1
|
Gomez-Frittelli J, Devienne GF, Travis L, Kyloh MA, Duan X, Hibberd TJ, Spencer NJ, Huguenard JR, Kaltschmidt JA. Synaptic cell adhesion molecule Cdh6 identifies a class of sensory neurons with novel functions in colonic motility. eLife 2025; 13:RP101043. [PMID: 40193178 PMCID: PMC11975370 DOI: 10.7554/elife.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here, we investigated synaptic cell adhesion molecules as novel cell-type markers in the ENS. Our work identifies two type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and IH current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current IH disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.
Collapse
Affiliation(s)
- Julieta Gomez-Frittelli
- Department of Chemical Engineering, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| | - Gabrielle Frederique Devienne
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Department of Neurology & Neurological Sciences, Stanford UniversityStanfordUnited States
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders UniversityAdelaideAustralia
| | - Melinda A Kyloh
- College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders UniversityAdelaideAustralia
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San FranciscoSan FranciscoUnited States
| | - Tim J Hibberd
- College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders UniversityAdelaideAustralia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders UniversityAdelaideAustralia
| | - John R Huguenard
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Department of Neurology & Neurological Sciences, Stanford UniversityStanfordUnited States
| | - Julia A Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Department of Neurosurgery, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
2
|
Allen AE, Hahn J, Richardson R, Pantiru A, Mouland J, Babu A, Baño-Otalora B, Monavarfeshani A, Yan W, Williams C, Wynne J, Rodgers J, Milosavljevic N, Orlowska-Feuer P, Storchi R, Sanes JR, Shekhar K, Lucas RJ. Altered proportions of retinal cell types and distinct visual codes in rodents occupying divergent ecological niches. Curr Biol 2025; 35:1446-1458.e5. [PMID: 40043699 DOI: 10.1016/j.cub.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 04/10/2025]
Abstract
Vertebrate retinas share a basic blueprint comprising 5 neuronal classes arranged according to a common wiring diagram. Yet, vision is aligned with species differences in behavior and ecology, raising the question of how evolution acts on this circuit to adjust its computational characteristics. We address that problem by comparing the thalamic visual code and retinal cell composition in closely related species occupying different niches: Rhabdomys pumilio, which are day-active murid rodents, and nocturnal laboratory mice (Mus musculus). Using high-density electrophysiological recordings, we compare visual responses at both single-unit and population levels in the thalamus of these two species. We find that Rhabdomys achieves a higher spatiotemporal resolution visual code through the selective expansion of information channels characterized by non-linear spatiotemporal summation. Comparative analysis of single-cell transcriptomic atlases reveals that this difference originates with the increased relative abundance of retinal bipolar and ganglion cell types supporting OFF and ON-OFF responses. These findings demonstrate that evolution may drive changes in neural computation by adjusting the proportions of shared cell types rather than inventing new types and show the power of matching high-density physiological recordings with transcriptomic cell atlases to study evolution in the brain.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rose Richardson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andreea Pantiru
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Josh Mouland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aadhithyan Babu
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Beatriz Baño-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Wynne
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Longakit AN, Bourget H, Van Raamsdonk CD. Mitf over-expression leads to microphthalmia and coloboma in Mitf-cre mice. Exp Eye Res 2025; 251:110209. [PMID: 39694408 DOI: 10.1016/j.exer.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The Mitf transcription factor is a critical regulator of the melanocyte lineage and eye development. Mitf activity in different cell types is controlled in part by ten alternative promoters and their resulting isoforms. A useful tool for melanocyte-based research, Mitf-cre was designed to express Cre from the Mitf-M promoter, which is melanocyte specific. However, Mitf-cre mice are also microphthalmic, perhaps because of insertional mutagenesis or disrupted gene expression. Here, we investigated these possibilities and described the eye phenotype. Targeted locus amplification indicated that the transgene integrated on chromosome 2, in between Spred1 and Meis2. The BAC transgene used to make Mitf-cre was larger than expected, carrying three upstream alternative promoters, Mitf-H, Mitf-D, and Mitf-B, which could express their isoforms intact off the transgene. RT-qPCR using eye tissue demonstrated a 5-fold increase in Mitf transcripts containing exon 1B1b, which is shared by Mitf-H, Mitf-D, and Mitf-B, while Spred1 and Meis2 did not differ in their expression. These findings clarify and support the usage of Mitf-cre in conditional mutagenesis in melanocytes. The specific over-expression of these isoforms, which are preferentially expressed in the RPE, presents a unique resource for those interested in eye development and coloboma.
Collapse
Affiliation(s)
- Anne Nathalie Longakit
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Hannah Bourget
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
4
|
Halurkar MS, Inoue O, Singh A, Mukherjee R, Ginugu M, Ahn C, Bonatto Paese CL, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-Cre transgene elicits complex developmental and metabolic phenotypes. Nat Commun 2025; 16:770. [PMID: 39824816 PMCID: PMC11742029 DOI: 10.1038/s41467-024-54763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/20/2024] [Indexed: 01/20/2025] Open
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, tissue specific growth defects, and craniofacial abnormalities. Mapping the transgene insertion site reveals insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Archana Singh
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Pioneering Medicines, 140 First St., Suite 302, Cambridge, MA, USA
| | - Meghana Ginugu
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Ahn
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Gomez-Frittelli J, Devienne G, Travis L, Kyloh MA, Duan X, Hibberd TJ, Spencer NJ, Huguenard JR, Kaltschmidt JA. Synaptic cell adhesion molecule Cdh6 identifies a class of sensory neurons with novel functions in colonic motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606748. [PMID: 39149241 PMCID: PMC11326146 DOI: 10.1101/2024.08.06.606748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here we investigated synaptic cell adhesion molecules as novel cell type markers in the ENS. Our work identifies two Type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and I H current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current I H disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons, and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.
