1
|
Franck MCM, Weman HM, Ceder MM, Ahemaiti A, Henriksson K, Bengtsson E, Magnusson KA, Koning HK, Öhman-Mägi C, Lagerström MC. Spinal lumbar Urocortin 3-expressing neurons are associated with both scratching and Compound 48/80-induced sensations. Pain 2025; 166:1070-1087. [PMID: 39432740 PMCID: PMC12004988 DOI: 10.1097/j.pain.0000000000003435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Urocortin 3 is a neuropeptide that belongs to the corticotropin-releasing hormone family and is involved in mechanosensation and stress regulation. In this study, we show that Urocortin 3 marks a population of excitatory neurons in the mouse spinal cord, divided into 2 nonoverlapping subpopulations expressing protein kinase C gamma or calretinin/calbindin 2, populations previously associated with mechanosensation. Electrophysiological experiments demonstrated that lumbar spinal Urocortin 3 neurons receive both glycinergic and GABAergic local tonic inhibition, and monosynaptic inputs from both Aβ and C fibers, which could be confirmed by retrograde trans-synaptic rabies tracing. Furthermore, fos analyses showed that subpopulations of lumbar Urocortin 3 neurons are activated by artificial scratching or Compound 48/80-induced sensations. Chemogenetic activation of lumbar Urocortin 3-Cre neurons evoked a targeted biting/licking behavior towards the corresponding dermatome and chemogenetic inhibition decreased Compound 48/80-induced behavior. Hence, spinal lumbar Urocortin 3 neurons represent a mechanically associated population with roles in both scratching and Compound 48/80-induced sensations.
Collapse
Affiliation(s)
- Marina C. M. Franck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M. Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mikaela M. Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Erica Bengtsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Harmen K. Koning
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Malin C. Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Wang YB, Dow KE, Boychuk CR. GABA AR-δ-subunit mediates increased GABAergic inhibition in cardiac DMV neurons after high-fat diet. iScience 2025; 28:112268. [PMID: 40264791 PMCID: PMC12013407 DOI: 10.1016/j.isci.2025.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/20/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Activity of cardiac-projecting neurons in the dorsal motor nucleus of the vagus (CVNDMV) is vital in cardiac reflexes contributing to maintaining cardiovascular health. However, how this population adapts to metabolic challenges, such as high-fat diet (HFD), is unclear. This study aimed to identify neuroplasticity changes induced by HFD in CVNDMV. Using whole-cell patch-clamp electrophysiology, we found that 15-day HFD feeding increased tonic, but not phasic, gamma-aminobutyric acid type A (GABAA) inhibitory neurotransmission, exclusive to CVNDMV. Single-cell quantitative reverse-transcription PCR (scRT-qPCR) analysis revealed a higher number of CVNDMV expressing GABAA receptor δ-subunit (GABAA(δ)R) in HFD compared to normal fat diet (NFD). Deletion of GABAA(δ)R in ChAT-positive motor neurons abolished HFD-induced increased tonic GABAA neurotransmission in CVNDMV. Altogether, this evidence suggests that CVNDMV exhibits early onset HFD-induced increased GABAergic neurotransmission, likely mediated by GABAA(δ)R. This increased inhibitory tone could explain previously reported reduced cardiac vagal motor output, thus contributing to poor cardiometabolic health after HFD.
Collapse
Affiliation(s)
- Yoko Brigitte Wang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Kaylie E. Dow
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Carie R. Boychuk
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Zhou B, Li Q, Su M, Liao P, Luo Y, Luo R, Yu Y, Luo M, Lei F, Li X, Jiao J, Yi L, Wang J, Yang L, Liao D, Zhou C, Zhang X, Xiao H, Zuo Y, Liu J, Zhu T, Jiang R. Astrocyte morphological remodeling regulates consciousness state transitions induced by inhaled general anesthesia. Mol Psychiatry 2025:10.1038/s41380-025-02978-2. [PMID: 40169801 DOI: 10.1038/s41380-025-02978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
General anesthetics (GAs) are conventionally thought to induce loss of consciousness (LOC) by acting on pre- and post-synaptic targets. However, the mechanism underlying the involvement of astrocytes in LOC remains unclear. Here we report that inhaled GAs cause reversible impairments in the fine processes of astrocytes within the somatosensory cortex, mediated by regulating the phosphorylation level of Ezrin, a protein critical for the fine morphology of astrocytes. Genetically deleting Ezrin or disrupting its phosphorylation was sufficient to decrease astrocyte-synapse interaction and enhance sensitivity to sevoflurane (Sevo) in vivo. Moreover, we show that disrupting astrocytic Ezrin phosphorylation boosted the inhibitory effect of Sevo on pyramidal neurons by enhancing tonic GABA and lowering excitability under anesthesia. Our work reveals previously unappreciated phosphorylation-dependent morphological dynamics, which enable astrocytes to regulate neuronal activity during the transition between two brain consciousness states.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingran Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengchan Su
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunqing Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiyan Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Lei
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Xin Li
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Limei Yi
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Zhang
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Aggarwal Y, Dixit AB, Tripathi M, Doddamani R, Sharma MC, Chandra PS, Banerjee J. Action potential-dependent α4-containing GABA A receptors contribute to epileptogenicity in focal cortical dysplasia. Epilepsy Res 2025; 210:107520. [PMID: 39919537 DOI: 10.1016/j.eplepsyres.2025.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
FCD is a developmental disorder associated with drug-resistant seizures. Alterations in GABAA receptor-mediated activity contribute to seizures in FCD. However, the exact mechanism of altered GABAergic synaptic activity is still unclear. Previously, we showed increased GABAA receptor α4 subunit expression in FCD. In this study, we investigated whether changes in GABAA receptor configuration at synaptic or extrasynaptic sites contribute to enhanced GABAergic activity in the resected samples of FCD patients. Results showed increase in the frequency and amplitude of spontaneous inhibitory postsynaptic currents on treatment with gaboxadol (agonist for α4δ-containing GABAA receptors). In the presence of tetrodotoxin (voltage-gated Na+ channel inhibitor), frequency and amplitude of miniature inhibitory postsynaptic currents were also increased upon treatment with gaboxadol. However, higher magnitude of change was observed in spontaneous inhibitory postsynaptic currents compared to miniature inhibitory postsynaptic currents on gaboxadol treatment, suggesting action potential-dependent α4-containing GABAA receptor activity may influence epileptogenicity in FCD.
Collapse
Affiliation(s)
- Yogesh Aggarwal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Meher Chand Sharma
- Department of Neuropathology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Cong L, Zhang T, Zhang T, Liu Y, Li Y, Pang X, Zhao L, Wu T, Ding S, Liu Y, Wu H, Shen H, Li Y. Gene Deficiency of δ Subunit-Containing GABA A Receptor in mPFC Lead Learning and Memory Impairment in Mice. Neurochem Res 2025; 50:71. [PMID: 39751665 DOI: 10.1007/s11064-024-04320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAAR in freely moving mice. Our results indicate that the loss of δ-GABAAR expression leads to learning and memory impairment. Specifically, activation of δ-GABAAR impaired learning and memory in WT mice but enhanced learning and memory in δ+/- knockout mice. Furthermore, δ-GABAAR activation increased calcium activity in the mPFC pyramidal neurons, an effect not observed in δ-Cas9-sgRNA virus-infected mice. Collectively, these findings suggest that δ-GABAAR deficiency impairs learning and memory by modulating the excitability of pyramidal neurons in the mPFC. These results delineate the functional contribution of δ-GABAAR to learning and memory, suggesting their role extends beyond the mere maintenance of information.
Collapse
Affiliation(s)
- Lin Cong
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianshu Zhang
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Institute of Brain Science and Brain-inspired Research, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Teng Zhang
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yifan Liu
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yunxiao Li
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaogang Pang
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lianbin Zhao
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tongrui Wu
- Department of Cellular Biology, School of Basic Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Shengkai Ding
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanling Liu
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hao Wu
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Hui Shen
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cellular Biology, School of Basic Medicine, Tianjin Medical University, Tianjin, 300070, China.
| | - Yuanyuan Li
- Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Park J, Sipe GO, Tang X, Ojha P, Fernandes G, Leow YN, Zhang C, Osako Y, Natesan A, Drummond GT, Jaenisch R, Sur M. Astrocytic modulation of population encoding in mouse visual cortex via GABA transporter 3 revealed by multiplexed CRISPR/Cas9 gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622321. [PMID: 39605420 PMCID: PMC11601534 DOI: 10.1101/2024.11.06.622321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Astrocytes, which are increasingly recognized as pivotal constituents of brain circuits governing a wide range of functions, express GABA transporter 3 (Gat3), an astrocyte-specific GABA transporter responsible for maintenance of extra-synaptic GABA levels. Here, we examined the functional role of Gat3 in astrocyte-mediated modulation of neuronal activity and information encoding. First, we developed a multiplexed CRISPR construct applicable for effective genetic ablation of Gat3 in the visual cortex of adult mice. Using in vivo two-photon calcium imaging of visual cortex neurons in Gat3 knockout mice, we observed changes in spontaneous and visually driven single neuronal response properties such as response magnitudes and trial-to-trial variability. Gat3 knockout exerted a pronounced influence on population-level neuronal activity, altering the response dynamics of neuronal populations and impairing their ability to accurately represent stimulus information. These findings demonstrate that Gat3 in astrocytes profoundly shapes the sensory information encoding capacity of neurons and networks within the visual cortex.
Collapse
Affiliation(s)
- Jiho Park
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- These authors contributed equally
| | - Grayson O. Sipe
- Department of Biology, Eberly College of Science and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- These authors contributed equally
| | - Xin Tang
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Prachi Ojha
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giselle Fernandes
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yi Ning Leow
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Caroline Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Yuma Osako
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundhati Natesan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gabrielle T. Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Dunham TL, Wilkerson JR, Johnson RC, Huganir RL, Volk LJ. WWC2 modulates GABA A-receptor-mediated synaptic transmission, revealing class-specific mechanisms of synapse regulation by WWC family proteins. Cell Rep 2024; 43:114841. [PMID: 39388350 PMCID: PMC11913214 DOI: 10.1016/j.celrep.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/22/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
The WW and C2 domain-containing protein (WWC2) is implicated in several neurological disorders. Here, we demonstrate that WWC2 interacts with inhibitory, but not excitatory, postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses γ-aminobutyric acid type-A receptor (GABAAR) incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABAAR recycling to the membrane. Inhibitory synaptic transmission is increased in CA1 pyramidal cells lacking WWC2. Furthermore, unlike the WWC2 homolog KIBRA (kidney/brain protein; WWC1), a key regulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking at excitatory synapses, the deletion of WWC2 does not affect synaptic AMPAR expression. In contrast, loss of KIBRA does not affect GABAAR membrane expression. These data reveal synapse class-selective functions for WWC proteins as regulators of ionotropic neurotransmitter receptors and provide insight into mechanisms regulating GABAAR membrane expression.
