1
|
Poulen G, Douich N, Gazard CM, Mestre-Francés N, Cardoso M, Bauchet L, Vachiery-Lahaye F, Lonjon N, Gerber YN, Perrin FE. Sex and age differences in glia and myelin in nonhuman primate and human spinal cords: implications for pathology. Cell Death Discov 2025; 11:129. [PMID: 40175332 PMCID: PMC11965325 DOI: 10.1038/s41420-025-02425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
In a healthy central nervous system, glial cells are influenced by genetic, epigenetic, age, and sex factors. Aging typically causes astrocytes and microglia to undergo changes that reduce their neuroprotective functions and increase harmful activities. Additionally, sex-related differences in glial and myelin functions may impact neurological disorders. Despite this, few studies have investigated glial cells in primates, with most focusing on the brain. This study aims to explore whether glial cells and myelin exhibit age- and sex-related differences in the spinal cord of nonhuman primates and humans. We used immunohistochemistry and myelin staining to analyze healthy spinal cord samples from midlife and aged individuals of both sexes, focusing on Microcebus murinus (a small nonhuman primate) and humans. Primate spinal cords show distinct variations in glial markers and myelin characteristics related to sex and age, with differences varying between species. Notably, GFAP expression is sex-dependent in both primate species. We also observed greater differences in the expression of microglial markers than other glial markers. Overall, we found the opposite pattern for the g-ratio and oligodendrocytic marker between species. These findings suggest that glial cells may play a critical role in age- and sex-related differences in the prevalence and progression of spinal cord diseases.
Collapse
Affiliation(s)
- Gaëtan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Department of Neurosurgery, CHU, Montpellier, France
| | - Nacéra Douich
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Chloé M Gazard
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Nadine Mestre-Francés
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- PSL Research University, Paris, France
| | - Maïda Cardoso
- University of Montpellier, plateforme BNIF, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, CHU, Montpellier, France
- INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | | | - Nicolas Lonjon
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Department of Neurosurgery, CHU, Montpellier, France
| | | | - Florence E Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Xian Y, Liu J, Dai M, Zhang W, He M, Wei Z, Jiang Y, Le S, Lin Z, Tang S, Zhou Y, Dong L, Liang J, Zhang J, Wang L. Microglia Promote Lymphangiogenesis Around the Spinal Cord Through VEGF-C/VEGFR3-Dependent Autophagy and Polarization After Acute Spinal Cord Injury. Mol Neurobiol 2025; 62:2740-2755. [PMID: 39158788 DOI: 10.1007/s12035-024-04437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Reducing secondary injury is a key focus in the field of spinal cord injury (SCI). Recent studies have revealed the role of lymphangiogenesis in reducing secondary damage to central nerve. However, the mechanism of lymphangiogenesis is not yet clear. Macrophages have been shown to play an important role in peripheral tissue lymphangiogenesis. Microglia is believed to play a role similar to macrophages in the central nervous system (CNS); we hypothesized that there was a close relationship between microglia and central nerve system lymphangiogenesis. Herein, we used an in vivo model of SCI to explored the relationship between microglia and spinal cord lymphangiogenesis and further investigated the polarization of microglia and its role in promoting spinal cord lymphangiogenesis by a series of in vitro experiments. The current study elucidated for the first time the relationship between microglia and lymphangiogenesis around the spinal cord after SCI. Classical activated (M1) microglia can promote lymphangiogenesis by secreting VEGF-C which further increases polarization and secretion of lymphatic growth factor by activating VEGFR3. The VEGF-C/VEGFR3 pathway activation downregulates microglia autophagy, thereby regulating the microglia phenotype. These results indicate that M1 microglia promote lymphangiogenesis after SCI, and activated VEGF-C/VEGFR3 signaling promotes M1 microglia polarization by inhibiting autophagy, thereby facilitates lymphangiogenesis.
Collapse
Affiliation(s)
- Yeyang Xian
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Jie Liu
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Mengxuan Dai
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Wensheng Zhang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Minye He
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Zhengnong Wei
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Yutao Jiang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Shiyong Le
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Zhuoang Lin
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Shuai Tang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Yunfei Zhou
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Liming Dong
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Jinzheng Liang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Jie Zhang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China.
| | - Liang Wang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China.
| |
Collapse
|
3
|
Brahmi M, Adli DEH, Kaoudj I, Alkholifi FK, Arabi W, Sohbi S, Ziani K, Kahloula K, Slimani M, Sweilam SH. Chemical Composition, In Vivo, and In Silico Molecular Docking Studies of the Effect of Syzygium aromaticum (Clove) Essential Oil on Ochratoxin A-Induced Acute Neurotoxicity. PLANTS (BASEL, SWITZERLAND) 2025; 14:130. [PMID: 39795390 PMCID: PMC11723110 DOI: 10.3390/plants14010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
The aim of our research was to understand the impact of ochratoxin A (OTA) exposure on various physiological and behavioral aspects in adult Wistar rats, and to evaluate the efficacy of a Syzygium aromaticum essential oil (EOC) treatment in restoring the damage caused by this toxin. The essential oils were extracted by hydrodistillation, a yield of 12.70% was obtained for EOC, and the GC-MS characterization of this essential oil revealed that its principal major components are eugenol (80.95%), eugenyl acetate (10.48%), β-caryophyllene (7.21%), and α-humulene (0.87%). Acute OTA intoxication was induced by an intraperitoneal (IP) injection of 289 µg/kg/b.w. every 48 h for 12 doses, resulting in significant reductions in the body and brain weights of exposed rats when compared with controls. The neurobehavioral analysis using several behavioral testing techniques, such as the forced swimming, the dark/light test, the Morris water maze, and the open field test, clearly revealed that OTA exposure causes neurobehavioral disorders, including decreased locomotor activity, a reduced willingness to explore the environment, reflecting a state of stress, anxiety and depression, as well as impaired memory and learning. In addition, OTA intoxication has been associated with metabolic disturbances such as hyperglycemia and hypercortisolemia. However, treatment with EOC mitigated these adverse effects by improving body and brain weights and restoring neurobehavioral function. The in silico analysis revealed significant affinities between clove oils and two tested esterase enzymes (ACh and BuChE) that were more than or similar to the four neurotransmitters "dopamine, serotonin, norepinephrine, and glutamic acid" and the co-crystallized ligands NAG, MES, and GZ5. These results highlight the therapeutic potential of EOC in combating the toxic effects of OTA and pave the way for future research into the mechanisms of action and therapeutic applications of natural compounds in the prevention and treatment of poison-induced diseases.
Collapse
Affiliation(s)
- Mostapha Brahmi
- Department of Biological Science, Faculty of Natural and Life Sciences, University of Ahmed Zabana, Relizane 48000, Algeria
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Djallal Eddine H. Adli
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Imane Kaoudj
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Faisal K. Alkholifi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Wafaa Arabi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Soumia Sohbi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Khaled Kahloula
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Miloud Slimani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt
| |
Collapse
|
4
|
Henry RJ, Loane DJ. Unraveling the complexity of microglial responses in traumatic brain and spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:113-132. [PMID: 40148040 DOI: 10.1016/b978-0-443-19102-2.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in neuroimmune signaling, neuroprotection, and neuroinflammation. In the healthy CNS, microglia adopt a surveillant and antiinflammatory phenotype characterized by a ramified scanning morphology that maintains CNS homeostasis. In response to acquired insults, such as traumatic brain injury (TBI) or spinal cord injury (SCI), microglia undergo a dramatic morphologic and functional switch to that of a reactive state. This microglial switch is initially protective and supports the return of the injured tissue to a physiologic homeostatic state. However, there is now a significant body of evidence that both TBI and SCI can result in a chronic state of microglial activation, which contributes to neurodegeneration and impairments in long-term neurologic outcomes in humans and animal models. In this review, we discuss the complex role of microglia in the pathophysiology of TBI and SCI, and recent advancements in knowledge of microglial phenotypic states in the injured CNS. Furthermore, we highlight novel therapeutic strategies targeting chronic microglial responses in experimental models and discuss how they may ultimately be translated to the clinic for human brain and SCI.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Pharmacology, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
León-Rodríguez A, Grondona JM, Marín-Wong S, López-Aranda MF, López-Ávalos MD. Long-term reprogramming of primed microglia after moderate inhibition of CSF1R signaling. Glia 2025; 73:175-195. [PMID: 39448548 DOI: 10.1002/glia.24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
In acute neuroinflammation, microglia activate transiently, and return to a resting state later on. However, they may retain immune memory of such event, namely priming. Primed microglia are more sensitive to new stimuli and develop exacerbated responses, representing a risk factor for neurological disorders with an inflammatory component. Strategies to control the hyperactivation of microglia are, hence, of great interest. The receptor for colony stimulating factor 1 (CSF1R), expressed in myeloid cells, is essential for microglia viability, so its blockade with specific inhibitors (e.g. PLX5622) results in significant depletion of microglial population. Interestingly, upon inhibitor withdrawal, new naïve microglia repopulate the brain. Depletion-repopulation has been proposed as a strategy to reprogram microglia. However, substantial elimination of microglia is inadvisable in human therapy. To overcome such drawback, we aimed to reprogram long-term primed microglia by CSF1R partial inhibition. Microglial priming was induced in mice by acute neuroinflammation, provoked by intracerebroventricular injection of neuraminidase. After 3-weeks recovery, low-dose PLX5622 treatment was administrated for 12 days, followed by a withdrawal period of 7 weeks. Twelve hours before euthanasia, mice received a peripheral lipopolysaccharide (LPS) immune challenge, and the subsequent microglial inflammatory response was evaluated. PLX5622 provoked a 40%-50% decrease in microglial population, but basal levels were restored 7 weeks later. In the brain regions studied, hippocampus and hypothalamus, LPS induced enhanced microgliosis and inflammatory activation in neuraminidase-injected mice, while PLX5622 treatment prevented these changes. Our results suggest that PLX5622 used at low doses reverts microglial priming and, remarkably, prevents broad microglial depletion.