Collapse
Affiliation(s)
- Julieta Gomez-Frittelli
- Department of Chemical Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Gabrielle Devienne
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Melinda A. Kyloh
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco; San Francisco, CA, USA
| | - Tim J. Hibberd
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - John R. Huguenard
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
6
|
Tan DCS, Jung S, Deng Y, Morey N, Chan G, Bongers A, Ke YD, Ittner LM, Delerue F. PLP1-Targeting Antisense Oligonucleotides Improve FOXG1 Syndrome Mice. Int J Mol Sci 2024; 25:10846. [PMID: 39409184 PMCID: PMC11477415 DOI: 10.3390/ijms251910846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
FOXG1 syndrome is a rare neurodevelopmental disorder of the telencephalon, for which there is no cure. Underlying heterozygous pathogenic variants in the Forkhead Box G1 (FOXG1) gene with resulting impaired or loss of FOXG1 function lead to severe neurological impairments. Here, we report a patient with a de novo pathogenic single nucleotide deletion c.946del (p.Leu316Cysfs*10) of the FOXG1 gene that causes a premature protein truncation. To study this variant in vivo, we generated and characterized Foxg1 c946del mice that recapitulate hallmarks of the human disorder. Accordingly, heterozygous Foxg1 c946del mice display neurological symptoms with aberrant neuronal networks and increased seizure susceptibility. Gene expression profiling identified increased oligodendrocyte- and myelination-related gene clusters. Specifically, we showed that expression of the c946del mutant and of other pathogenic FOXG1 variants correlated with overexpression of proteolipid protein 1 (Plp1), a gene linked to white matter disorders. Postnatal administration of Plp1-targeting antisense oligonucleotides (ASOs) in Foxg1 c946del mice improved neurological deficits. Our data suggest Plp1 as a new target for therapeutic strategies mitigating disease phenotypes in FOXG1 syndrome patients.
Collapse
Affiliation(s)
- Daniel C. S. Tan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Seonghee Jung
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Yuanyuan Deng
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Nicolle Morey
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Gabriella Chan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.)
| | - Yazi D. Ke
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Lars M. Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Fabien Delerue
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| |
Collapse
|
7
|
Adams PE, Thies JL, Sutton JM, Millwood JD, Caldwell GA, Caldwell KA, Fierst JL. Identifying transgene insertions in Caenorhabditis elegans genomes with Oxford Nanopore sequencing. PeerJ 2024; 12:e18100. [PMID: 39285918 PMCID: PMC11404476 DOI: 10.7717/peerj.18100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of Caenorhabditis elegans commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and human α-synuclein), a model for Parkinson's research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in the C. elegans reference and 99.5% of the annotated C. elegans reference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenic C. elegans genomes presented here will be a valuable resource for Parkinson's research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains.
Collapse
Affiliation(s)
- Paula E Adams
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Jennifer L Thies
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - John M Sutton
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Absci, Vancouver, WA, United States of America
| | - Joshua D Millwood
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL, United States of America
| | - Guy A Caldwell
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Kim A Caldwell
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Janna L Fierst
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| |
Collapse
|
8
|
Ayers J, Lopez TP, Steele IT, Oehler A, Roman-Albarran R, Cleveland E, Chong A, Carlson GA, Condello C, Prusiner SB. Severe neurodegeneration in brains of transgenic rats producing human tau prions. Acta Neuropathol 2024; 148:25. [PMID: 39160375 PMCID: PMC11333523 DOI: 10.1007/s00401-024-02771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.
Collapse
Affiliation(s)
- Jacob Ayers
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - T Peter Lopez
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Ian T Steele
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Rigo Roman-Albarran
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Elisa Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Alex Chong
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
9
|
Allen AE, Hahn J, Richardson R, Pantiru A, Mouland J, Baño-Otalora B, Monavarfeshani A, Yan W, Williams C, Wynne J, Rodgers J, Milosavljevic N, Orlowska-Feuer P, Storchi R, Sanes JR, Shekhar K, Lucas RJ. Reconfiguration of the visual code and retinal cell type complement in closely related diurnal and nocturnal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598659. [PMID: 38915685 PMCID: PMC11195227 DOI: 10.1101/2024.06.14.598659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
How does evolution act on neuronal populations to match computational characteristics to functional demands? We address this problem by comparing visual code and retinal cell composition in closely related murid species with different behaviours. Rhabdomys pumilio are diurnal and have substantially thicker inner retina and larger visual thalamus than nocturnal Mus musculus. High-density electrophysiological recordings of visual response features in the dorsal lateral geniculate nucleus (dLGN) reveals that Rhabdomys attains higher spatiotemporal acuity both by denser coverage of the visual scene and a selective expansion of elements of the code characterised by non-linear spatiotemporal summation. Comparative analysis of single cell transcriptomic cell atlases reveals that realignment of the visual code is associated with increased relative abundance of bipolar and ganglion cell types supporting OFF and ON-OFF responses. These findings demonstrate how changes in retinal cell complement can reconfigure the coding of visual information to match changes in visual needs.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rose Richardson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andreea Pantiru
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Josh Mouland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Beatriz Baño-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Christopher Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Wynne
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Science Graduate Group; Center for Computational Biology; Biophysics Graduate Group; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Halurkar MS, Inoue O, Mukherjee R, Paese CLB, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-CreEvdr transgene elicits complex developmental and metabolic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563165. [PMID: 37904917 PMCID: PMC10614962 DOI: 10.1101/2023.10.20.563165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we performed comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibited major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, growth defects, and craniofacial abnormalities. Mapping the transgene insertion site revealed insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of the intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | | | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Samantha A. Brugmann
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
11
|
Bryant WB, Yang A, Griffin SH, Zhang W, Rafiq AM, Han W, Deak F, Mills MK, Long X, Miano JM. CRISPR-Cas9 Long-Read Sequencing for Mapping Transgenes in the Mouse Genome. CRISPR J 2023; 6:163-175. [PMID: 37071672 PMCID: PMC10123806 DOI: 10.1089/crispr.2022.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/12/2023] [Indexed: 04/19/2023] Open
Abstract
Microinjected transgenes, both large and small, are known to insert randomly into the mouse genome. Traditional methods of mapping a transgene are challenging, thus complicating breeding strategies and accurate interpretation of phenotypes, particularly when a transgene disrupts critical coding or noncoding sequences. As the vast majority of transgenic mouse lines remain unmapped, we developed CRISPR-Cas9 Long-Read Sequencing (CRISPR-LRS) to ascertain transgene integration loci. This novel approach mapped a wide size range of transgenes and uncovered more complex transgene-induced host genome re-arrangements than previously appreciated. CRISPR-LRS offers a facile, informative approach to establish robust breeding practices and will enable researchers to study a gene without confounding genetic issues. Finally, CRISPR-LRS will find utility in rapidly and accurately interrogating gene/genome editing fidelity in experimental and clinical settings.
