhossein Parnow
- Bio‐Sciences Department, Physical Education and Sport Sciences FacultyRazi UniversityKermanshahIran
| | - Masome Rashno
- Asadabad School of Medical SciencesAsadabadIran
- Student Research Committee, Asadabad School of Medical SciencesAsadabadIran
| | - Rashid Heidarimoghadam
- Department of ErgonomicsSchool of Health, Hamadan University of Medical SciencesHamadanIran
| | - Alireza komaki
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
- Department of NeuroscienceSchool of Science and Advanced Technologies in Medicine, Hamadan University of Medical SciencesHamadanIran
| |
Collapse
|
6
|
van Setten A, Uleman JF, Melis RJF, Lawlor B, Riksen NP, Claassen JAHR, de Heus RAA. No association between markers of systemic inflammation and endothelial dysfunction with Alzheimer's disease progression: a longitudinal study. GeroScience 2025; 47:1093-1104. [PMID: 39085534 PMCID: PMC11872860 DOI: 10.1007/s11357-024-01294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Systemic inflammation and endothelial dysfunction are potentially modifiable factors implicated in Alzheimer's disease (AD), which offer potential therapeutic targets to slow disease progression. METHODS We investigated the relationship between baseline circulating levels of inflammatory (TNF-α, IL-1ß) and endothelial cell markers (VCAM-1, ICAM-1, E-selectin) and 18-month cognitive decline (ADAS-cog12) in 266 mild-to-moderate AD patients from the NILVAD study. We employed individual growth models to examine associations, potential mediation, and interaction effects while adjusting for confounders. RESULTS The average increase in ADAS-cog12 scores over all patients was 8.1 points in 18 months. No significant association was found between the markers and the rate of cognitive decline. Mediation analysis revealed no mediating role for endothelial cell markers, and interaction effects were not observed. DISCUSSION Our results do not support the role of systemic inflammation or endothelial dysfunction in progression in persons with AD.
Collapse
Affiliation(s)
- Arne van Setten
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen F Uleman
- Copenhagen Health Complexity Center, Department of Public Health, University of Copenhagen, Oster Farimagsgade 5, 1353, Copenhagen K, Denmark.
| | - René J F Melis
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rianne A A de Heus
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Prajapati SK, Wang S, Mishra SP, Jain S, Yadav H. Protection of Alzheimer's disease progression by a human-origin probiotics cocktail. Sci Rep 2025; 15:1589. [PMID: 39794404 PMCID: PMC11724051 DOI: 10.1038/s41598-024-84780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities. We aimed to determine the probiotics cocktail's efficacy in ameliorating AD pathology in a humanized AD mouse model of APP/PS1 strains. Remarkably, feeding mice with 1 × 1011 CFU per day in drinking water for 16 weeks significantly reduced cognitive decline (measured by the Morris Water Maze test) and AD pathology markers, such as Aβ aggregation, microglia activation, neuroinflammation, and preserved blood-brain barrier (BBB) tight junctions. The beneficial effects were linked to a reduced inflammatory microbiome, leading to decreased gut permeability and inflammation in both systemic circulation and the brain. Although both male and female mice showed overall improvements in cognition and biological markers, females did not exhibit improvements in specific markers related to inflammation and barrier permeability, suggesting that the underlying mechanisms may differ depending on sex. In conclusion, our results suggest that this unique probiotics cocktail could serve as a prophylactic agent to reduce the progression of cognitive decline and AD pathology. This is achieved by beneficially modulating the microbiome, improving intestinal tight junction proteins, reducing permeability in both gut and BBB, and decreasing inflammation in the gut, blood circulation, and brain, ultimately mitigating AD pathology and cognitive decline.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shaohua Wang
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Biomedical Sciences, Infectious and Tropical Disease Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Center of Excellence in Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Internal Medicine-Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
8
|
Zhou Y, Yang Y, Tian R, Cheang WS. Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro. Sci Rep 2025; 15:1542. [PMID: 39789118 PMCID: PMC11718003 DOI: 10.1038/s41598-025-85144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects. In this study, we investigated the protective effects of pterostilbene on LPS-stimulated mouse brain endothelial (bEnd.3) cells and underlying mechanisms. The results showed that pterostilbene effectively upregulated the expressions of tight junction (TJ) proteins such as zonula occludens (ZO)-1 and claudin-5 and downregulated the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, preventing BBB damage under LPS stimulation. Pterostilbene decreased the LPS-triggered expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 as well as the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Meanwhile, we found that pterostilbene exerted an inhibitory effect on nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in bEnd.3 cells upon LPS stimulation. Additionally, pterostilbene exhibited antioxidant effects by activating heme oxygenase 1 (HO-1). These findings indicated that pterostilbene protected against lipopolysaccharide (LPS)-induced inflammation, oxidative stress and blood-brain barrier (BBB) disruption in bEnd.3 cells.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yifan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rui Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
9
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
10
|
Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, Nuh AM, Jiang W, Farooqi HMU, Bai Q. Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:84-103. [PMID: 38235991 DOI: 10.1080/21691401.2024.2304814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Tamreez Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mansoor Husn
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Manzar Khan
- Department of Zoology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ahmad Khan
- Department of Psychology, University of Karachi, Karachi, Pakistan
| | - Abdifatah Mohamed Nuh
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Qain Bai
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
12
|
Lapid MI, Merrill J, Mueller M, Hermida AP, Nykamp L, Andrus J, Azizi H, Bolton P, Bonsu N, Braga R, Dillon CR, Ecklesdafer D, Evans D, Harper D, Heintz H, Hussain-Krauter S, Holzgen O, Humphrey D, Jiwani S, Johnson EK, Kang S, Kassien J, Kim J, Knapp RG, Kung S, Kremen N, Le K, Mahdasian J, Marzouk T, Masrud JD, Mattingly J, Miller D, Pagali SR, Patrick R, Riva Posse P, Pritchett C, Rahman A, Rath S, Roczniak C, Rummans TA, Sanghani S, Seiner S, Smart L, Tomaschek E, Tsygankova V, VanderSchuur-White L, Walton MP, Wilkins J, Williams A, Williams SM, Petrides G, Forester BP. Electroconvulsive therapy for the acute management of severe agitation in dementia (ECT-AD): A modified study protocol. PLoS One 2024; 19:e0303894. [PMID: 38941338 PMCID: PMC11213353 DOI: 10.1371/journal.pone.0303894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/30/2024] Open
Abstract
OBJECTIVE This study began as a single-blind randomized controlled trial (RCT) to investigate the efficacy and safety of electroconvulsive therapy (ECT) for severe treatment-refractory agitation in advanced dementia. The aims are to assess agitation reduction using the Cohen-Mansfield Agitation Inventory (CMAI), evaluate tolerability and safety outcomes, and explore the long-term stability of agitation reduction and global functioning. Due to challenges encountered during implementation, including recruitment obstacles and operational difficulties, the study design was modified to an open-label format and other protocol amendments were implemented. METHODS Initially, the RCT randomized participants 1:1 to either ECT plus usual care or simulated ECT plus usual care (S-ECT) groups. As patients were enrolled, data were collected from both ECT and simulated ECT (S-ECT) patients. The study now continues in an open-label study design where all patients receive actual ECT, reducing the targeted sample size from 200 to 50 participants. RESULTS Study is ongoing and open to enrollment. CONCLUSION The transition of the ECT-AD study design from an RCT to open-label design exemplifies adaptive research methodologies in response to real-world challenges. Data from both the RCT and open-label phases of the study will provide a unique perspective on the role of ECT in managing severe treatment-refractory agitation in dementia, potentially influencing future clinical practices and research approaches.
