1
|
Gloriani M, Cheli B, D'Ercole C, Ruggieri V, Cosentino M, Serrat Pineda M, Lozanoska-Ochser B, Grassi F, Bouché M, Madaro L, Sánchez Riera C. Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner. Cell Death Dis 2025; 16:37. [PMID: 39843456 PMCID: PMC11754441 DOI: 10.1038/s41419-025-07353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role. Here, we show that SGC proteins are enriched at the post-synaptic membrane of neuromuscular junctions (NMJs). Using a mouse model lacking the beta-sarcoglycan subunit, we describe for the first time that the loss of the SGC in the NMJ area results in alterations of pre- and postsynaptic membrane, as well as a significant reduction of membrane potential. Moreover, using different denervated wild-type mouse models, we demonstrate that nerve presence precedes the sarcoglycan enrichment at NMJ, suggesting a nerve-dependent sarcoglycan expression. Altogether, our findings suggest that pathological decline should no longer be understood only in terms of sarcolemma damage but also in terms of sarcoglycans' participation in the NMJ. Henceforth, our work paves the way for the identification of new mechanisms involving sarcoglycans and new approaches for the treatment of sarcoglycanopathies.
Collapse
Affiliation(s)
- Michela Gloriani
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Bianca Cheli
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Chiara D'Ercole
- Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de recherche en Myologie, 75013, Paris, France
| | - Veronica Ruggieri
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Marianna Cosentino
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Mireia Serrat Pineda
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
- Department of Medicine & Surgery, LUM University, Casamassima, Italy
| | - Francesca Grassi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Luca Madaro
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Carles Sánchez Riera
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
2
|
Petchesi CD, Jurca AA, Jurca AD, Dorobantu FR, Iuhas AR, Severin E, Jurca CM. Congenital Myasthenic Syndrome-4C in a Consanguineous Romani Family: Genetic Insights and Clinical Implications. Diagnostics (Basel) 2025; 15:235. [PMID: 39941166 PMCID: PMC11816469 DOI: 10.3390/diagnostics15030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Background and Clinical Significance: Congenital myasthenic syndrome-4C (CMS4C) associated with acetylcholine receptor (AChR) deficiency is an autosomal recessive defect of the motor endplate caused by homozygous or compound heterozygous mutations in the CHRNE gene on chromosome 17p13. Case Presentation: The authors present a familial case of CMS4C with three affected children in a consanguineous Romani family. Muscle weakness, fatigue, and ocular muscle impairment were present in all cases; two of the three siblings had delayed motor milestones, highly arched palates, and facial weakness. None of the children expressed bulbar symptoms. One child expressed a severe form, with recurrent respiratory infections, and multiple hospitalizations, while the other siblings expressed a mild phenotype, without hospital admissions. Repetitive nerve stimulation showed a myasthenic-type decrement greater than 10% of several muscles. A pathogenic frameshift variant (NM_000080.4: c.1327del) in the CHRNE gene was found in a homozygous status in all the affected children and in both parents. After 6 months of Pyridostigmine and Salbutamol treatment, the evolution of the case was good, with the improvement of most of the signs and no need for hospitalization. Conclusions: Early genetic diagnosis and appropriate therapy in the context of a multidisciplinary approach is mandatory for an optimal long-term prognosis. Community-wide carrier screening through comprehensive genetic testing is imperative to ensure accurate genetic counseling in genetic isolates. The authors report this case due to the increased number of affected children in a consanguine family from a small Romani community.
Collapse
Affiliation(s)
- Codruta Diana Petchesi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq., 410081 Oradea, Romania; (A.D.J.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN ITHACA), 410053 Oradea, Romania
| | | | - Alexandru Daniel Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq., 410081 Oradea, Romania; (A.D.J.); (C.M.J.)
| | - Florica Ramona Dorobantu
- Department of Clinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (F.R.D.); (A.R.I.)
- County Emergency Clinical Hospital Oradea, 410167 Oradea, Romania
| | - Alin Remus Iuhas
- Department of Clinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (F.R.D.); (A.R.I.)
| | - Emilia Severin
- Department of Genetics, “Carol Davila” University of Medicine and Pharmacy–Bucharest, Dionisie Lupu Street, Number 37, District 2, 020021 Bucharest, Romania
| | - Claudia Maria Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq., 410081 Oradea, Romania; (A.D.J.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN ITHACA), 410053 Oradea, Romania
| |
Collapse
|
3
|
Mousavi A, Kumar P, Frykman H. The changing landscape of autoantibody testing in myasthenia gravis in the setting of novel drug treatments. Clin Biochem 2024; 133-134:110826. [PMID: 39357636 DOI: 10.1016/j.clinbiochem.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Acquired myasthenia gravis (MG) is an autoimmune disease targeting the specific proteins in the postsynaptic muscle membrane. 50% of ocular and 80% of generalized MG have acetylcholine receptor antibodies (AChR Abs). 1-10% of MG patients have antibodies against muscle-specific kinase (MuSK), and 2-50 % of seronegative MG cases have antibodies against lipoprotein-receptor-related protein4 antibodies (LRP4 Abs). Serological testing is crucial for diagnosing and determining the appropriate therapeutic approach for MG patients. The radioimmunoprecipitation assay (RIPA) method is a historical standard test for detecting the AChR Abs and MuSK Abs. While it has nearly 100% specificity in the AChR Abs detection, its sensitivity is between 50--92%. The sensitivity and specificity of RIPA for detecting MuSK Abs is much lower. The fixed and live Cell-Based assays (f-CBA and L- CBA) have higher sensitivity than RIPA. With advancements in the serological diagnosis and management of MG, we now recommend a complete reflex testing algorithm on the first pretreatment sample of a suspected MG patient, starting with the binding and blocking assays for AChR Abs by RIPA and/ or f-CBA. If AChR Ab is negative, then reflex to MuSK Abs by RIPA and/ or CBAs. If AChR and MuSK Abs are negative, then use clustered L-CBA by request.