Collapse
Affiliation(s)
- W. Bart Bryant
- Department of Medicine and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Allison Yang
- Department of Medicine and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Susan H. Griffin
- Department of Medicine and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Wei Zhang
- Department of Medicine and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ashiq M. Rafiq
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Weiping Han
- Department of Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mary Katherine Mills
- Department of Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, USA
| | - Xiaochun Long
- Department of Medicine and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joseph M. Miano
- Department of Medicine and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
12
|
Berry MH, Moldavan M, Garrett T, Meadows M, Cravetchi O, White E, Leffler J, von Gersdorff H, Wright KM, Allen CN, Sivyer B. A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus. Nat Commun 2023; 14:1492. [PMID: 36932080 PMCID: PMC10023714 DOI: 10.1038/s41467-023-36955-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tavita Garrett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
| | - Marc Meadows
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Henrique von Gersdorff
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
13
|
Musall S, Sun XR, Mohan H, An X, Gluf S, Li SJ, Drewes R, Cravo E, Lenzi I, Yin C, Kampa BM, Churchland AK. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nat Neurosci 2023; 26:495-505. [PMID: 36690900 PMCID: PMC9991922 DOI: 10.1038/s41593-022-01245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Understanding how cortical circuits generate complex behavior requires investigating the cell types that comprise them. Functional differences across pyramidal neuron (PyN) types have been observed within cortical areas, but it is not known whether these local differences extend throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are considered. We used genetic and retrograde labeling to target pyramidal tract, intratelencephalic and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scales. Cortical activity and optogenetic inactivation during an auditory decision task revealed distinct functional roles. All PyNs in parietal cortex were recruited during perception of the auditory stimulus, but, surprisingly, pyramidal tract neurons had the largest causal role. In frontal cortex, all PyNs were required for accurate choices but showed distinct choice tuning. Our results reveal that rich, cell-type-specific cortical dynamics shape perceptual decisions.
Collapse
Affiliation(s)
- Simon Musall
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany.
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany.
| | - Xiaonan R Sun
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Hemanth Mohan
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Xu An
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Steven Gluf
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Rhonda Drewes
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Emma Cravo
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Irene Lenzi
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Chaoqun Yin
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Björn M Kampa
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
- JARA Brain, Institute for Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| | - Anne K Churchland
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Gao K, Zhang X, Zhang Z, Wu X, Guo Y, Fu P, Sun A, Peng J, Zheng J, Yu P, Wang T, Ye Q, Jiang J, Wang H, Lin CP, Gao G. Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing. Nucleic Acids Res 2022; 50:e109. [PMID: 35929067 DOI: 10.1093/nar/gkac676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/14/2022] Open
Abstract
Genomes can be edited by homologous recombination stimulated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated peptide 9]-induced DNA double-strand breaks. However, this approach is inefficient for inserting or deleting long fragments in mammalian cells. Here, we describe a simple genome-editing method, termed transcription-coupled Cas9-mediated editing (TEd), that can achieve higher efficiencies than canonical Cas9-mediated editing (CEd) in deleting genomic fragments, inserting/replacing large DNA fragments and introducing point mutations into mammalian cell lines. We also found that the transcription on DNA templates is crucial for the promotion of homology-directed repair, and that tethering transcripts from TEd donors to targeted sites further improves editing efficiency. The superior efficiency of TEd for the insertion and deletion of long DNA fragments expands the applications of CRISPR for editing mammalian genomes.
Collapse
Affiliation(s)
- Kaixuan Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuedi Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangyu Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Guo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengchong Fu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Angyang Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Peng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Zheng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengfei Yu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guanjun Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, Kadri S, Segal J, Shekhar K, Sanes JR, Schwartz GW. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 2022; 40:111040. [PMID: 35830791 PMCID: PMC9364428 DOI: 10.1016/j.celrep.2022.111040] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Collapse
Affiliation(s)
- Jillian Goetz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary F Jessen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sam Cooler
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Devon Greer
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sabah Kadri
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Hosur V, Low BE, Wiles MV. Programmable RNA-Guided Large DNA Transgenesis by CRISPR/Cas9 and Site-Specific Integrase Bxb1. Front Bioeng Biotechnol 2022; 10:910151. [PMID: 35866031 PMCID: PMC9294445 DOI: 10.3389/fbioe.2022.910151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The inability to insert large DNA constructs into the genome efficiently and precisely is a key challenge in genomic engineering. Random transgenesis, which is widely used, lacks precision, and comes with a slew of drawbacks. Lentiviral and adeno-associated viral methods are plagued by, respectively, DNA toxicity and a payload capacity of less than 5 kb. Homology-directed repair (HDR) techniques based on CRISPR-Cas9 can be effective, but only in the 1-5 kb range. In addition, long homology arms-DNA sequences that permit construct insertion-of lengths ranging from 0.5 to 5 kb are required by currently known HDR-based techniques. A potential new method that uses Cas9-guided transposases to insert DNA structures up to 10 kb in length works well in bacteria, but only in bacteria. Surmounting these roadblocks, a new toolkit has recently been developed that combines RNA-guided Cas9 and the site-specific integrase Bxb1 to integrate DNA constructs ranging in length from 5 to 43 kb into mouse zygotes with germline transmission and into human cells. This ground-breaking toolkit will give researchers a valuable resource for developing novel, urgently needed mouse and human induced pluripotent stem cell (hiPSC) models of cancer and other genetic diseases, as well as therapeutic gene integration and biopharmaceutical applications, such as the development of stable cell lines to produce therapeutic protein products.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States
| | | | | |
Collapse
|
17
|
Evaluation of the α-casein (CSN1S1) locus as a potential target for a site-specific transgene integration. Sci Rep 2022; 12:7983. [PMID: 35568783 PMCID: PMC9107462 DOI: 10.1038/s41598-022-12071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Transgenic animals are an important tool in biotechnology, including the production of recombinant proteins in the milk. Traditionally, expression constructs are based on hybrid vectors bearing mammary gland specific regulatory elements from the α-casein (Csn1s1), β-casein (Csn2), whey acidic protein (WAP), or β-lactoglobulin (BLG) genes. Overexpression from the randomly integrated vectors typically provides high levels of expression, but has drawbacks due to unpredictable genome localization. CRISPR-Cas9 targeted transgene integration into the endogenous casein locus could alleviate the need for extensive animal screening to achieve high and reproducible expression levels. We decided to evaluate such a “precise” integration approach, placing the human granulocyte–macrophage colony-stimulating factor (hGMCSF) gene under control of the mouse endogenous alpha-S1-casein (Csn1s1) promoter. We designed two types of transgene integrations: a knock-in in the second exon of the Csn1s1 (INS-GM) and a full-size Csn1s1 replacement with hGMCSF (REP-GM) which was never tested before. The INS-GM approach demonstrated low transgene expression and milk protein levels (0.4% of Csn2 transcripts; 2–11 µg/ml hGMCSF). This was probably caused by the absence of the 3’-polyadenylation signal in the hGMCSF transgene. REP-GM animals displayed high transgene expression, reaching and slightly exceeding the level of the endogenous Csn1s1 (30–40% of Csn2 transcripts), but yielded less hGMCSF protein than expected (0.2–0.5 mg/ml vs 25 mg/ml of Csn1s1), indicating that translation of the protein is not optimal. Homozygous inserts leading to the Csn1s1 knock-out did not have any long standing effects on the animals’ health. Thus, in our experimental design, site-specific transgene integration into the casein locus did not provide any significant advantage over the overexpression approach.