Collapse
Affiliation(s)
- Thomas L Dunham
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia R Wilkerson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lenora J Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
9
|
Bačová Z, Jurkovičová-Tarabová B, Havránek T, Mihalj D, Borbélyová V, Pirnik Z, Mravec B, Ostatníková D, Bakoš J. Shank3 deficiency alters midbrain GABAergic neuron morphology, GABAergic markers and synaptic activity in primary striatal neurons. Mol Brain 2024; 17:71. [PMID: 39334399 PMCID: PMC11430545 DOI: 10.1186/s13041-024-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Abnormalities in gamma-aminobutyric acid (GABA)ergic neurotransmission play a role in the pathogenesis of autism, although the mechanisms responsible for alterations in specific brain regions remain unclear. Deficits in social motivation and interactions are core symptoms of autism, likely due to defects in dopaminergic neural pathways. Therefore, investigating the morphology and functional roles of GABAergic neurons within dopaminergic projection areas could elucidate the underlying etiology of autism. The aim of this study was to (1) compare the morphology and arborization of glutamate decarboxylase (GAD)-positive neurons from the midbrain tegmentum; (2) evaluate synaptic activity in primary neurons from the striatum; and (3) assess GABAergic postsynaptic puncta in the ventral striatum of wild-type (WT) and Shank3-deficient mice. We found a significant decrease in the number of short neurites in GAD positive primary neurons from the midbrain tegmentum in Shank3-deficient mice. The application of a specific blocker of GABAA receptors (GABAAR) revealed significantly increased frequency of spontaneous postsynaptic currents (sPSCs) in Shank3-deficient striatal neurons compared to their WT counterparts. The mean absolute amplitude of the events was significantly higher in striatal neurons from Shank3-deficient compared to WT mice. We also observed a significant reduction in gephyrin/GABAAR γ2 colocalization in the striatum of adult male Shank3-deficient mice. The gene expression of collybistin was significantly lower in the nucleus accumbens while gephyrin and GABAAR γ2 were lower in the ventral tegmental area (VTA) in male Shank3-deficient compared to WT mice. In conclusion, Shank3 deficiency leads to alterations in GABAergic neurons and impaired GABAergic function in dopaminergic brain areas. These changes may underlie autistic symptoms, and potential interventions modulating GABAergic activity in dopaminergic pathways may represent new treatment modality.
Collapse
Affiliation(s)
- Zuzana Bačová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Bohumila Jurkovičová-Tarabová
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biology, Faculty of Education, Trnava University, Trnava, Slovakia
| | - Tomáš Havránek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zdenko Pirnik
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia
| | - Ján Bakoš
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia.
| |
Collapse
|
10
|
Qiao J, Tao S, Sun Y, Shi J, Chen Y, Tian S, Yao Z, Lu Q. The Effects of Variation in the GABA A Receptor Gene on Anxious Depression are Mediated by the Functional Connectivity Between the Amygdala and Middle Frontal Gyrus. Neuropsychiatr Dis Treat 2024; 20:1781-1796. [PMID: 39346029 PMCID: PMC11438461 DOI: 10.2147/ndt.s468290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background γ-aminobutyric acid (GABA) and its main receptor, the GABAA receptor, are implicated in major depressive disorder (MDD). Anxious depression (AD) is deemed to be a primary subtype of MDD. The amygdala and the dorsolateral prefrontal cortex (DLPFC) are key brain regions involved in emotional regulation. These regions contain the most GABAA receptors. Although the GABAergic deficit hypothesis of MDD is generally accepted, few studies have demonstrated how GABAA receptor gene polymorphisms affect the functions of specific brain regions, in particular, the amygdala and the DLPFC. Methods The sample comprised 83 patients with AD, 70 patients with non-anxious depression (NAD), and 62 healthy controls (HC). All participants underwent genotyping for polymorphisms of GABAA receptor subunit genes, followed by a resting-state fMRI scan. The HAMD-17 was used to evaluate the severity of MDD. ANOVA was performed to obtain the difference in the imaging data, GABAA receptor multi-locus genetic profile scores (MGPS), and HAMD-17 scores among three groups, then the significant differences between AD and NAD groups were identified. Mediating effect analysis was used to explore the role of functional connectivity (FC) between the amygdala and DLPFC in the association between the GABAA receptor gene MGPS and AD clinical features. Results Compared with the NAD group, the AD group had a higher GABAA receptor MGPS. AD patients exhibited a negative correlation between the MGPS and FC of the right centromedial (CM) subregion, and the right middle frontal gyrus (MFG). A negative correlation was also observed between the MGPS and anxiety/somatic symptoms. More importantly, the right CM and right MFG connectivity mediated the association between the GABAA receptor MGPS and anxiety/somatic symptoms in patients with AD. Conclusion The decreased FC between the right MFG and right CM subregion mediates the association between GABAA receptor MGPS and AD.
Collapse
Affiliation(s)
- Juan Qiao
- Department of Psychology, Xuzhou East Hospital Affiliated to Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shiwan Tao
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yurong Sun
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| | - Jiabo Shi
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Yu Chen
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Shui Tian
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| | - Zhijian Yao
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Falcão M, Monteiro P, Jacinto L. Tactile sensory processing deficits in genetic mouse models of autism spectrum disorder. J Neurochem 2024; 168:2105-2123. [PMID: 38837765 DOI: 10.1111/jnc.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although altered responses to tactile stimuli are observed in over 60% of individuals with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD has a strong genetic component and genetic mouse models can provide valuable insights into the mechanisms underlying tactile abnormalities in ASD. This review critically addresses recent findings regarding tactile processing deficits found in mouse models of ASD, with a focus on behavioral, anatomical, and functional alterations. Particular attention was given to cellular and circuit-level functional alterations, both in the peripheral and central nervous systems, with the objective of highlighting possible convergence mechanisms across models. By elucidating the impact of mutations in ASD candidate genes on somatosensory circuits and correlating them with behavioral phenotypes, this review significantly advances our understanding of tactile deficits in ASD. Such insights not only broaden our comprehension but also pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Margarida Falcão
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Luis Jacinto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
12
|
Wang J, O'Reilly M, Cooper IA, Chehrehasa F, Moody H, Beecher K. Mapping GABAergic projections that mediate feeding. Neurosci Biobehav Rev 2024; 163:105743. [PMID: 38821151 DOI: 10.1016/j.neubiorev.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neuroscience offers important insights into the pathogenesis and treatment of obesity by investigating neural circuits underpinning appetite and feeding. Gamma-aminobutyric acid (GABA), one of the most abundant neurotransmitters in the brain, and its associated receptors represent an array of pharmacologically targetable mediators of appetite signalling. Targeting the GABAergic system is therefore an increasingly investigated approach to obesity treatment. However, the many GABAergic projections that control feeding have yet to be collectively analysed. This review provides a comprehensive analysis of the relationship between GABAergic signalling and appetite by examining both foundational studies and the results of newly emerging chemogenetic/optogenetic experiments. A current snapshot of these efforts to map GABAergic projections influencing appetite is provided, and potential avenues for further investigation are provided.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Max O'Reilly
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | | | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| |
Collapse
|
13
|
Muheyati A, Jiang S, Wang N, Yu G, Su R. Extrasynaptic GABA A receptors in central medial thalamus mediate anesthesia in rats. Eur J Pharmacol 2024; 972:176561. [PMID: 38580182 DOI: 10.1016/j.ejphar.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.
Collapse
Affiliation(s)
- Alai Muheyati
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shanshan Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
14
|
Dunham TL, Wilkerson JR, Johnson RC, Huganir RL, Volk LJ. Modulation of GABA A receptor trafficking by WWC2 reveals class-specific mechanisms of synapse regulation by WWC family proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584487. [PMID: 38559047 PMCID: PMC10979870 DOI: 10.1101/2024.03.11.584487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
WWC2 (WW and C2 domain-containing protein) is implicated in several neurological disorders, however its function in the brain has yet to be determined. Here, we demonstrate that WWC2 interacts with inhibitory but not excitatory postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses GABA A R incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABA A R recycling to the membrane. Inhibitory synaptic transmission is dysregulated in CA1 pyramidal cells lacking WWC2. Furthermore, unlike the WWC2 homolog KIBRA (WWC1), a key regulator of AMPA receptor trafficking at excitatory synapses, deletion of WWC2 does not affect synaptic AMPAR expression. In contrast, loss of KIBRA does not affect GABA A R membrane expression. These data reveal unique, synapse class-selective functions for WWC proteins as regulators of ionotropic neurotransmitter receptors and provide insight into mechanisms regulating GABA A R membrane expression.
Collapse
|
15
|
Takasu K, Yawata Y, Tashima R, Aritomi H, Shimada S, Onodera T, Taishi T, Ogawa K. Distinct mechanisms of allopregnanolone and diazepam underlie neuronal oscillations and differential antidepressant effect. Front Cell Neurosci 2024; 17:1274459. [PMID: 38259500 PMCID: PMC10800935 DOI: 10.3389/fncel.2023.1274459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024] Open
Abstract
The rapid relief of depressive symptoms is a major medical requirement for effective treatments for major depressive disorder (MDD). A decrease in neuroactive steroids contributes to the pathophysiological mechanisms associated with the neurological symptoms of MDD. Zuranolone (SAGE-217), a neuroactive steroid that acts as a positive allosteric modulator of synaptic and extrasynaptic δ-subunit-containing GABAA receptors, has shown rapid-onset, clinically effective antidepressant action in patients with MDD or postpartum depression (PPD). Benzodiazepines, on the other hand, act as positive allosteric modulators of synaptic GABAA receptors but are not approved for the treatment of patients with MDD. It remains unclear how differences in molecular mechanisms contribute to the alleviation of depressive symptoms and the regulation of associated neuronal activity. Focusing on the antidepressant-like effects and neuronal activity of the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), we conducted a head-to-head comparison study of the neuroactive steroid allopregnanolone and the benzodiazepine diazepam using a mouse social defeat stress (SDS) model. Allopregnanolone but not diazepam exhibited antidepressant-like effects in a social interaction test in SDS mice. This antidepressant-like effect of allopregnanolone was abolished in extrasynaptic GABAA receptor δ-subunit knockout mice (δko mice) subjected to the same SDS protocol. Regarding the neurophysiological mechanism associated with these antidepressant-like effects, allopregnanolone but not diazepam increased theta oscillation in the BLA of SDS mice. This increase did not occur in δko mice. Consistent with this, allopregnanolone potentiated tonic inhibition in BLA interneurons via δ-subunit-containing extrasynaptic GABAA receptors. Theta oscillation in the mPFC of SDS mice was also increased by allopregnanolone but not by diazepam. Finally, allopregnanolone but not diazepam increased frontal theta activity in electroencephalography recordings in naïve and SDS mice. Neuronal network alterations associated with MDD showed decreased frontal theta and beta activity in depressed SDS mice. These results demonstrated that, unlike benzodiazepines, neuroactive steroids increased theta oscillation in the BLA and mPFC through the activation of δ-subunit-containing GABAA receptors, and this change was associated with antidepressant-like effects in the SDS model. Our findings support the notion that the distinctive mechanism of neuroactive steroids may contribute to the rapid antidepressant effects in MDD.