Collapse
Affiliation(s)
- Maria I. Lapid
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julia Merrill
- McLean Hospital, Belmont, Massachusetts, United States of America
| | - Martina Mueller
- College of Nursing, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Adriana P. Hermida
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Louis Nykamp
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Jason Andrus
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Heela Azizi
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, New York, United States of America
| | - Paula Bolton
- McLean Hospital, Belmont, Massachusetts, United States of America
| | - Nana Bonsu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raphael Braga
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Catherine R. Dillon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Donna Ecklesdafer
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Darci Evans
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - David Harper
- McLean Hospital, Belmont, Massachusetts, United States of America
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Hannah Heintz
- McLean Hospital, Belmont, Massachusetts, United States of America
| | - Sehba Hussain-Krauter
- Ican School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Olivia Holzgen
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Daniel Humphrey
- College of Nursing, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Salima Jiwani
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Emily K. Johnson
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Simran Kang
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, New York, United States of America
| | - Janelle Kassien
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Jonathan Kim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rebecca G. Knapp
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Neil Kremen
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Kendra Le
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jack Mahdasian
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Taylor Marzouk
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, New York, United States of America
| | - Jared D. Masrud
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Dawn Miller
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Sandeep R. Pagali
- Division of Hospital Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Regan Patrick
- McLean Hospital, Belmont, Massachusetts, United States of America
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Patricio Riva Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cristina Pritchett
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Aniqa Rahman
- McLean Hospital, Belmont, Massachusetts, United States of America
| | - Swapnil Rath
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Cara Roczniak
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Teresa A. Rummans
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sohag Sanghani
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Steve Seiner
- Northwell, New Hyde Park, New York, United States of America
| | - LeAnn Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Evan Tomaschek
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Valeriya Tsygankova
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lori VanderSchuur-White
- Pine Rest Christian Mental Health Services, Grand Rapids, Michigan, United States of America
| | - Monica P. Walton
- Oregon Health & Science University, Portland, Oregon, United States of America
| | - James Wilkins
- McLean Hospital, Belmont, Massachusetts, United States of America
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - April Williams
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sarah M. Williams
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - George Petrides
- Northwell, New Hyde Park, New York, United States of America
- Department of Psychiatry at the Zucker Hillside Hospital, Glen Oaks, New York, United States of America
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
- RWJBarnabas Health System, Trinitas Regional Medical Center, Elizabeth, New Jersey, United States of America
| | - Brent P. Forester
- McLean Hospital, Belmont, Massachusetts, United States of America
- Harvard Medical School, Cambridge, Massachusetts, United States of America
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
de Aquino AMI, Gomes KAL, de Brito LLM, de Lima LD, Gomes ERDM, Andrade SMMDS. Diagnostic accuracy of interleukin-6, interleukin-10 and tumor necrosis factor alpha cytokine levels in patients with mild cognitive impairment: systematic review and meta-analysis. Dement Neuropsychol 2024; 18:e20230027. [PMID: 38933077 PMCID: PMC11206232 DOI: 10.1590/1980-5764-dn-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/28/2024] Open
Abstract
There is growing evidence suggesting an association between neurodegeneration and inflammation playing a role in the pathogenesis of age-associated diseases, including Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Objective A systematic review and meta-analysis were performed to verify evidence on the diagnostic accuracy parameters of the inflammatory cytokines interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α). Methods A search of Medical Literature Analysis and Retrieval System Online (Medline), Scientific Electronic Library Online (SciELO), Web of Science and Science Direct databases was performed and nine observational studies associated with peripheral inflammatory biomarkers in MCI were identified. Mean (±standard deviation - SD) concentrations of these biomarkers and values of true positives, true negatives, false positives and false negatives for MCI and healthy controls (HC) were extracted from these studies. Results Significantly higher levels of IL-10 were observed in subjects in the MCI group and Mini-Mental State Examination (MMSE) scores were lower compared to HC. For the other investigations, no differences were found between the groups. Our meta-analysis for the TNF-α biomarker revealed high heterogeneity between studies in terms of sensitivity and specificity. Conclusion These findings do not support the involvement of inflammatory biomarkers for detection of MCI, although significant heterogeneity was observed. More studies are needed to evaluate the role of these cytokines in MCI, as well as in other stages of cognitive decline and all-cause dementias.
Collapse
Affiliation(s)
- Alana Mara Inácio de Aquino
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Programa de Graduação em Neurociências e Comportamento, João Pessoa PB, Brazil
| | - Kedma Anne Lima Gomes
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Programa de Graduação em Neurociências e Comportamento, João Pessoa PB, Brazil
| | | | - Luciana Domingos de Lima
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Graduação em Fisioterapia, João Pessoa PB, Brazil
| | - Eneas Ricardo de Morais Gomes
- Universidade Federal da Paraíba, Cento de Biotecnologia, Departamento de Biotecnolgia, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Graduação em Biotecnologia, João Pessoa PB, Brazil
| | - Suellen Mary Marinho dos Santos Andrade
- Universidade Federal da Paraíba, Laboratório de Envelhecimento e Neurociências, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Programa de Graduação em Neurociências e Comportamento, João Pessoa PB, Brazil
- Universidade Federal da Paraíba, Departamento de Fisioterapia, João Pessoa PB, Brazil
| |
Collapse
|
14
|
Iban-Arias R, Yang EJ, Griggs E, Soares Dias Portela A, Osman A, Trageser KJ, Shahed M, Maria Pasinetti G. Ad-derived bone marrow transplant induces proinflammatory immune peripheral mechanisms accompanied by decreased neuroplasticity and reduced gut microbiome diversity affecting AD-like phenotype in the absence of Aβ neuropathology. Brain Behav Immun 2024; 118:252-272. [PMID: 38461954 DOI: 10.1016/j.bbi.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Immune system dysfunction is increasingly recognized as a significant feature that contributes to Alzheimer's disease (AD) pathogenesis, reflected by alterations in central and peripheral responses leading to detrimental mechanisms that can contribute to the worsening of the disease. The damaging alterations in the peripheral immune system may disrupt the peripheral-central immune crosstalk, implicating the gut microbiota in this complex interaction. The central hypothesis posits that the immune signature inherently harbored in bone marrow (BM) cells can be transferred through allogeneic transplantation, influencing the recipient's immune system and modulating peripheral, gut, and brain immune responses. Employing a genetically modified mouse model to develop AD-type pathology we found that recipient wild-type (WT) mice engrafted with AD-derived BM, recapitulated the peripheral immune inflammatory donor phenotype, associated with a significant acceleration of cognitive deterioration in the absence of any overt change in AD-type amyloid neuropathology. Moreover, transcriptomic and phylogenetic 16S microbiome analysis evidence on these animals revealed a significantly impaired expression of genes associated with synaptic plasticity and neurotransmission in the brain and reduced bacteria diversity, respectively, compared to mice engrafted with WT BM. This investigation sheds light on the pivotal role of the peripheral immune system in the brain-gut-periphery axis and its profound potential to shape the trajectory of AD. In summary, this study advances our understanding of the complex interplay among the peripheral immune system, brain functionality, and the gut microbiome, which collectively influence AD onset and progression.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Aya Osman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahadi Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Molecular Integrative Neuroresilience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Geriatrics Research, Education and Clinical Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
15
|
Li YS, Xia YG, Liu YL, Jiang WR, Qiu HN, Wu F, Li JB, Lin JN. Metabolic-dysfunction associated steatotic liver disease-related diseases, cognition and dementia: A two-sample mendelian randomization study. PLoS One 2024; 19:e0297883. [PMID: 38422093 PMCID: PMC10903857 DOI: 10.1371/journal.pone.0297883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The results of current studies on metabolic-dysfunction associated steatotic liver disease (MASLD)-related diseases, cognition and dementia are inconsistent. This study aimed to elucidate the effects of MASLD-related diseases on cognition and dementia. METHODS By using single-nucleotide polymorphisms (SNPs) associated with different traits of NAFLD (chronically elevated serum alanine aminotransferase levels [cALT], imaging-accessed and biopsy-proven NAFLD), metabolic dysfunction-associated steatohepatitis, and liver fibrosis and cirrhosis, we employed three methods of mendelian randomization (MR) analysis (inverse-variance weighted [IVW], weighted median, and MR-Egger) to determine the causal relationships between MASLD-related diseases and cognition and dementia. We used Cochran's Q test to examine the heterogeneity, and MR-PRESSO was used to identify outliers (NbDistribution = 10000). The horizontal pleiotropy was evaluated using the MR-Egger intercept test. A leave-one-out analysis was used to assess the impact of individual SNP on the overall MR results. We also repeated the MR analysis after excluding SNPs associated with confounding factors. RESULTS The results of MR analysis suggested positive causal associations between MASLD confirmed by liver biopsy (p of IVW = 0.020, OR = 1.660, 95%CI = 1.082-2.546) and liver fibrosis and cirrhosis (p of IVW = 0.009, OR = 1.849, 95%CI = 1.169-2.922) with vascular dementia (VD). However, there was no evidence of a causal link between MASLD-related diseases and cognitive performance and other types of dementia (any dementia, Alzheimer's disease, dementia with lewy bodies, and frontotemporal dementia). Sensitivity tests supported the robustness of the results. CONCLUSIONS This two-sample MR analysis suggests that genetically predicted MASLD and liver fibrosis and cirrhosis may increase the VD risk. Nonetheless, the causal effects of NAFLD-related diseases on VD need more in-depth research.
Collapse
Affiliation(s)
- Yao-Shuang Li
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Yu-Ge Xia
- Geriatric Department, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan-Lan Liu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Wei-Ran Jiang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hui-Na Qiu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Fan Wu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jing-Bo Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jing-Na Lin
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| |
Collapse
|
16
|
Guo Z, Zheng Y, Geng J, Wu Z, Wei T, Shan G, Zhu Y, Zheng Y, Li X. Unveiling the link between systemic inflammation markers and cognitive performance among older adults in the US: A population-based study using NHANES 2011-2014 data. J Clin Neurosci 2024; 119:45-51. [PMID: 37979310 DOI: 10.1016/j.jocn.2023.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE This study aimed to evaluate the association between systemic inflammation markers and cognitive performance among older US adults. METHODS This cross-sectional study assessed 3,632 older participants from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). The main analysis included participants aged over 60 years. Systemic inflammation markers were quantified by calculating the composite inflammation indicators from the blood routine count, and cognitive performance was assessed using Consortium to Establish a Registry for Alzheimer's Disease (CERAD) test, Animal Fluency test (AFT), and Digit Symbol Substitution test (DSST). RESULTS There were 2,743 individuals enrolled in the current analysis. The overall mean age was 64.9 years and 48.7 % were males. The levels of SIRI and PIV were significant negative associated with scores of CERAD, CERAD delayed recall, and DSST in the unadjusted models. Moreover, SII were significant negative associated with scores of CERAD and CERAD delayed recall. After adjusting the covariates of demographics, lifestyle factors, history of chronic diseases and BMI, significant negative association were observed between systematic inflammation markers and cognitive performance. Additionally, a progressive and significant decrease in the score of cognitive performance assessments with the increased levels of SIRI, SII, and PIV were respectively observed. Finally, the correlation between systemic inflammation markers and cognitive performance were evidenced in the sensitive analysis. CONCLUSION Findings support a strong inverse correlation between systemic inflammation markers and cognitive performance, suggesting that addressing inflammation could be a promising avenue for enhancing cognitive health and mitigating age-related cognitive decline.