Collapse
|
18
|
Fan Y, Chen W, Wei R, Qiang W, Pearson JD, Yu T, Bremner R, Chen D. Mapping transgene insertion sites reveals the α-Cre transgene expression in both developing retina and olfactory neurons. Commun Biol 2022; 5:411. [PMID: 35505181 PMCID: PMC9065156 DOI: 10.1038/s42003-022-03379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
The Tg(Pax6-cre,GFP)2Pgr (α-Cre) mouse is a commonly used Cre line thought to be retinal-specific. Using targeted locus amplification (TLA), we mapped the insertion site of the transgene, and defined primers useful to deduce zygosity. Further analyses revealed four tandem copies of the transgene. The insertion site mapped to clusters of vomeronasal and olfactory receptor genes. Using R26R and Ai14 Cre reporter mice, we confirmed retinal Cre activity, but also detected expression in Gα0+ olfactory neurons. Most α-Cre+ olfactory neurons do not express Pax6, implicating the influence of neighboring regulatory elements. RT-PCR and buried food pellet test did not detect any effects of the transgene on flanking genes in the nasal mucosa and retina. Together, these data precisely map α-Cre, show that it does not affect surrounding loci, but reveal previously unanticipated transgene expression in olfactory neurons. The α-Cre mouse can be a valuable tool in both retinal and olfactory research. The Pax6-α-Cre mouse line used in retinal studies actually contains four transgene insertion within gene clusters of olfactory and vomeronasal receptors, leading to expression in not just retinal, but also olfactory and vomeronasal sensory neurons.
Collapse
Affiliation(s)
- Yimeng Fan
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Joel D Pearson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China. .,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China. .,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Salnikov PA, Khabarova AA, Koksharova GS, Mungalov RV, Belokopytova PS, Pristyazhnuk IE, Nurislamov AR, Somatich P, Gridina MM, Fishman VS. Here and there: the double-side transgene localization. Vavilovskii Zhurnal Genet Selektsii 2021; 25:607-612. [PMID: 34755021 PMCID: PMC8553977 DOI: 10.18699/vj21.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022] Open
Abstract
Random transgene integration is a powerful tool for developing new genome-wide screening approaches. These techniques have already been used for functional gene annotation by transposon-insertion sequencing, for identif ication of transcription factor binding sites and regulatory sequences, and for dissecting chromatin position effects. Precise localization of transgenes and accurate artifact f iltration are essential for this type of method. To date, many mapping assays have been developed, including Inverse-PCR, TLA, LAM-PCR, and splinkerette PCR. However, none of them is able to ensure localization of both transgene’s f lanking regions simultaneously, which would be necessary for some applications. Here we proposed a cheap and simple NGS-based approach that overcomes this limitation. The developed assay requires using intentionally designed vectors that lack recognition sites of one or a set of restriction enzymes used for DNA fragmentation. By looping and sequencing these DNA fragments, we obtain special data that allows us to link the two f lanking regions of the transposon. This can be useful for precise insertion mapping and for screening approaches in the f ield of chromosome engineering, where chromosomal recombination events between transgenes occur in a cell population. To demonstrate the method’s feasibility, we applied it for mapping SB transposon integration in the human HAP1 cell line. Our technique allowed us to eff iciently localize genomic transposon integrations, which was conf irmed via PCR analysis. For practical application of this approach, we proposed a set of recommendations and a normalization strategy. The developed method can be used for multiplex transgene localization and detection of rearrangements between them.
Collapse
Affiliation(s)
- P A Salnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Khabarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G S Koksharova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R V Mungalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P S Belokopytova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I E Pristyazhnuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A R Nurislamov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P Somatich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M M Gridina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Fishman
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Defrel G, Marsaud N, Rifa E, Martins F, Daboussi F. Identification of Loci Enabling Stable and High-Level Heterologous Gene Expression. Front Bioeng Biotechnol 2021; 9:734902. [PMID: 34660556 PMCID: PMC8517075 DOI: 10.3389/fbioe.2021.734902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Efficient and reliable genome engineering technologies have yet to be developed for diatoms. The delivery of DNA in diatoms results in the random integration of multiple copies, quite often leading to heterogeneous gene activity, as well as host instability. Transgenic diatoms are generally selected on the basis of transgene expression or high enzyme activity, without consideration of the copy number or the integration locus. Here, we propose an integrated pipeline for the diatom, Phaeodactylum tricornutum, that accurately quantifies transgene activity using a β-glucuronidase assay and the number of transgene copies integrated into the genome through Droplet Digital PCR (ddPCR). An exhaustive and systematic analysis performed on 93 strains indicated that 42% of them exhibited high β-glucuronidase activity. Though most were attributed to high transgene copy numbers, we succeeded in isolating single-copy clones, as well as sequencing the integration loci. In addition to demonstrating the impact of the genomic integration site on gene activity, this study identifies integration sites for stable transgene expression in Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- Gilles Defrel
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nathalie Marsaud
- Toulouse Biotechnology Institute (TBI), Plateforme Genome et Transcriptome (GeT-Biopuces) Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Etienne Rifa
- Toulouse Biotechnology Institute (TBI), Plateforme Genome et Transcriptome (GeT-Biopuces) Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM, UPS, Toulouse, France
- Plateforme Genome et Transcriptome (GeT), Genopole Toulouse, Toulouse, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), INSA, Toulouse, France
| |
Collapse
|
21
|
Waymack R, Gad M, Wunderlich Z. Molecular competition can shape enhancer activity in the Drosophila embryo. iScience 2021; 24:103034. [PMID: 34568782 PMCID: PMC8449247 DOI: 10.1016/j.isci.2021.103034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/12/2023] Open
Abstract
Transgenic reporters allow the measurement of regulatory DNA activity in vivo and consequently have long been useful tools for studying enhancers. Despite their utility, few studies have investigated the effects these reporters may have on the expression of other genes. Understanding these effects is required to accurately interpret reporter data and characterize gene regulatory mechanisms. By measuring the expression of Kruppel (Kr) enhancer reporters in live Drosophila embryos, we find reporters inhibit one another's expression and that of a nearby endogenous gene. Using synthetic transcription factor (TF) binding site arrays, we present evidence that competition for TFs is partially responsible for the observed transcriptional inhibition. We develop a simple thermodynamic model that predicts competition of the measured magnitude specifically when TF binding is restricted to distinct nuclear subregions. Our findings underline an unexpected role of the non-homogenous nature of the nucleus in regulating gene expression.