Collapse
Affiliation(s)
- Keiko Takasu
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Yosuke Yawata
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryoichi Tashima
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | - Tsukasa Onodera
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Teruhiko Taishi
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
16
|
Feng YF, Zhou YY, Duan KM. The Role of Extrasynaptic GABA Receptors in Postpartum Depression. Mol Neurobiol 2024; 61:385-396. [PMID: 37612480 DOI: 10.1007/s12035-023-03574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Postpartum depression is a serious disease with a high incidence and severe impact on pregnant women and infants, but its mechanism remains unclear. Recent studies have shown that GABA receptors, especially extrasynaptic receptors, are closely associated with postpartum depression. There are many different structures of GABA receptors, so different types of receptors have different functions, even though they transmit information primarily through GABA. In this review, we focus on the function of GABA receptors, especially extrasynaptic GABA receptors, and their association with postpartum depression. We have shown that the extrasynaptic GABA receptor has a significant impact on the activity and function of neurons through tonic inhibition. The extrasynaptic receptor and its ligands undergo drastic changes during pregnancy and childbirth. Abnormal changes or the body's inability to adjust and recover may be an important cause of postpartum depression. Finally, by reviewing the mechanisms of several novel antidepressants, we suggest that extrasynaptic receptors may be potential targets for the treatment of postpartum depression.
Collapse
Affiliation(s)
- Yun Fei Feng
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yin Yong Zhou
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Ming Duan
- Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
17
|
Cha DS, Kleine N, Teopiz KM, Di Vincenzo JD, Ho R, Galibert SL, Samra A, Zilm SPM, Cha RH, d'Andrea G, Gill H, Ceban F, Meshkat S, Wong S, Le GH, Kwan ATH, Rosenblat JD, Rhee TG, Mansur RB, McIntyre RS. The efficacy of zuranolone in postpartum depression and major depressive disorder: a review & number needed to treat (NNT) analysis. Expert Opin Pharmacother 2024; 25:5-14. [PMID: 38164653 DOI: 10.1080/14656566.2023.2298340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Major depressive disorder (MDD) is a common and debilitating mental illness. Postpartum depression (PPD) impacts women globally and is one of the most common complications of childbirth that is underdiagnosed and undertreated, adversely impacting the mental health of women, children, and partners.Available antidepressant medications require weeks to months before showing effect. In this setting, zuranolone, an oral neuroactive steroid and a positive allosteric modulator of GABAA receptors, is an attractive alternative as a rapid-acting antidepressant treatment. AREAS COVERED This article reviews zuranolone (SAGE217), focusing on available clinical studies in individuals with PPD and MDD. This paper adds to the extant literature by presenting the efficacy data as Number Needed to Treat (NNT) to facilitate indirect comparisons with other antidepressants. EXPERT OPINION Zuranolone is a novel rapid-acting (i.e. two week course) oral antidepressant for the treatment of adults with PPD with ongoing clinical trials evaluating its efficacy in adults with MDD. Zuranolone is well tolerated with no significant safety concerns in any clinical trials completed to date. Zuranolone will be scheduled by the Drug Enforcement Agency (DEA).
Collapse
Affiliation(s)
- Danielle S Cha
- Royal Brisbane & Women's Hospital, Mental Health Services, Brisbane, Queensland, Australia
- School of Clinical Medicine - Royal Brisbane Clinical Unit, University of Queensland, Brisbane, Queensland, Australia
- Brain and Cognition Foundation, Toronto, ON, Canada
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Royal Brisbane & Women's Hospital, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Nicholas Kleine
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Joshua D Di Vincenzo
- Brain and Cognition Foundation, Toronto, ON, Canada
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Roger Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Stephanie L Galibert
- Department of Obstetrics and Gynaecology, Logan Hospital, Logan, Queensland, Australia
| | - Amrita Samra
- Royal Brisbane & Women's Hospital, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Samuel P M Zilm
- Royal Brisbane & Women's Hospital, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Rebekah H Cha
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Giacomo d'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio", Chieti, Italy
| | - Hartej Gill
- Brain and Cognition Foundation, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Felicia Ceban
- Brain and Cognition Foundation, Toronto, ON, Canada
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Sabrina Wong
- Brain and Cognition Foundation, Toronto, ON, Canada
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Gia Han Le
- Brain and Cognition Foundation, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Angela T H Kwan
- Brain and Cognition Foundation, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joshua D Rosenblat
- Brain and Cognition Foundation, Toronto, ON, Canada
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Rodrigo B Mansur
- Brain and Cognition Foundation, Toronto, ON, Canada
- Mood Disorders Psychopharmacology Department, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Department of Psychiatry and Pharmacology, University of Toronto, Toronto, Canada
- Brain and Cognition Discovery Foundation (BCDF), Toronto, ON, Canada
- Board Chair, Depression and Bipolar Support Alliance (DBSA) Board of Directors, Chicago, IL, USA
- Guangzhou Medical University, Guangzhou, GD, China
- College of Medicine, Korea University, Seoul, Republic of Korea
- College of Medicine, University of the Philippines, Manila, Philippines
- State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Neurosciences, University of California School of Medicine, Riverside, CA, USA
| |
Collapse
|
18
|
Li Z, Wu Q, Peng P, Wu M, Liu S, Liu T. Efficacy and safety of zuranolone for the treatment of depression: A systematic review and meta-analysis. Psychiatry Res 2024; 331:115640. [PMID: 38029628 DOI: 10.1016/j.psychres.2023.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Major depressive disorder (MDD) and postpartum depression (PPD) are common and burdensome conditions. This study aims to evaluate the efficacy and safety of zuranolone, a neuroactive steroid γ-aminobutyric acid type A receptors-positive allosteric modulator, in treating MDD and PPD. A comprehensive literature search was conducted until September 2023, identifying seven randomized controlled trials (RCTs). The results demonstrated that zuranolone significantly decreased Hamilton Rating Scale for Depression (HAM-D) scores in patients with PPD or MDD at day 15 (concluding the 14-day course) and day 42-45 (4 weeks after treatment cessation) compared with the placebo, albeit exhibiting a diminishing trend. Moreover, a higher percentage of patients with PPD or MDD achieved HAM-D response and remission with zuranolone treatment compared with placebo at day 15. However, zuranolone did not significantly increase the proportion of MDD patients achieving HAM-D remission at 42/43 days. Adverse events (AEs) such as somnolence, dizziness, and sedation were linked to zuranolone, with a higher but not statistically significant rate of discontinuation due to AEs in the zuranolone group. Overall, our findings support the rapid antidepressant effects of zuranolone in MDD and PPD, along with a relatively favorable safety and tolerability. Large-scale longitudinal RCTs are needed to evaluate the long-term efficacy of zuranolone.
Collapse
Affiliation(s)
- Zejun Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Qiuxia Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Pu Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Min Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Shouhuan Liu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan 650032, China.
| | - Tieqiao Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
19
|
Maguire JL, Mennerick S. Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology 2024; 49:73-82. [PMID: 37369775 PMCID: PMC10700537 DOI: 10.1038/s41386-023-01626-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Like other classes of treatments described in this issue's section, neuroactive steroids have been studied for decades but have risen as a new class of rapid-acting, durable antidepressants with a distinct mechanism of action from previous antidepressant treatments and from other compounds covered in this issue. Neuroactive steroids are natural derivatives of progesterone but are proving effective as exogenous treatments. The best understood mechanism is that of positive allosteric modulation of GABAA receptors, where subunit selectivity may promote their profile of action. Mechanistically, there is some reason to think that neuroactive steroids may separate themselves from liabilities of other GABA modulators, although research is ongoing. It is also possible that intracellular targets, including inflammatory pathways, may be relevant to beneficial actions. Strengths and opportunities for further development include exploiting non-GABAergic targets, structural analogs, enzymatic production of natural steroids, precursor loading, and novel formulations. The molecular mechanisms of behavioral effects are not fully understood, but study of brain network states involved in emotional processing demonstrate a robust influence on affective states not evident with at least some other GABAergic drugs including benzodiazepines. Ongoing studies with neuroactive steroids will further elucidate the brain and behavioral effects of these compounds as well as likely underpinnings of disease.
Collapse
Affiliation(s)
- Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Steven Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Modzelewski S, Oracz A, Iłendo K, Sokół A, Waszkiewicz N. Biomarkers of Postpartum Depression: A Narrative Review. J Clin Med 2023; 12:6519. [PMID: 37892657 PMCID: PMC10607683 DOI: 10.3390/jcm12206519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Postpartum depression (PPD) is a disorder that impairs the formation of the relationship between mother and child, and reduces the quality of life for affected women to a functionally significant degree. Studying markers associated with PPD can help in early detection, prevention, or monitoring treatment. The purpose of this paper is to review biomarkers linked to PPD and to present selected theories on the pathogenesis of the disease based on data from biomarker studies. The complex etiology of the disorder reduces the specificity and sensitivity of markers, but they remain a valuable source of information to help clinicians. The biggest challenge of the future will be to translate high-tech methods for detecting markers associated with postpartum depression into more readily available and less costly ones. Population-based studies are needed to test the utility of potential PPD markers.
Collapse
|
21
|
Bogaj K, Kaplon R, Urban-Ciecko J. GABAAR-mediated tonic inhibition differentially modulates intrinsic excitability of VIP- and SST- expressing interneurons in layers 2/3 of the somatosensory cortex. Front Cell Neurosci 2023; 17:1270219. [PMID: 37900589 PMCID: PMC10602639 DOI: 10.3389/fncel.2023.1270219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Extrasynaptic GABAA receptors (GABAARs) mediating tonic inhibition are thought to play an important role in the regulation of neuronal excitability. However, little is known about a cell type-specific tonic inhibition in molecularly distinctive types of GABAergic interneurons in the mammalian neocortex. Here, we used whole-cell patch-clamp techniques in brain slices prepared from transgenic mice expressing red fluorescent protein (TdTomato) in vasoactive intestinal polypeptide- or somatostatin- positive interneurons (VIP-INs and SST-INs, respectively) to investigate tonic and phasic GABAAR-mediated inhibition as well as effects of GABAA inhibition on intrinsic excitability of these interneurons in layers 2/3 (L2/3) of the somatosensory (barrel) cortex. We found that tonic inhibition was stronger in VIP-INs compared to SST-INs. Contrary to the literature data, tonic inhibition in SST-INs was comparable to pyramidal (Pyr) neurons. Next, tonic inhibition in both interneuron types was dependent on the activity of delta subunit-containing GABAARs. Finally, the GABAAR activity decreased intrinsic excitability of VIP-INs but not SST-INs. Altogether, our data indicate that GABAAR-mediated inhibition modulates neocortical interneurons in a type-specific manner. In contrast to L2/3 VIP-INs, intrinsic excitability of L2/3 SST-INs is immune to the GABAAR-mediated inhibition.