Collapse
Affiliation(s)
- Zheng Guo
- Centre for Precision Health, Edith Cowan University, Perth, Australia.
| | - Yulu Zheng
- Centre for Precision Health, Edith Cowan University, Perth, Australia.
| | - Jian Geng
- Department of Clinical Laboratory, Tai'an City Public Health Medical Center, Tai'an, China.
| | - Zhiyuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.
| | - Guangle Shan
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China.
| | - Yahong Zhu
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China.
| | - Yuanyuan Zheng
- Department of Radiotherapy, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, China.
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Perth, Australia.
| |
Collapse
|
17
|
Urati A, Angati A, Singh Gautam A, Dey M, Pandey SK, Singh RK. Neuroprotective responses of quercetin in regulation of biochemical, structural, and neurobehavioral effects in 28-day oral exposure of iron in rats. Toxicol Mech Methods 2024; 34:57-71. [PMID: 37680063 DOI: 10.1080/15376516.2023.2256840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Iron is one of the essential metals that functions as a cofactor in various biological cascades in the brain. However, excessive iron accumulation in the brain may lead to neurodegeneration and may show toxic effects. Quercetin, a pigment flavonoid compound, has been proven to be a potent antioxidant and anti-inflammatory that can inhibit lipid peroxidation during metal-induced neurotoxicity. Although iron-induced neuroinflammation and neurodegeneration have been reported in many studies, but the proof for its exact mechanisms needs to be explored. PURPOSE The key target of the study was to explore the neuroprotective effect of quercetin after oral exposure of iron in rats and explore its underlying molecular mechanisms. RESULTS The outcomes of the study have shown that oral exposure to ferrous sulfate may modulate behavioral paradigms such as locomotor activity, neuromuscular coordination, and increased anxiety level. The pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), apoptotic protein (caspase 3), beta-amyloid and phosphorylated tau were found to be increased on iron exposure. Also, the expressions of ferritin heavy and light chain, BACE-1 and GFAP expressions were altered. These behavioral, structural, and biochemical alterations in the brain were significantly and dose-dependently reversed by treatment with quercetin. CONCLUSION The current study provides a fundamental understanding of molecular signaling pathways, and structural proteins implicated in iron-induced neurotoxicity along with the ameliorative effects of quercetin.
Collapse
Affiliation(s)
- Anuradha Urati
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Anok Angati
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
Marques-Aleixo I, Sampaio A, Bohn L, Machado F, Barros D, Ribeiro O, Carvalho J, Magalhães J. Neuropsychiatric Symptoms are Related to Blood-biomarkers in Major Neurocognitive Disorders. Curr Aging Sci 2024; 17:74-84. [PMID: 37904566 DOI: 10.2174/1874609816666230816090934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are highly prevalent among individuals with major neurocognitive disorders (MNCD). OBJECTIVE Here, we characterized blood biomarkers (metabolic, inflammatory, neurotrophic profiles and total antioxidant), body composition, physical fitness and quality of life (QoL) in individuals with MNCD according to NPS. METHODS The sample comprised 34 older adults (71.4% women; 74.06±6.03 yrs, with MNCD diagnosis) categorized according to 50th percentile [Low (≤12) or High (≥13)] for NPS (Neuropsychiatric Inventory Questionnaire). Sociodemographic, clinical data, body composition, anthropometric, cognitive assessment (ADAS-Cog), physical fitness (Senior Fitness Test), QoL (QoL-Alzheimer's Disease scale) were evaluated, and blood samples were collected for biochemical analysis. RESULTS Low compared to high NPS group showed higher levels of IL-6, IGF-1and neurotrophic zscore (composite of IGF-1, VEGF-1, BDNF). Additionally, low compared to high NPS group have higher QoL, aerobic fitness and upper body and lower body strength. CONCLUSION The severity of NPS seems to be related to modified neurotrophic and inflammatory outcomes, lower physical fitness, and poor QoL. Strategies to counteract NPS development may preserve the physical and mental health of individuals with MNCD..
Collapse
Affiliation(s)
- Inês Marques-Aleixo
- Interdisciplinary Research Centre for Education and Development, Lusófona University, Lisbon, Portugal
- Faculty of Psychology, Education and Sport, Lusófona University, Porto, Portugal
| | - Arnaldina Sampaio
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Lucimére Bohn
- Interdisciplinary Research Centre for Education and Development, Lusófona University, Lisbon, Portugal
- Faculty of Psychology, Education and Sport, Lusófona University, Porto, Portugal
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Flavia Machado
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Duarte Barros
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Oscár Ribeiro
- CINTESIS - Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - Joana Carvalho
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Choubey U, Bansal V, Shah P, Anamika FNU, Gupta V, Sahu S, Rezhan M, Jain R. Atrial fibrillation and dementia: not just a coincidence. J Geriatr Cardiol 2023; 20:697-701. [PMID: 37840632 PMCID: PMC10568548 DOI: 10.26599/1671-5411.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
| | - Vasu Bansal
- Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | | | - FNU Anamika
- University College of Medical Sciences, New Delhi, India
| | - Vasu Gupta
- Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Sweta Sahu
- J.J.M. Medical College, Davangere, Karnataka, India
| | - Miran Rezhan
- Pennsylvania State University, State College, Pennsylvania, USA
| | - Rohit Jain
- Penn State Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
20
|
Fan H, Cai Q, Qin Z. Measurement and Modeling of Transport Across the Blood-Brain Barrier. J Biomech Eng 2023; 145:080803. [PMID: 37338461 PMCID: PMC10321147 DOI: 10.1115/1.4062737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic regulatory barrier at the interface of blood circulation and the brain parenchyma, which plays a critical role in protecting homeostasis in the central nervous system. However, it also significantly impedes drug delivery to the brain. Understanding the transport across BBB and brain distribution will facilitate the prediction of drug delivery efficiency and the development of new therapies. To date, various methods and models have been developed to study drug transport at the BBB interface, including in vivo brain uptake measurement methods, in vitro BBB models, and mathematic brain vascular models. Since the in vitro BBB models have been extensively reviewed elsewhere, we provide a comprehensive summary of the brain transport mechanisms and the currently available in vivo methods and mathematic models in studying the molecule delivery process at the BBB interface. In particular, we reviewed the emerging in vivo imaging techniques in observing drug transport across the BBB. We discussed the advantages and disadvantages associated with each model to serve as a guide for model selection in studying drug transport across the BBB. In summary, we envision future directions to improve the accuracy of mathematical models, establish noninvasive in vivo measurement techniques, and bridge the preclinical studies with clinical translation by taking the altered BBB physiological conditions into consideration. We believe these are critical in guiding new drug development and precise drug administration in brain disease treatment.
Collapse
Affiliation(s)
- Hanwen Fan
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080
| | - Qi Cai
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080; Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390; Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
21
|
Sun X, Deng Y, Ge P, Peng Q, Soufiany I, Zhu L, Duan R. Diminazene Ameliorates Neuroinflammation by Suppression of Astrocytic miRNA-224-5p/NLRP3 Axis in Alzheimer's Disease Model. J Inflamm Res 2023; 16:1639-1652. [PMID: 37092127 PMCID: PMC10120828 DOI: 10.2147/jir.s401385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose ACE2/Ang(1-7)/Mas Receptor, the momentous component of the renin-angiotensin system, has been shown to be involved in Alzheimer's disease (AD). We had previously found that enhancing brain ACE2 activity ameliorated cognitive impairment and attenuated brain neuroinflammation in SAMP8 mice, an animal model of AD. However, the exact mechanism of action of Diminazene (DIZE) has not been revealed. Methods APP/PS1 mice were injected intraperitoneally with DIZE. Cognitive functions, neuronal and synaptic integrity, and inflammation-related markers were assessed by Morris water maze, Nissl staining, Western blotting and ELISA, respectively. Since astrocytes played a crucial role in AD-related neuroinflammation whilst miRNAs were reported to participate in modulating inflammatory responses, astrocytes of APP/PS1 mice were then isolated for high-throughput miRNAs sequencing to identify the most differentially expressed miRNA following DIZE treatment. Afterward, the downstream pathway of this miRNA in the anti-inflammatory action of DIZE was investigated using primary astrocytes. Results The results showed that DIZE alleviated cognitive impairment and neuronal and synaptic damage in APP/PS1 mice. Simultaneously, DIZE suppressed the secretion of pro-inflammatory cytokines and the expression of NLRP3 inflammasome. Importantly, miR-224-5p was significantly up-regulated in the astrocytes of APP/PS1 mice treated by DIZE, and NLRP3 is one of the targets of miR-224-5p. Upregulation of miR-224-5p inhibited the expression of NLRP3 in Aβ1-42-stimulated cells, whereas miR-224-5p downregulation reversed this effect. Furthermore, the inhibition of miR-224-5p could reverse the inhibitory effect of DIZE on astrocytic NLRP3 inflammasome. Conclusion These findings firstly suggested that DIZE could inhibit astrocyte-regulated neuroinflammation via miRNA-224-5p/NLRP3 pathway. Furthermore, our study reveals the underlying mechanism by which DIZE suppresses neuroinflammatory responses in AD mice and uncovers the potential of DIZE in AD treatment.