Collapse
Affiliation(s)
- Rachel Waymack
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Mario Gad
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Department of Biology, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Biological Design Center, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
22
|
Generation and characterization of a Myh6-driven Cre knockin mouse line. Transgenic Res 2021; 30:821-835. [PMID: 34542814 PMCID: PMC8580938 DOI: 10.1007/s11248-021-00285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 10/25/2022]
Abstract
Gene deletion by the Cre-Loxp system has facilitated functional studies of many critical genes in mice, offering important insights and allowing deeper understanding on the mechanisms underlying organ development and diseases, such as heart development and diseases. In this study, we generated a Myh6-Cre knockin mouse model by inserting the IRES-Cre-wpre-polyA cassette between the translational stop codon and the 3' untranslated region of the endogenous Myh6 gene. By crossing knockin mice with the Rosa26 reporter lines, we found that Myh6-Cre targeted cardiomyocytes at the embryonic and postnatal stages. In addition, we were able to inactivate the desmosome gene Desmoplakin (Dsp) by breeding Myh6-Cre mice with a conditional Dspflox knockout mouse line, which resulted in embryonic lethality during the mid-term pregnancy. These results suggest that the new Myh6-Cre mouse line can serve as a robust tool to dissect the distinct roles of genes involved in heart development and function.
Collapse
|
23
|
Perry MN, Smith CM, Onda H, Ringwald M, Murray SA, Smith CL. Annotated expression and activity data for murine recombinase alleles and transgenes: the CrePortal resource. Mamm Genome 2021; 33:55-65. [PMID: 34482425 PMCID: PMC8913597 DOI: 10.1007/s00335-021-09909-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Recombinase alleles and transgenes can be used to facilitate spatio-temporal specificity of gene disruption or transgene expression. However, the versatility of this in vivo recombination system relies on having detailed and accurate characterization of recombinase expression and activity to enable selection of the appropriate allele or transgene. The CrePortal (http://www.informatics.jax.org/home/recombinase) leverages the informatics infrastructure of Mouse Genome Informatics to integrate data from the scientific literature, direct data submissions from the scientific community at-large, and from major projects developing new recombinase lines and characterizing recombinase expression and specificity patterns. Searching the CrePortal by recombinase activity or specific recombinase gene driver provides users with a recombinase alleles and transgenes activity tissue summary and matrix comparison of gene expression and recombinase activity with links to generation details, a recombinase activity grid, and associated phenotype annotations. Future improvements will add cell type-based activity annotations. The CrePortal provides a comprehensive presentation of recombinase allele and transgene data to assist researchers in selection of the recombinase allele or transgene based on where and when recombination is desired.
Collapse
Affiliation(s)
| | | | - Hiroaki Onda
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | | |
Collapse
|
24
|
Willemin A, Lopez-Delisle L, Bolt CC, Gadolini ML, Duboule D, Rodriguez-Carballo E. Induction of a chromatin boundary in vivo upon insertion of a TAD border. PLoS Genet 2021; 17:e1009691. [PMID: 34292939 PMCID: PMC8330945 DOI: 10.1371/journal.pgen.1009691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/03/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes are partitioned into sub-megabase to megabase-sized units of preferential interactions called topologically associating domains or TADs, which are likely important for the proper implementation of gene regulatory processes. These domains provide structural scaffolds for distant cis regulatory elements to interact with their target genes within the three-dimensional nuclear space and architectural proteins such as CTCF as well as the cohesin complex participate in the formation of the boundaries between them. However, the importance of the genomic context in providing a given DNA sequence the capacity to act as a boundary element remains to be fully investigated. To address this question, we randomly relocated a topological boundary functionally associated with the mouse HoxD gene cluster and show that it can indeed act similarly outside its initial genomic context. In particular, the relocated DNA segment recruited the required architectural proteins and induced a significant depletion of contacts between genomic regions located across the integration site. The host chromatin landscape was re-organized, with the splitting of the TAD wherein the boundary had integrated. These results provide evidence that topological boundaries can function independently of their site of origin, under physiological conditions during mouse development. During development, enhancer sequences tightly regulate the spatio-temporal expression of target genes often located hundreds of kilobases away. This complex process is made possible by the folding of chromatin into domains, which are separated from one another by specific genomic regions referred to as boundaries. In order to understand whether such boundary sequences require their particular genomic contexts to achieve their isolating effect, we analyzed the impact of introducing one such boundary, taken from the HoxD locus, into a distinct topological domain. We show that this ectopic boundary splits the host domain into two sub-domains and affects the expression levels of a neighboring gene. We conclude that this sequence can work independently from its genomic context and thus carries all the information necessary to act as a boundary element.
Collapse
Affiliation(s)
- Andréa Willemin
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marie-Laure Gadolini
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Collège de France, Paris, France
- * E-mail: (DD); (ER-C)
| | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Geneva, Switzerland
- * E-mail: (DD); (ER-C)
| |
Collapse
|
25
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Affiliation(s)
- James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester, NY (J.P.)
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis (M.C.Y.)
| |
Collapse
|
27
|
Waymack R, Fletcher A, Enciso G, Wunderlich Z. Shadow enhancers can suppress input transcription factor noise through distinct regulatory logic. eLife 2020; 9:e59351. [PMID: 32804082 PMCID: PMC7556877 DOI: 10.7554/elife.59351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022] Open
Abstract
Shadow enhancers, groups of seemingly redundant enhancers, are found in a wide range of organisms and are critical for robust developmental patterning. However, their mechanism of action is unknown. We hypothesized that shadow enhancers drive consistent expression levels by buffering upstream noise through a separation of transcription factor (TF) inputs at the individual enhancers. By measuring the transcriptional dynamics of several Kruppel shadow enhancer configurations in live Drosophila embryos, we showed that individual member enhancers act largely independently. We found that TF fluctuations are an appreciable source of noise that the shadow enhancer pair can better buffer than duplicated enhancers. The shadow enhancer pair is also uniquely able to maintain low levels of expression noise across a wide range of temperatures. A stochastic model demonstrated the separation of TF inputs is sufficient to explain these findings. Our results suggest the widespread use of shadow enhancers is partially due to their noise suppressing ability.