Collapse
Affiliation(s)
- Ali Mousavi
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Pankaj Kumar
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Hans Frykman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada; Neurocode Lab. Inc. Bellingham, Washington, USA.
| |
Collapse
|
4
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
5
|
Chen P, Zhou Q, Zhao X, Chen Y, Lin Z, Wang M, Yang Z, Liu W. Extraocular muscle volume on time-of-flight magnetic resonance angiography in patients with myasthenia gravis. Muscle Nerve 2024; 70:379-386. [PMID: 38948953 DOI: 10.1002/mus.28192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION/AIMS Despite being a prominent feature of myasthenia gravis (MG), extraocular muscle (EOM) has received little attention in clinical research. The aim of this study was to examine EOM volume in patients with MG and controls using time-of-flight magnetic resonance angiography (TOF-MRA). METHODS EOM volumes (overall and individual rectus muscles) were calculated using TOF-MRA images and compared between MG patients (including subgroups) and controls. The correlation between EOM volume and disease duration was examined. Predictive equations for the selected parameters were developed using multiple linear regression analysis. RESULTS EOM volume was lower in MG patients than controls, especially in MG patients with ophthalmoparesis (MG-O). MG-O exhibited a moderate negative correlation between EOM volume and disease duration. Multiple linear regression showed that disease duration and EOM status (ophthalmoparesis or not) account for 48.4% of EOM volume. DISCUSSION Patients with MG show atrophy of the EOMs, especially those with ophthalmoparesis and long disease duration.
Collapse
Affiliation(s)
- Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
- National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingqian Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongqiang Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
- National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Mengzhu Wang
- MR Scientific Marketing, Siemens Healthineers Ltd, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
- National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
6
|
Li H, Teng J, Hibbs RE. Structural switch in acetylcholine receptors in developing muscle. Nature 2024; 632:1174-1180. [PMID: 39085615 DOI: 10.1038/s41586-024-07774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
During development, motor neurons originating in the brainstem and spinal cord form elaborate synapses with skeletal muscle fibres1. These neurons release acetylcholine (ACh), which binds to nicotinic ACh receptors (AChRs) on the muscle, initiating contraction. Two types of AChR are present in developing muscle cells, and their differential expression serves as a hallmark of neuromuscular synapse maturation2-4. The structural principles underlying the switch from fetal to adult muscle receptors are unknown. Here, we present high-resolution structures of both fetal and adult muscle nicotinic AChRs, isolated from bovine skeletal muscle in developmental transition. These structures, obtained in the absence and presence of ACh, provide a structural context for understanding how fetal versus adult receptor isoforms are tuned for synapse development versus the all-or-none signalling required for high-fidelity skeletal muscle contraction. We find that ACh affinity differences are driven by binding site access, channel conductance is tuned by widespread surface electrostatics and open duration changes result from intrasubunit interactions and structural flexibility. The structures further reveal pathogenic mechanisms underlying congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Lindroos JLV, Bjørk MH, Gilhus NE. Transient Neonatal Myasthenia Gravis as a Common Complication of a Rare Disease: A Systematic Review. J Clin Med 2024; 13:1136. [PMID: 38398450 PMCID: PMC10889526 DOI: 10.3390/jcm13041136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease. Transient neonatal myasthenia gravis (TNMG) is caused by pathogenic maternal autoantibodies that cross the placenta and disrupt signaling at the neuromuscular junction. This is a systematic review of this transient immunoglobulin G (IgG)-mediated disease. TNMG affects 10-20% of children born to mothers with MG. The severity of symptoms ranges from minor feeding difficulties to life-threatening respiratory weakness. Minor symptoms might go unnoticed but can still interfere with breastfeeding. Acetylcholine-esterase inhibitors and antibody-clearing therapies such as immunoglobulins can be used to treat TNMG, but most children do well with observation only. TNMG is self-limiting within weeks as circulating antibodies are naturally cleared from the blood. In rare cases, TNMG is associated with permanent skeletal malformations or permanent myopathy. The mother's antibodies can also lead to spontaneous abortions. All healthcare professionals meeting pregnant or birthing women with MG or their neonates should be aware of TNMG. TNMG is hard to predict. Reoccurrence is common among siblings. Pre-pregnancy thymectomy and intravenous immunoglobulins during pregnancy reduce the risk. Neonatal fragment crystallizable receptor (FcRn) blocking drugs for MG might reduce TNMG risk.
Collapse
Affiliation(s)
- Jenny Linnea Victoria Lindroos
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Marte-Helene Bjørk
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| |
Collapse
|
9
|
Lifante J, Moreno-Rupérez Á, Ximendes E, Marin R, Priego T, López-Calderón A, Martín AI, Nieto-Bona MP, Nebot E, Lifante-Pedrola G, Jaque D, Monge L, Fernández N, Granado M. Early in vivo detection of denervation-induced atrophy by luminescence transient nanothermometry. JOURNAL OF BIOPHOTONICS 2024; 17:e202300249. [PMID: 38010860 DOI: 10.1002/jbio.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Denervation induces skeletal muscle atrophy due to the loss of control and feedback with the nervous system. Unfortunately, muscle atrophy only becomes evident days after the denervation event when it could be irreversible. Alternative diagnosis tools for early detection of denervation-induced muscle atrophy are, thus, required. In this work, we demonstrate how the combination of transient thermometry, a technique already used for early diagnosis of tumors, and infrared-emitting nanothermometers makes possible the in vivo detection of the onset of muscle atrophy at short (<1 day) times after a denervation event. The physiological reasons behind these experimental results have been explored by performing three dimensional numerical simulations based on the Pennes' bioheat equation. It is concluded that the alterations in muscle thermal dynamics at the onset of muscle atrophy are consequence of the skin perfusion increment caused by the alteration of peripheral nervous autonomous system. This work demonstrates the potential of infrared luminescence thermometry for early detection of diseases of the nervous system opening the venue toward the development of new diagnosis tools.