Collapse
Affiliation(s)
- Ana León-Rodríguez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Sonia Marín-Wong
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel F López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| |
Collapse
|
6
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Tahmasian N, Feng MY, Arbabi K, Rusu B, Cao W, Kukreja B, Lubotzky A, Wainberg M, Tripathy SJ, Kalish BT. Neonatal Brain Injury Triggers Niche-Specific Changes to Cellular Biogeography. eNeuro 2024; 11:ENEURO.0224-24.2024. [PMID: 39681473 DOI: 10.1523/eneuro.0224-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Preterm infants are at risk for brain injury and neurodevelopmental impairment due, in part, to white matter injury following chronic hypoxia exposure. However, the precise molecular mechanisms by which neonatal hypoxia disrupts early neurodevelopment are poorly understood. Here, we constructed a brain-wide map of the regenerative response to newborn brain injury using high-resolution imaging-based spatial transcriptomics to analyze over 800,000 cells in a mouse model of chronic neonatal hypoxia. Additionally, we developed a new method for inferring condition-associated differences in cell type spatial proximity, enabling the identification of niche-specific changes in cellular architecture. We observed hypoxia-associated changes in region-specific cell states, cell type composition, and spatial organization. Importantly, our analysis revealed mechanisms underlying reparative neurogenesis and gliogenesis, while also nominating pathways that may impede circuit rewiring following neonatal hypoxia. Altogether, our work provides a comprehensive description of the molecular response to newborn brain injury.
Collapse
Affiliation(s)
- Nareh Tahmasian
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Min Yi Feng
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Bianca Rusu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Wuxinhao Cao
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Asael Lubotzky
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Shreejoy J Tripathy
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Brian T Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
8
|
Jeon S, Heo J, Myung N, Shin JY, Kim MK, Kang H. High-Efficiency, Prevascularization-Free Macroencapsulation System for Subcutaneous Transplantation of Pancreatic Islets for Enhanced Diabetes Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408329. [PMID: 39308296 PMCID: PMC11636157 DOI: 10.1002/adma.202408329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Indexed: 12/13/2024]
Abstract
Pancreatic islet macroencapsulation systems for subcutaneous transplantation have garnered significant attention as a therapy for Type I diabetes due to their minimal invasiveness and low complication rates. However, the low vascular density of subcutaneous tissue threatens the long-term survival of islets. To address this issue, prevascularized systems are introduced but various challenges remain, including system complexity and vascular-cell immunogenicity. Here, a novel prevasculature-free macroencapsulation system designed as a multilayer sheet, which ensures sufficient mass transport even in regions with sparse vasculature, is presented. Islets are localized in top/bottom micro-shell layers (≈300 µm thick) to maximize proximity to the surrounding host vasculature. These sheets, fabricated via bioprinting using rat islets and alginate-based bio-ink, double islet viability and optimize islet density, improving insulin secretion function by 240%. The subcutaneous transplantation of small islet masses (≈250 islet equivalent) into diabetic nude mice enable rapid (<1 day) recovery of blood glucose, which remain stable for >120 days. Additionally, antifibrotic drug-loaded multilayer sheets facilitate blood glucose regulation by rat islets at the subcutaneous sites of diabetic immunocompetent mice for >35 days. Thus, this macroencapsulation system can advance the treatment of Type I diabetes and is also effective for islet xenotransplantation in subcutaneous tissue.
Collapse
Affiliation(s)
- Seunggyu Jeon
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Jun‐Ho Heo
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Noehyun Myung
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Ji Yeong Shin
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Min Kyeong Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Hyun‐Wook Kang
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| |
Collapse
|
9
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024; 189:57-72. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
10
|
Oishi R, Takeda I, Ode Y, Okada Y, Kato D, Nakashima H, Imagama S, Wake H. Neuromodulation with transcranial direct current stimulation contributes to motor function recovery via microglia in spinal cord injury. Sci Rep 2024; 14:18031. [PMID: 39098975 PMCID: PMC11298548 DOI: 10.1038/s41598-024-69127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
Spinal cord injury (SCI) is damage or trauma to the spinal cord, which often results in loss of function, sensation, or mobility below the injury site. Transcranial direct current stimulation (tDCS) is a non-invasive and affordable brain stimulation technique used to modulate neuronal circuits, which changes the morphology and activity of microglia in the cerebral cortex. However, whether similar morphological changes can be observed in the spinal cord remains unclear. Therefore, we evaluated neuronal population activity in layer 5 (L5) of M1 following SCI and investigated whether changes in the activities of L5 neurons affect microglia-axon interactions using C57BL/6J mice. We discovered that L5 of the primary motor cortex (corticospinal neurons) exhibited reduced synchronized activity after SCI that correlates with microglial morphology, which was recovered using tDCS. This indicates that tDCS promotes changes in the morphological properties and recovery of microglia after SCI. Combining immunotherapy with tDCS may be effective in treating SCI.
Collapse
Affiliation(s)
- Ryotaro Oishi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | - Yukihito Ode
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yuya Okada
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
- Center for Optical Scattering Image Science, Kobe University, Kobe, Japan.
- Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Shonan, Hayama, Kanagawa, 240-0193, Japan.
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
11
|
Cheng F, Wang C, Yan B, Yin Z, Liu Y, Zhang L, Li M, Liao P, Gao H, Jia Z, Li D, Liu Q, Lei P. CSF1R blockade slows progression of cerebral hemorrhage by reducing microglial proliferation and increasing infiltration of CD8 + CD122+ T cells into the brain. Int Immunopharmacol 2024; 133:112071. [PMID: 38636374 DOI: 10.1016/j.intimp.2024.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Microglia play a pivotal role in the neuroinflammatory response after brain injury, and their proliferation is dependent on colony-stimulating factors. In the present study, we investigated the effect of inhibiting microglia proliferation on neurological damage post intracerebral hemorrhage (ICH) in a mouse model, an aspect that has never been studied before. Using a colony-stimulating factor-1 receptor antagonist (GW2580), we observed that inhibition of microglia proliferation significantly ameliorated neurobehavioral deficits, attenuated cerebral edema, and reduced hematoma volume after ICH. This intervention was associated with a decrease in pro-inflammatory factors in microglia and an increased infiltration of peripheral regulatory CD8 + CD122+ T cells into the injured brain tissue. The CXCR3/CXCL10 axis is the mechanism of brain homing of regulatory CD8 + CD122+ T cells, and the high expression of IL-10 is the hallmark of their synergistic anti-inflammatory effect with microglia. And activated astrocytes around the insult site are a prominent source of CXCL10. Thus, inhibition of microglial proliferation offers a new perspective for clinical translation. The cross-talk between multiple cells involved in the regulation of the inflammatory response highlights the comprehensive nature of neuroimmunomodulation.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China
| | - Qiang Liu
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China.
| |
Collapse
|
12
|
Magni G, Riboldi B, Ceruti S. Human Glial Cells as Innovative Targets for the Therapy of Central Nervous System Pathologies. Cells 2024; 13:606. [PMID: 38607045 PMCID: PMC11011741 DOI: 10.3390/cells13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.
Collapse
Affiliation(s)
| | | | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, 20133 Milan, Italy; (G.M.); (B.R.)
| |
Collapse
|
13
|
Rao Y, Peng B. Allogenic microglia replacement: A novel therapeutic strategy for neurological disorders. FUNDAMENTAL RESEARCH 2024; 4:237-245. [PMID: 38933508 PMCID: PMC11197774 DOI: 10.1016/j.fmre.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that play vital roles in CNS development, homeostasis and disease pathogenesis. Genetic defects in microglia lead to microglial dysfunction, which in turn leads to neurological disorders. The correction of the specific genetic defects in microglia in these disorders can lead to therapeutic effects. Traditional genetic defect correction approaches are dependent on viral vector-based genetic defect corrections. However, the viruses used in these approaches, including adeno-associated viruses, lentiviruses and retroviruses, do not primarily target microglia; therefore, viral vector-based genetic defect corrections are ineffective in microglia. Microglia replacement is a novel approach to correct microglial genetic defects via replacing microglia of genetic defects with allogenic healthy microglia. In this paper, we systematically review the history, rationale and therapeutic perspectives of microglia replacement, which would be a novel strategy for treating CNS disorders.