Collapse
Affiliation(s)
- Rachel Waymack
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| | - Alvaro Fletcher
- Mathematical, Computational, and Systems Biology Graduate Program, University of California, IrvineIrvineUnited States
| | - German Enciso
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
- Department of Mathematics, University of California, IrvineIrvineUnited States
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| |
Collapse
|
28
|
Feng T, Gao Z, Kou S, Huang X, Jiang Z, Lu Z, Meng J, Lin CP, Zhang H. No Evidence for Erythro-Myeloid Progenitor-Derived Vascular Endothelial Cells in Multiple Organs. Circ Res 2020; 127:1221-1232. [PMID: 32791884 DOI: 10.1161/circresaha.120.317442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Endothelial cells are thought to emerge de novo from the mesoderm to form the entire circulatory system. Recently, erythro-myeloid progenitors (EMPs) have been proposed to be another remarkable developmental origin for blood vessels in multiple organs, including the hindbrain, liver, lung, and heart, as demonstrated by lineage tracing studies using different genetic tools. These observations challenge the current consensus that intraembryonic vessels are thought to expand solely by the proliferation of preexisting endothelial cells. Resolution of this controversy over the developmental origin of endothelial cells is crucial for developing future therapeutics for vessel-dependent organ repair and regeneration. OBJECTIVE To examine the contribution of EMPs to intraembryonic endothelial cells. METHODS AND RESULTS We first used a transgenic mouse expressing a tamoxifen-inducible Mer-iCre fusion protein driven by the Csf1r (colony stimulating factor 1 receptor) promoter. Genetic lineage tracing based on Csf1r-Mer-iCre-Mer showed no contribution of EMPs to brain endothelial cells identified by several markers. We also generated a knock-in mouse line by inserting an internal ribosome entry site-iCre cassette into the 3' untranslated region of Csf1r gene to further investigate the cellular fates of EMPs. Similarly, we did not find any Csf1r-ires-iCre traced endothelial cells in brain, liver, lung, or heart in development either. Additionally, we found that Kit (KIT proto-oncogene receptor tyrosine kinase) was expressed not only in EMPs but also in embryonic hindbrain endothelial cells. Therefore, Kit promoter-driven recombinase, such as Kit-CreER, is a flawed tool for lineage tracing when examining the contribution of EMPs to hindbrain endothelial cells. We also traced CD45 (protein tyrosine phosphatase receptor type C; Ptprc)+ circulating EMPs and did not find any CD45 lineage-derived endothelial cells during development. CONCLUSIONS Our study suggested that EMPs are not the origin of intraembryonic endothelial cells.
Collapse
Affiliation(s)
- Teng Feng
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zibei Gao
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Shan Kou
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Xinyan Huang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zhen Jiang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zhengkai Lu
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| |
Collapse
|
29
|
Gu B. Light up the embryos: knock-in reporter generation for mouse developmental biology. Anim Reprod 2020; 17:e20200055. [PMID: 33029220 PMCID: PMC7534580 DOI: 10.1590/1984-3143-ar2020-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Developmental biology seeks to understand the sophisticated regulated process through which a single cell – a fertilized egg – generates a highly organized organism. The most effective way to reveal the nature of these processes is to follow single cells and cell lineages in real-time. Recent advances in imaging equipment, fluorescent tags and computational tools have made long term multi-color imaging of cells and embryos possible. However, there is still one major challenging for achieving live imaging of mammalian embryos- the generation of embryos carrying reporters that recapitulate the endogenous expression pattern of marker genes. Recent developments of genome editing technology played important roles in enabling efficient generation of reporter mouse models. This mini review discusses recent developments of technologies for efficiently generate knock-in reporter mice and the application of these models in live imaging development. With these developments, we are starting to realize the long-sought promises of realtime analysis of mammalian development.
Collapse
Affiliation(s)
- Bin Gu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Michigan, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan, USA
| |
Collapse
|
30
|
Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types. J Neurosci 2020; 40:5177-5195. [PMID: 32457074 PMCID: PMC7329304 DOI: 10.1523/jneurosci.0471-20.2020] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023] Open
Abstract
Amacrine cells (ACs) are a diverse class of interneurons that modulate input from photoreceptors to retinal ganglion cells (RGCs), rendering each RGC type selectively sensitive to particular visual features, which are then relayed to the brain. While many AC types have been identified morphologically and physiologically, they have not been comprehensively classified or molecularly characterized. We used high-throughput single-cell RNA sequencing to profile >32,000 ACs from mice of both sexes and applied computational methods to identify 63 AC types. We identified molecular markers for each type and used them to characterize the morphology of multiple types. We show that they include nearly all previously known AC types as well as many that had not been described. Consistent with previous studies, most of the AC types expressed markers for the canonical inhibitory neurotransmitters GABA or glycine, but several expressed neither or both. In addition, many expressed one or more neuropeptides, and two expressed glutamatergic markers. We also explored transcriptomic relationships among AC types and identified transcription factors expressed by individual or multiple closely related types. Noteworthy among these were Meis2 and Tcf4, expressed by most GABAergic and most glycinergic types, respectively. Together, these results provide a foundation for developmental and functional studies of ACs, as well as means for genetically accessing them. Along with previous molecular, physiological, and morphologic analyses, they establish the existence of at least 130 neuronal types and nearly 140 cell types in the mouse retina.SIGNIFICANCE STATEMENT The mouse retina is a leading model for analyzing the development, structure, function, and pathology of neural circuits. A complete molecular atlas of retinal cell types provides an important foundation for these studies. We used high-throughput single-cell RNA sequencing to characterize the most heterogeneous class of retinal interneurons, amacrine cells, identifying 63 distinct types. The atlas includes types identified previously as well as many novel types. We provide evidence for the use of multiple neurotransmitters and neuropeptides, and identify transcription factors expressed by groups of closely related types. Combining these results with those obtained previously, we proposed that the mouse retina contains ∼130 neuronal types and is therefore comparable in complexity to other regions of the brain.