Collapse
Affiliation(s)
- José Lifante
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Álvaro Moreno-Rupérez
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, Madrid, Spain
| | - Teresa Priego
- Facultad de Enfermería, Fisioterapia y Podología, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Asunción López-Calderón
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Isabel Martín
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - María Paz Nieto-Bona
- Facultad de Ciencias de la Salud, Departamento de Ciencias Básicas, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elena Nebot
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ginés Lifante-Pedrola
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, Madrid, Spain
| | - Luis Monge
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Nuria Fernández
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miriam Granado
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
10
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
11
|
Wu C, Jiang ML, Pang T, Zhang CJ. Role of regulatory T cells in pathogenesis and therapeutics of myasthenia gravis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:267-281. [DOI: 10.1016/b978-0-443-13947-5.00036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Kastreva K, Chamova T, Blagoeva S, Bichev S, Mihaylova V, Meyer S, Thompson R, Cherninkova S, Guergueltcheva V, Lochmuller H, Tournev I. Characterization of Clinical Phenotypes in Congenital Myasthenic Syndrome Associated with the c.1327delG Frameshift Mutation in CHRNE Encoding the Acetylcholine Receptor Epsilon Subunit. J Neuromuscul Dis 2024; 11:1011-1020. [PMID: 38995797 PMCID: PMC11380250 DOI: 10.3233/jnd-230235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Background Congenital myasthenic syndromes (CMS) are a group of rare but often treatable inherited disorders of neuromuscular transmission characterized by fatigable skeletal muscle weakness. In this paper we present the largest phenotypic analysis to date of a cohort of patients carrying the pathogenic variant c.1327delG in the CHRNE gene, leading to CHRNE-CMS. Objective This study aims to identify the phenotypic variability in CMS associated with c.1327delG mutation in the CHRNE gene. Methods Disease specific symptoms were assessed using specific standardized tests for autoimmune myasthenia (Quantitative Myasthenia Gravis score) as well as patient-reported scales for symptom severity. Evaluated clinical manifestations included ocular symptoms (ophthalmoparesis and ptosis), bulbar weakness, axial muscle weakness, proximal and distal muscle weakness, and respiratory function. Patients were allocated into three groups according to clinical impression of disease severity: mild, moderate, and severe. Results We studied 91 Bulgarian Roma patients, carrying the same causative homozygous CHRNE c.1327delG mutation. Bulbar weakness was present in patients throughout all levels of severity of CHRNE-CMS in this study. However, difficulties in eating and swallowing are more prominent characteristics in the moderate and severe clinical phenotypes. Diplopia and ptosis resulting from fatigue of the extraocular muscles were permanent features regardless of disease severity or age. Levels of axial, proximal and distal muscle weakness were variable between disease groups. The statistical analysis showed significant differences between the patients in the three groups, emphasizing a possible variation in symptom manifestation in the evaluated patient population despite the disease originating from the same genetic mutation. Impairment of respiratory function was more prominent in severely affected patients, which might result from loss of compensatory muscle function in those individuals. Conclusion Results from our study indicate significant phenotypic heterogeneity leading to mild, moderate, or severe clinical manifestation in CHRNE-CMS, despite the genotypic homogeneity.
Collapse
Affiliation(s)
- Kristina Kastreva
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, University Hospital “Alexandrovska”, Sofia, Bulgaria
- Medical University Sofia, Sofia, Bulgaria
| | - Teodora Chamova
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, University Hospital “Alexandrovska”, Sofia, Bulgaria
- Medical University Sofia, Sofia, Bulgaria
| | - Stanislava Blagoeva
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, University Hospital “Alexandrovska”, Sofia, Bulgaria
| | - Stoyan Bichev
- National Genetics Laboratory, University Hospital of Obstetrics and Gynecology “Maichin Dom”
| | | | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Rachel Thompson
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Sylvia Cherninkova
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, University Hospital “Alexandrovska”, Sofia, Bulgaria
| | - Velina Guergueltcheva
- Department of Neurology, University Hospital “SofiaMed”, Sofia, Bulgaria
- Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Hanns Lochmuller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Ivailo Tournev
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, University Hospital “Alexandrovska”, Sofia, Bulgaria
- Medical University Sofia, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| |
Collapse
|
13
|
Mina E, Wyart E, Sartori R, Angelino E, Zaggia I, Rausch V, Maldotti M, Pagani A, Hsu MY, Friziero A, Sperti C, Menga A, Graziani A, Hirsch E, Oliviero S, Sandri M, Conti L, Kautz L, Silvestri L, Porporato PE. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy. Cell Rep Med 2023; 4:101306. [PMID: 38052214 PMCID: PMC10772350 DOI: 10.1016/j.xcrm.2023.101306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.
Collapse
Affiliation(s)
- Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Elia Angelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ivan Zaggia
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Valentina Rausch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Myriam Y Hsu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Division of Cell Fate Dynamics and Therapeutics, Department of Biosystems Science, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Alberto Friziero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; General Surgery 1, Padova University Hospital, Padova, Italy
| | - Cosimo Sperti
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padova University Hospital, Padova, Italy
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Andrea Graziani
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Léon Kautz
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, University Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Laura Silvestri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy.