Collapse
Affiliation(s)
- Yanxia Rao
- Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
14
|
Boland R, Kokiko-Cochran ON. Deplete and repeat: microglial CSF1R inhibition and traumatic brain injury. Front Cell Neurosci 2024; 18:1352790. [PMID: 38450286 PMCID: PMC10915023 DOI: 10.3389/fncel.2024.1352790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Traumatic brain injury (TBI) is a public health burden affecting millions of people. Sustained neuroinflammation after TBI is often associated with poor outcome. As a result, increased attention has been placed on the role of immune cells in post-injury recovery. Microglia are highly dynamic after TBI and play a key role in the post-injury neuroinflammatory response. Therefore, microglia represent a malleable post-injury target that could substantially influence long-term outcome after TBI. This review highlights the cell specific role of microglia in TBI pathophysiology. Microglia have been manipulated via genetic deletion, drug inhibition, and pharmacological depletion in various pre-clinical TBI models. Notably, colony stimulating factor 1 (CSF1) and its receptor (CSF1R) have gained much traction in recent years as a pharmacological target on microglia. CSF1R is a transmembrane tyrosine kinase receptor that is essential for microglia proliferation, differentiation, and survival. Small molecule inhibitors targeting CSF1R result in a swift and effective depletion of microglia in rodents. Moreover, discontinuation of the inhibitors is sufficient for microglia repopulation. Attention is placed on summarizing studies that incorporate CSF1R inhibition of microglia. Indeed, microglia depletion affects multiple aspects of TBI pathophysiology, including neuroinflammation, oxidative stress, and functional recovery with measurable influence on astrocytes, peripheral immune cells, and neurons. Taken together, the data highlight an important role for microglia in sustaining neuroinflammation and increasing risk of oxidative stress, which lends to neuronal damage and behavioral deficits chronically after TBI. Ultimately, the insights gained from CSF1R depletion of microglia are critical for understanding the temporospatial role that microglia develop in mediating TBI pathophysiology and recovery.
Collapse
Affiliation(s)
- Rebecca Boland
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Adhikari A, Chauhan K, Adhikari M, Tiwari AK. Colony Stimulating Factor-1 Receptor: An emerging target for neuroinflammation PET imaging and AD therapy. Bioorg Med Chem 2024; 100:117628. [PMID: 38330850 DOI: 10.1016/j.bmc.2024.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Although neuroinflammation is a significant pathogenic feature of many neurologic disorders, its precise function in-vivo is still not completely known. PET imaging enables the longitudinal examination, quantification, and tracking of different neuroinflammation biomarkers in living subjects. Particularly, PET imaging of Microglia, specialised dynamic immune cells crucial for maintaining brain homeostasis in central nervous system (CNS), is crucial for staging the neuroinflammation. Colony Stimulating Factor- 1 Receptor (CSF-1R) PET imaging is a novel method for the quantification of neuroinflammation. CSF-1R is mainly expressed on microglia, and neurodegenerative disorders greatly up-regulate its expression. The present review primarily focuses on the development, pros and cons of all the CSF-1R PET tracers reported for neuroinflammation imaging. Apart from neuroinflammation imaging, CSF-1R inhibitors are also reported for the therapy of neurodegenerative diseases such as Alzheimer's disease (AD). AD is a prevalent, advancing, and fatal neurodegenerative condition that have the characteristic feature of persistent neuroinflammation and primarily affects the elderly. The aetiology of AD is profoundly influenced by amyloid-beta (Aβ) plaques, intracellular neurofibrillary tangles, and microglial dysfunction. Increasing evidence suggests that CSF-1R inhibitors (CSF-1Ri) can be helpful in preclinical models of neurodegenerative diseases. This review article also summarises the most recent developments of CSF-1Ri-based therapy for AD.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India.
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California 22860, Mexico
| | - Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb, Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Askew KE, Beverley J, Sigfridsson E, Szymkowiak S, Emelianova K, Dando O, Hardingham GE, Duncombe J, Hennessy E, Koudelka J, Samarasekera N, Salman RA, Smith C, Tavares AAS, Gomez‐Nicola D, Kalaria RN, McColl BW, Horsburgh K. Inhibiting CSF1R alleviates cerebrovascular white matter disease and cognitive impairment. Glia 2024; 72:375-395. [PMID: 37909242 PMCID: PMC10952452 DOI: 10.1002/glia.24481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.
Collapse
Affiliation(s)
| | - Joshua Beverley
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Emma Sigfridsson
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Stefan Szymkowiak
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Katherine Emelianova
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Owen Dando
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Giles E. Hardingham
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Jessica Duncombe
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Edel Hennessy
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Juraj Koudelka
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Neshika Samarasekera
- Centre for Clinical Brain Sciences and Sudden Death Brain BankUniversity of EdinburghEdinburghUK
| | - Rustam Al‐Shahi Salman
- Centre for Clinical Brain Sciences and Sudden Death Brain BankUniversity of EdinburghEdinburghUK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain BankUniversity of EdinburghEdinburghUK
| | - Adriana A. S. Tavares
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | | | - Raj N. Kalaria
- Clinical and Translational Research InstituteNewcastle UniversityNewcastleUK
| | - Barry W. McColl
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Karen Horsburgh
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
17
|
Galvis-Montes DS, van Loo KMJ, van Waardenberg AJ, Surges R, Schoch S, Becker AJ, Pitsch J. Highly dynamic inflammatory and excitability transcriptional profiles in hippocampal CA1 following status epilepticus. Sci Rep 2023; 13:22187. [PMID: 38092829 PMCID: PMC10719343 DOI: 10.1038/s41598-023-49310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Transient brain insults including status epilepticus (SE) can initiate a process termed 'epileptogenesis' that results in chronic temporal lobe epilepsy. As a consequence, the entire tri-synaptic circuit of the hippocampus is fundamentally impaired. A key role in epileptogenesis has been attributed to the CA1 region as the last relay station in the hippocampal circuit and as site of aberrant plasticity, e.g. mediated by acquired channelopathies. The transcriptional profiles of the distinct hippocampal neurons are highly dynamic during epileptogenesis. Here, we aimed to elucidate the early SE-elicited mRNA signature changes and the respective upstream regulatory cascades in CA1. RNA sequencing of CA1 was performed in the mouse pilocarpine-induced SE model at multiple time points ranging from 6 to 72 h after the initial insult. Bioinformatics was used to decipher altered gene expression, signalling cascades and their corresponding cell type profiles. Robust transcriptomic changes were detected at 6 h after SE and at subsequent time points during early epileptogenesis. Major differentially expressed mRNAs encoded primarily immediate early and excitability-related gene products, as well as genes encoding immune signalling factors. Binding sites for the transcription factors Nfkb1, Spi1, Irf8, and two Runx family members, were enriched within promoters of differentially expressed genes related to major inflammatory processes, whereas the transcriptional repressors Suz12, Nfe2l2 and Rest were associated with hyperexcitability and GABA / glutamate receptor activity. CA1 quickly responds to SE by inducing transcription of genes linked to inflammation and excitation stress. Transcription factors mediating this transcriptomic switch represent targets for new highly selected, cell type and time window-specific anti-epileptogenic strategies.
Collapse
Grants
- SCHO 820/4-1, SCHO 820/6-1, SCHO 820/7-1, SCHO 820/5-2, SPP1757, SFB1089, FOR 2715 Deutsche Forschungsgemeinschaft
- SCHO 820/4-1, SCHO 820/6-1, SCHO 820/7-1, SCHO 820/5-2, SPP1757, SFB1089, FOR 2715 Deutsche Forschungsgemeinschaft
- Promotionskolleg 'NeuroImmunology' Else Kröner-Fresenius-Stiftung
- Promotionskolleg 'NeuroImmunology' Else Kröner-Fresenius-Stiftung
- BONFOR program of the Medical Faculty, University of Bonn
- Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
Collapse
Affiliation(s)
- Daniel S Galvis-Montes
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karen M J van Loo
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | | | - Rainer Surges
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Susanne Schoch
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
18
|
Perez JC, Poulen G, Cardoso M, Boukhaddaoui H, Gazard CM, Courtand G, Bertrand SS, Gerber YN, Perrin FE. CSF1R inhibition at chronic stage after spinal cord injury modulates microglia proliferation. Glia 2023; 71:2782-2798. [PMID: 37539655 DOI: 10.1002/glia.24451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification. In a translational aim, we investigated whether microglia proliferation persists at chronic stage after spinal cord hemisection and whether a brief pharmacological treatment could modulate microglial responses. We first carried out a time course analysis of SCI-induced microglia proliferation associated with morphological analysis up to 84 days post-injury (dpi). Second, we analyzed outcomes on microglia of an oral administration of GW2580, a colony stimulating factor-1 receptor tyrosine kinase inhibitor reducing selectively microglia proliferation. After SCI, microglia proliferation remains elevated at 84 dpi. The percentage of proliferative microglia relative to proliferative cells increases over time reaching almost 50% at 84 dpi. Morphological modifications of microglia processes are observed up to 84 dpi and microglia cell body area is transiently increased up to 42 dpi. A transient post-injury GW2580-delivery at two chronic stages after SCI (42 and 84 dpi) reduces microglia proliferation and modifies microglial morphology evoking an overall limitation of secondary inflammation. Finally, transient GW2580-delivery at chronic stage after SCI modulates myelination processes. Together our study shows that there is a persistent microglia proliferation induced by SCI and that a pharmacological treatment at chronic stage after SCI modulates microglial responses. Thus, a transient oral GW2580-delivery at chronic stage after injury may provide a promising therapeutic strategy for chronic SCI patients.