Collapse
Affiliation(s)
- Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mallory A Laboulaye
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Inbal Benhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
31
|
Liu S, Lockhart JR, Fontenard S, Berlett M, Ryan TM. Mapping the Chromosomal Insertion Site of the GFP Transgene of UBC-GFP Mice to the MHC Locus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1982-1987. [PMID: 32122998 DOI: 10.4049/jimmunol.1901338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/01/2020] [Indexed: 12/16/2022]
Abstract
GFP is frequently used as a marker for tracking donor cells adoptively transplanted into recipient animals. The human ubiquitin C promoter (UBC)-driven-GFP transgenic mouse is a commonly used source of donor cells for this purpose. This mouse was initially generated in the C57BL/6 inbred strain and has been backcrossed into the BALB/cBy strain for over 11 generations. Both the C57BL/6 inbred and BALB/cBy congenic UBC-GFP lines are commercially available and have been widely distributed. These UBC-GFP lines can be a convenient resource for tracking donor cells in both syngenic MHC-matched and in allogenic MHC-mismatched studies as C57BL/6 (H-2b) and BALB/cBy (H-2d) have disparate MHC haplotypes. In this report, we surprisingly discover that the UBC-GFP BALB/cBy congenic mice still retain the H-2b MHC haplotype of their original C57BL/6 founder, suggesting that the UBC-GFP transgene integration site is closely linked to the MHC locus on chromosome 17. Using linear amplification-mediated PCR, we successfully map the UBC-GFP transgene to the MHC locus. This study highlights the importance and urgency of mapping the transgene integration site of transgenic mouse strains used in biomedical research. Furthermore, this study raises the possibility of alternative interpretations of previous studies using congenic UBC-GFP mice and focuses attention on the necessity for rigor and reproducibility in scientific research.
Collapse
Affiliation(s)
- Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jonathan R Lockhart
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Suean Fontenard
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mike Berlett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas M Ryan
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
32
|
Smirnov A, Fishman V, Yunusova A, Korablev A, Serova I, Skryabin BV, Rozhdestvensky TS, Battulin N. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Res 2020; 48:719-735. [PMID: 31740957 PMCID: PMC7145541 DOI: 10.1093/nar/gkz1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mechanisms that ensure repair of double-strand DNA breaks (DSBs) are instrumental in the integration of foreign DNA into the genome of transgenic organisms. After pronuclear microinjection, exogenous DNA is usually found as a concatemer comprising multiple co-integrated transgene copies. Here, we investigated the contribution of various DSB repair pathways to the concatemer formation. We injected mouse zygotes with a pool of linear DNA molecules carrying unique barcodes at both ends and obtained 10 transgenic embryos with 1–300 transgene copies. Sequencing the barcodes allowed us to assign relative positions to the copies in concatemers and detect recombination events that occurred during integration. Cumulative analysis of approximately 1,000 integrated copies reveals that over 80% of them underwent recombination when their linear ends were processed by synthesis-dependent strand annealing (SDSA) or double-strand break repair (DSBR). We also observed evidence of double Holliday junction (dHJ) formation and crossing over during the concatemer formations. Sequencing indels at the junctions between copies shows that at least 10% of DNA molecules introduced into the zygotes are ligated by non-homologous end joining (NHEJ). Our barcoding approach, verified with Pacific Biosciences Single Molecule Real-Time (SMRT) long-range sequencing, documents high activity of homologous recombination after DNA microinjection.
Collapse
Affiliation(s)
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Boris V Skryabin
- Medical Faculty, Core Facility Transgenic animal and genetic engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility Transgenic animal and genetic engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
33
|
Lanigan TM, Kopera HC, Saunders TL. Principles of Genetic Engineering. Genes (Basel) 2020; 11:E291. [PMID: 32164255 PMCID: PMC7140808 DOI: 10.3390/genes11030291] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic engineering is the use of molecular biology technology to modify DNA sequence(s) in genomes, using a variety of approaches. For example, homologous recombination can be used to target specific sequences in mouse embryonic stem (ES) cell genomes or other cultured cells, but it is cumbersome, poorly efficient, and relies on drug positive/negative selection in cell culture for success. Other routinely applied methods include random integration of DNA after direct transfection (microinjection), transposon-mediated DNA insertion, or DNA insertion mediated by viral vectors for the production of transgenic mice and rats. Random integration of DNA occurs more frequently than homologous recombination, but has numerous drawbacks, despite its efficiency. The most elegant and effective method is technology based on guided endonucleases, because these can target specific DNA sequences. Since the advent of clustered regularly interspaced short palindromic repeats or CRISPR/Cas9 technology, endonuclease-mediated gene targeting has become the most widely applied method to engineer genomes, supplanting the use of zinc finger nucleases, transcription activator-like effector nucleases, and meganucleases. Future improvements in CRISPR/Cas9 gene editing may be achieved by increasing the efficiency of homology-directed repair. Here, we describe principles of genetic engineering and detail: (1) how common elements of current technologies include the need for a chromosome break to occur, (2) the use of specific and sensitive genotyping assays to detect altered genomes, and (3) delivery modalities that impact characterization of gene modifications. In summary, while some principles of genetic engineering remain steadfast, others change as technologies are ever-evolving and continue to revolutionize research in many fields.
Collapse
Affiliation(s)
- Thomas M. Lanigan
- Biomedical Research Core Facilities, Vector Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.M.L.); (H.C.K.)
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C. Kopera
- Biomedical Research Core Facilities, Vector Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.M.L.); (H.C.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Biomedical Research Core Facilities, Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Suzuki O, Koura M, Uchio-Yamada K, Sasaki M. Analysis of the transgene insertion pattern in a transgenic mouse strain using long-read sequencing. Exp Anim 2020; 69:279-286. [PMID: 32051389 PMCID: PMC7445054 DOI: 10.1538/expanim.19-0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transgene insertion patterns are critical for the analysis of transgenic animals because
the influence of transgenes may change depending on the insertion pattern (such as copy
numbers and orientations of concatenations) and the insertion position in the genome. We
previously reported a genomic walking strategy to locate transgenes in the genomes of
transgenic mice (Exp. Anim. 53: 103–111, 2004) and to analyze transgene insertion patterns
(Exp. Anim. 55: 65–69, 2006). With such strategies, however, we could not determine the
copy number of transgenes or global genome modification induced by transgene insertion due
to read-length limitation. In this study, we used a long-read sequencer (MinION, Oxford
Nanopore Technologies) to overcome this limitation. We obtained 922,210 reads using MinION
with genomic DNA from a transgenic mouse strain (4C30, Proc. Jpn. Acad. Ser. B. Phys.
Biol. Sci. 87: 550–562, 2011). Among the reads, we found one 21,457-bp read containing the
transgene using a local BLAST search. Nucleotide dot plot analysis revealed that the
transgene was inserted in the genome as a tandem concatemer with an almost entire
construct (15–3,508 of 3,508 bp) and a partial fragment (4–660, 657 bp). Ensembl’s BLAST
search against the C57BL/6N genome revealed a 9,388-bp deletion at the insertion position
in the intron of the Sgcd gene, confirming that mutations such as a large
genomic deletion could occur at the time of transgene insertion. Thus, long-read
sequencers are useful tools for the analysis of transgene insertion patterns.