| |
Collapse
|
14
|
Barbeau S, Semprez F, Dobbertin A, Merriadec L, Roussange F, Eymard B, Sternberg D, Fournier E, Karasoy H, Martinat C, Legay C. Molecular Analysis of a Congenital Myasthenic Syndrome Due to a Pathogenic Variant Affecting the C-Terminus of ColQ. Int J Mol Sci 2023; 24:16217. [PMID: 38003406 PMCID: PMC10671321 DOI: 10.3390/ijms242216217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital Myasthenic Syndromes (CMSs) are rare inherited diseases of the neuromuscular junction characterized by muscle weakness. CMSs with acetylcholinesterase deficiency are due to pathogenic variants in COLQ, a collagen that anchors the enzyme at the synapse. The two COLQ N-terminal domains have been characterized as being biochemical and functional. They are responsible for the structure of the protein in the triple helix and the association of COLQ with acetylcholinesterase. To deepen the analysis of the distal C-terminal peptide properties and understand the CMSs associated to pathogenic variants in this domain, we have analyzed the case of a 32 year old male patient bearing a homozygote splice site variant c.1281 C > T that changes the sequence of the last 28 aa in COLQ. Using COS cell and mouse muscle cell expression, we show that the COLQ variant does not impair the formation of the collagen triple helix in these cells, nor its association with acetylcholinesterase, and that the hetero-oligomers are secreted. However, the interaction of COLQ variant with LRP4, a signaling hub at the neuromuscular junction, is decreased by 44% as demonstrated by in vitro biochemical methods. In addition, an increase in all acetylcholine receptor subunit mRNA levels is observed in muscle cells derived from the patient iPSC. All these approaches point to pathophysiological mechanisms essentially characterized by a decrease in signaling and the presence of immature acetylcholine receptors.
Collapse
Affiliation(s)
- Susie Barbeau
- CNRS, Saint Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, 75270 Paris, France
| | - Fannie Semprez
- CNRS, Saint Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, 75270 Paris, France
| | - Alexandre Dobbertin
- CNRS, Saint Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, 75270 Paris, France
| | - Laurine Merriadec
- INSERM/UEPS UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Florine Roussange
- INSERM/UEPS UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Bruno Eymard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Université, 75013 Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Damien Sternberg
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Université, 75013 Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Emmanuel Fournier
- Department of Physiology, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, 75006 Paris, France
| | - Hanice Karasoy
- Department of Neurology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Claire Legay
- CNRS, Saint Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, 75270 Paris, France
| |
Collapse
|
15
|
Allen NM, O’Rahelly M, Eymard B, Chouchane M, Hahn A, Kearns G, Kim DS, Byun SY, Nguyen CTE, Schara-Schmidt U, Kölbel H, Marina AD, Schneider-Gold C, Roefke K, Thieme A, Van den Bergh P, Avalos G, Álvarez-Velasco R, Natera-de Benito D, Cheng MHM, Chan WK, Wan HS, Thomas MA, Borch L, Lauzon J, Kornblum C, Reimann J, Mueller A, Kuntzer T, Norwood F, Ramdas S, Jacobson LW, Jie X, Fernandez-Garcia MA, Wraige E, Lim M, Lin JP, Claeys KG, Aktas S, Oskoui M, Hacohen Y, Masud A, Leite MI, Palace J, De Vivo D, Vincent A, Jungbluth H. The emerging spectrum of fetal acetylcholine receptor antibody-related disorders (FARAD). Brain 2023; 146:4233-4246. [PMID: 37186601 PMCID: PMC10545502 DOI: 10.1093/brain/awad153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
In utero exposure to maternal antibodies targeting the fetal acetylcholine receptor isoform (fAChR) can impair fetal movement, leading to arthrogryposis multiplex congenita (AMC). Fetal AChR antibodies have also been implicated in apparently rare, milder myopathic presentations termed fetal acetylcholine receptor inactivation syndrome (FARIS). The full spectrum associated with fAChR antibodies is still poorly understood. Moreover, since some mothers have no myasthenic symptoms, the condition is likely underreported, resulting in failure to implement effective preventive strategies. Here we report clinical and immunological data from a multicentre cohort (n = 46 cases) associated with maternal fAChR antibodies, including 29 novel and 17 previously reported with novel follow-up data. Remarkably, in 50% of mothers there was no previously established myasthenia gravis (MG) diagnosis. All mothers (n = 30) had AChR antibodies and, when tested, binding to fAChR was often much greater than that to the adult AChR isoform. Offspring death occurred in 11/46 (23.9%) cases, mainly antenatally due to termination of pregnancy prompted by severe AMC (7/46, 15.2%), or during early infancy, mainly from respiratory failure (4/46, 8.7%). Weakness, contractures, bulbar and respiratory involvement were prominent early in life, but improved gradually over time. Facial (25/34; 73.5%) and variable peripheral weakness (14/32; 43.8%), velopharyngeal insufficiency (18/24; 75%) and feeding difficulties (16/36; 44.4%) were the most common sequelae in long-term survivors. Other unexpected features included hearing loss (12/32; 37.5%), diaphragmatic paresis (5/35; 14.3%), CNS involvement (7/40; 17.5%) and pyloric stenosis (3/37; 8.1%). Oral salbutamol used empirically in 16/37 (43.2%) offspring resulted in symptom improvement in 13/16 (81.3%). Combining our series with all previously published cases, we identified 21/85 mothers treated with variable combinations of immunotherapies (corticosteroids/intravenous immunoglobulin/plasmapheresis) during pregnancy either for maternal MG symptom control (12/21 cases) or for fetal protection (9/21 cases). Compared to untreated pregnancies (64/85), maternal treatment resulted in a significant reduction in offspring deaths (P < 0.05) and other complications, with treatment approaches involving intravenous immunoglobulin/ plasmapheresis administered early in pregnancy most effective. We conclude that presentations due to in utero exposure to maternal (fetal) AChR antibodies are more common than currently recognized and may mimic a wide range of neuromuscular disorders. Considering the wide clinical spectrum and likely diversity of underlying mechanisms, we propose 'fetal acetylcholine receptor antibody-related disorders' (FARAD) as the most accurate term for these presentations. FARAD is vitally important to recognize, to institute appropriate management strategies for affected offspring and to improve outcomes in future pregnancies. Oral salbutamol is a symptomatic treatment option in survivors.