Collapse
Affiliation(s)
| | - Gaetan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, Montpellier, France
| | | | | | | | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
19
|
St-Pierre MK, González Ibáñez F, Kroner A, Tremblay MÈ. Microglia/macrophages are ultrastructurally altered by their proximity to spinal cord injury in adult female mice. J Neuroinflammation 2023; 20:273. [PMID: 37990235 PMCID: PMC10664529 DOI: 10.1186/s12974-023-02953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Traumatic spinal cord injury can cause immediate physical damage to the spinal cord and result in severe neurological deficits. The primary, mechanical tissue damage triggers a variety of secondary damage mechanisms at the injury site which significantly contribute to a larger lesion size and increased functional damage. Inflammatory mechanisms which directly involve both microglia (MG) and monocyte-derived macrophages (MDM) play important roles in the post-injury processes, including inflammation and debris clearing. In the current study, we investigated changes in the structure and function of MG/MDM in the injured spinal cord of adult female mice, 7 days after a thoracic contusion SCI. With the use of chip mapping scanning electron microscopy, which allows to image large samples at the nanoscale, we performed an ultrastructural comparison of MG/MDM located near the lesion vs adjacent regions to provide novel insights into the mechanisms at play post-injury. We found that MG/MDM located near the lesion had more mitochondria overall, including mitochondria with and without morphological alterations, and had a higher proportion of altered mitochondria. MG/MDM near the lesion also showed an increased number of phagosomes, including phagosomes containing myelin and partiallydigested materials. MG/MDM near the injury interacted differently with the spinal cord parenchyma, as shown by their reduced number of direct contacts with synaptic elements, axon terminals and dendritic spines. In this study, we characterized the ultrastructural changes of MG/MDM in response to spinal cord tissue damage in mice, uncovering changes in phagocytic activity, mitochondrial ultrastructure, and inter-cellular interactions within the spinal cord parenchyma.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Clement J. Zablocki Veterans Affairs Medical Center, 5000 W. National Ave, Milwaukee, WI, 53295, USA.
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
20
|
Ye J, Wen Z, Wu T, Chen L, Sheng L, Wang C, Teng C, Wu B, Xu J, Wei W. Single-Cell Sequencing Reveals the Optimal Time Window for Anti-Inflammatory Treatment in Spinal Cord Injury. Adv Biol (Weinh) 2023; 7:e2300098. [PMID: 37085744 DOI: 10.1002/adbi.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Indexed: 04/23/2023]
Abstract
Though the occurrence of neuroinflammation after spinal cord injury (SCI) is essential for antigen clearance and tissue repair, excessive inflammation results in cell death and axon dieback. The effect of anti-inflammatory medicine used in clinical treatment remains debatable owing to the inappropriate therapeutic schedule that does not align with the biological process of immune reaction. A better understanding of the immunity process is critical to promote effective anti-inflammatory therapeutics. However, cellular heterogeneity, which results in complex cellular functions, is a major challenge. This study performs single-cell RNA sequencing by profiling the tissue proximity to the injury site at different time points after SCI. Depending on the analysis of single-cell data and histochemistry observation, an appropriate time window for anti-inflammatory medicine treatment is proposed. This work also verifies the mechanism of typical anti-inflammatory medicine methylprednisolone sodium succinate (MPSS), which is found attributable to the activation inhibition of cells with pro-inflammatory phenotype through the downregulation of pathways such as TNF, IL2, and MIF. These pathways can also be provided as targets for anti-inflammatory treatment. Collectively, this work provides a therapeutic schedule of 1-3 dpi (days post injury) to argue against classical early pulse therapy and provides some pathways for target therapy in the future.
Collapse
Affiliation(s)
- Jingjia Ye
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhengfa Wen
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tianxin Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Liangliang Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310000, China
| | - Lingchao Sheng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Chenhuan Wang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Chong Teng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Bingbing Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jian Xu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Wei Wei
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
21
|
Manesco C, Saavedra-Villanueva O, Martin M, de Lizaraga J, Varga B, Cloitre T, Gerber YN, Perrin FE, Gergely C. Organization of collagen fibers and tissue hardening: Markers of fibrotic scarring after spinal cord injury in mice revealed by multiphoton-atomic force microscopy imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102699. [PMID: 37572769 DOI: 10.1016/j.nano.2023.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/14/2023]
Abstract
Spinal cord injury is a dramatic disease leading to severe motor, sensitive and autonomic impairments. After injury the axonal regeneration is partly inhibited by the glial scar, acting as a physical and chemical barrier. The scarring process involves microglia, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar. To investigate the role of collagen, we used a multimodal label-free imaging approach combining multiphoton and atomic force microscopy. The second harmonic generation signal exhibited by fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen density and the formation of more tortuous fibers over time after injury are observed. Nano-mechanical investigations revealed a noticeable hardening of the injured area, correlated with collagen fibers' formation. These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution.
Collapse
Affiliation(s)
| | | | - Marta Martin
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Yannick Nicolas Gerber
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; IUF, Intitut Universitaire de, France, Paris
| | | | | |
Collapse
|
22
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Kijas D, Haller H, Schmidt-Ott K, Limbourg FP. CSF-1 and Notch signaling cooperate in macrophage instruction and tissue repair during peripheral limb ischemia. Front Immunol 2023; 14:1240327. [PMID: 37691936 PMCID: PMC10484478 DOI: 10.3389/fimmu.2023.1240327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Ischemia causes an inflammatory response featuring monocyte-derived macrophages (MF) involved in angiogenesis and tissue repair. Angiogenesis and ischemic macrophage differentiation are regulated by Notch signaling via Notch ligand Delta-like 1 (Dll1). Colony stimulating factor 1 (CSF-1) is an essential MF lineage factor, but its role in ischemic macrophage development and the interaction with Notch signaling is so far unclear. Using a mouse model of hind limb ischemia with CSF-1 inhibitor studies and Dll1 heterozygous mice we show that CSF-1 is induced in the ischemic niche by a subpopulation of stromal cells expressing podoplanin, which was paralleled by the development of ischemic macrophages. Inhibition of CSF-1 signaling with small molecules or blocking antibodies impaired macrophage differentiation but prolonged the inflammatory response, resulting in impaired perfusion recovery and tissue regeneration. Yet, despite high levels of CSF-1, macrophage maturation and perfusion recovery were impaired in mice with Dll1 haploinsufficiency, while inflammation was exaggerated. In vitro, CSF-1 was not sufficient to induce full MF differentiation from donor monocytes in the absence of recombinant DLL1, while the presence of DLL1 in a dose-dependent manner stimulated MF differentiation in combination with CSF-1. Thus, CSF-1 is an ischemic niche factor that cooperates with Notch signaling in a non-redundant fashion to instruct macrophage cell fate and maturation, which is required for ischemic perfusion recovery and tissue repair.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Florian P. Limbourg
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Tahmasebi F, Barati S. The Role of Microglial Depletion Approaches in Pathological Condition of CNS. Cell Mol Neurobiol 2023; 43:2459-2471. [PMID: 36738403 PMCID: PMC11410134 DOI: 10.1007/s10571-023-01326-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Microglia are the primary immune cells of the central nervous system (CNS) that comprise about 5-12% of all cells in the brain. These cells are the first line of defense that protects the CNS from damage and attacking pathogens. Microglia originate from yolk sac macrophages and migrate to the brain before the blood-brain barrier formation. Microglia show key roles in healthy CNS including promoting neurogenesis, synaptic sculpting, and maintaining homeostasis but in pathological conditions of CNS, microglial activation may exacerbate diseases. Thus, microglial depletion of the CNS is a novel approach that could be a useful tool to understand the microglial functions in neurodegenerative and neuroinflammatory diseases. There are methods for microglial ablation and reduction such as genetic tools and pharmacological inhibitors. In this study, we review recent studies that used different microglial ablation models for microglial reduction and repopulation after depletion in pathological states of CNS. Recently, studies showed that microglial depletion as a potential therapeutic application has benefits (such as inflammatory factors reduction, increase synaptogenesis, astrogliosis preventation) in CNS. For these reasons, the inhibition of microglia with these models was considered a therapeutic approach for neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
24
|
Zheng J, Wu H, Wang X, Zhang G, Lu J, Xu W, Xu S, Fang Y, Zhang A, Shao A, Chen S, Zhao Z, Zhang J, Yu J. Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage. J Pharm Anal 2023; 13:862-879. [PMID: 37719195 PMCID: PMC10499589 DOI: 10.1016/j.jpha.2023.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The role of glial scar after intracerebral hemorrhage (ICH) remains unclear. This study aimed to investigate whether microglia-astrocyte interaction affects glial scar formation and explore the specific function of glial scar. We used a pharmacologic approach to induce microglial depletion during different ICH stages and examine how ablating microglia affects astrocytic scar formation. Spatial transcriptomics (ST) analysis was performed to explore the potential ligand-receptor pair in the modulation of microglia-astrocyte interaction and to verify the functional changes of astrocytic scars at different periods. During the early stage, sustained microglial depletion induced disorganized astrocytic scar, enhanced neutrophil infiltration, and impaired tissue repair. ST analysis indicated that microglia-derived insulin like growth factor 1 (IGF1) modulated astrocytic scar formation via mechanistic target of rapamycin (mTOR) signaling activation. Moreover, repopulating microglia (RM) more strongly activated mTOR signaling, facilitating a more protective scar formation. The combination of IGF1 and osteopontin (OPN) was necessary and sufficient for RM function, rather than IGF1 or OPN alone. At the chronic stage of ICH, the overall net effect of astrocytic scar changed from protective to destructive and delayed microglial depletion could partly reverse this. The vital insight gleaned from our data is that sustained microglial depletion may not be a reasonable treatment strategy for early-stage ICH. Inversely, early-stage IGF1/OPN treatment combined with late-stage PLX3397 treatment is a promising therapeutic strategy. This prompts us to consider the complex temporal dynamics and overall net effect of microglia and astrocytes, and develop elaborate treatment strategies at precise time points after ICH.