Collapse
Affiliation(s)
- Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition,7-6-8 Saito-Asagi, Ibaraki, Ibaraki, Osaka 568-0085, Japan
| | - Minako Koura
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition,7-6-8 Saito-Asagi, Ibaraki, Ibaraki, Osaka 568-0085, Japan
| | - Kozue Uchio-Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition,7-6-8 Saito-Asagi, Ibaraki, Ibaraki, Osaka 568-0085, Japan
| | - Mitsuho Sasaki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition,7-6-8 Saito-Asagi, Ibaraki, Ibaraki, Osaka 568-0085, Japan
| |
Collapse
|
35
|
Embryo-Based Large Fragment Knock-in in Mammals: Why, How and What's Next. Genes (Basel) 2020; 11:genes11020140. [PMID: 32013077 PMCID: PMC7073597 DOI: 10.3390/genes11020140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
Endonuclease-mediated genome editing technologies, most notably CRISPR/Cas9, have revolutionized animal genetics by allowing for precise genome editing directly through embryo manipulations. As endonuclease-mediated model generation became commonplace, large fragment knock-in remained one of the most challenging types of genetic modification. Due to their unique value in biological and biomedical research, however, a diverse range of technological innovations have been developed to achieve efficient large fragment knock-in in mammalian animal model generation, with a particular focus on mice. Here, we first discuss some examples that illustrate the importance of large fragment knock-in animal models and then detail a subset of the recent technological advancements that have allowed for efficient large fragment knock-in. Finally, we envision the future development of even larger fragment knock-ins performed in even larger animal models, the next step in expanding the potential of large fragment knock-in in animal models.
Collapse
|
36
|
Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, Levin JZ, Lin D, Wang C, Lieber CM, Regev A, He Z, Sanes JR. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 2019; 104:1039-1055.e12. [PMID: 31784286 PMCID: PMC6923571 DOI: 10.1016/j.neuron.2019.11.006] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
Neuronal types in the central nervous system differ dramatically in their resilience to injury or other insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ∼80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC; characterized transcriptomic, physiological, and morphological changes that preceded degeneration; and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.
Collapse
Affiliation(s)
- Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karthik Shekhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inbal Benhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Material Science and Engineering and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xian Adiconis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - McKinzie E Arnold
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jung Min Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua Z Levin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dingchang Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA and Department of Biology and Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
37
|
Smitha PK, Vishnupriyan K, Kar AS, Anil Kumar M, Bathula C, Chandrashekara KN, Dhar SK, Das M. Genome wide search to identify reference genes candidates for gene expression analysis in Gossypium hirsutum. BMC PLANT BIOLOGY 2019; 19:405. [PMID: 31521126 PMCID: PMC6744693 DOI: 10.1186/s12870-019-1988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/26/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cotton is one of the most important commercial crops as the source of natural fiber, oil and fodder. To protect it from harmful pest populations number of newer transgenic lines have been developed. For quick expression checks in successful agriculture qPCR (quantitative polymerase chain reaction) have become extremely popular. The selection of appropriate reference genes plays a critical role in the outcome of such experiments as the method quantifies expression of the target gene in comparison with the reference. Traditionally most commonly used reference genes are the "house-keeping genes", involved in basic cellular processes. However, expression levels of such genes often vary in response to experimental conditions, forcing the researchers to validate the reference genes for every experimental platform. This study presents a data science driven unbiased genome-wide search for the selection of reference genes by assessing variation of > 50,000 genes in a publicly available RNA-seq dataset of cotton species Gossypium hirsutum. RESULT Five genes (TMN5, TBL6, UTR5B, AT1g65240 and CYP76B6) identified by data-science driven analysis, along with two commonly used reference genes found in literature (PP2A1 and UBQ14) were taken through qPCR in a set of 33 experimental samples consisting of different tissues (leaves, square, stem and root), different stages of leaf (young and mature) and square development (small, medium and large) in both transgenic and non-transgenic plants. Expression stability of the genes was evaluated using four algorithms - geNorm, BestKeeper, NormFinder and RefFinder. CONCLUSION Based on the results we recommend the usage of TMN5 and TBL6 as the optimal candidate reference genes in qPCR experiments with normal and transgenic cotton plant tissues. AT1g65240 and PP2A1 can also be used if expression study includes squares. This study, for the first time successfully displays a data science driven genome-wide search method followed by experimental validation as a method of choice for selection of stable reference genes over the selection based on function alone.
Collapse
Affiliation(s)
- P. K. Smitha
- Department of Biotechnology, Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
- Beyond Antibody LLP, S-005 Krishna Greens, Krishna Temple Road, Dodda Bomasandra, Bangalore, Karnataka 560 097 India
| | - K. Vishnupriyan
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
| | - Ananya S. Kar
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - M. Anil Kumar
- Beyond Antibody LLP, S-005 Krishna Greens, Krishna Temple Road, Dodda Bomasandra, Bangalore, Karnataka 560 097 India
| | - Christopher Bathula
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
| | - K. N. Chandrashekara
- Division of Plant Physiology and Biotechnology, UPASI Tea Research Foundation, Tea Research Institute, Nirar Dam, Valparai, Coimbatore, Tamil Nadu 642 127 India
| | - Sujan K. Dhar
- Beyond Antibody LLP, S-005 Krishna Greens, Krishna Temple Road, Dodda Bomasandra, Bangalore, Karnataka 560 097 India
| | - Manjula Das
- Tumor Immunology Program, DSRG1, MSCTR, MSMF, Mazumdar Shaw Medical Centre, 8th floor, Narayana Health City, Bommasandra, Bangalore, Karnataka 560 099 India
| |
Collapse
|
38
|
Locating and Characterizing a Transgene Integration Site by Nanopore Sequencing. G3-GENES GENOMES GENETICS 2019; 9:1481-1486. [PMID: 30837263 PMCID: PMC6505145 DOI: 10.1534/g3.119.300582] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The introduction of foreign DNA into cells and organisms has facilitated much of modern biological research, and it promises to become equally important in clinical practice. Locating sites of foreign DNA incorporation in mammalian genomes has proven burdensome, so the genomic location of most transgenes remains unknown. To address this challenge, we applied nanopore sequencing in search of the site of integration of Tg(Pou5f1-EGFP)2Mnn (also known as Oct4:EGFP), a widely used fluorescent reporter in mouse germ line research. Using this nanopore-based approach, we identified the site of Oct4:EGFP transgene integration near the telomere of Chromosome 9. This methodology simultaneously yielded an estimate of transgene copy number, provided direct evidence of transgene inversions, revealed contaminating E. coli genomic DNA within the transgene array, validated the integrity of neighboring genes, and enabled definitive genotyping. We suggest that such an approach provides a rapid, cost-effective method for identifying and analyzing transgene integration sites.
Collapse
|