Collapse
Affiliation(s)
- XiaoJin Sun
- Faculty of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui, People’s Republic of China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - PengXin Ge
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ismatullah Soufiany
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Correspondence: Lin Zhu; Rui Duan, Email ;
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
22
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
23
|
Chang CH, Subramani B, Yu CJ, Du JC, Chiou HC, Hou JW, Yang W, Chen CF, Chen YS, Hwang B, Chen ML. The association between organophosphate pesticide exposure and methylation of paraoxonase-1 in children with attention-deficit/hyperactivity disorder. ENVIRONMENT INTERNATIONAL 2023; 171:107702. [PMID: 36549222 DOI: 10.1016/j.envint.2022.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Boopathi Subramani
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Jung Yu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Hsien-Chih Chiou
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Winnie Yang
- Department of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Sheue Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Betau Hwang
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
24
|
Yu Q, He R, Jiang H, Wu J, Xi Z, He K, Liu Y, Zhou T, Feng M, Wan P, Yan H, Xia Q. Association between Metabolic Dysfunction-associated Fatty Liver Disease and Cognitive Impairment. J Clin Transl Hepatol 2022; 10:1034-1041. [PMID: 36381086 PMCID: PMC9634777 DOI: 10.14218/jcth.2021.00490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated fatty liver disease (MAFLD) is a newly proposed term based on modified criteria. Although nonalcoholic fatty liver disease (NAFLD) has been well-documented as a multisystem disease, research on the correlation of MAFLD and extra-hepatic diseases is limited. This study aimed to clarify the association of MAFLD, as well as NAFLD status with cognitive function. METHODS A total of 5,662 participants 20-59 years of age who underwent cognitive tests and liver ultrasonography in the Third National Health and Nutrition Examination Survey were included in the analysis. Cognitive function was evaluated using three computer-administered tests, the serial digit learning test (SDLT), the simple reaction time test (SRTT) and the symbol digit substitution test (SDST). RESULTS Participants with MAFLD had significantly poorer performance on the SRTT [odds ratio (OR) 1.47, 95% confidence interval (CI): 1.14-1.89)]. MAFLD with moderate-severe liver steatosis was associated with higher risks of scoring low in the SDLT (OR 1.37, 95% CI: 1.04-1.82) and SRTT (OR 1.55, 95% CI: 1.19-2.02). NAFLD combined with metabolic dysfunction, instead of NAFLD without metabolic disorders, was associated an increased risk of a low SRTT score (OR 1.44, 95% CI: 1.10-1.82). MAFLD patients had a high probability of fibrosis, prediabetes, and diabetes and were also significantly associated with increased risks based on the SDST or SRTT score. CONCLUSIONS MAFLD was significantly associated with increased risk of cognitive impairment, especially among MAFLD patients with a high degree of liver fibrosis, moderate-severe steatosis, or hyperglycemia.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixin He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ji Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongbo Liu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hexin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Correspondence to: Qiang Xia, Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid.org/0000-0002-9199-9723. Tel: +86-21-68383775, Fax: +86-21-68383775, E-mail: ; Hexin Yan, Department of Anesthesiology and Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid/0000-0002-5699-8581. Tel: +86-21-31010390, Fax: +86-21-31010390, E-mail:
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Correspondence to: Qiang Xia, Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid.org/0000-0002-9199-9723. Tel: +86-21-68383775, Fax: +86-21-68383775, E-mail: ; Hexin Yan, Department of Anesthesiology and Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid/0000-0002-5699-8581. Tel: +86-21-31010390, Fax: +86-21-31010390, E-mail:
| |
Collapse
|
25
|
Taylor JL, Barnes JN, Johnson BD. The Utility of High Intensity Interval Training to Improve Cognitive Aging in Heart Disease Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16926. [PMID: 36554807 PMCID: PMC9778921 DOI: 10.3390/ijerph192416926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Adults with cardiovascular disease and heart failure are at higher risk of cognitive decline. Cerebral hypoperfusion appears to be a significant contributor, which can result from vascular dysfunction and impairment of cerebral blood flow regulation. In contrast, higher cardiorespiratory fitness shows protection against brain atrophy, reductions in cerebral blood flow, and cognitive decline. Given that high intensity interval training (HIIT) has been shown to be a potent stimulus for improving cardiorespiratory fitness and peripheral vascular function, its utility for improving cognitive aging is an important area of research. This article will review the physiology related to cerebral blood flow regulation and cognitive decline in adults with cardiovascular disease and heart failure, and how HIIT may provide a more optimal stimulus for improving cognitive aging in this population.
Collapse
Affiliation(s)
- Jenna L. Taylor
- Human Integrative and Environmental Physiology Laboratory, Mayo Clinic, Rochester, MN 55902, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Jill N. Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce D. Johnson
- Human Integrative and Environmental Physiology Laboratory, Mayo Clinic, Rochester, MN 55902, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
26
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
27
|
Fan P, Kofler J, Ding Y, Marks M, Sweet RA, Wang L. Efficacy difference of antipsychotics in Alzheimer's disease and schizophrenia: explained with network efficiency and pathway analysis methods. Brief Bioinform 2022; 23:bbac394. [PMID: 36151774 PMCID: PMC9677501 DOI: 10.1093/bib/bbac394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Approximately 50% of Alzheimer's disease (AD) patients will develop psychotic symptoms and these patients will experience severe rapid cognitive decline compared with those without psychosis (AD-P). Currently, no medication has been approved by the Food and Drug Administration for AD with psychosis (AD+P) specifically, although atypical antipsychotics are widely used in clinical practice. These drugs have demonstrated modest efficacy in managing psychosis in individuals with AD, with an increased frequency of adverse events, including excess mortality. We compared the differences between the genetic variations/genes associated with AD+P and schizophrenia from existing Genome-Wide Association Study and differentially expressed genes (DEGs). We also constructed disease-specific protein-protein interaction networks for AD+P and schizophrenia. Network efficiency was then calculated to characterize the topological structures of these two networks. The efficiency of antipsychotics in these two networks was calculated. A weight adjustment based on binding affinity to drug targets was later applied to refine our results, and 2013 and 2123 genes were identified as related to AD+P and schizophrenia, respectively, with only 115 genes shared. Antipsychotics showed a significantly lower efficiency in the AD+P network than in the schizophrenia network (P < 0.001) indicating that antipsychotics may have less impact in AD+P than in schizophrenia. AD+P may be caused by mechanisms distinct from those in schizophrenia which result in a decreased efficacy of antipsychotics in AD+P. In addition, the network analysis methods provided quantitative explanations of the lower efficacy of antipsychotics in AD+P.
Collapse
Affiliation(s)
- Peihao Fan
- School of Pharmacy, University of Pittsburgh
| | | | - Ying Ding
- Department of Biostatistics at the University of Pittsburgh
| | - Michael Marks
- Center for Neuroscience at the University of Pittsburgh and the Department of Neurobiology
| | - Robert A Sweet
- UPMC Endowed Professor of Psychiatric Neuroscience and Professor of Neurology at the University of Pittsburgh
| | - Lirong Wang
- department of pharmaceutical sciences, school of pharmacy at University of Pittsburgh, USA
| |
Collapse
|
28
|
Perez-Ternero C, Pallier PN, Tremoleda JL, Delogu A, Fernandes C, Michael-Titus AT, Hobbs AJ. C-type natriuretic peptide preserves central neurological function by maintaining blood-brain barrier integrity. Front Mol Neurosci 2022; 15:991112. [PMID: 36267701 PMCID: PMC9577671 DOI: 10.3389/fnmol.2022.991112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
C-type natriuretic peptide (CNP) is highly expressed in the central nervous system (CNS) and key to neuronal development; however, a broader role for CNP in the CNS remains unclear. To address this deficit, we investigated behavioral, sensory and motor abnormalities and blood-brain barrier (BBB) integrity in a unique mouse model with inducible, global deletion of CNP (gbCNP-/-). gbCNP-/- mice and wild-type littermates at 12 (young adult) and 65 (aged) weeks of age were investigated for changes in gait and motor coordination (CatWalk™ and rotarod tests), anxiety-like behavior (open field and elevated zero maze tests), and motor and sensory function (modified neurological severity score [mNSS] and primary SHIRPA screen). Vascular permeability was assessed in vivo (Miles assay) with complementary in vitro studies conducted in primary murine brain endothelial cells. Young adult gbCNP-/- mice had normal gait but reduced motor coordination, increased locomotor activity in the open field and elevated zero maze, and had a higher mNSS score. Aged gbCNP-/- animals developed recurrent spontaneous seizures and had impaired gait and wide-ranging motor and sensory dysfunction. Young adult and aged gbCNP-/- mice exhibited increased BBB permeability, which was partially restored in vitro by CNP administration. Cultured brain endothelial cells from gbCNP-/- mice had an abnormal ZO-1 protein distribution. These data suggest that lack of CNP in the CNS impairs tight junction protein arrangement and increases BBB permeability, which is associated with changes in locomotor activity, motor coordination and late-onset seizures.
Collapse
Affiliation(s)
- Cristina Perez-Ternero
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patrick N. Pallier
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Jordi L. Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Alessio Delogu
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
29
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
30
|
Prediction of the cognitive impairment development in patients with autoimmune thyroiditis and hypothyroidism. Endocr Regul 2022; 56:178-189. [DOI: 10.2478/enr-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Objective. The aim of the present work is to define the risk factors that can affect the presence of a cognitive impairment and analyze the associations of the brain-derived neurotrophic factor (BDNF) gene polymorphism (rs6265), vitamin D receptor (VDR) gene polymorphism (rs2228570), and N-methyl-D-aspartate (NMDA) receptor gene polymorphism (rs4880213) with the cognitive impairment in patients with autoimmune thyroiditis and hypothyroidism in the Western Ukraine population and predict the development of cognitive disorders in these patients.