Collapse
Affiliation(s)
| | | | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
22
|
Mortensen M, Xu Y, Shehata MA, Krall J, Ernst M, Frølund B, Smart TG. Pregnenolone sulfate analogues differentially modulate GABA A receptor closed/desensitised states. Br J Pharmacol 2023; 180:2482-2499. [PMID: 37194503 PMCID: PMC10952582 DOI: 10.1111/bph.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND AND PURPOSE GABAA receptors are regulated by numerous classes of allosteric modulators. However, regulation of receptor macroscopic desensitisation remains largely unexplored and may offer new therapeutic opportunities. Here, we report the emerging potential for modulating desensitisation with analogues of the endogenous inhibitory neurosteroid, pregnenolone sulfate. EXPERIMENTAL APPROACH New pregnenolone sulfate analogues were synthesised incorporating various heterocyclic substitutions located at the C-21 position on ring D. The pharmacological profiles of these compounds were assessed using electrophysiology and recombinant GABAA receptors together with mutagenesis, molecular dynamics simulations, structural modelling and kinetic simulations. KEY RESULTS All seven analogues retained a negative allosteric modulatory capability whilst exhibiting diverse potencies. Interestingly, we observed differential effects on GABA current decay by compounds incorporating either a six- (compound 5) or five-membered heterocyclic ring (compound 6) on C-21, which was independent of their potencies as inhibitors. We propose that differences in molecular charges, and the targeted binding of analogues to specific states of the GABAA receptor, are the most likely cause of the distinctive functional profiles. CONCLUSIONS AND IMPLICATIONS Our findings reveal that heterocyclic addition to inhibitory neurosteroids not only affected their potency and macroscopic efficacy but also affected innate receptor mechanisms that underlie desensitisation. Acute modulation of macroscopic desensitisation will determine the degree and duration of GABA inhibition, which are vital for the integration of neural circuit activity. Discovery of this form of modulation could present an opportunity for next-generation GABAA receptor drug design and development.
Collapse
Affiliation(s)
- Martin Mortensen
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Yue Xu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mohamed A. Shehata
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Xellia Pharmaceuticals ApSCopenhagenDenmark
| | - Margot Ernst
- Department of Pathology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Trevor G. Smart
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
23
|
Clayton AH, Lasser R, Parikh SV, Iosifescu DV, Jung J, Kotecha M, Forrestal F, Jonas J, Kanes SJ, Doherty J. Zuranolone for the Treatment of Adults With Major Depressive Disorder: A Randomized, Placebo-Controlled Phase 3 Trial. Am J Psychiatry 2023; 180:676-684. [PMID: 37132201 DOI: 10.1176/appi.ajp.20220459] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVE This study assessed the efficacy and safety of a 14-day treatment course of once-daily zuranolone 50 mg, an investigational oral positive allosteric modulator of the γ-aminobutyric acid type A (GABAA) receptor, for the treatment of major depressive disorder. METHODS Patients 18-64 years of age with severe major depressive disorder were enrolled in this randomized, double-blind, placebo-controlled trial. Patients self-administered zuranolone 50 mg or placebo once daily for 14 days. The primary endpoint was change from baseline in total score on the 17-item Hamilton Depression Rating Scale (HAM-D) at day 15. Safety and tolerability were assessed by incidence of adverse events. RESULTS Of 543 randomized patients, 534 (266 in the zuranolone group, 268 in the placebo group) constituted the full analysis set. Compared with patients in the placebo group, patients in the zuranolone group demonstrated a statistically significant improvement in depressive symptoms at day 15 (least squares mean change from baseline HAM-D score, -14.1 vs. -12.3). Numerically greater improvements in depressive symptoms for zuranolone versus placebo were observed by day 3 (least squares mean change from baseline HAM-D score, -9.8 vs. -6.8), which were sustained at all visits throughout the treatment and follow-up periods of the study (through day 42, with the difference remaining nominally significant through day 12). Two patients in each group experienced a serious adverse event; nine patients in the zuranolone group and four in the placebo group discontinued treatment due to adverse events. CONCLUSIONS Zuranolone at 50 mg/day elicited a significantly greater improvement in depressive symptoms at day 15, with a rapid time to effect (day 3). Zuranolone was generally well tolerated, with no new safety findings compared with previously studied lower dosages. These findings support the potential of zuranolone in treating adults with major depressive disorder.
Collapse
Affiliation(s)
- Anita H Clayton
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - Robert Lasser
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - Sagar V Parikh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - Dan V Iosifescu
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - JungAh Jung
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - Mona Kotecha
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - Fiona Forrestal
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - Jeffrey Jonas
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - Stephen J Kanes
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| | - James Doherty
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville (Clayton); Sage Therapeutics, Cambridge, Mass. (Lasser, Jung, Jonas, Kanes, Doherty); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh); Nathan Kline Institute for Psychiatric Research and Department of Psychiatry, New York University School of Medicine, New York (Iosifescu); Biogen, Cambridge, Mass. (Kotecha, Forrestal)
| |
Collapse
|
24
|
Huang TH, Lin YS, Hsiao CW, Wang LY, Ajibola MI, Abdulmajeed WI, Lin YL, Li YJ, Chen CY, Lien CC, Chiu CD, Cheng IHJ. Differential expression of GABA A receptor subunits δ and α6 mediates tonic inhibition in parvalbumin and somatostatin interneurons in the mouse hippocampus. Front Cell Neurosci 2023; 17:1146278. [PMID: 37545878 PMCID: PMC10397515 DOI: 10.3389/fncel.2023.1146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation. However, the molecular mechanisms underlying the specialized properties of PV and SST interneurons remain unclear. This study aimed to compare the transcriptomic differences between these two classes of interneurons in the hippocampus using the ribosome tagging approach. The results revealed distinct expressions of genes such as voltage-gated ion channels and GABAA receptor subunits between PV and SST interneurons. Gabrd and Gabra6 were identified as contributors to the contrasting tonic GABAergic inhibition observed in PV and SST interneurons. Moreover, some of the differentially expressed genes were associated with schizophrenia and epilepsy. In conclusion, our results provide molecular insights into the distinct roles of PV and SST interneurons in health and disease.
Collapse
Affiliation(s)
- Tzu-Hsuan Huang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Sian Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, United States
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Liang-Yun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Musa Iyiola Ajibola
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wahab Imam Abdulmajeed
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Yu-Ling Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Di Chiu
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
25
|
Rudzinskas SA, Mazzu MA, Schiller CE, Meltzer-Brody S, Rubinow DR, Schmidt PJ, Goldman D. Divergent Transcriptomic Effects of Allopregnanolone in Postpartum Depression. Genes (Basel) 2023; 14:1234. [PMID: 37372414 PMCID: PMC10298697 DOI: 10.3390/genes14061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Brexanolone, a formulation of the neurosteroid allopregnanolone (ALLO), is approved for treating postpartum depression (PPD) and is being investigated for therapeutic efficacy across numerous neuropsychiatric disorders. Given ALLO's beneficial effects on mood in women with PPD compared to healthy control women, we sought to characterize and compare the cellular response to ALLO in women with (n = 9) or without (n = 10, i.e., Controls) past PPD, utilizing our previously established patient-derived lymphoblastoid cell lines (LCLs). To mimic in vivo PPD ALLO-treatment, LCLs were exposed to ALLO or DMSO vehicle for 60 h and RNA-sequenced to detect differentially expressed genes (DEGs, pnominal < 0.05). Between ALLO-treated Control and PPD LCLs, 269 DEGs were identified, including Glutamate Decarboxylase 1 (GAD1), which was decreased 2-fold in PPD. Network analysis of PPD:ALLO DEGs revealed enriched terms related to synaptic activity and cholesterol biosynthesis. Within-diagnosis analyses (i.e., DMSO vs. ALLO) detected 265 ALLO-induced DEGs in Control LCLs compared to only 98 within PPD LCLs, with just 11 DEGs overlapping. Likewise, the gene ontologies underlying ALLO-induced DEGs in PPD and Control LCLs were divergent. These data suggest that ALLO may activate unique and opposing molecular pathways in women with PPD, which may be tied to its antidepressant mechanism.
Collapse
Affiliation(s)
- Sarah A. Rudzinskas
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | - Maria A. Mazzu
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | | | | | - David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| |
Collapse
|
26
|
Yang J, Chen J, Liu Y, Chen KH, Baraban JM, Qiu Z. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron 2023; 111:1104-1117.e6. [PMID: 36681074 PMCID: PMC10079641 DOI: 10.1016/j.neuron.2022.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/30/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023]
Abstract
Addictive drugs increase ventral tegmental area (VTA) dopamine (DA) neuron activity through distinct cellular mechanisms, one of which involves disinhibition of DA neurons by inhibiting local GABA neurons. How drugs regulate VTA GABA neuron activity and drive addictive behaviors remains poorly understood. Here, we show that astrocytes control VTA GABA neuron activity in cocaine reward via tonic inhibition in mice. Repeated cocaine exposure potentiates astrocytic tonic GABA release through volume-regulated anion channels (VRACs) and augments tonic inhibition of VTA GABA neurons, thus downregulating their activities and disinhibiting nucleus accumbens (NAc) projecting DA neurons. Attenuation of tonic inhibition by either deleting Swell1 (Lrrc8a), the obligatory subunit of VRACs, in VTA astrocytes or disrupting δ subunit of GABAA receptors in VTA GABA neurons reduces cocaine-evoked changes in neuron activity, locomotion, and reward behaviors in mice. Together, our findings reveal the critical role of astrocytes in regulating the VTA local circuit and cocaine reward.