Collapse
Affiliation(s)
- Nicholas M Allen
- Department of Paediatrics, School of Medicine, University of Galway, Galway H91 V4AY, Ireland
| | - Mark O’Rahelly
- Department of Paediatrics, School of Medicine, University of Galway, Galway H91 V4AY, Ireland
| | - Bruno Eymard
- Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, Unité Pathologie Neuromusculaire, Bâtiment Babinski, G.H. Pitie-Salpetriere, 75013 Paris, France
| | - Mondher Chouchane
- Department of Pediatrics, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Andreas Hahn
- Department of Child Neurology, University Hospital Giessen, 35392 Giessen, Germany
| | - Gerry Kearns
- Department of Maxillofacial Surgery, St. James Hospital, Dublin D08 NHY1, Ireland
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University, School of Medicine, Pusan 50612, South Korea
| | - Shin Yun Byun
- Department of Pediatrics, Pusan National University, School of Medicine, Pusan 50612, South Korea
| | - Cam-Tu Emilie Nguyen
- Pediatric Neurology, CHU Sainte-Justine and Département de neurosciences, Université de Montréal, QC, H3T 1C5, Canada
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg, Essen, DE-45147 Essen, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg, Essen, DE-45147 Essen, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg, Essen, DE-45147 Essen, Germany
| | | | - Kathryn Roefke
- Klinik für Kinder- und Jugendmedizin, 99089 Erfurt, Germany
| | - Andrea Thieme
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, St. Georg Klinikum, 99817 Eisenach, Germany
| | - Peter Van den Bergh
- Neuromuscular Reference Centre UCL St-Luc, University Hospital Saint-Luc, 1200 Brussels, Belgium
| | - Gloria Avalos
- Department of Medicine, University of Galway, Galway H91 V4AY, Ireland
| | - Rodrigo Álvarez-Velasco
- Unitat Patologia Neuromuscular, Servei Neurologia Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | | | - Man Hin Mark Cheng
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong
| | - Wing Ki Chan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong
| | - Hoi Shan Wan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong
| | - Mary Ann Thomas
- Department of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children’s Hospital, Calgary, AB T3B 6A8, Canada
| | - Lauren Borch
- Department of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children’s Hospital, Calgary, AB T3B 6A8, Canada
| | - Julie Lauzon
- Department of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children’s Hospital, Calgary, AB T3B 6A8, Canada
| | - Cornelia Kornblum
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, 53127 Bonn, Germany
| | - Jens Reimann
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, 53127, Bonn, Germany
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Department of Clinical Neurosciences, CHUV, University of Lausanne, 1011 Lausanne, Switzerland
| | - Fiona Norwood
- Department of Neurology, King’s College Hospital, London SE5 9RS, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Leslie W Jacobson
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Xiaobo Jie
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Miguel A Fernandez-Garcia
- Department of Children’s Neurosciences, Evelina London Children's Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
| | - Elizabeth Wraige
- Department of Children’s Neurosciences, Evelina London Children's Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
| | - Ming Lim
- Department of Children’s Neurosciences, Evelina London Children's Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Department of Women and Children’s Health, School of Life Course Sciences (SoLCS), King’s College London, London SE1 9NH, UK
| | - Jean Pierre Lin
- Department of Children’s Neurosciences, Evelina London Children's Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Selma Aktas
- Faculty of Medicine, Department of Pediatrics, Division of Neonatology, Acıbadem University, 34752 Istanbul, Turkey
| | - Maryam Oskoui
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada
- Centre for Outcomes Research and Evaluation, Research Institute McGill University Health Centre, Montreal, QC H3H 2R9, Canada
| | - Yael Hacohen
- Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1N 3BG, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Ameneh Masud
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032-3791, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032-3791, USA
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Darryl De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032-3791, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032-3791, USA
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Heinz Jungbluth
- Department of Children’s Neurosciences, Evelina London Children's Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
| |
Collapse
|
16
|
Hennig K, Hardman D, Barata DM, Martins II, Bernabeu MO, Gomes ER, Roman W. Generating fast-twitch myotubes in vitro with an optogenetic-based, quantitative contractility assay. Life Sci Alliance 2023; 6:e202302227. [PMID: 37550008 PMCID: PMC10427763 DOI: 10.26508/lsa.202302227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
The composition of fiber types within skeletal muscle impacts the tissue's physiological characteristics and susceptibility to disease and ageing. In vitro systems should therefore account for fiber-type composition when modelling muscle conditions. To induce fiber specification in vitro, we designed a quantitative contractility assay based on optogenetics and particle image velocimetry. We submitted cultured myotubes to long-term intermittent light-stimulation patterns and characterized their structural and functional adaptations. After several days of in vitro exercise, myotubes contract faster and are more resistant to fatigue. The enhanced contractile functionality was accompanied by advanced maturation such as increased width and up-regulation of neuron receptor genes. We observed an up-regulation in the expression of fast myosin heavy-chain isoforms, which induced a shift towards a fast-twitch phenotype. This long-term in vitro exercise strategy can be used to study fiber specification and refine muscle disease modelling.
Collapse
Affiliation(s)
- Katharina Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - David Hardman
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - David Mb Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Ibb Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - William Roman
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
| |
Collapse
|
17
|
Gilhus NE. Myasthenia gravis, respiratory function, and respiratory tract disease. J Neurol 2023; 270:3329-3340. [PMID: 37101094 PMCID: PMC10132430 DOI: 10.1007/s00415-023-11733-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023]
Abstract
Myasthenia gravis (MG) is characterized by muscle weakness caused by autoantibodies that bind to the postsynaptic membrane at the neuromuscular junction and impair acetylcholine receptor function. Weakness of respiratory muscles represents the most severe MG manifestation, and 10-15% of all patients experience an MG crisis with the need of mechanical ventilatory support at least once in their life. MG patients with respiratory muscle weakness need active immunosuppressive drug treatment long term, and they need regular specialist follow-up. Comorbidities affecting respiratory function need attention and optimal treatment. Respiratory tract infections can lead to MG exacerbations and precipitate an MG crisis. Intravenous immunoglobulin and plasma exchange are the core treatments for severe MG exacerbations. High-dose corticosteroids, complement inhibitors, and FcRn blockers represent fast-acting treatments that are effective in most MG patients. Neonatal myasthenia is a transient condition with muscle weakness in the newborn caused by mother's muscle antibodies. In rare cases, treatment of respiratory muscle weakness in the baby is required.