Methods. The study involved 153 patients with various forms of thyroid pathology (hypothyroidism, autoimmune thyroiditis, elevated serum antibodies anti-thyroglobulin and anti-thyroid peroxidase). Cognitive impairment in the examined patients was evaluated based on the results of the Mini-Mental State Examination (MMSE) test. BDNF, GRIN2B, and 25-OH Vitamin D levels in the serum of the patients and healthy individuals were quantified using highly sensitive commercial enzyme-linked immunosorbent assay kits. Genotyping of the VDR (rs2228570), BDNF (rs6265), and NMDA receptor (rs4880213) gene polymorphism was performed using TaqMan probes and Taq-Man Genotyping Master Mix (4371355) on CFX96™Real-Time PCR Detection System. Polymerase chain reaction (PCR) for TaqMan genotyping was carried out according to the kit instructions.
Results. Strong direct relationship between the “Level GRIN2B” and cognitive impairments (p=0.006) was established after evaluating the complex model based on the values of the regression coefficient. An increase in the likelihood of cognitive impairment by 24.898-fold (p=0.012) was seen after assessing the effect of the CT rs6265 genotype. In addition, direct relationship between the influence of the TT rs6265 genotype and an increase in the likelihood of cognitive impairment by a factor of 21.734 (p=0.024) was also established.
Conclusion. The present data indicate that the BDNF, TSH, fT4, and vitamin D levels prognostically belong to the significant indicators of the cognitive impairment development.
Collapse
|
31
|
Kuriyama N, Koyama T, Ozaki E, Saito S, Ihara M, Matsui D, Watanabe I, Kondo M, Marunaka Y, Takada A, Akazawa K, Tomida S, Nagamitsu R, Miyatani F, Miyake M, Nakano E, Kobayashi D, Watanabe Y, Mizuno S, Maekawa M, Yoshida T, Nukaya Y, Mizuno T, Yamada K, Uehara R. Association Between Cerebral Microbleeds and Circulating Levels of Mid-Regional Pro-Adrenomedullin. J Alzheimers Dis 2022; 88:731-741. [DOI: 10.3233/jad-220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Mid-regional pro-adrenomedullin (MR-proADM) is a novel biomarker for cognitive decline based on its association with cerebral small vessel disease (SVD). Cerebral microbleeds (MBs) are characteristic of SVD; however, a direct association between MR-proADM and MBs has not been explored. Objective: We aimed to examine whether circulating levels of MR-proADM are associated with the identification of MBs by brain magnetic resonance imaging (MRI) and whether this association could be linked with cognitive impairment. Methods: In total, 214 participants (mean age: 75.9 years) without history of cerebral infarction or dementia were prospectively enrolled. All participants underwent brain MRI, higher cognitive function testing, blood biochemistry evaluation, lifestyle examination, and blood MR-proADM measurement using a time-resolved amplified cryptate emission technology assay. For between-group comparisons, the participants were divided into two groups according to whether their levels of MR-proADM were normal (< 0.65 nmol/L) or high (≥0.65 nmol/L). Results: The mean MR-proADM level was 0.515±0.127 nmol/L. There were significant between-group differences in age, hypertension, and HbA1c levels (p < 0.05). In the high MR-proADM group, the MR-proADM level was associated with the identification of MBs on brain MR images and indications of mild cognitive impairment (MCI). In participants with ≥3 MBs and MCI, high MR-proADM levels remained a risk factor after multivariate adjustment (OR: 2.94; p < 0.05). Conclusion: High levels of MR-proADM may be a surrogate marker for the early detection of cognitive decline associated with the formation of cerebral MBs. This marker would be valuable during routine clinical examinations of geriatric patients.
Collapse
Affiliation(s)
- Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Social Health Medicine, Shizuoka Graduate University of Public Health
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Saito
- Department of Stroke and Cerebrovascular Diseases, Division of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, Division of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Isao Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Kondo
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, Japan
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Akihiro Takada
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, Japan
| | - Kentaro Akazawa
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satomi Tomida
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Reo Nagamitsu
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumitaro Miyatani
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eri Nakano
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daiki Kobayashi
- Division of General Internal Medicine, Department of Medicine, St. Luke’s International Hospital, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Faculty of Health and Medical Sciences, Kyoto University of Advanced Science
| | - Shigeto Mizuno
- Department of Endoscopy, Kindai University Nara Hospital, Nara Prefecture, Japan
| | - Mizuho Maekawa
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tamami Yoshida
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Nukaya
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ritei Uehara
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Martín Giménez VM, de las Heras N, Lahera V, Tresguerres JAF, Reiter RJ, Manucha W. Melatonin as an Anti-Aging Therapy for Age-Related Cardiovascular and Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:888292. [PMID: 35721030 PMCID: PMC9204094 DOI: 10.3389/fnagi.2022.888292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The concept of “aging” is defined as the set of gradual and progressive changes in an organism that leads to an increased risk of weakness, disease, and death. This process may occur at the cellular and organ level, as well as in the entire organism of any living being. During aging, there is a decrease in biological functions and in the ability to adapt to metabolic stress. General effects of aging include mitochondrial, cellular, and organic dysfunction, immune impairment or inflammaging, oxidative stress, cognitive and cardiovascular alterations, among others. Therefore, one of the main harmful consequences of aging is the development and progression of multiple diseases related to these processes, especially at the cardiovascular and central nervous system levels. Both cardiovascular and neurodegenerative pathologies are highly disabling and, in many cases, lethal. In this context, melatonin, an endogenous compound naturally synthesized not only by the pineal gland but also by many cell types, may have a key role in the modulation of multiple mechanisms associated with aging. Additionally, this indoleamine is also a therapeutic agent, which may be administered exogenously with a high degree of safety. For this reason, melatonin could become an attractive and low-cost alternative for slowing the processes of aging and its associated diseases, including cardiovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Vicente Lahera
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX, United States
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
- *Correspondence: Walter Manucha ;
| |
Collapse
|
33
|
Chen D, Fang X, Zhu Z. Progress in the correlation of postoperative cognitive dysfunction and Alzheimer's disease and the potential therapeutic drug exploration. IBRAIN 2022; 9:446-462. [PMID: 38680509 PMCID: PMC11045201 DOI: 10.1002/ibra.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/01/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a decrease in mental capacity that can occur days to weeks after a medical procedure and may become permanent and rarely lasts for a longer period of time. With the continuous development of research, various viewpoints in academic circles have undergone subtle changes, and the role of anesthesia depth and anesthesia type seems to be gradually weakened; Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease in the elderly. The protein hypothesis and the synaptic hypothesis are well-known reasons. These changes will also lead to the occurrence of an inflammatory cascade. The exact etiology and pathogenesis need to be studied. The reasonable biological mechanism affecting brain protein deposition, neuroinflammation, and acetylcholine-like effect has a certain relationship between AD and POCD. Whereas there is still further uncertainty about the mechanism and treatment, and it is elusive whether POCD is a link in the continuous progress of AD or a separate entity, which has doubts about the diagnosis and treatment of the disease. Therefore, this review is based on the current common clinical characteristics of AD and POCD, and pathophysiological research, to search for their common points and explore the direction and new strategies for future treatment.
Collapse
Affiliation(s)
- Dong‐Qin Chen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
34
|
Murata H, Barnhill LM, Bronstein JM. Air Pollution and the Risk of Parkinson's Disease: A Review. Mov Disord 2022; 37:894-904. [PMID: 35043999 PMCID: PMC9119911 DOI: 10.1002/mds.28922] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease, as well as other neurodegenerative disorders, are primarily characterized by pathological accumulation of proteins, inflammation, and neuron loss. Although there are some known genetic risk factors, most cases cannot be explained by genetics alone. Therefore, it is important to determine the environmental factors that confer risk and the mechanisms by which they act. Recent epidemiological studies have found that exposure to air pollution is associated with an increased risk for development of Parkinson's disease, although not all results are uniform. The variability between these studies is likely due to differences in what components of air pollution are measured, timing and methods used to determine exposures, and correction for other variables. There are several potential mechanisms by which air pollution could act to increase the risk for development of Parkinson's disease, including direct neuronal toxicity, induction of systemic inflammation leading to central nervous system inflammation, and alterations in gut physiology and the microbiome. Taken together, air pollution is an emerging risk factor in the development of Parkinson's disease. A number of potential mechanisms have been implicated by which it promotes neuropathology providing biological plausibility, and these mechanisms are likely relevant to the development of other neurodegenerative disorders such as Alzheimer's disease. This field is in its early stages, but a better understanding of how environmental exposures influence the pathogenesis of neurodegeneration is essential for reducing the incidence of disease and finding disease-modifying therapies. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Jeff M. Bronstein
- David Geffen School of Medicine at UCLA, Department of Neurology and Molecular Toxicology, 710 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
35
|
COVID-19, Oxidative Stress, and Neuroinflammation in the Depression Route. J Mol Neurosci 2022; 72:1166-1181. [PMID: 35322375 PMCID: PMC8942178 DOI: 10.1007/s12031-022-02004-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is associated with oxidative stress, peripheral hyper inflammation, and neuroinflammation, especially in individuals with a more severe form of the disease. Some studies provide evidence on the onset or exacerbation of major depressive disorder (MDD), among other psychiatric disorders due to COVID-19. Oxidative stress and neuroinflammation are associated conditions, especially in the more severe form of MDD and in refractoriness to available therapeutic strategies. Inflammatory cytokines in the COVID-19 hyper inflammation process can activate the hypothalamic–pituitary–adrenal (HPA) axis and the indoleamine-2,3-dioxygenase (IDO) enzyme. IDO activation can reduce tryptophan and increase toxic metabolites of the kynurenine pathway, which increases glial activation, neuroinflammation, toxicity, and neuronal death. This review surveyed a number of studies and analyzed the mechanisms of oxidative stress, inflammation, and neuroinflammation involved in COVID-19 and depression. Finally, the importance of more protocols that can help elucidate the interaction between these mechanisms underlying COVID-19 and MDD and the possible therapeutic strategies involved in the interaction of these mechanisms are highlighted.