Collapse
Affiliation(s)
- Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jianan Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongqing Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Sun C, Zhu H, Clark S, Gouaux E. Regulated assembly and neurosteroid modulation constrain GABA A receptor pharmacology in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528867. [PMID: 36824901 PMCID: PMC9949137 DOI: 10.1101/2023.02.16.528867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Type A GABA receptors (GABA A Rs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anesthetics, sedatives, hypnotics, and antidepressants. However, our understanding of GABA A R pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from a total 19 different subunits and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABA A R assemblies containing the widely expressed α 1 subunit, and elucidate their structures in complex with drugs used to treat insomnia (zolpidem and flurazepam) and postpartum depression (the neurosteroid allopregnanolone). Using cryo-EM analysis and single-molecule photobleaching experiments, we uncover only three structural populations in the brain: the canonical α 1 β2γ 2 receptor containing two α 1 subunits and two unanticipated assemblies containing one α 1 and either an α 2 , α 3 or α 5 subunit. Both of the noncanonical assemblies feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, allopregnanolone is bound at the transmembrane α/β subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABA A Rs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify both the pore diameter and binding environments for GABA and insomnia medications. Together, our data reveal that GABA A R assembly is a strictly regulated process that yields a small number of structurally distinct complexes, defining a structural landscape from which subtype-specific drugs can be developed.
Collapse
|
28
|
Warlick H, Leon L, Patel R, Filoramo S, Knipe R, Joubran E, Levy A, Nguyen H, Rey J. Application of gabapentinoids and novel compounds for the treatment of benzodiazepine dependence: the glutamatergic model. Mol Biol Rep 2023; 50:1765-1784. [PMID: 36456769 DOI: 10.1007/s11033-022-08110-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Current approaches for managing benzodiazepine (BZD) withdrawal symptoms are daunting for clinicians and patients, warranting novel treatment and management strategies. This review discusses the pharmacodynamic properties of BZDs, gabapentinoids (GBPs), endozepines, and novel GABAergic compounds associated with potential clinical benefits for BZD-dependent patients. The objective of this study was to review the complex neuromolecular changes occurring within the GABAergic and glutamatergic systems during the BZD tolerance and withdrawal periods while also examining the mechanism by which GBPs and alternative pharmacological therapies may attenuate withdrawal symptoms. METHODS AND RESULTS An elaborative literature review was conducted using multiple platforms, including the National Center for Biotechnology (NCBI), AccessMedicine, ScienceDirect, pharmacology textbooks, clinical trial data, case reports, and PubChem. Our literature analysis revealed that many distinctive neuroadaptive mechanisms are involved in the GABAergic and glutamatergic systems during BZD tolerance and withdrawal. Based on this data, we hypothesize that GBPs may attenuate the overactive glutamatergic system during the withdrawal phase by an indirect presynaptic glutamatergic mechanism dependent on the α2δ1 subunit expression. CONCLUSIONS GBPs may benefit individuals undergoing BZD withdrawal, given that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor current significantly increases during abrupt BZD withdrawal in animal studies. This may be a conceivable explanation for the effectiveness of GBPs in treating both alcohol withdrawal symptoms and BZD withdrawal symptoms in some recent studies. Finally, natural and synthetic GABAergic compounds with unique pharmacodynamic properties were found to exert potential clinical benefits as BZD substitutes in animal studies, though human studies are lacking.
Collapse
Affiliation(s)
- Halford Warlick
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA.
| | - Lexie Leon
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Rudresh Patel
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Stefanie Filoramo
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ryan Knipe
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ernesto Joubran
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Hoang Nguyen
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Rey
- College of Pharmacy, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
29
|
Histamine Release in the Prefrontal Cortex Excites Fast-Spiking Interneurons while GABA Released from the Same Axons Inhibits Pyramidal Cells. J Neurosci 2023; 43:187-198. [PMID: 36639899 PMCID: PMC9838703 DOI: 10.1523/jneurosci.0936-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
We studied how histamine and GABA release from axons originating from the hypothalamic tuberomammillary nucleus (TMN) and projecting to the prefrontal cortex (PFC) influence circuit processing. We optostimulated histamine/GABA from genetically defined TMN axons that express the histidine decarboxylase gene (TMNHDC axons). Whole-cell recordings from PFC neurons in layer 2/3 of prelimbic, anterior cingulate, and infralimbic regions were used to monitor excitability before and after optostimulated histamine/GABA release in male and female mice. We found that histamine-GABA release influences the PFC through actions on distinct neuronal types: the histamine stimulates fast-spiking interneurons; and the released GABA enhances tonic (extrasynaptic) inhibition on pyramidal cells (PyrNs). For fast-spiking nonaccommodating interneurons, histamine released from TMNHDC axons induced additive gain changes, which were blocked by histamine H1 and H2 receptor antagonists. The excitability of other fast-spiking interneurons in the PFC was not altered. In contrast, the GABA released from TMNHDC axons predominantly produced divisive gain changes in PyrNs, increasing their resting input conductance, and decreasing the slope of the input-output relationship. This inhibitory effect on PyrNs was not blocked by histamine receptor antagonists but was blocked by GABAA receptor antagonists. Across the adult life span (from 3 to 18 months of age), the GABA released from TMNHDC axons in the PFC inhibited PyrN excitability significantly more in older mice. For individuals who maintain cognitive performance into later life, the increases in TMNHDC GABA modulation of PyrNs during aging could enhance information processing and be an adaptive mechanism to buttress cognition.SIGNIFICANCE STATEMENT The hypothalamus controls arousal state by releasing chemical neurotransmitters throughout the brain to modulate neuronal excitability. Evidence is emerging that the release of multiple types of neurotransmitters may have opposing actions on neuronal populations in key cortical regions. This study demonstrates for the first time that the neurotransmitters histamine and GABA are released in the prefrontal cortex from axons originating from the tuberomammillary nucleus of the hypothalamus. This work demonstrates how hypothalamic modulation of neuronal excitability is maintained throughout adult life, highlighting an unexpected aspect of the aging process that may help maintain cognitive abilities.
Collapse
|
30
|
Wickham J, Ledri M, Andersson M, Kokaia M. Cell-specific switch for epileptiform activity: critical role of interneurons in the mouse subicular network. Cereb Cortex 2023; 33:6171-6183. [PMID: 36611229 PMCID: PMC10183737 DOI: 10.1093/cercor/bhac493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/09/2023] Open
Abstract
During epileptic seizures, neuronal network activity is hyper synchronized whereby GABAergic parvalbumin-interneurons may have a key role. Previous studies have mostly utilized 4-aminopyridine to induce epileptiform discharges in brain slices from healthy animals. However, it is not clear if the seizure-triggering ability of parvalbumin-interneurons also holds true without the use of external convulsive agents. Here, we investigate whether synchronized activation of parvalbumin-interneurons or principal cells can elicit epileptiform discharges in subiculum slices of epileptic mice. We found that selective synchronized activation of parvalbumin-interneurons or principal cells with optogenetics do not result in light-induced epileptiform discharges (LIEDs) neither in epileptic nor in normal brain slices. Adding 4-aminopyridine to slices, activation of parvalbumin-interneurons still failed to trigger LIEDs. In contrast, such activation of principal neurons readily generated LIEDs with features resembling afterdischarges. When GABAA receptor blocker was added to the perfusion medium, the LIEDs were abolished. These results demonstrate that in subiculum, selective synchronized activation of principal excitatory neurons can trigger epileptiform discharges by recruiting a large pool of downstream interneurons. This study also suggests region-specific role of principal neurons and interneurons in ictogenesis, opening towards differential targeting of specific brain areas for future treatment strategies tailored for individual patients with epilepsy.
Collapse
Affiliation(s)
- J Wickham
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Ledri
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Andersson
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| |
Collapse
|
31
|
Wang Z, Choi K. Pharmacological modulation of chloride channels as a therapeutic strategy for neurological disorders. Front Physiol 2023; 14:1122444. [PMID: 36935741 PMCID: PMC10017882 DOI: 10.3389/fphys.2023.1122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Chloride homeostasis is critical in the physiological functions of the central nervous system (CNS). Its concentration is precisely regulated by multiple ion-transporting proteins such as chloride channels and transporters that are widely distributed in the brain cells, including neurons and glia. Unlike ion transporters, chloride channels provide rapid responses to efficiently regulate ion flux. Some of chloride channels are also permeable to selected organic anions such as glutamate and γ-aminobutyric acid, suggesting neuroexcitatory and neuroinhibitory functions while gating. Dysregulated chloride channels are implicated in neurological disorders, e.g., ischemia and neuroinflammation. Modulation of chloride homeostasis through chloride channels has been suggested as a potential therapeutic approach for neurological disorders. The drug design for CNS diseases is challenging because it requires the therapeutics to traverse the blood-brain-barrier. Small molecules are a well-established modality with better cell permeability due to their lower molecular weight and flexibility for structure optimization compared to biologics. In this article, we describe the important roles of chloride homeostasis in each type of brain cells and introduce selected chloride channels identified in the CNS. We then discuss the contribution of their dysregulations towards the pathogenesis of neurological disorders, emphasizing the potential of targeting chloride channels as a therapeutic strategy for CNS disease treatment. Along with this literature survey, we summarize the small molecules that modulate chloride channels and propose the potential strategy of optimizing existing drugs to brain-penetrants to support future CNS drug discovery.
Collapse
|
32
|
Seabrook LT, Naef L, Baimel C, Judge AK, Kenney T, Ellis M, Tayyab T, Armstrong M, Qiao M, Floresco SB, Borgland SL. Disinhibition of the orbitofrontal cortex biases decision-making in obesity. Nat Neurosci 2023; 26:92-106. [PMID: 36522498 DOI: 10.1038/s41593-022-01210-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/21/2022] [Indexed: 12/23/2022]
Abstract
The lateral orbitofrontal cortex (lOFC) receives sensory information about food and integrates these signals with expected outcomes to guide future actions, and thus may play a key role in a distributed network of neural circuits that regulate feeding behavior. Here, we reveal a new role for the lOFC in the cognitive control of behavior in obesity. Food-seeking behavior is biased in obesity such that in male obese mice, behaviors are less flexible to changes in the perceived value of the outcome. Obesity is associated with reduced lOFC inhibitory drive and chemogenetic reduction in GABAergic neurotransmission in the lOFC induces obesity-like impairments in goal-directed behavior. Conversely, pharmacological or optogenetic restoration of inhibitory neurotransmission in the lOFC of obese mice reinstates flexible behavior. Our results indicate that obesity-induced disinhibition of the lOFC leads to a failure to update changes in the value of food with satiety, which in turn may influence how individuals make decisions in an obesogenic environment.