Collapse
Affiliation(s)
- Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Guoqiang Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jia'nan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
25
|
Slovinska L, Harvanova D. The Role of Mesenchymal Stromal Cells and Their Products in the Treatment of Injured Spinal Cords. Curr Issues Mol Biol 2023; 45:5180-5197. [PMID: 37367078 DOI: 10.3390/cimb45060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Spinal cord injury (SCI) is a destructive condition that results in lasting neurological damage resulting in disruption of the connection between the central nervous system and the rest of the body. Currently, there are several approaches in the treatment of a damaged spinal cord; however, none of the methods allow the patient to return to the original full-featured state of life before the injury. Cell transplantation therapies show great potential in the treatment of damaged spinal cords. The most examined type of cells used in SCI research are mesenchymal stromal cells (MSCs). These cells are at the center of interest of scientists because of their unique properties. MSCs regenerate the injured tissue in two ways: (i) they are able to differentiate into some types of cells and so can replace the cells of injured tissue and (ii) they regenerate tissue through their powerful known paracrine effect. This review presents information about SCI and the treatments usually used, aiming at cell therapy using MSCs and their products, among which active biomolecules and extracellular vesicles predominate.
Collapse
Affiliation(s)
- Lucia Slovinska
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
| |
Collapse
|
26
|
Wei X, Huang C, Chen K, Liu S, Wang M, Yang L, Wang Y. BMP7 Attenuates Neuroinflammation after Spinal Cord Injury by Suppressing the Microglia Activation and Inducing Microglial Polarization Via the STAT3 Pathway. Neurochem Res 2023:10.1007/s11064-023-03930-y. [PMID: 37071344 DOI: 10.1007/s11064-023-03930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
Excessive activation of pro-inflammatory (M1) microglia phenotypes after spinal cord injury (SCI) disrupts tissue repair and increases the risk of secondary SCI. We previously reported that adeno-associated virus (AAV) mediated delivery of bone morphogenetic protein 7 (BMP7) promotes functional recovery after SCI by reducing oligodendrocyte loss and demyelination; however, little is known about the early effects of BMP7 in ameliorating neuroinflammation in the acute SCI phase. Herein, we demonstrate that treatment with recombinant human BMP7 (rhBMP7) suppresses the viability of LPS-induced HMC3 microglia cells and increases the proportion with the M2 phenotype. Consistently, in a rat SCI model, rhBMP7 decreases the activation of microglia and promotes M2 polarization. After rhBMP7 administration, the STAT3 signaling pathway was activated in LPS-induced HMC3 cells and microglia in spinal cord lesions. Furthermore, the levels of TNF-α and IL-1β were significantly decreased in cell culture supernatants, lesion sites of injured spinal cords, and cerebrospinal fluid circulation after rhBMP7 administration, thus reducing neuron loss in the injured spinal cord and promoting functional recovery after SCI. These results provide insight into the immediate early mechanisms by which BMP7 may ameliorate the inflammation response to secondary SCI.
Collapse
Affiliation(s)
- Xiaojin Wei
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chaodong Huang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Chen
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuxin Liu
- Department of Pain Management and Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Yang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Wang
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Birkle TJY, Brown GC. Syk inhibitors protect against microglia-mediated neuronal loss in culture. Front Aging Neurosci 2023; 15:1120952. [PMID: 37009452 PMCID: PMC10050448 DOI: 10.3389/fnagi.2023.1120952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Microglia are brain macrophages and play beneficial and/or detrimental roles in many brain pathologies because of their inflammatory and phagocytic activity. Microglial inflammation and phagocytosis are thought to be regulated by spleen tyrosine kinase (Syk), which is activated by multiple microglial receptors, including TREM2 (Triggering Receptor Expressed on Myeloid Cells 2), implicated in neurodegeneration. Here, we have tested whether Syk inhibitors can prevent microglia-dependent neurodegeneration induced by lipopolysaccharide (LPS) in primary neuron-glia cultures. We found that the Syk inhibitors BAY61-3606 and P505-15 (at 1 and 10 μM, respectively) completely prevented the neuronal loss induced by LPS, which was microglia-dependent. Syk inhibition also prevented the spontaneous loss of neurons from older neuron-glia cultures. In the absence of LPS, Syk inhibition depleted microglia from the cultures and induced some microglial death. However, in the presence of LPS, Syk inhibition had relatively little effect on microglial density (reduced by 0-30%) and opposing effects on the release of two pro-inflammatory cytokines (IL-6 decreased by about 45%, TNFα increased by 80%). Syk inhibition also had no effect on the morphological transition of microglia exposed to LPS. On the other hand, inhibition of Syk reduced microglial phagocytosis of beads, synapses and neurons. Thus, Syk inhibition in this model is most likely neuroprotective by reducing microglial phagocytosis, however, the reduced microglial density and IL-6 release may also contribute. This work adds to increasing evidence that Syk is a key regulator of the microglial contribution to neurodegenerative disease and suggests that Syk inhibitors may be used to prevent excessive microglial phagocytosis of synapses and neurons.
Collapse
Affiliation(s)
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Bringuier CM, Noristani HN, Perez JC, Cardoso M, Goze-Bac C, Gerber YN, Perrin FE. Up-Regulation of Astrocytic Fgfr4 Expression in Adult Mice after Spinal Cord Injury. Cells 2023; 12:cells12040528. [PMID: 36831195 PMCID: PMC9954417 DOI: 10.3390/cells12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Spinal cord injury (SCI) leads to persistent neurological deficits without available curative treatment. After SCI astrocytes within the lesion vicinity become reactive, these undergo major morphological, and molecular transformations. Previously, we reported that following SCI, over 10% of resident astrocytes surrounding the lesion spontaneously transdifferentiate towards a neuronal phenotype. Moreover, this conversion is associated with an increased expression of fibroblast growth factor receptor 4 (Fgfr4), a neural stem cell marker, in astrocytes. Here, we evaluate the therapeutic potential of gene therapy upon Fgfr4 over-expression in mature astrocytes following SCI in adult mice. We found that Fgfr4 over-expression in astrocytes immediately after SCI improves motor function recovery; however, it may display sexual dimorphism. Improved functional recovery is associated with a decrease in spinal cord lesion volume and reduced glial reactivity. Cell-specific transcriptomic profiling revealed concomitant downregulation of Notch signaling, and up-regulation of neurogenic pathways in converting astrocytes. Our findings suggest that gene therapy targeting Fgfr4 over-expression in astrocytes after injury is a feasible therapeutic approach to improve recovery following traumatism of the spinal cord. Moreover, we stress that a sex-dependent response to astrocytic modulation should be considered for the development of effective translational strategies in other neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, 34095 Montpellier, France
| | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
29
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DS. Construction of a searchable database for gene expression changes in spinal cord injury experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526630. [PMID: 36778366 PMCID: PMC9915599 DOI: 10.1101/2023.02.01.526630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a debilitating disease resulting in an estimated 18,000 new cases in the United States on an annual basis. Significant behavioral research on animal models has led to a large amount of data, some of which has been catalogued in the Open Data Commons for Spinal Cord Injury (ODC-SCI). More recently, high throughput sequencing experiments have been utilized to understand molecular mechanisms associated with SCI, with nearly 6,000 samples from over 90 studies available in the Sequence Read Archive. However, to date, no resource is available for efficiently mining high throughput sequencing data from SCI experiments. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies as well as homologous discovery across species. We have processed 1,196 publicly available RNA-seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, KY USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Carlos de Almeida
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY
| | - Jonah C. Daneshmand
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Department of Neuroscience Training, School of Medicine, University of Louisville, Louisville, KY
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - David S.K. Magnuson
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
30
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
32
|
Audouard E, Michel F, Pierroz V, Kim T, Rousselot L, Gillet-Legrand B, Dufayet-Chauffaut G, Buchmann P, Florea M, Khel A, Altynbekova K, Delgaldo C, Escudero E, Soler ABA, Cartier N, Piguet F, Folcher M. Bioelectronic cell-based device provides a strategy for the treatment of the experimental model of multiple sclerosis. J Control Release 2022; 352:994-1008. [PMID: 36370877 PMCID: PMC9733677 DOI: 10.1016/j.jconrel.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Wireless powered optogenetic cell-based implant provides a strategy to deliver subcutaneously therapeutic proteins. Immortalize Human Mesenchymal Stem Cells (hMSC-TERT) expressing the bacteriophytochrome diguanylate cyclase (DGCL) were validated for optogenetic controlled interferon-β delivery (Optoferon cells) in a bioelectronic cell-based implant. Optoferon cells transcriptomic profiling was used to elaborate an in-silico model of the recombinant interferon-β production. Wireless optoelectronic device integration was developed using additive manufacturing and injection molding. Implant cell-based optoelectronic interface manufacturing was established to integrate industrial flexible compact low-resistance screen-printed Near Field Communication (NFC) coil antenna. Optogenetic cell-based implant biocompatibility, and device performances were evaluated in the Experimental Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Emilie Audouard
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Fanny Michel
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Vanessa Pierroz
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Taeuk Kim
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Lisa Rousselot
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Béatrix Gillet-Legrand
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Gaëlle Dufayet-Chauffaut
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Michael Florea
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | | | | | - Claudia Delgaldo
- Eurecat, Centre Tecnològic de Catalunya, Functional Printing and Embedded Devices Unit, Mataró, Spain
| | - Encarna Escudero
- Eurecat, Centre Tecnològic de Catalunya, Functional Printing and Embedded Devices Unit, Mataró, Spain
| | - Alejandra Ben Aissa Soler
- Eurecat, Centre Tecnològic de Catalunya, Functional Printing and Embedded Devices Unit, Mataró, Spain
| | - Nathalie Cartier
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Francoise Piguet
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marc Folcher
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland,Institute of Molecular and Clinical Ophthalmology, IOB, Basel, Switzerland,Corresponding author at: Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
33
|
Fisher ES, Amarante MA, Lowry N, Lotz S, Farjood F, Temple S, Hill CE, Kiehl TR. Single cell profiling of CD45+ spinal cord cells reveals microglial and B cell heterogeneity and crosstalk following spinal cord injury. J Neuroinflammation 2022; 19:266. [PMID: 36333772 PMCID: PMC9635187 DOI: 10.1186/s12974-022-02627-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Immune cells play crucial roles after spinal cord injury (SCI). However, incomplete knowledge of immune contributions to injury and repair hinders development of SCI therapies. We leveraged single-cell observations to describe key populations of immune cells present in the spinal cord and changes in their transcriptional profiles from uninjured to subacute and chronic stages of SCI.