Collapse
|
36
|
Aksnes M, Aass HCD, Tiiman A, Terenius L, Bogdanović N, Vukojević V, Knapskog AB. Serum Amyloidogenic Nanoplaques and Cytokines in Alzheimer's Disease: Pilot Study in a Small Naturalistic Memory Clinic Cohort. J Alzheimers Dis 2022; 86:1459-1470. [PMID: 35213378 PMCID: PMC9108575 DOI: 10.3233/jad-215504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Neuroinflammation is a central component of Alzheimer’s disease (AD) and correlates closely with amyloid pathology. Markers of inflammation such as cytokines, and amyloidogenic aggregates, so-called nanoplaques, are both promising biomarker candidates for AD. We have previously shown that there is a relationship between the levels of nanoplaques and cytokines in cerebrospinal fluid, but it is unknown whether this association extends to serum. Objective: Investigate in a naturalistic memory clinic cohort whether the associations between nanoplaques and cytokines in the cerebrospinal fluid extends to serum. Methods: We collected serum from 49 patients assessed for cognitive complaints at the Oslo University Hospital Memory Clinic (15 with clinical AD). We assessed the levels of serum nanoplaques with the novel Thioflavin-T fluorescence correlation spectroscopy (ThT-FCS) assay. Serum levels of nine cytokines (eotaxin-1, granulocyte colony-stimulating factor [G-CSF], interleukin [IL]-6, IL-7, IL-8, monocyte chemoattractant protein-1 (MCP-1), gamma induced protein 10 (IP-10), macrophage inflammatory protein [MIP]-1α, and MIP-1β) were quantified with a multiplex assay and read on a Luminex IS 200 instrument. Results: Serum nanoplaques were not increased in clinical AD patients compared to non-AD memory clinic patients and nanoplaques were not associated with any cytokines. The cytokines IL-8 and G-CSF were increased in patients with clinical AD compared to non-AD patients. Conclusion: In this small pilot study, serum nanoplaques were not associated with serum cytokines. Nanoplaque levels could not be used to separate clinical AD patients from non-AD patients in this unselected memory clinic cohort.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | | | - Ann Tiiman
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanović
- Department of Geriatric Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Neurobiology, Care Science and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Vladana Vukojević
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Norway
| |
Collapse
|
37
|
George ES, Sood S, Daly RM, Tan SY. Is there an association between non-alcoholic fatty liver disease and cognitive function? A systematic review. BMC Geriatr 2022; 22:47. [PMID: 35016619 PMCID: PMC8753832 DOI: 10.1186/s12877-021-02721-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is represented as the most common liver disease worldwide. NAFLD is associated with metabolic risk factors underpinned by insulin resistance, inflammation and endothelial dysfunction, leading to extrahepatic changes in central nervous diseases such as cognitive impairment, Alzheimer's disease and dementia. The aim of the review is to explore the association between NAFLD and cognitive function. METHODS Using the PRISMA guidelines, a systematic electronic literature search was conducted in four databases: MEDLINE, PsychINFO, Embase and CINAHL from inception until March 2021. Neuropsychological tests utilised within each study were grouped into relevant cognitive domains including 'general cognition', 'reasoning', 'mental speed, attention and psychomotor speed', 'memory and learning', 'language', 'visuospatial perception' and 'ideas, abstraction, figural creations and mental flexibility'. RESULTS Eleven observational studies that involved 7978 participants with a mean age of 51 years were included. Those with NAFLD had poor cognitive performance in three cognitive domains, including 'general cognition', 'mental speed, attention and psychomotor speed', and 'ideas, abstraction, figural creations and mental flexibility'. CONCLUSION The observed results from the 11 included studies showed that NAFLD was associated with lower cognitive performance across several domains. However, studies conducted to date are limited to observational designs and are heterogeneous with varying diagnostic tools used to assess cognitive function. TRIAL REGISTRATION PROSPERO Registration: CRD42020161640 .
Collapse
Affiliation(s)
- Elena S George
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia.
| | - Surbhi Sood
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia
| | - Robin M Daly
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia
| | - Sze-Yen Tan
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|
38
|
Laudanski K, Hajj J, Restrepo M, Siddiq K, Okeke T, Rader DJ. Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines 2021; 9:1791. [PMID: 34944606 PMCID: PMC8698659 DOI: 10.3390/biomedicines9121791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
The balance between neurodegeneration, neuroinflammation, neuroprotection, and COVID-19-directed therapy may underly the heterogeneity of SARS-CoV-2's neurological outcomes. A total of 105 patients hospitalized with a diagnosis of COVID-19 had serum collected over a 6 month period to assess neuroinflammatory (MIF, CCL23, MCP-1), neuro-injury (NFL, NCAM-1), neurodegenerative (KLK6, τ, phospho τ, amyloids, TDP43, YKL40), and neuroprotective (clusterin, fetuin, TREM-2) proteins. These were compared to markers of nonspecific inflammatory responses (IL-6, D-dimer, CRP) and of the overall viral burden (spike protein). Data regarding treatment (steroids, convalescent plasma, remdasavir), pre-existing conditions, and incidences of strokes were collected. Amyloid β42, TDP43, NF-L, and KLK6 serum levels declined 2-3 days post-admission, yet recovered to admission baseline levels by 7 days. YKL-40 and NCAM-1 levels remained elevated over time, with clusters of differential responses identified among TREM-2, TDP43, and YKL40. Fetuin was elevated after the onset of COVID-19 while TREM-2 initially declined before significantly increasing over time. MIF serum level was increased 3-7 days after admission. Ferritin correlated with TDP-43 and KLK6. No treatment with remdesivir coincided with elevations in Amyloid-β40. A lack of convalescent plasma resulted in increased NCAM-1 and total tau, and steroidal treatments did not significantly affect any markers. A total of 11 incidences of stroke were registered up to six months after initial admission for COVID-19. Elevated D-dimer, platelet counts, IL-6, and leukopenia were observed. Variable MIF serum levels differentiated patients with CVA from those who did not have a stroke during the acute phase of COVID-19. This study demonstrated concomitant and opposite changes in neurodegenerative and neuroprotective markers persisting well into recovery.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- The Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jihane Hajj
- School of Nursing, Widener University, Philadelphia, PA 19013, USA;
| | - Mariana Restrepo
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kumal Siddiq
- College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA;
| | - Tony Okeke
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA;
| | - Daniel J. Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
39
|
Sipilä PN, Heikkilä N, Lindbohm JV, Hakulinen C, Vahtera J, Elovainio M, Suominen S, Väänänen A, Koskinen A, Nyberg ST, Pentti J, Strandberg TE, Kivimäki M. Hospital-treated infectious diseases and the risk of dementia: a large, multicohort, observational study with a replication cohort. THE LANCET. INFECTIOUS DISEASES 2021; 21:1557-1567. [PMID: 34166620 PMCID: PMC8592915 DOI: 10.1016/s1473-3099(21)00144-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Infections have been hypothesised to increase the risk of dementia. Existing studies have included a narrow range of infectious diseases, relied on short follow-up periods, and provided little evidence for whether the increased risk is limited to specific dementia subtypes or attributable to specific microbes rather than infection burden. We aimed to compare the risk of Alzheimer's disease and other dementias across a wide range of hospital-treated bacterial and viral infections in two large cohorts with long follow-up periods. METHODS In this large, multicohort, observational study, the analysis was based on a primary cohort consisting of pooled individual-level data from three prospective cohort studies in Finland (the Finnish Public Sector study, the Health and Social Support study, and the Still Working study) and an independent replication cohort from the UK Biobank. Community-dwelling adults (≥18 years) with no dementia at study entry were included. Follow-up was until Dec 31, 2012, in the Health and Social Support study, Dec 31, 2016, in the public sector study and the Still Working study, and Feb 7, 2018, in the replication cohort. Through record linkage to national hospital inpatient registers, we ascertained exposure to 925 infectious diseases (using the International Classification of Diseases 10th Revision codes) before dementia onset, and identified incident dementia from hospital records, medication reimbursement entitlements, and death certificates. Hazard ratios (HRs) for the associations of each infectious disease or disease group (index infection) with incident dementia were assessed by use of Cox proportional hazards models. We then repeated the analysis after excluding incident dementia cases that occurred during the first 10 years after initial hospitalisation due to the index infection. FINDINGS From March 1, 1986, to Jan 1, 2005, 260 490 people were included in the primary cohort, and from Dec 19, 2006, to Oct 1, 2010, 485 708 people were included in the replication cohort. In the primary cohort analysis based on 3 947 046 person-years at risk (median follow-up 15·4 years [IQR 9·8-21·0]), 77 108 participants had at least one hospital-treated infection before dementia onset and 2768 developed dementia. Hospitalisation for any infectious disease was associated with increased dementia risk in the primary cohort (adjusted HR [aHR] 1·48 [95% CI 1·37-1·60]) and replication cohort (2·60 [2·38-2·83]). The association remained when analyses were restricted to new dementia cases that occurred more than 10 years after infection (aHR 1·22 [95% CI 1·09-1·36] in the primary cohort, the replication cohort had insufficient follow-up data for this analysis), and when comorbidities and other dementia risk factors were considered. There was evidence of a dose-response association between the number of episodes of hospital-treated infections and dementia risk in both cohorts (ptrend=0·0007). Although the greatest dementia risk was seen for central nervous system (CNS) infections versus no infection (aHR 3·01 [95% CI 2·07-4·37]), excess risk was also evident for extra-CNS infections (1·47 [1·36-1·59]). Although we found little difference in the infection-dementia association by type of infection, associations were stronger for vascular dementia than for Alzheimer's disease (aHR 2·09 [95% CI 1·59-2·75] versus aHR 1·20 [1·08-1·33] in the primary cohort and aHR 3·28 [2·65-4·04] versus aHR 1·80 [1·53-2·13] in the replication cohort). INTERPRETATION Severe infections requiring hospital treatment are associated with long-term increased risk of dementia, including vascular dementia and Alzheimer's disease. This association is not limited to CNS infections, suggesting that systemic effects are sufficient to affect the brain. The absence of infection specificity combined with evidence of dose-response relationships between infectious disease burden and dementia risk support the hypothesis that increased dementia risk is driven by general inflammation rather than specific microbes. FUNDING UK Medical Research Council, US National Institute on Aging, Wellcome Trust, NordForsk, Academy of Finland, and Helsinki Institute of Life Science.