Collapse
Affiliation(s)
- Lauren T Seabrook
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Lindsay Naef
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Corey Baimel
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Allap K Judge
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Tyra Kenney
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Madelyn Ellis
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Temoor Tayyab
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Mataea Armstrong
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Min Qiao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Stan B Floresco
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
33
|
Delli Pizzi S, Franciotti R, Chiacchiaretta P, Ferretti A, Edden RA, Sestieri C, Russo M, Sensi SL, Onofrj M. Altered Medial Prefrontal Connectivity in Parkinson's Disease Patients with Somatic Symptoms. Mov Disord 2022; 37:2226-2235. [PMID: 36054283 DOI: 10.1002/mds.29187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The high co-occurrence of somatic symptom disorder (SSD) in Parkinson's disease (PD) patients suggests overlapping pathophysiology. However, little is known about the neural correlates of SSD and their possible interactions with PD. Existing studies have shown that SSD is associated with reduced task-evoked activity in the medial prefrontal cortex (mPFC), a central node of the default-mode network (DMN). SSD is also associated with abnormal γ-aminobutyric acid (GABA) content, a marker of local inhibitory tone and regional hypoactivity, in the same area when SSD co-occurs with PD. OBJECTIVES To disentangle the individual and shared effects of SSD and PD on mPFC neurotransmission and connectivity patterns and help disclose the neural mechanisms of comorbidity in the PD population. METHODS The study cohort included 18 PD patients with SSD (PD + SSD), 18 PD patients, 13 SSD patients who did not exhibit neurologic disorders, and 17 healthy subjects (HC). Proton magnetic resonance (MR) spectroscopy evaluated GABA levels within a volume of interest centered on the mPFC. Resting-state functional MR imaging investigated the region's functional connectivity patterns. RESULTS Compared to HC or PD groups, the mPFC of SSD subjects exhibited higher GABA levels and connectivity. Higher mPFC connectivity involved DMN regions in SSD patients without PD and regions of the executive and attentional networks (EAN) in patients with PD comorbidity. CONCLUSIONS Aberrant reconfigurations of connectivity patterns between the mPFC and the EAN are distinct features of the PD + SSD comorbidity. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti- Pescara, Chieti, Italy.,Service of Molecular Neurology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio of Chieti- Pescara, Chieti, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti- Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Advanced Computing Core, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio of Chieti - Pescara, Chieti, Italy.,Department of Advanced Technologies in Medicine & Dentistry, University G. d'Annunzio of Chieti - Pescara, Chieti, 66100, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti- Pescara, Chieti, Italy
| | - Richard A Edden
- Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti- Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti- Pescara, Chieti, Italy.,Service of Molecular Neurology, Center for Advanced Studies and Technology (CAST), University G. d'Annunzio of Chieti- Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
34
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Nwosu G, Reddy SB, Riordan HRM, Kang JQ. Variable Expression of GABAA Receptor Subunit Gamma 2 Mutation in a Nuclear Family Displaying Developmental and Encephalopathic Phenotype. Int J Mol Sci 2022; 23:9683. [PMID: 36077081 PMCID: PMC9456057 DOI: 10.3390/ijms23179683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 12/17/2022] Open
Abstract
Mutations in GABAA receptor subunit genes (GABRs) are a major etiology for developmental and epileptic encephalopathies (DEEs). This article reports a case of a genetic abnormality in GABRG2 and updates the pathophysiology and treatment development for mutations in DEEs based on recent advances. Mutations in GABRs, especially in GABRA1, GABRB2, GABRB3, and GABRG2, impair GABAergic signaling and are frequently associated with DEEs such as Dravet syndrome and Lennox-Gastaut syndrome, as GABAergic signaling is critical for early brain development. We here present a novel association of a microdeletion of GABRG2 with a diagnosed DEE phenotype. We characterized the clinical phenotype and underlying mechanisms, including molecular genetics, EEGs, and MRI. We then compiled an update of molecular mechanisms of GABR mutations, especially the mutations in GABRB3 and GABRG2 attributed to DEEs. Genetic therapy is also discussed as a new avenue for treatment of DEEs through employing antisense oligonucleotide techniques. There is an urgent need to define treatment targets and explore new treatment paradigms for the DEEs, as early deployment could alleviate long-term disabilities and improve quality of life for patients. This study highlights biomolecular targets for future therapeutic interventions, including via both pharmacological and genetic approaches.
Collapse
Affiliation(s)
- Gerald Nwosu
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilpa B. Reddy
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Heather Rose Mead Riordan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA
| |
Collapse
|
36
|
Al-Absi AR, Thambiappa SK, Khan AR, Glerup S, Sanchez C, Landau AM, Nyengaard JR. Df(h22q11)/+ mouse model exhibits reduced binding levels of GABA A receptors and structural and functional dysregulation in the inhibitory and excitatory networks of hippocampus. Mol Cell Neurosci 2022; 122:103769. [PMID: 35988854 DOI: 10.1016/j.mcn.2022.103769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The 22q11.2 hemizygous deletion confers high risk for multiple neurodevelopmental disorders. Inhibitory signaling, largely regulated through GABAA receptors, is suggested to serve a multitude of brain functions that are disrupted in the 22q11.2 deletion syndrome. We investigated the putative deficit of GABAA receptors and the potential substrates contributing to the inhibitory and excitatory dysregulations in hippocampal networks of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. The Df(h22q11)/+ mice exhibited impairments in several hippocampus-related functional domains, represented by impaired spatial memory and sensory gating functions. Autoradiography using the [3H]muscimol tracer revealed a significant reduction in GABAA receptor binding in the CA1 and CA3 subregions, together with a loss of GAD67+ interneurons in CA1 of Df(h22q11)/+ mice. Furthermore, electrophysiology recordings exhibited significantly higher neuronal activity in CA3, in response to the GABAA receptor antagonist, bicuculline, as compared with wild type mice. Density and volume of dendritic spines in pyramidal neurons were reduced and Sholl analysis also showed a reduction in the complexity of basal dendritic tree in CA1 and CA3 subregions of Df(h22q11)/+ mice. Overall, our findings demonstrate that hemizygous deletion in the 22q11.2 locus leads to dysregulations in the inhibitory circuits, involving reduced binding levels of GABAA receptors, in addition to functional and structural modulations of the excitatory networks of hippocampus.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| | - Sakeerthi Kethees Thambiappa
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| | - Ahmad Raza Khan
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India.
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Denmark.
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark.
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| |
Collapse
|
37
|
Sun Y, Peng Z, Wei X, Zhang N, Huang CS, Wallner M, Mody I, Houser CR. Virally-induced expression of GABAA receptor δ subunits following their pathological loss reveals their role in regulating GABAA receptor assembly. Prog Neurobiol 2022; 218:102337. [PMID: 35934131 PMCID: PMC10091858 DOI: 10.1016/j.pneurobio.2022.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022]
Abstract
Decreased expression of the δ subunit of the GABAA receptor (GABAAR) has been found in the dentate gyrus in several animal models of epilepsy and other disorders with increased excitability and is associated with altered modulation of tonic inhibition in dentate granule cells (GCs). In contrast, other GABAAR subunits, including α4 and γ2 subunits, are increased, but the relationship between these changes is unclear. The goals of this study were to determine if viral transfection of δ subunits in dentate GCs could increase δ subunit expression, alter expression of potentially-related GABAAR subunits, and restore more normal network excitability in the dentate gyrus in a mouse model of epilepsy. Pilocarpine-induced seizures were elicited in DOCK10-Cre mice that express Cre selectively in dentate GCs, and two weeks later the mice were injected unilaterally with a Cre-dependent δ-GABAAR viral vector. At 4-6 weeks following transfection, δ subunit immunolabeling was substantially increased in dentate GCs on the transfected side compared to the nontransfected side. Importantly, α4 and γ2 subunit labeling was downregulated on the transfected side. Electrophysiological studies revealed enhanced tonic inhibition, decreased network excitability, and increased neurosteroid sensitivity in slices from the δ subunit-transfected side compared to those from the nontransfected side of the same pilocarpine-treated animal, consistent with the formation of δ subunit-containing GABAARs. No differences were observed between sides of eYFP-transfected animals. These findings are consistent with the idea that altering expression of key subunits, such as the δ subunit, regulates GABAAR subunit assemblies, resulting in substantial effects on network excitability.
Collapse
|
38
|
Cho FS, Vainchtein ID, Voskobiynyk Y, Morningstar AR, Aparicio F, Higashikubo B, Ciesielska A, Broekaart DWM, Anink JJ, van Vliet EA, Yu X, Khakh BS, Aronica E, Molofsky AV, Paz JT. Enhancing GAT-3 in thalamic astrocytes promotes resilience to brain injury in rodents. Sci Transl Med 2022; 14:eabj4310. [PMID: 35857628 DOI: 10.1126/scitranslmed.abj4310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory processes induced by brain injury are important for recovery; however, when uncontrolled, inflammation can be deleterious, likely explaining why most anti-inflammatory treatments have failed to improve neurological outcomes after brain injury in clinical trials. In the thalamus, chronic activation of glial cells, a proxy of inflammation, has been suggested as an indicator of increased seizure risk and cognitive deficits that develop after cortical injury. Furthermore, lesions in the thalamus, more than other brain regions, have been reported in patients with viral infections associated with neurological deficits, such as SARS-CoV-2. However, the extent to which thalamic inflammation is a driver or by-product of neurological deficits remains unknown. Here, we found that thalamic inflammation in mice was sufficient to phenocopy the cellular and circuit hyperexcitability, enhanced seizure risk, and disruptions in cortical rhythms that develop after cortical injury. In our model, down-regulation of the GABA transporter GAT-3 in thalamic astrocytes mediated this neurological dysfunction. In addition, GAT-3 was decreased in regions of thalamic reactive astrocytes in mouse models of cortical injury. Enhancing GAT-3 in thalamic astrocytes prevented seizure risk, restored cortical states, and was protective against severe chemoconvulsant-induced seizures and mortality in a mouse model of traumatic brain injury, emphasizing the potential of therapeutically targeting this pathway. Together, our results identified a potential therapeutic target for reducing negative outcomes after brain injury.