Methods
Deep-read single-cell sequencing was performed on CD45+ cells from spinal cords of uninjured and injured Swiss-webster mice. After T9 thoracic contusion, cells were collected 3-, 7-, and 60-day post-injury (dpi). Subpopulations of CD45+ immune cells were identified informatically, and their transcriptional responses characterized with time. We compared gene expression in spinal cord microglia and B cell subpopulations with those in published models of disease and injury. Microglia were compared with Disease Associated Microglia (DAM) and Injury Responsive Microglia (IRM). B cells were compared to developmental lineage states and to an Amyotrophic Lateral Sclerosis (ALS) model.
Results
In uninjured and 7 dpi spinal cord, most CD45+ cells isolated were microglia while chronically B cells predominated. B cells accumulating in the spinal cord following injury included immature B to mature stages and were predominantly found in the injury zone. We defined diverse subtypes of microglia and B cells with altered gene expression with time after SCI. Spinal cord microglia gene expression indicates differences from brain microglia at rest and in inflammatory states. Expression analysis of signaling ligand–receptor partners identified microglia–B cell interactions at acute and chronic stages that may be involved in B cell recruitment, retention, and formation of ectopic lymphoid follicles.
Conclusions
Immune cell responses to SCI have region-specific aspects and evolve with time. Developmentally diverse populations of B cells accumulate in the spinal cord following injury. Microglia at subacute stages express B cell recruitment factors, while chronically, they express factors predicted to reduce B cell inflammatory state. In the injured spinal cord, B cells create ectopic lymphoid structures, and express secreted factors potentially acting on microglia. Our study predicts previously unidentified crosstalk between microglia and B cells post-injury at acute and chronic stages, revealing new potential targets of inflammatory responses for SCI repair warranting future functional analyses.
Collapse
|
34
|
Chokr SM, Milinkeviciute G, Jimenez GA, Abubakr H, Cramer KS. Long-term microglia depletion impairs synapse elimination and auditory brainstem function. Sci Rep 2022; 12:18521. [PMID: 36323869 PMCID: PMC9630367 DOI: 10.1038/s41598-022-23250-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Specialized sound localization circuit development requires synapse strengthening, refinement, and pruning. Many of these functions are carried out by microglia, immune cells that aid in regulating neurogenesis, synaptogenesis, apoptosis, and synaptic removal. We previously showed that postnatal treatment with BLZ945 (BLZ), an inhibitor of colony stimulating factor 1 receptor (CSF1R), eliminates microglia in the brainstem and disables calyceal pruning and maturation of astrocytes in the medial nucleus of the trapezoid body (MNTB). BLZ treatment results in elevated hearing thresholds and delayed signal propagation as measured by auditory brainstem responses (ABR). However, when microglia repopulate the brain following the cessation of BLZ, most of the deficits are repaired. It is unknown whether this recovery is achievable without the return of microglia. Here, we induced sustained microglial elimination with a two-drug approach using BLZ and PLX5622 (PLX). We found that BLZ/PLX treated mice had impaired calyceal pruning, diminished astrocytic GFAP in the lateral, low frequency, region of MNTB, and elevated glycine transporter 2 (GLYT2) levels. BLZ/PLX treated mice had elevated hearing thresholds, diminished peak amplitudes, and altered latencies and inter-peak latencies. These findings suggest that microglia are required to repopulate the brain in order to rectify deficits from their ablation.
Collapse
Affiliation(s)
- Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gisselle A Jimenez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hakeem Abubakr
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
35
|
Zhou ZL, Xie H, Tian XB, Xu HL, Li W, Yao S, Zhang H. Microglial depletion impairs glial scar formation and aggravates inflammation partly by inhibiting STAT3 phosphorylation in astrocytes after spinal cord injury. Neural Regen Res 2022; 18:1325-1331. [PMID: 36453419 PMCID: PMC9838173 DOI: 10.4103/1673-5374.357912] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Astrocytes and microglia play an orchestrated role following spinal cord injury; however, the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood. Herein, microglia were pharmacologically depleted and the effects on the astrocytic response were examined. We further explored the potential mechanisms involving the signal transducers and activators of transcription 3 (STAT3) pathway. For in vivo experiments, we constructed a contusion spinal cord injury model in C57BL/6 mice. To deplete microglia, all mice were treated with colony-stimulating factor 1 receptor inhibitor PLX3397, starting 2 weeks prior to surgery until they were sacrificed. Cell proliferation was examined by 5-ethynyl-2-deoxyuridine (EdU) and three pivotal inflammatory cytokines were detected by a specific Bio-Plex ProTM Reagent Kit. Locomotor function, neuroinflammation, astrocyte activation and phosphorylated STAT3 (pSTAT3, a maker of activation of STAT3 signaling) levels were determined. For in vitro experiments, a microglia and astrocyte coculture system was established, and the small molecule STA21, which blocks STAT3 activation, was applied to investigate whether STAT3 signaling is involved in mediating astrocyte proliferation induced by microglia. PLX3397 administration disrupted glial scar formation, increased inflammatory spillover, induced diffuse tissue damage and impaired functional recovery after spinal cord injury. Microglial depletion markedly reduced EdU+ proliferating cells, especially proliferating astrocytes at 7 days after spinal cord injury. RNA sequencing analysis showed that the JAK/STAT3 pathway was downregulated in mice treated with PLX3397. Double immunofluorescence staining confirmed that PLX3397 significantly decreased STAT3 expression in astrocytes. Importantly, in vitro coculture of astrocytes and microglia showed that microglia-induced astrocyte proliferation was abolished by STA21 administration. These findings suggest that microglial depletion impaired astrocyte proliferation and astrocytic scar formation, and induced inflammatory diffusion partly by inhibiting STAT3 phosphorylation in astrocytes following spinal cord injury.
Collapse
Affiliation(s)
- Zhi-Lai Zhou
- The Spine Surgery Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Huan Xie
- The Spine Surgery Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Bo Tian
- The Spine Surgery Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China
| | - Hua-Li Xu
- Department of Anesthesiology, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shun Yao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui Zhang
- The Spine Surgery Department, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China,Correspondence to: Hui Zhang, .
| |
Collapse
|
36
|
Wang J, Beecher K, Chehrehasa F, Moody H. The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew? Rev Neurosci 2022; 34:295-311. [PMID: 36054842 DOI: 10.1515/revneuro-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Disordered eating can underpin a number of debilitating and prevalent chronic diseases, such as obesity. Broader advances in psychopharmacology and biology have motivated some neuroscientists to address diet-induced obesity through reductionist, pre-clinical eating investigations on the rodent brain. Specifically, chemogenetic and optogenetic methods developed in the 21st century allow neuroscientists to perform in vivo, region-specific/projection-specific/promoter-specific circuit manipulations and immediately assess the impact of these manipulations on rodent feeding. These studies are able to rigorously conclude whether a specific neuronal population regulates feeding behaviour in the hope of eventually developing a mechanistic neuroanatomical map of appetite regulation. However, an artificially stimulated/inhibited rodent neuronal population that changes feeding behaviour does not necessarily represent a pharmacological target for treating eating disorders in humans. Chemogenetic/optogenetic findings must therefore be triangulated with the array of theories that contribute to our understanding of appetite. The objective of this review is to provide a wide-ranging discussion of the limitations of chemogenetic/optogenetic circuit manipulation experiments in rodents that are used to investigate appetite. Stepping into and outside of medical science epistemologies, this paper draws on philosophy of science, nutrition, addiction biology and neurophilosophy to prompt more integrative, transdisciplinary interpretations of chemogenetic/optogenetic appetite data. Through discussing the various technical and epistemological limitations of these data, we provide both an overview of chemogenetics and optogenetics accessible to non-neuroscientist obesity researchers, as well as a resource for neuroscientists to expand the number of lenses through which they interpret their circuit manipulation findings.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
37
|
The Mechanical Microenvironment Regulates Axon Diameters Visualized by Cryo-Electron Tomography. Cells 2022; 11:cells11162533. [PMID: 36010609 PMCID: PMC9406316 DOI: 10.3390/cells11162533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
Axonal varicosities or swellings are enlarged structures along axon shafts and profoundly affect action potential propagation and synaptic transmission. These structures, which are defined by morphology, are highly heterogeneous and often investigated concerning their roles in neuropathology, but why they are present in the normal brain remains unknown. Combining confocal microscopy and cryo-electron tomography (Cryo-ET) with in vivo and in vitro systems, we report that non-uniform mechanical interactions with the microenvironment can lead to 10-fold diameter differences within an axon of the central nervous system (CNS). In the brains of adult Thy1-YFP transgenic mice, individual axons in the cortex displayed significantly higher diameter variation than those in the corpus callosum. When being cultured on lacey carbon film-coated electron microscopy (EM) grids, CNS axons formed varicosities exclusively in holes and without microtubule (MT) breakage, and they contained mitochondria, multivesicular bodies (MVBs), and/or vesicles, similar to the axonal varicosities induced by mild fluid puffing. Moreover, enlarged axon branch points often contain MT free ends leading to the minor branch. When the axons were fasciculated by mimicking in vivo axonal bundles, their varicosity levels reduced. Taken together, our results have revealed the extrinsic regulation of the three-dimensional ultrastructures of central axons by the mechanical microenvironment under physiological conditions.