Collapse
Affiliation(s)
- Pyry N Sipilä
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Nelli Heikkilä
- Medicum, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Joni V Lindbohm
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland; Department of Epidemiology and Public Health, University College London, London, UK
| | - Christian Hakulinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jussi Vahtera
- Department of Public Health, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Marko Elovainio
- Research Programs Unit, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sakari Suominen
- Department of Public Health, University of Turku, Turku, Finland; Research Services, Turku University Hospital, Turku, Finland; School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Ari Väänänen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Aki Koskinen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Solja T Nyberg
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland; Finnish Institute of Occupational Health, Helsinki, Finland
| | - Jaana Pentti
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland; Finnish Institute of Occupational Health, Helsinki, Finland; Department of Public Health, University of Turku, Turku, Finland
| | - Timo E Strandberg
- Department of Medicine, Helsinki University Hospital, Helsinki, Finland; Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Mika Kivimäki
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland; Finnish Institute of Occupational Health, Helsinki, Finland; Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
40
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
41
|
de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021; 10:cells10102581. [PMID: 34685563 PMCID: PMC8533897 DOI: 10.3390/cells10102581] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Most AD patients develop the disease in late life, named late onset AD (LOAD). Currently, the most recognized explanation for AD pathology is the amyloid cascade hypothesis. It is assumed that amyloid beta (Aβ) aggregation and deposition are critical pathogenic processes in AD, leading to the formation of amyloid plaques, as well as neurofibrillary tangles, neuronal cell death, synaptic degeneration, and dementia. In LOAD, the causes of Aβ accumulation and neuronal loss are not completely clear. Importantly, the blood–brain barrier (BBB) disruption seems to present an essential role in the induction of neuroinflammation and consequent AD development. In addition, we propose that the systemic inflammation triggered by conditions like metabolic diseases or infections are causative factors of BBB disruption, coexistent inflammatory cascade and, ultimately, the neurodegeneration observed in AD. In this regard, the use of anti-inflammatory molecules could be an interesting strategy to treat, delay or even halt AD onset and progression. Herein, we review the inflammatory cascade and underlying mechanisms involved in AD pathogenesis and revise the anti-inflammatory effects of compounds as emerging therapeutic drugs against AD.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - Ewa Kucharska
- Faculty of Education, Institute of Educational Sciences, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland;
| | - Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil;
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center, UTHealth, The University of Texas Houston, Houston, TX 77030, USA
- Graduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina (UNESC), Criciuma 88806-000, Brazil
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Faculty of Sciences, University of Malaga, IBIMA, 29010 Malaga, Spain;
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 29010 Malaga, Spain
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Josiane Budni
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Neurologia Experimental, Universidade do Extremo Sul Catarinense, Criciuma 88806-000, Brazil
- Correspondence: ; Tel.: +55-48431-2539
| |
Collapse
|
42
|
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 2021; 70:101397. [PMID: 34214643 DOI: 10.1016/j.arr.2021.101397] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
An excess of saturated fatty acids and simple sugars in the diet is a known environmental risk factor of Alzheimer's disease (AD) but the holistic view of the interacting processes through which such diet may contribute to AD pathogenesis is missing. We addressed this need through extensive analysis of published studies investigating the effects of western diet (WD) on AD development in humans and laboratory animals. We reviewed WD-induced systemic alterations comprising metabolic changes, induction of obesity and adipose tissue inflammation, gut microbiota dysbiosis and acceleration of systemic low-grade inflammation. Next we provide an overview of the evidence demonstrating that WD-associated systemic alterations drive impairment of the blood-brain barrier (BBB) and development of neuroinflammation paralleled by accumulation of toxic amyloid. Later these changes are followed by dysfunction of synaptic transmission, neurodegeneration and finally memory and cognitive impairment. We conclude that WD can trigger AD by acceleration of inflammaging, and that BBB impairment induced by metabolic and systemic inflammation play the central role in this process. Moreover, the concurrence of neuroinflammation and Aβ dyshomeostasis, which by reciprocal interactions drive the vicious cycle of neurodegeneration, contradicts Aβ as the primary trigger of AD. Given that in 2019 the World Health Organization recommended focusing on modifiable risk factors in AD prevention, this overview of the sequential, complex pathomechanisms initiated by WD, which can lead from peripheral disturbances to neurodegeneration, can support future prevention strategies.
Collapse
|
43
|
Cummings J, Schwartz GG, Nicholls SJ, Khan A, Halliday C, Toth PP, Sweeney M, Johansson JO, Wong NCW, Kulikowski E, Kalantar-Zadeh K, Lebioda K, Ginsberg HN, Winblad B, Zetterberg H, Ray KK. Cognitive Effects of the BET Protein Inhibitor Apabetalone: A Prespecified Montreal Cognitive Assessment Analysis Nested in the BETonMACE Randomized Controlled Trial. J Alzheimers Dis 2021; 83:1703-1715. [PMID: 34459400 PMCID: PMC8609701 DOI: 10.3233/jad-210570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Epigenetic changes may contribute importantly to cognitive decline in late life including Alzheimer’s disease (AD) and vascular dementia (VaD). Bromodomain and extra-terminal (BET) proteins are epigenetic “readers” that may distort normal gene expression and contribute to chronic disorders. Objective: To assess the effects of apabetalone, a small molecule BET protein inhibitor, on cognitive performance of patients 70 years or older participating in a randomized trial of patients at high risk for major cardiovascular events (MACE). Methods: The Montreal Cognitive Assessment (MoCA) was performed on all patients 70 years or older at the time of randomization. 464 participants were randomized to apabetalone or placebo in the cognition sub-study. In a prespecified analysis, participants were assigned to one of three groups: MoCA score≥26 (normal performance), MoCA score 25–22 (mild cognitive impairment), and MoCA score≤21 (dementia). Exposure to apabetalone was equivalent in the treatment groups in each MoCA-defined group. Results: Apabetalone was associated with an increased total MoCA score in participants with baseline MoCA score of≤21 (p = 0.02). There was no significant difference in change from baseline in the treatment groups with higher MoCA scores. In the cognition study, more patients randomized to apabetalone discontinued study drug for adverse effects (11.3% versus 7.9%). Conclusion: In this randomized controlled study, apabetalone was associated with improved cognition as measured by MoCA scores in those with baseline scores of 21 or less. BET protein inhibitors warrant further investigation for late life cognitive disorders.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Gregory G Schwartz
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Aziz Khan
- Resverlogix Corporation, Calgary, AB, Canada
| | | | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, University of California Irvine, Irvine, CA, USA
| | | | - Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bengt Winblad
- Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden.,Karolinska University Hospital, Theme Inflammation and Aging, Huddinge, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College, London, UK
| |
Collapse
|
44
|
Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S, Sun D. A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer's Disease Transgenic Mice. J Alzheimers Dis 2021; 82:1769-1783. [PMID: 34219728 DOI: 10.3233/jad-210400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the most common type of dementia. A growing body of evidence has implicated neuroinflammation as an essential player in the etiology of AD. Inflammasomes are intracellular multiprotein complexes and essential components of innate immunity in response to pathogen- and danger-associated molecular patterns. Among the known inflammasomes, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the pathogenesis of AD. OBJECTIVE We recently developed a novel class of small molecule inhibitors that selectively target the NLRP3 inflammasome. One of the lead compounds, JC124, has shown therapeutic efficacy in a transgenic animal model of AD. In this study we tested the preventative efficacy of JC124 in another strain of transgenic AD mice. METHODS In this study, 5-month-old female APP/PS1 and matched wild type mice were treated orally with JC124 for 3 months. After completion of treatment, cognitive functions and AD pathologies, as well as protein expression levels of synaptic proteins, were assessed. RESULTS We found that inhibition of NLRP3 inflammasome with JC124 significantly decreased multiple AD pathologies in APP/PS1 mice, including amyloid-β (Aβ) load, neuroinflammation, and neuronal cell cycle re-entry, accompanied by preserved synaptic plasticity with higher expression of pre- and post-synaptic proteins, increased hippocampal neurogenesis, and improved cognitive functions. CONCLUSION Our study demonstrates the importance of the NLRP3 inflammasome in AD pathological development, and pharmacological inhibition of NLRP3 inflammasome with small molecule inhibitors represents a potential therapy for AD.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Rolfe
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Long Di
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Blevins
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yiming Xu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuehan Sun
- Departments of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Departments of Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
45
|
Vavougios GD, Nday C, Pelidou SH, Gourgoulianis KI, Stamoulis G, Doskas T, Zarogiannis SG. Outside-in induction of the IFITM3 trafficking system by infections, including SARS-CoV-2, in the pathobiology of Alzheimer's disease. Brain Behav Immun Health 2021; 14:100243. [PMID: 33817671 PMCID: PMC7997139 DOI: 10.1016/j.bbih.2021.100243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND IFITM3 is a viral restriction protein that enables sequestration of viral particles and subsequent trafficking to lysosomes. Recently, IFITM3 upregulation was found to induce gamma - secretase activity and the production of amyloid beta. The purpose of this study was to determine whether dysregulation of IFITM3-dependent pathways was present in neurons and peripheral immune cells donated by AD patients. As a secondary aim, we sought to determine whether these perturbations could be induced by viruses, including SARS-CoV-2. METHODS Gene set enrichment analyses (GSEA) previously performed on publicly available transcriptomic data from tissues donated by AD patients were screened for enriched pathways containing IFITM3. Subsequently, signature containing IFITM3, derived from entorhinal cortex (EC) neurons containing neurofibrillary tangles (NFT) was screened for overlap with curated, publicly available, viral infection-induced gene signatures (including SARS-CoV-2). RESULTS GSEA determined that IFITM3 gene networks are significantly enriched both in CNS sites (entorhinal and hippocampal cortices) and in peripheral blood mononuclear cells (PBMCs) donated by AD patients. Overlap screening revealed that IFITM3 signatures are induced by several viruses, including SARS-CoV, MERS-CoV, SARS-CoV-2 and HIV-1 (adjusted p-value <0.001; Enrichr Database). DISCUSSION A data-driven analysis of AD tissues revealed IFITM3 gene signatures both in the CNS and in peripheral immune cells. GSEA revealed that an IFITM3 derived gene signature extracted from EC/NFT neurons overlapped with those extracted from publicly available viral infection datasets, including SARS-CoV-2. Our results are in line with currently emerging evidence on IFITM3's role in AD, and SARS-CoV-2's potential contribution in the setting of an expanded antimicrobial protection hypothesis.