Collapse
Affiliation(s)
- Frances S Cho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Francisco Aparicio
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bryan Higashikubo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Diede W M Broekaart
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Jasper J Anink
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, Netherlands
| | - Anna V Molofsky
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
39
|
Bangsumruaj J, Kijtawornrat A, Kalandakanond-Thongsong S. Effects of chronic mild stress on GABAergic system in the paraventricular nucleus of hypothalamus associated with cardiac autonomic activity. Behav Brain Res 2022; 432:113985. [PMID: 35787398 DOI: 10.1016/j.bbr.2022.113985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Stress is associated with cardiovascular diseases. One possible mechanism is the reduction in gamma-aminobutyric acid (GABA)ergic transmission at the paraventricular nucleus (PVN), which contributes to the disinhibition of sympathoexcitatory circuits and activates sympathetic outflow. At present, the mechanism of chronic mild stress (CMS) on GABAergic transmission at the PVN and cardiac autonomic activity is not yet fully clarified. Therefore, this study was designed to investigate the effects of CMS on the GABAergic system at the PVN and on the cardiac autonomic activity. Adult male Sprague-Dawley rats were randomly assigned to control (left undisturbed in their home cage) or CMS (subjected to various mild stressors for 4 weeks). Cardiac autonomic activities were determined by heart rate variability (HRV) analysis, and GABAergic alterations at the PVN were determined from GABA levels and mRNA expression of GABA-related activities. Results showed that the CMS group had decreased HRV as determined by the standard deviation of all R-R intervals (SDNN). The low frequency (LF) and high frequency (HF) powers of the CMS group were higher than those of the control. Hence, the LF/HF ratio was consequently unaffected. These findings indicated that despite the increase in sympathetic and parasympathetic activities, the autonomic balance was preserved at 4 weeks post CMS. For the GABAergic-related parameters, the CMS group had decreased mRNA expression of glutamic acid decarboxylase-65 (GAD-65), the GABA-synthesizing enzyme, and increased mRNA expression of gamma-aminobutyric acid transporter-1 (GAT-1). Moreover, the GAD-65 mRNA expression was negatively correlated with LF. In conclusion, 4-week CMS exposure in male rats could attenuate GABAergic transmission at the PVN and alter cardiac autonomic activities.
Collapse
Affiliation(s)
- Janpen Bangsumruaj
- Interdisciplinary Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anusak Kijtawornrat
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | |
Collapse
|
40
|
Tsai CM, Chang SF, Chang H. Transcranial photobiomodulation add-on therapy to valproic acid for pentylenetetrazole-induced seizures in peripubertal rats. BMC Complement Med Ther 2022; 22:81. [PMID: 35313886 PMCID: PMC8935768 DOI: 10.1186/s12906-022-03562-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background Convulsive status epilepticus (CSE) prevention is critical for pediatric patients with epilepsy. Immediate intervention before CSE reduce severity. Despite its wide usage as an anticonvulsant, valproic acid (VPA) results in harmful side effects such as dose-dependent hepatotoxicity. Hence, reducing VPA dosage to minimize side effects while maintaining its efficacy is necessary, and transcranial photobiomodulation (tPBM) add-on therapy could facilitate this. We recently demonstrated for the first time that tPBM at a wavelength of 808 nm attenuated CSE in peripubertal rats. However, the effects of VPA with the add-on therapy of tPBM prior to seizures have not yet been explored. This study investigated whether adding tPBM to VPA exerts synergistic effect for CSE prevention in peripubertal rats. Methods A gallium-aluminum-arsenide laser (wavelength of 808 nm with an exposure duration of 100 s and irradiance of 1.333 W/cm2 at the target) was applied transcranially 30 min after VPA injection in Sprague Dawley rats. All the rats received 90 mg/kg of pentylenetetrazole (PTZ). Except for the saline (n = 3), tPBM + saline (n = 3), and PTZ group (n = 6), all the rats received a PTZ injection 30 min after VPA injection. The rats received add-on tPBM with PTZ immediately after tPBM. In the VPA + PTZ group, the rats received low-dose (100 mg/kg, n = 6), medium-dose (200 mg/kg, n = 6), and high-dose (400 mg/kg, n = 7) VPA. In the VPA + tPBM + PTZ group, the rats received low (100 mg/kg, n = 5), medium (200 mg/kg, n = 6), and high (400 mg/kg, n = 3) doses of VPA. Seizures were evaluated according to the revised Racine’s scale in a non-blinded manner. Results Adding tPBM to low-dose VPA reduced the incidence of severe status epilepticus and significantly delayed the latency to stage 2 seizures. However, adding tPBM to high-dose VPA increased the maximum seizure stage, prolonged the duration of stage 4–7 seizures, and shortened the latency to stage 6 seizures. Conclusions Adding tPBM to low-dose VPA exerted a synergistic prevention effect on PTZ-induced seizures, whereas adding tPBM to high-dose VPA offset the attenuation effect.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Pediatrics, Taipei Medical University Hospital, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
41
|
Santrač A, Bijelić D, Stevanović V, Banićević M, Aranđelović J, Batinić B, Sharmin D, Cook JM, Savić MM. Postweaning positive modulation of α5GABAA receptors improves autism-like features in prenatal valproate rat model in a sex-specific manner. Autism Res 2022; 15:806-820. [PMID: 35266641 DOI: 10.1002/aur.2699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD), as a common neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still awaits an effective treatment strategy. The involvement of GABAergic neurotransmission, and especially a deficit of GABAA receptors that contain the α5 subunits, were implicated in pathogenesis of ASD. Therefore, we tested MP-III-022, a positive allosteric modulator (PAM) selective for α5GABAA receptors, in Wistar rats prenatally exposed to valproic acid, as an animal model useful for studying ASD. Postweaning rats of both sexes were treated for 7 days with vehicle or MP-III-022 at two doses pharmacokinetically determined as selective, and thereafter tested in a behavioral battery (social interaction test, elevated plus maze, spontaneous locomotor activity, and standard and reverse Morris water maze). Additional rats were used for establishing a primary neuronal culture and performing calcium imaging, and determination of hippocampal mRNA levels of GABRA5, NKCC1, and KCC2. MP-III-022 prevented impairments in many parameters connected with social, repetitive and restrictive behavioral domains. The lower and higher dose was more effective in males and females, respectively. Intriguingly, MP-III-022 elicited certain changes in control animals similar to those manifested in valproate animals themselves. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, assessed with calcium imaging, and also in expression changes of three genes analyzed. Our data support a role of α5GABAA receptors in pathophysiology of ASD, and suggest a potential application of selective PAMs in its treatment, that needs to be researched in a sex-specific manner. LAY SUMMARY: In rats prenatally exposed to valproate as a model of autism, a modulator of α5GABAA receptors ameliorated social, repetitive and restrictive impairments, and, intriguingly, elicited certain autism-like changes in control rats. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, and partly in gene expression changes. This shows a role of α5GABAA receptors in pathophysiology of ASD, and a potential application of their selective modulators in its treatment.
Collapse
Affiliation(s)
- Anja Santrač
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Dunja Bijelić
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade - Faculty of Biology, Belgrade, Serbia
| | - Vladimir Stevanović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marija Banićević
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.,Institute of Pharmacy and Molecular Biotechnology, Bioinformatics and Functional Genomics, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Jovana Aranđelović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Bojan Batinić
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee and the Milwaukee Institute of Drug Discovery, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee and the Milwaukee Institute of Drug Discovery, Milwaukee, Wisconsin, USA
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
42
|
Mechanisms of inhibition and activation of extrasynaptic αβ GABA A receptors. Nature 2022; 602:529-533. [PMID: 35140402 PMCID: PMC8850191 DOI: 10.1038/s41586-022-04402-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, β-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αβ, α4βδ, α6βδ and α5βγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1βγ, α2βγ and α3βγ receptor responses5,7–12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αβ GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA–Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αβ receptors that adapt them to a role in tonic signalling. Cryo-electron microscopy structures are used to identify mechanisms underlying distinct features of extrasynaptic type A γ-aminobutyric acid receptors.
Collapse
|
43
|
Aldabbagh Y, Islam A, Zhang W, Whiting P, Ali AB. Alzheimer’s Disease Enhanced Tonic Inhibition is Correlated With Upregulated Astrocyte GABA Transporter-3/4 in a Knock-In APP Mouse Model. Front Pharmacol 2022; 13:822499. [PMID: 35185574 PMCID: PMC8850407 DOI: 10.3389/fphar.2022.822499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cognitive decline is a major symptom in Alzheimer’s disease (AD), which is strongly associated with synaptic excitatory-inhibitory imbalance. Here, we investigated whether astrocyte-specific GABA transporter 3/4 (GAT3/4) is altered in APP knock-in mouse model of AD and whether this is correlated with changes in principal cell excitability. Using the APPNL-F/NL-F knock-in mouse model of AD, aged-matched to wild-type mice, we performed in vitro electrophysiological whole-cell recordings combined with immunohistochemistry in the CA1 and dentate gyrus (DG) regions of the hippocampus. We observed a higher expression of GAD67, an enzyme that catalyses GABA production, and GAT3/4 in reactive astrocytes labelled with GFAP, which correlated with an enhanced tonic inhibition in the CA1 and DG of 12–16 month-old APPNL-F/NL-F mice compared to the age-matched wild-type animals. Comparative neuroanatomy experiments performed using post-mortem brain tissue from human AD patients, age-matched to healthy controls, mirrored the results obtained using mice tissue. Blocking GAT3/4 associated tonic inhibition recorded in CA1 and DG principal cells resulted in an increased membrane input resistance, enhanced firing frequency and synaptic excitation in both wild-type and APPNL-F/NL-F mice. These effects exacerbated synaptic hyperactivity reported previously in the APPNL-F/NL-F mice model. Our data suggest that an alteration in astrocyte GABA homeostasis is correlated with increased tonic inhibition in the hippocampus, which probably plays an important compensatory role in restoring AD-associated synaptic hyperactivity. Therefore, reducing tonic inhibition through GAT3/4 may not be a good therapeutic strategy for AD
Collapse
Affiliation(s)
| | - Anam Islam
- UCL School of Pharmacy, London, United Kingdom
| | | | - Paul Whiting
- Alzheimer’s Research UK Drug Discovery Institute, Queen Square Institute of Neurology, London, United Kingdom
| | - Afia B. Ali
- UCL School of Pharmacy, London, United Kingdom
- *Correspondence: Afia B. Ali,
| |
Collapse
|
44
|
Lambert PM, Lu X, Zorumski CF, Mennerick S. Physiological markers of rapid antidepressant effects of allopregnanolone. J Neuroendocrinol 2022; 34:e13023. [PMID: 34423498 PMCID: PMC8807818 DOI: 10.1111/jne.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023]
Abstract
The rise of ketamine and brexanolone as rapid antidepressant treatments raises the question of common mechanisms. Both drugs act without the long onset time of traditional antidepressants such as selective serotonin reuptake inhibitors. The drugs also share the interesting feature of benefit that persists beyond the initial drug lifetime. Here, we briefly review literature on functional changes that may mark the triggering mechanism of rapid antidepressant actions. Because ketamine has a longer history of study as a rapid antidepressant, we use this literature as a template to guide hypotheses about common action. Brexanolone has the complication of being a formulation of a naturally occurring neurosteroid; thus, endogenous levels need to be considered when studying the impact of exogenous administration. We conclude that network disinhibition and increased high-frequency oscillations are candidates to mediate acute triggering effects of rapid antidepressants.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
45
|
Antonoudiou P, Colmers PLW, Walton NL, Weiss GL, Smith AC, Nguyen DP, Lewis M, Quirk MC, Barros L, Melon LC, Maguire JL. Allopregnanolone Mediates Affective Switching Through Modulation of Oscillatory States in the Basolateral Amygdala. Biol Psychiatry 2022; 91:283-293. [PMID: 34561029 PMCID: PMC8714669 DOI: 10.1016/j.biopsych.2021.07.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Brexanolone (allopregnanolone) was recently approved by the Food and Drug Administration for the treatment of postpartum depression, demonstrating long-lasting antidepressant effects. Despite our understanding of the mechanism of action of neurosteroids as positive allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors, we still do not fully understand how allopregnanolone exerts persistent antidepressant effects. METHODS We used electroencephalogram recordings in rats and humans along with local field potential, functional magnetic resonance imaging, and behavioral tests in mice to assess the impact of neurosteroids on network states in brain regions implicated in mood and used optogenetic manipulations to directly examine their relationship to behavioral states. RESULTS We demonstrated that allopregnanolone and synthetic neuroactive steroid analogs with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound] and zuranolone [SAGE-217, investigational compound]) modulate oscillations across species. We further demonstrated a critical role for interneurons in generating oscillations in the basolateral amygdala (BLA) and a role for δ-containing GABAA receptors in mediating the ability of neurosteroids to modulate network and behavioral states. Allopregnanolone in the BLA enhances BLA high theta oscillations (6-12 Hz) through δ-containing GABAA receptors, a mechanism distinct from other GABAA positive allosteric modulators, such as benzodiazepines, and alters behavioral states. Treatment with the allopregnanolone analog SGE-516 protects mice from chronic stress-induced disruption of network and behavioral states, which is correlated with the modulation of theta oscillations in the BLA. Optogenetic manipulation of the network state influences the behavioral state after chronic unpredictable stress. CONCLUSIONS Our findings demonstrate a novel molecular and cellular mechanism mediating the well-established anxiolytic and antidepressant effects of neuroactive steroids.