Collapse
Affiliation(s)
- Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
18
|
Pechlivanidou M, Ninou E, Karagiorgou K, Tsantila A, Mantegazza R, Francesca A, Furlan R, Dudeck L, Steiner J, Tzartos J, Tzartos S. Autoimmunity to Neuronal Nicotinic Acetylcholine Receptors. Pharmacol Res 2023; 192:106790. [PMID: 37164280 DOI: 10.1016/j.phrs.2023.106790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in many and diverse cell types, participating in various functions of cells, tissues and systems. In this review, we focus on the autoimmunity against neuronal nAChRs, the specific autoantibodies and their mechanisms of pathological action in selected autoimmune diseases. We summarize the current relevant knowledge from human diseases as well as from experimental models of autoimmune neurological disorders related to antibodies against neuronal nAChR subunits. Despite the well-studied high immunogenicity of the muscle nAChRs where autoantibodies are the main pathogen of myasthenia gravis, autoimmunity to neuronal nAChRs seems infrequent, except for the autoantibodies to the ganglionic receptor, the α3 subunit containing nAChR (α3-nAChR), which are detected and are likely pathogenic in Autoimmune Autonomic Ganglionopathy (AAG). We describe the detection, presence and function of these antibodies and especially the recent development of a cell-based assay (CBA) which, contrary to until recently available assays, is highly specific for AAG. Rare reports of autoantibodies to the other neuronal nAChR subtypes include a few cases of antibodies to α7 and/or α4β2 nAChRs in Rasmussen encephalitis, schizophrenia, autoimmune meningoencephalomyelitis, and in some myasthenia gravis patients with concurrent CNS symptoms. Neuronal-type nAChRs are also present in several non-excitable tissues, however the presence and possible role of antibodies against them needs further verification. It is likely that the future development of more sensitive and disease-specific assays would reveal that neuronal nAChR autoantibodies are much more frequent and may explain the mechanisms of some seronegative autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Katerina Karagiorgou
- Tzartos NeuroDiagnostics, Athens, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andreetta Francesca
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Rozzano, Milan, Italy; Clinical and Research Center - IRCCS, Humanitas University, Rozzano, Milan, Italy
| | - Leon Dudeck
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany; German Center for Mental Health DZPG, Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health C-I-R-C, Halle-Jena-Magdeburg, Germany
| | - John Tzartos
- 2(nd) Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece.
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece; Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece; Department of Pharmacy, University of Patras, Patras, Greece.
| |
Collapse
|
19
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
20
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
21
|
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune disease where muscle antibodies form against the acetylcholine receptor (AChR), MuSK, or LRP4 at the neuromuscular junction leading to weakness. Patients worry about consequences for pregnancy, giving birth, nursing, and child outcome. AREAS COVERED This review lists the pharmacological treatments for MG in the reproductive age and gives recommendations. Consequences for pregnancy, giving birth, breastfeeding, and child outcome are discussed. EXPERT OPINION Pyridostigmine, corticosteroids in low doses, and azathioprine are regarded as safe during pregnancy and should be continued. Mycophenolate mofetil, methotrexate, and cyclophosphamide should not be used in reproductive age. Rituximab should not be given during pregnancy. Other monoclonal IgG antibodies such as eculizumab and efgartigimod should be given only when regarded strictly necessary to avoid long-term and severe incapacity. Intravenous and subcutaneous immunoglobulin and plasma exchange are safe treatments during pregnancy and are recommended for exacerbations with moderate or severe generalized weakness. Most MG women have spontaneous vaginal deliveries. Indications for Cesarean section are obstetrical and similar to non-MG women. Neonatal myasthenia manifests as a transient weakness caused by the mother's IgG muscle antibodies and affects 10% of the babies. MG women should be supported in their wish to have children.
Collapse
Affiliation(s)
- Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Hicks MR, Pyle AD. The emergence of the stem cell niche. Trends Cell Biol 2023; 33:112-123. [PMID: 35934562 PMCID: PMC9868094 DOI: 10.1016/j.tcb.2022.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Stem cell niches are composed of dynamic microenvironments that support stem cells over a lifetime. The emerging niche is distinct from the adult because its main role is to support the progenitors that build organ systems in development. Emerging niches mature through distinct stages to form the adult niche and enable proper stem cell support. As a model of emerging niches, this review highlights how differences in the skeletal muscle microenvironment influence emerging versus satellite cell (SC) niche formation in skeletal muscle, which is among the most regenerative tissue systems. We contrast how stem cell niches regulate intrinsic properties between progenitor and stem cells throughout development to adulthood. We describe new applications for generating emerging niches from human pluripotent stem cells (hPSCs) using developmental principles and highlight potential applications for regeneration and therapeutics.
Collapse
Affiliation(s)
- Michael R Hicks
- Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - April D Pyle
- Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Lysenkov SP, Muzhenya DV, Tuguz AR, Urakova TU, Shumilov DS, Thakushinov IA, Thakushinov RA, Tatarkova EA, Urakova DM. Cholinergic deficiency in the cholinergic system as a pathogenetic link in the formation of various syndromes in COVID-19. CHINESE J PHYSIOL 2023; 66:1-13. [PMID: 36814151 DOI: 10.4103/cjop.cjop-d-22-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
According to recent data, several mechanisms of viral invasion of the central nervous system (CNS) have been proposed, one of which is both direct penetration of the virus through afferent nerve fibers and damage to the endothelium of cerebral vessels. It has been proven that the SARS-CoV-2 virus affects pathologically not only the human cardiorespiratory system but is also associated with a wide range of neurological diseases, cerebrovascular accidents, and neuromuscular pathologies. However, the observed post-COVID symptom complex in patients, manifested in the form of headache, "fog in the head," high temperature, muscle weakness, lowering blood pressure, does it make us think about the pathophysiological mechanisms that contribute to the development of this clinical picture? One possible explanation is a disruption in the signaling of the acetylcholine system (AChS) in the body. Viral invasions, and in particular COVID-19, can negatively affect the work of the AChS, disrupting its coordination activities. Therefore, the main goal of this literature review is to analyze the information and substantiate the possible mechanisms for the occurrence of post-COVID syndrome in people who have had COVID-19 from the standpoint of AChS dysfunctions.