Collapse
|
38
|
Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, Pukos N, Campbell WA, Witcher KG, Guan Z, Kigerl KA, Hall JCE, Godbout JP, Fischer AJ, McTigue DM, He Z, Ma Q, Popovich PG. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 2022; 13:4096. [PMID: 35835751 PMCID: PMC9283484 DOI: 10.1038/s41467-022-31797-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/01/2022] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) triggers a neuro-inflammatory response dominated by tissue-resident microglia and monocyte derived macrophages (MDMs). Since activated microglia and MDMs are morphologically identical and express similar phenotypic markers in vivo, identifying injury responses specifically coordinated by microglia has historically been challenging. Here, we pharmacologically depleted microglia and use anatomical, histopathological, tract tracing, bulk and single cell RNA sequencing to reveal the cellular and molecular responses to SCI controlled by microglia. We show that microglia are vital for SCI recovery and coordinate injury responses in CNS-resident glia and infiltrating leukocytes. Depleting microglia exacerbates tissue damage and worsens functional recovery. Conversely, restoring select microglia-dependent signaling axes, identified through sequencing data, in microglia depleted mice prevents secondary damage and promotes recovery. Additional bioinformatics analyses reveal that optimal repair after SCI might be achieved by co-opting key ligand-receptor interactions between microglia, astrocytes and MDMs.
Collapse
Affiliation(s)
- Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yang Li
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Qi Guo
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nicole Pukos
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Warren A Campbell
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhen Guan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
Shi W, Zhang J, Shang Z, Zhang Y, Xia Y, Fu H, Yu T. Restorative therapy using microglial depletion and repopulation for central nervous system injuries and diseases. Front Immunol 2022; 13:969127. [PMID: 35911768 PMCID: PMC9329909 DOI: 10.3389/fimmu.2022.969127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Microglia are important resident immune cells in the central nervous system (CNS) and play an important role in its development, homeostasis, and disease treatments. Activated microglia perform diverse functions in mouse models of CNS neurodegenerative diseases or deficits. In humans, microglia have been linked to various neurodegenerative diseases. Following brain or spinal cord injury, microglia express pro- and anti-inflammatory phenotypes at different stages of recovery. With the development of pharmacological and genetic tools for microglial depletion, studies have demonstrated that microglial depletion exerts both positive and negative effects in the treatment of CNS diseases. Notably, microglial depletion provides an empty niche that stimulates production of new microglia. Microglial depletion and repopulation can not only treat diseases by eliminating dysfunctional microglia but can also provide an indication of the molecular mechanisms of diseases. Although this approach has shown impressive results, its use is still in its infancy. In this review, we summarize the current pharmacological and genetic tools for microglial depletion and highlight recent advances in microglial repopulation therapy for the treatment and functional recovery of neurological diseases and deficits. Finally, we briefly discuss the therapeutic challenges and prospective uses of microglial repopulation therapy.
Collapse
Affiliation(s)
- Weipeng Shi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Zhen Shang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Key Laboratory of Biomechanics of Hebei Province, Department of Trauma Emergency Center, The Third Hospital of Hebei Medical University, Orthopaedics Research Institution of Hebei Province, Shijiazhuang, China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao, China
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Haitao Fu, ; Tengbo Yu,
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Haitao Fu, ; Tengbo Yu,
| |
Collapse
|
40
|
Ansari JA, Dey RK, Mishra SK, Roy O, Kushwaha S, Singh V, Patnaik S, Ghosh D. Perinatal arsenic exposure-induced sustained microglial activation leads to impaired cognitive response in BALB/c mice. Neurotoxicology 2022; 92:1-14. [PMID: 35777461 DOI: 10.1016/j.neuro.2022.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Arsenic is infamous for its adverse health effects worldwide. It is known to induce cognitive impairment in experimental model animals and children in the arsenic-affected area. Although the effect of arsenic on neuronal health is well studied, but the involvement of the brain immune component, microglia, has not been well explored. The present study is focused on examining the role of microglia in arsenic-induced cognitive impairment. We have used balb/c mice for the study. Pregnant dams were gavaged with sodium arsenite (0.38 mg/kg body weight) from gestational day 5 (GD5) till postnatal day 22 (PND22). Mice were sacrificed on PND 7, 14, 22 and isolated brains were used for various assays. The study reveals that perinatal arsenic exposure keeps the microglia activated and skews them towards the M1 phenotype. Increased microglial proliferation, ROS, NO, higher levels of proinflammatory cytokines and chemokines were observed in the arsenic exposed group. Enhanced phagocytosis and phagocytic receptor TREM2, along with decreased expression of SNAP25 and PSD95, were correlated for enhanced neuronal pruning leading to impaired learning and memory response. Taken together, the study reveals an association between arsenic exposure and altered cognitive response where enhanced neuronal pruning by arsenic-activated microglia plays an important role in developing mice.
Collapse
Affiliation(s)
- Jamal Ahmad Ansari
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajib K Dey
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubhendra K Mishra
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Opalina Roy
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shaivya Kushwaha
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikas Singh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Analysis Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
41
|
Deng J, Meng F, Zhang K, Gao J, Liu Z, Li M, Liu X, Li J, Wang Y, Zhang L, Tang P. Emerging Roles of Microglia Depletion in the Treatment of Spinal Cord Injury. Cells 2022; 11:cells11121871. [PMID: 35741000 PMCID: PMC9221038 DOI: 10.3390/cells11121871] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Microglia, as the resident immune cells and first responder to neurological insults, play an extremely important role in the pathophysiological process of spinal cord injury. On the one hand, microglia respond rapidly and gather around the lesion in the early stage of injury to exert a protective role, but with the continuous stimulation of the injury, the excessive activated microglia secrete a large number of harmful substances, aggravate the injury of spinal cord tissue, and affect functional recovery. The effects of microglia depletion on the repair of spinal cord injury remain unclear, and there is no uniformly accepted paradigm for the removal methods and timing of microglia depletion, but different microglia depletion strategies greatly affect the outcomes after spinal cord injury. Therefore, this review summarizes the physiological and pathological roles of microglia, especially the effects of microglia depletion on spinal cord injury-sustained microglial depletion would aggravate injury and impair functional recovery, while the short-term depletion of microglial population in diseased conditions seems to improve tissue repair and promote functional improvement after spinal cord injury. Furthermore, we discuss the advantages and disadvantages of major strategies and timing of microglia depletion to provide potential strategy for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Junhao Deng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100037, China;
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
| | - Fanqi Meng
- Department of Spine Surgery, Peking University People’s Hospital, Beijing 100044, China;
| | - Kexue Zhang
- Department of Pediatric Surgery, The Chinese PLA General Hospital, Beijing 100853, China;
| | - Jianpeng Gao
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
| | - Zhongyang Liu
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
| | - Ming Li
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
| | - Xiao Liu
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
| | - Jiantao Li
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopaedics, The Chinese PLA General Hospital, Beijing 100853, China;
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100037, China;
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
- Correspondence: (L.Z.); (P.T.)
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100037, China;
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China; (J.G.); (Z.L.); (M.L.); (X.L.); (J.L.)
- Correspondence: (L.Z.); (P.T.)
| |
Collapse
|
42
|
Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022; 79:219. [PMID: 35366105 PMCID: PMC8976111 DOI: 10.1007/s00018-022-04225-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.
Collapse
Affiliation(s)
- Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
43
|
Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol 2022; 60:101651. [PMID: 36155944 DOI: 10.1016/j.smim.2022.101651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023]
Abstract
Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.