Collapse
Affiliation(s)
- Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Phillip LW Colmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Najah L Walton
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Grant L Weiss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Anne C Smith
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - David P Nguyen
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - Mike Lewis
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - Michael C Quirk
- Sage Therapeutics, Inc., Cambridge, Massachusetts, 02142, USA
| | - Lea Barros
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA,Department of Biology, Hamilton College, Clinton, NY. 13323, United States
| | - Laverne C Melon
- Department of Biology, Wesleyan University, Middletown, Connecticut, 06459, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
46
|
Belelli D, Phillips GD, Atack JR, Lambert JJ. Relating neurosteroid modulation of inhibitory neurotransmission to behaviour. J Neuroendocrinol 2022; 34:e13045. [PMID: 34644812 DOI: 10.1111/jne.13045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Studies in the 1980s revealed endogenous metabolites of progesterone and deoxycorticosterone to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAA R). The discovery that such steroids are locally synthesised in the central nervous system (CNS) promoted the thesis that neural inhibition in the CNS may be "fine-tuned" by these neurosteroids to influence behaviour. In preclinical studies, these neurosteroids exhibited anxiolytic, anticonvulsant, analgesic and sedative properties and, at relatively high doses, induced a state of general anaesthesia, a profile consistent with their interaction with GABAA Rs. However, realising the therapeutic potential of either endogenous neurosteroids or synthetic "neuroactive" steroids has proven challenging. Recent approval by the Food and Drug Administration of the use of allopregnanolone (brexanolone) to treat postpartum depression has rekindled enthusiasm for exploring their potential as new medicines. Although neurosteroids are selective for GABAA Rs, they exhibit little or no selectivity across the many GABAA R subtypes. Nevertheless, a relatively minor population of receptors incorporating the δ-subunit (δ-GABAA Rs) appears to be an important contributor to their behavioural effects. Here, we consider how neurosteroids acting upon GABAA Rs influence neuronal signalling, as well as how such effects may acutely and persistently influence behaviour, and explore the case for developing selective PAMs of δ-GABAA R subtypes for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Grant D Phillips
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
47
|
Qin X, Pan HQ, Huang SH, Zou JX, Zheng ZH, Liu XX, You WJ, Liu ZP, Cao JL, Zhang WH, Pan BX. GABA A(δ) receptor hypofunction in the amygdala-hippocampal circuit underlies stress-induced anxiety. Sci Bull (Beijing) 2022; 67:97-110. [PMID: 36545966 DOI: 10.1016/j.scib.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023]
Abstract
Dysregulated GABAergic inhibition in the amygdala has long been implicated in stress-related neuropsychiatric disorders. However, the molecular and circuit mechanisms underlying the dysregulation remain elusive. Here, by using a mouse model of chronic social defeat stress (CSDS), we observed that the dysregulation varied drastically across individual projection neurons (PNs) in the basolateral amygdala (BLA), one of the kernel amygdala subregions critical for stress coping. While persistently reducing the extrasynaptic GABAA receptor (GABAAR)-mediated tonic current in the BLA PNs projecting to the ventral hippocampus (BLA → vHPC PNs), CSDS increased the current in those projecting to the anterodorsal bed nucleus of stria terminalis (BLA → adBNST PNs), suggesting projection-based dysregulation of tonic inhibition in BLA PNs by CSDS. Transcriptional and electrophysiological analysis revealed that the opposite CSDS influences were mediated by loss- and gain-of-function of δ-containing GABAARs (GABAA(δ)Rs) in BLA → vHPC and BLA → adBNST PNs, respectively. Importantly, it was the lost inhibition in the former population but not the augmentation in the latter population that correlated with the increased anxiety-like behavior in CSDS mice. Virally mediated maintenance of GABAA(δ)R currents in BLA → vHPC PNs occluded CSDS-induced anxiety-like behavior. These findings clarify the molecular substrate for the dysregulated GABAergic inhibition in amygdala circuits for stress-associated psychopathology.
Collapse
Affiliation(s)
- Xia Qin
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China; Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Shou-He Huang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Jia-Xin Zou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhi-Heng Zheng
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Xuan Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Wen-Jie You
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhi-Peng Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Jun-Li Cao
- Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China; Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China.
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China; Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China; Department of Ophthalmology, The Second Affiliated Hospital, Medical School of Nanchang University, Nanchang 330031, China.
| |
Collapse
|
48
|
Shu HJ, Lu X, Bracamontes J, Steinbach JH, Zorumski CF, Mennerick S. Pharmacological and Biophysical Characteristics of Picrotoxin-Resistant, δSubunit-Containing GABA A Receptors. Front Synaptic Neurosci 2021; 13:763411. [PMID: 34867260 PMCID: PMC8636460 DOI: 10.3389/fnsyn.2021.763411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in inhibition in the central nervous system. GABAARs containing the δ subunit mediate tonic inhibition, have distinctive pharmacological properties and are associated with disorders of the nervous system. To explore this receptor sub-class, we recently developed mice with δ-containing receptors rendered resistant to the common non-competitive antagonist picrotoxin (PTX). Resistance was achieved with a knock-in point mutation (T269Y; T6’Y) in the mouse genome. Here we characterize pharmacological and biophysical features of GABAARs containing the mutated subunit to contextualize results from the KI mice. Recombinant receptors containing δ T6’Y plus WT α4 and WT β2 subunits exhibited 3-fold lower EC50 values for GABA but not THIP. GABA EC50 values in native receptors containing the mutated subunit were in the low micromolar range, in contrast with some published results that have suggested nM sensitivity of recombinant receptors. Rectification properties of δ-containing GABAARs were similar to γ2-containing receptors. Receptors containing δ T6’Y had marginally weaker sensitivity to positive allosteric modulators, likely a secondary consequence of differing GABA sensitivity. Overexpression of δT6’Y in neurons resulted in robust PTX-insensitive IPSCs, suggesting that δ-containing receptors are readily recruited by synaptically released GABA. Overall, our results give context to the use of δ receptors with the T6’Y mutation to explore the roles of δ-containing receptors in inhibition.
Collapse
Affiliation(s)
- Hong-Jin Shu
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - John Bracamontes
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
49
|
Kwon J, Jang MW, Lee CJ. Retina-attached slice recording reveals light-triggered tonic GABA signaling in suprachiasmatic nucleus. Mol Brain 2021; 14:171. [PMID: 34838118 PMCID: PMC8626980 DOI: 10.1186/s13041-021-00881-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/14/2021] [Indexed: 11/10/2022] Open
Abstract
Light is a powerful external cue modulating the biological rhythm of internal clock neurons in the suprachiasmatic nucleus (SCN). GABA signaling in SCN is critically involved in this process. Both phasic and tonic modes of GABA signaling exist in SCN. Of the two modes, the tonic mode of GABA signaling has been implicated in light-mediated synchrony of SCN neurons. However, modulatory effects of external light on tonic GABA signalling are yet to be explored. Here, we systematically characterized electrophysiological properties of the clock neurons and determined the spatio-temporal profiles of tonic GABA current. Based on the whole-cell patch-clamp recordings from 76 SCN neurons, the cells with large tonic GABA current (>15 pA) were more frequently found in dorsal SCN. Moreover, tonic GABA current in SCN was highly correlated with the frequency of spontaneous inhibitory postsynaptic current (sIPSC), raising a possibility that tonic GABA current is due to spill-over from synaptic release. Interestingly, tonic GABA current was inversely correlated with slice-to-patch time interval, suggesting a critical role of retinal light exposure in intact brain for an induction of tonic GABA current in SCN. To test this possibility, we obtained meticulously prepared retina-attached SCN slices and successfully recorded tonic and phasic GABA signaling in SCN neurons. For the first time, we observed an early-onset, long-lasting tonic GABA current, followed by a slow-onset, short-lasting increase in the phasic GABA frequency, upon direct light-illumination of the attached retina. This result provides the first evidence that external light cue can directly trigger both tonic and phasic GABA signaling in SCN cell. In conclusion, we propose tonic GABA as the key mediator of external light in SCN.
Collapse
Affiliation(s)
- Jea Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, 34126, Daejeon, Republic of Korea
| | - Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, 34126, Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. .,Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, 34126, Daejeon, Republic of Korea.
| |
Collapse
|
50
|
Ahtiainen A, Genocchi B, Tanskanen JMA, Barros MT, Hyttinen JAK, Lenk K. Astrocytes Exhibit a Protective Role in Neuronal Firing Patterns under Chemically Induced Seizures in Neuron-Astrocyte Co-Cultures. Int J Mol Sci 2021; 22:12770. [PMID: 34884577 PMCID: PMC8657549 DOI: 10.3390/ijms222312770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer's disease, and Parkinson's disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Jarno M. A. Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Michael T. Barros
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Jari A. K. Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|