Collapse
Affiliation(s)
- Sergey Petrovich Lysenkov
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | | | - Aminat Ramazanovna Tuguz
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Tamara Ur'evna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | - Dmitriy Sergeevich Shumilov
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | | | | | - Elena Anatolevna Tatarkova
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Diana Muratovna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| |
Collapse
|
24
|
Brooks SV, Guzman SD, Ruiz LP. Skeletal muscle structure, physiology, and function. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:3-16. [PMID: 37562874 DOI: 10.1016/b978-0-323-98818-6.00013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Contractions of skeletal muscles provide the stability and power for all body movements. Consequently, any impairment in skeletal muscle function results in some degree of instability or immobility. Factors that influence skeletal muscle structure and function are therefore of great interest scientifically and clinically. Injury, neuromuscular disease, and old age are among the factors that commonly contribute to impairments in skeletal muscle function. The goal of this chapter is to summarize the fundamentals of skeletal muscle structure and function to provide foundational knowledge for this Handbook volume. We examine the molecular interactions that provide the basis for the generation of force and movement, discuss mechanisms of the regulation of contraction at the level of myofibers, and introduce concepts of the activation and control of muscle function in vivo. Where appropriate, the chapter updates the emerging science that will increase understanding of muscle function.
Collapse
Affiliation(s)
- Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Steve D Guzman
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Lloyd P Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Alignment of Skeletal Muscle Cells Facilitates Acetylcholine Receptor Clustering and Neuromuscular Junction Formation with Co-Cultured Human iPSC-Derived Motor Neurons. Cells 2022; 11:cells11233760. [PMID: 36497020 PMCID: PMC9738074 DOI: 10.3390/cells11233760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
In vitro neuromuscular junction (NMJ) models are powerful tools for studying neuromuscular disorders. Although linearly patterned culture surfaces have been reported to be useful for the formation of in vitro NMJ models using mouse motor neuron (MNs) and skeletal muscle (SkM) myotubes, it is unclear how the linearly patterned culture surface increases acetylcholine receptor (AChR) clustering, one of the steps in the process of NMJ formation, and whether this increases the in vitro NMJ formation efficiency of co-cultured human MNs and SkM myotubes. In this study, we investigated the effects of a linearly patterned culture surface on AChR clustering in myotubes and examined the possible mechanism of the increase in AChR clustering using gene expression analysis, as well as the effects of the patterned surface on the efficiency of NMJ formation between co-cultured human SkM myotubes and human iPSC-derived MNs. Our results suggest that better differentiation of myotubes on the patterned surface, compared to the flat surface, induced gene expression of integrin α7 and AChR ε-subunit, thereby increasing AChR clustering. Furthermore, we found that the number of NMJs between human SkM cells and MNs increased upon co-culture on the linearly patterned surface, suggesting the usefulness of the patterned surface for creating in vitro human NMJ models.
Collapse
|
26
|
Martínez E, Marcellini S, Henríquez JP. Beyond vertebrates: the amphioxus as a relevant model system to explore the formation, organization, and regeneration of neuromuscular synapses. Neural Regen Res 2022; 17:2425-2426. [PMID: 35535884 PMCID: PMC9120703 DOI: 10.4103/1673-5374.338994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Esperanza Martínez
- Neuromuscular Studies Lab (NeSt Lab); Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Sylvain Marcellini
- Laboratory of Development and Evolution (LADE); Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab); Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
27
|
Barbosa A, Zazula MF, Oliveira MCD, Teleken JL, Costa RM, Bonfleur ML, Torrejais MM. Maternal exposure to glyphosate-based herbicide promotes changes in the muscle structure of C57BL/6 mice offspring. Anat Rec (Hoboken) 2022; 305:3307-3316. [PMID: 35338770 DOI: 10.1002/ar.24922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/06/2022]
Abstract
Glyphosate (GBH) is a worldwide consumption pesticide and is used in the formulation of Roundup®, one of the most commercialized herbicides in the world. Maternal exposure to this herbicide can promote changes and adaptations in the offspring; however, the effects on skeletal muscle are poorly understood. In this sense, the present study sought to evaluate the effect of exposure to GBH on the characteristics of the soleus (SOL) and extensor digitorum longus (EDL) muscles. C57BL/6 pregnant female mice were divided into two groups: control (CTL) receiving water and glyphosate (GBH; n = 6) receiving 0.5% glyphosate. Male puppies were designated according to the group to which the mothers belonged, such as CTL-F1 and GBH-F1 and then euthanized at 150 days of age. There was a reduction in body weight and nasoanal length of animals exposed to GBH, while there was an increase in EDL weight, reduction in the proportion of fibers and number of nuclei, and an increase in the connective tissue of the SOL. The animals exposed to GBH presented higher values of body characteristics, mainly adiposity gain, while they presented a reduction in neuromuscular junctions (NMJ), and an increase in fibrosis in the SOL muscle, while there was a reduction in the number of nuclei, and an increase in the weight of the EDL muscle. These findings indicate that glyphosate can promote changes in the offspring's body growth, the deposition of adipose panicles and its effects on muscle can lead to changes in the structure and functioning of this tissue.