Collapse
Affiliation(s)
- George D. Vavougios
- Neuroimmunology Laboratory, Department of Neurology, Athens Naval Hospital, P.C., 115 21, Athens, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C., 41500, Larissa, Greece
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 – 4, P.C., 35 131, Galaneika, Lamia, Greece
| | - Christiane Nday
- Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, P.C., 5414, Thessaloniki, Greece
| | | | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C., 41500, Larissa, Greece
| | - George Stamoulis
- Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani – 28th October Str, Deligiorgi Building, 4th Floor, P.C., 382 21, Volos, Greece
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 – 4, P.C., 35 131, Galaneika, Lamia, Greece
| | - Triantafyllos Doskas
- Neuroimmunology Laboratory, Department of Neurology, Athens Naval Hospital, P.C., 115 21, Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| |
Collapse
|
46
|
Munawara U, Catanzaro M, Xu W, Tan C, Hirokawa K, Bosco N, Dumoulin D, Khalil A, Larbi A, Lévesque S, Ramassamy C, Barron AE, Cunnane S, Beauregard PB, Bellenger JP, Rodrigues S, Desroches M, Witkowski JM, Laurent B, Frost EH, Fulop T. Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer's disease. IMMUNITY & AGEING 2021; 18:29. [PMID: 34154615 PMCID: PMC8215492 DOI: 10.1186/s12979-021-00236-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Background Alzheimer’s disease (AD) is the most common neurodegenerative disease ultimately manifesting as clinical dementia. Despite considerable effort and ample experimental data, the role of neuroinflammation related to systemic inflammation is still unsettled. While the implication of microglia is well recognized, the exact contribution of peripheral monocytes/macrophages is still largely unknown, especially concerning their role in the various stages of AD. Objectives AD develops over decades and its clinical manifestation is preceded by subjective memory complaints (SMC) and mild cognitive impairment (MCI); thus, the question arises how the peripheral innate immune response changes with the progression of the disease. Therefore, to further investigate the roles of monocytes/macrophages in the progression of AD we assessed their phenotypes and functions in patients at SMC, MCI and AD stages and compared them with cognitively healthy controls. We also conceptualised an idealised mathematical model to explain the functionality of monocytes/macrophages along the progression of the disease. Results We show that there are distinct phenotypic and functional changes in monocyte and macrophage populations as the disease progresses. Higher free radical production upon stimulation could already be observed for the monocytes of SMC patients. The most striking results show that activation of peripheral monocytes (hyperactivation) is the strongest in the MCI group, at the prodromal stage of the disease. Monocytes exhibit significantly increased chemotaxis, free radical production, and cytokine production in response to TLR2 and TLR4 stimulation. Conclusion Our data suggest that the peripheral innate immune system is activated during the progression from SMC through MCI to AD, with the highest levels of activation being in MCI subjects and the lowest in AD patients. Some of these parameters may be used as biomarkers, but more holistic immune studies are needed to find the best period of the disease for clinical intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00236-x.
Collapse
Affiliation(s)
- Usma Munawara
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Michael Catanzaro
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.,Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Katsuiku Hirokawa
- Department of Diagnostic Pathology, Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nitobe Memorial Nakanosogo Hospital, Tokyo, Japan
| | - Nabil Bosco
- Nestlé Research, Nestlé Institute of Health Sciences, Department of Cell Biology, Cellular Metabolism, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Anis Larbi
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.,Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Simon Lévesque
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé-biotechnologie, Montréal, Québec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, California, USA
| | - Stephen Cunnane
- Research Center on Aging, Endocrinology Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Pierre Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain. .,Basque Center for Applied Mathematics, Mathematical, Computational and Experimental Neuroscience research group, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Basque-Country, Spain.
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France.,Université Côte d'Azur, Nice, France
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| |
Collapse
|
47
|
Chang CH, Yu CJ, Du JC, Chiou HC, Hou JW, Yang W, Chen CF, Chen HC, Chen YS, Hwang B, Chen ML. The associations among organophosphate pesticide exposure, oxidative stress, and genetic polymorphisms of paraoxonases in children with attention deficit/hyperactivity disorder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145604. [PMID: 33592467 DOI: 10.1016/j.scitotenv.2021.145604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
This study will help to clarify the relationship between organophosphate pesticides (OPs) and attention deficit/hyperactivity disorder (ADHD) related to oxidative stress and paraoxonases (PON) polymorphisms to further characterize the gene-environment interaction. This case-control study enrolled 85 children with ADHD and 96 control subjects. Urinary OP levels were analyzed by using gas chromatography-mass spectrometry (GC-MS). Oxidative stress biomarkers, such as 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2-Gua), 8-iso-prostaglandin F2α (8-iso-PGF2α), and 4-hydroxy-2-nonenoic acid-mercapturic acid (HNE-MA), were analyzed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (S) were calculated to evaluate the additive interactions between OP exposure and PON genetic polymorphism on ADHD. A causal mediation analysis was conducted to clarify the mediation effects of oxidative stress due to OP exposure on ADHD. Children with ADHD had significantly higher DMP (238.95 nmol/g cre. vs. 164.83 nmol/g cre., p value = 0.01) and HNE-MA (30.75 μg/g cre. vs. 18.41 μg/g cre., p value<0.01) concentrations than control children. Children who carried the PON1 GG genotype (rs705379) had low urinary DMP levels, and the level increased with increasing numbers of allele variants. The risk for developing ADHD reached 2.06-fold (OR = 2.06, 95% CI:1.23-3.44) and 1.43-fold (OR = 1.45, 95% CI:1.04-2.03) when the DMP and HNE-MA levels increased by 1 natural log of the concentration, respectively. The estimated AP value was 0.66 (95% CI: 0.17-1.15), indicating that 66% of ADHD cases in DMP-exposed children with the PON1 CT/TT (rs705381) genotype were due to gene-environment interactions. No significant mediation of HNE-MA was observed between DMP exposure and the risk of ADHD. The estimated proportion mediated was only 7.0% (95% CI: -0.08-0.46). This research suggests the role of OP exposure in the occurrence of ADHD after adjusting for covariates.
Collapse
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ching-Jung Yu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Hsien-Chih Chiou
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Winnie Yang
- Department of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Sheue Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Betau Hwang
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
48
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
49
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
50
|
Moraes CA, Zaverucha-do-Valle C, Fleurance R, Sharshar T, Bozza FA, d’Avila JC. Neuroinflammation in Sepsis: Molecular Pathways of Microglia Activation. Pharmaceuticals (Basel) 2021; 14:ph14050416. [PMID: 34062710 PMCID: PMC8147235 DOI: 10.3390/ph14050416] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frequently underestimated, encephalopathy or delirium are common neurological manifestations associated with sepsis. Brain dysfunction occurs in up to 80% of cases and is directly associated with increased mortality and long-term neurocognitive consequences. Although the central nervous system (CNS) has been classically viewed as an immune-privileged system, neuroinflammation is emerging as a central mechanism of brain dysfunction in sepsis. Microglial cells are major players in this setting. Here, we aimed to discuss the current knowledge on how the brain is affected by peripheral immune activation in sepsis and the role of microglia in these processes. This review focused on the molecular pathways of microglial activity in sepsis, its regulatory mechanisms, and their interaction with other CNS cells, especially with neuronal cells and circuits.
Collapse
Affiliation(s)
- Carolina Araújo Moraes
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
| | - Camila Zaverucha-do-Valle
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
| | - Renaud Fleurance
- UCB Biopharma SRL, 1420 Braine L’Alleud, Belgium;
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Université de Paris Sciences et Lettres, 75006 Paris Paris, France
| | - Tarek Sharshar
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Joana Costa d’Avila
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
- School of Medicine, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil
- Correspondence:
| |
Collapse
|