Collapse
|
44
|
Wang W, Sun W, Gao X, Peng L, Lin L, Xiao K, Liu Y, Di X, Zhu S, Chen H, Zhou L. The preventive effects of colony-stimulating factor 1 receptor (CSF-1R) inhibition on bladder outlet obstruction induced remodeling. Neurourol Urodyn 2022; 41:787-796. [PMID: 35170790 DOI: 10.1002/nau.24896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Bladder outlet obstruction (BOO) is a common problem that can affect bladder structure and function. Currently, there is no effective drugs available to prevent BOO-induced remodeling. Previous reports have demonstrated that the pathogenesis of BOO is associated with macrophage infiltration and polarization, which is physiologically dependent on colony-stimulating factor 1 receptor (CSF-1R) activation. Here we utilized a highly selective CSF-1R inhibitor, GW2580, to determine its preventive effects on BOO-induced remodeling. METHODS A total of 24 Sprague-Dawley rats were randomly divided into sham, BOO + vehicle, and BOO + GW2580 group. GW2580 or vehicle control was administrated by oral gavage at daily doses of 40 mg/kg for 6 weeks. Bladder samples were collected for histopathology, immunohistochemistry, immunofluorescence, western blotting, and flow cytometry analysis. RESULTS Our results demonstrated that bladder fibrosis was ameliorated by GW2580 compared with the vehicle group (22.01% ± 5.13% vs. 32.15% ± 7.24%, p < 0.01). Furthermore, treatment with GW2580 induced an inhibition of macrophage infiltration (4.41% ± 1.28% vs. 13.57% ± 3.42%, p < 0.001) and M2 macrophage polarization (10.67% ± 4.15% vs. 28.59% ± 6.38%, p < 0.001). There was also a decrease of profibrotic F4/80+ α-smooth muscle actin+ (α-SMA+ ) macrophage to myofibroblast transition (9.11% ± 2.58% vs. 17.33% ± 4.01%, p < 0.001) and CD163+ TGF-β1+ cells (7.68% ± 2.10% vs. 14.17% ± 4.09%, p < 0.01) in the GW2580 group when compared with the vehicle group. CONCLUSIONS In summary, our findings showed that GW2580 is a worthwhile candidate for a follow-up study to test in the treatment of BOO-induced remodeling.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjin Sun
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuai Gao
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liao Peng
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lede Lin
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kaiwen Xiao
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingpeng Di
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyu Zhu
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Huiling Chen
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Zhou
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Xu L, Wang J, Ding Y, Wang L, Zhu YJ. Current Knowledge of Microglia in Traumatic Spinal Cord Injury. Front Neurol 2022; 12:796704. [PMID: 35087472 PMCID: PMC8787368 DOI: 10.3389/fneur.2021.796704] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells in the central nervous system (CNS). After traumatic spinal cord injury (SCI), microglia undergo activation, proliferation, and changes in gene and protein expression and morphology, with detrimental and beneficial effects. Activated microglia cause secondary neuronal injury via the production of proinflammatory cytokines, reactive oxygen species, and proteases. However, activated microglia also promote neuronal repair through the secretion of anti-inflammatory growth factors and cytokines. Proinflammatory cytokines increase endothelial permeability, promote A1 astrocyte activation and axonal demyelination, and reduce neural stem/progenitor cells (NSPCs), leading to the exacerbation of neuronal injury. In contrast, anti-inflammatory factors facilitate angiogenesis, reduce reactive astrocytes, and promote axonal remyelination and the propagation of NSPCs, contributing to tissue repair and locomotor recovery. Due to its limited regenerative capacity, the CNS requires beneficial microglia for continuous protection against injury. Understanding and regulating microglial activation status are beneficial to reducing detrimental effects and promoting repair behaviors and to obtain more information on efficient therapies for traumatic SCI. This review discusses microglial activation and the differences between microglia and similar immune cells, microglial interactions with other cells in the spinal cord, and the progress in the development of therapies targeting microglia in SCI.
Collapse
Affiliation(s)
- Lintao Xu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yueming Ding
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Jian Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Christopoulos PF. Hacking macrophages to combat cancer and inflammatory diseases-Current advances and challenges. Scand J Immunol 2022; 95:e13140. [PMID: 35000232 DOI: 10.1111/sji.13140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Recently, immunotherapy has been served as the treatment of choice for various human pathophysiologies, including inflammatory diseases and cancer. Though most of the current approaches target the lymphoid compartment, macrophages intimately implicated in the induction or resolution of inflammation have rationally gained their place into the therapeutics arena. In this review, I discuss the past and novel groundbreaking strategies focusing on macrophages in different human diseases and highlight the current challenges and considerations underlying their translational potentials.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Pathology, section of Research, Rikshospitalet, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| |
Collapse
|
47
|
McCreedy DA, Abram CL, Hu Y, Min SW, Platt ME, Kirchhoff MA, Reid SK, Jalufka FL, Lowell CA. Spleen tyrosine kinase facilitates neutrophil activation and worsens long-term neurologic deficits after spinal cord injury. J Neuroinflammation 2021; 18:302. [PMID: 34952603 PMCID: PMC8705173 DOI: 10.1186/s12974-021-02353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. Methods Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. Results Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. Conclusions Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA. .,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA. .,Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA.
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Sun Won Min
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Madison E Platt
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Megan A Kirchhoff
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Shelby K Reid
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Frank L Jalufka
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
48
|
Soto-Diaz K, Vailati-Riboni M, Louie AY, McKim DB, Gaskins HR, Johnson RW, Steelman AJ. Treatment With the CSF1R Antagonist GW2580, Sensitizes Microglia to Reactive Oxygen Species. Front Immunol 2021; 12:734349. [PMID: 34899694 PMCID: PMC8664563 DOI: 10.3389/fimmu.2021.734349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
Microglia activation and proliferation are hallmarks of many neurodegenerative disorders and may contribute to disease pathogenesis. Neurons actively regulate microglia survival and function, in part by secreting the microglia mitogen interleukin (IL)-34. Both IL-34 and colony stimulating factor (CSF)-1 bind colony stimulating factor receptor (CSFR)1 expressed on microglia. Systemic treatment with central nervous system (CNS) penetrant, CSFR1 antagonists, results in microglia death in a dose dependent matter, while others, such as GW2580, suppress activation during disease states without altering viability. However, it is not known how treatment with non-penetrant CSF1R antagonists, such as GW2580, affect the normal physiology of microglia. To determine how GW2580 affects microglia function, C57BL/6J mice were orally gavaged with vehicle or GW2580 (80mg/kg/d) for 8 days. Body weights and burrowing behavior were measured throughout the experiment. The effects of GW2580 on circulating leukocyte populations, brain microglia morphology, and the transcriptome of magnetically isolated adult brain microglia were determined. Body weights, burrowing behavior, and circulating leukocytes were not affected by treatment. Analysis of Iba-1 stained brain microglia indicated that GW2580 treatment altered morphology, but not cell number. Analysis of RNA-sequencing data indicated that genes related to reactive oxygen species (ROS) regulation and survival were suppressed by treatment. Treatment of primary microglia cultures with GW2580 resulted in a dose-dependent reduction in viability only when the cells were concurrently treated with LPS, an inducer of ROS. Pre-treatment with the ROS inhibitor, YCG063, blocked treatment induced reductions in viability. Finally, GW2580 sensitized microglia to hydrogen peroxide induced cell death. Together, these data suggest that partial CSF1R antagonism may render microglia more susceptible to reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Katiria Soto-Diaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
49
|
Poulen G, Bartolami S, Noristani HN, Perrin FE, Gerber YN. Unlike Brief Inhibition of Microglia Proliferation after Spinal Cord Injury, Long-Term Treatment Does Not Improve Motor Recovery. Brain Sci 2021; 11:brainsci11121643. [PMID: 34942945 PMCID: PMC8699766 DOI: 10.3390/brainsci11121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023] Open
Abstract
Microglia are major players in scar formation after an injury to the spinal cord. Microglia proliferation, differentiation, and survival are regulated by the colony-stimulating factor 1 (CSF1). Complete microglia elimination using CSF1 receptor (CSF1R) inhibitors worsens motor function recovery after spinal injury (SCI). Conversely, a 1-week oral treatment with GW2580, a CSF1R inhibitor that only inhibits microglia proliferation, promotes motor recovery. Here, we investigate whether prolonged GW2580 treatment further increases beneficial effects on locomotion after SCI. We thus assessed the effect of a 6-week GW2580 oral treatment after lateral hemisection of the spinal cord on functional recovery and its outcome on tissue and cellular responses in adult mice. Long-term depletion of microglia proliferation after SCI failed to improve motor recovery and had no effect on tissue reorganization, as revealed by ex vivo diffusion-weighted magnetic resonance imaging. Six weeks after SCI, GW2580 treatment decreased microglial reactivity and increased astrocytic reactivity. We thus demonstrate that increasing the duration of GW2580 treatment is not beneficial for motor recovery after SCI.
Collapse
Affiliation(s)
- Gaëtan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Department of Neurosurgery, Univ. Montpellier, CHU, Montpellier, France
| | - Sylvain Bartolami
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
| | - Harun N. Noristani
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
| | - Florence E. Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Institut Universitaire de France (IUF), France
| | - Yannick N. Gerber
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France; (G.P.); (S.B.); (H.N.N.); (F.E.P.)
- Correspondence: ; Tel.: +33-467143386
| |
Collapse
|
50
|
Poulen G, Aloy E, Bringuier CM, Mestre-Francés N, Artus EV, Cardoso M, Perez JC, Goze-Bac C, Boukhaddaoui H, Lonjon N, Gerber YN, Perrin FE. Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates. Am J Cancer Res 2021; 11:8640-8659. [PMID: 34522204 PMCID: PMC8419033 DOI: 10.7150/thno.61833] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
No curative treatment is available for any deficits induced by spinal cord injury (SCI). Following injury, microglia undergo highly diverse activation processes, including proliferation, and play a critical role on functional recovery. In a translational objective, we investigated whether a transient pharmacological reduction of microglia proliferation after injury is beneficial for functional recovery after SCI in mice and nonhuman primates. Methods: The colony stimulating factor-1 receptor (CSF1R) regulates proliferation, differentiation, and survival of microglia. We orally administrated GW2580, a CSF1R inhibitor that inhibits microglia proliferation. In mice and nonhuman primates, we then analyzed treatment outcomes on locomotor function and spinal cord pathology. Finally, we used cell-specific transcriptomic analysis to uncover GW2580-induced molecular changes in microglia. Results: First, transient post-injury GW2580 administration in mice improves motor function recovery, promotes tissue preservation and/or reorganization (identified by coherent anti-stokes Raman scattering microscopy), and modulates glial reactivity. Second, post-injury GW2580-treatment in nonhuman primates reduces microglia proliferation, improves motor function recovery, and promotes tissue protection. Finally, GW2580-treatment in mice induced down-regulation of proliferation-associated transcripts and inflammatory associated genes in microglia that may account for reduced neuroinflammation and improved functional recovery following SCI. Conclusion: Thus, a transient oral GW2580 treatment post-injury may provide a promising therapeutic strategy for SCI patients and may also be extended to other central nervous system disorders displaying microglia activation.
Collapse
|