Collapse
Affiliation(s)
- Ariadne Barbosa
- Laboratório Experimental de Morfologia - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Matheus Felipe Zazula
- Laboratório de Plasticidade Morfofuncional - Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Mylena Campos de Oliveira
- Laboratório Experimental de Morfologia - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Jakeline Liara Teleken
- Laboratório de Fisiologia Endócrina e Metabolismo - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rose Meire Costa
- Laboratório de Biologia Estrutural e Funcional - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Maria Lucia Bonfleur
- Laboratório de Fisiologia Endócrina e Metabolismo - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Marcia Miranda Torrejais
- Laboratório Experimental de Morfologia - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
28
|
Medina‐Moreno A, Henríquez JP. Maturation of a postsynaptic domain: Role of small Rho GTPases in organising nicotinic acetylcholine receptor aggregates at the vertebrate neuromuscular junction. J Anat 2022; 241:1148-1156. [PMID: 34342888 PMCID: PMC9558164 DOI: 10.1111/joa.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor axon and a skeletal muscle fibre that allows muscle contraction and the coordinated movement in many species. A main hallmark of the mature NMJ is the assembly of nicotinic acetylcholine receptor (nAChR) aggregates in the muscle postsynaptic domain, that distributes in perfect apposition to presynaptic motor terminals. To assemble its unique functional architecture, initial embryonic NMJs undergo an early postnatal maturation process characterised by the transformation of homogenous nAChR-containing plaques to elaborate and branched pretzel-like structures. In spite of a detailed morphological characterisation, the molecular mechanisms controlling the intracellular scaffolding that organises a postsynaptic domain at the mature NMJ have not been fully elucidated. In this review, we integrate evidence of key processes and molecules that have shed light on our current understanding of the NMJ maturation process. On the one hand, we consider in vitro studies revealing the potential role of podosome-like structures to define discrete low nAChR-containing regions to consolidate a plaque-to-pretzel transition at the NMJ. On the other hand, we focus on in vitro and in vivo evidence demonstrating that members of the Ras homologous (Rho) protein family of small GTPases (small Rho GTPases) play indispensable roles on NMJ maturation by regulating the stability of nAChR aggregates. We combine this evidence to propose that small Rho GTPases are key players in the assembly of podosome-like structures that drive the postsynaptic maturation of vertebrate NMJs.
Collapse
Affiliation(s)
- Angelymar Medina‐Moreno
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| | - Juan Pablo Henríquez
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| |
Collapse
|
29
|
Safdarian M, Vazirianzadeh B, Ghorbani A, Pashmforoosh N, Baradaran M. Intraspecific differences in Androctunus crassicauda venom and envenomation symptoms. EXCLI JOURNAL 2022; 21:1222-1230. [PMID: 36320809 PMCID: PMC9618731 DOI: 10.17179/excli2022-5078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Envenomation by Androctunus crassicauda is very frequent in Iran, especially in the south-west. This scorpion is one of the six scorpions whose venom is used to prepare anti-venom. Using HPLC, we discovered venom components of A. crassicauda varies from one specimen to another depending on geographical location, and this result is confirmed by those first found in various symptoms of A. crassicauda sting in envenomed persons from two separate geographical places (north and south of Khuzestan province). There was a significant relationship between symptoms and location of envenomation by A. crassicauda. Muscle spasm was more dominant in envenomed people from Northern cities, and venom chromatogram analysis showed the presence of at least six main sharp peaks in Northern A. crassicauda rather than Southern A. crassicauda. It shows intraspecific differences in venom of A. crassicauda that must be considered in treatment of stung people from different geographical locations as well as in the preparation of anti-venom. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Vazirianzadeh
- Social Determinant of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ghorbani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Pashmforoosh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,*To whom correspondence should be addressed: Masoumeh Baradaran, Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, E-mail:
| |
Collapse
|
30
|
Chandrasekara U, Harris RJ, Fry BG. The Target Selects the Toxin: Specific Amino Acids in Snake-Prey Nicotinic Acetylcholine Receptors That Are Selectively Bound by King Cobra Venoms. Toxins (Basel) 2022; 14:toxins14080528. [PMID: 36006190 PMCID: PMC9416539 DOI: 10.3390/toxins14080528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Snake venom is an adaptive ecological trait that has evolved primarily as a form of prey subjugation. Thus, the selection pressure for toxin diversification is exerted by the prey’s physiological targets, with this pressure being particularly acute for specialist feeders, such as the King Cobra species, all of which are snake-prey specialists. However, while extensive research has been undertaken to elucidate key amino acids that guide toxin structure–activity relationships, reciprocal investigations into the specific sites guiding prey-lineage selective effects have been lacking. This has largely been due to the lack of assay systems amenable to systematic amino acid replacements of targeted proteins in the prey’s physiological pathways. To fill this knowledge gap, we used a recently described approach based upon mimotope peptides corresponding to the orthosteric site of nicotinic acetylcholine receptor alpha-1 subunits, a major binding site for snake venom neurotoxins that cause flaccid paralysis. We investigated the venoms of four different types of King Cobra (Cambodian, Javan, Malaysian, and Thai). This approach allowed for the determination of the key amino acid positions in King Cobra snake prey that are selectively bound by the toxins, whereby replacing these amino acids in the snake-prey orthosteric site with those from lizards or rats resulted in a significantly lower level of binding by the venoms, while conversely replacing the lizard or rat amino acids with those from the snake at that position increased the binding. By doing such, we identified three negatively charged amino acids in the snake orthosteric site that are strongly bound by the positively charged neurotoxic three-finger toxins found in King Cobra venom. This study, thus, sheds light on the selection pressures exerted by a specialist prey item for the evolution of lineage-selective toxins.
Collapse
|
31
|
McLean JW, Wilson JA, Tian T, Watson JA, VanHart M, Bean AJ, Scherer SS, Crossman DK, Ubogu E, Wilson SM. Disruption of Endosomal Sorting in Schwann Cells Leads to Defective Myelination and Endosomal Abnormalities Observed in Charcot-Marie-Tooth Disease. J Neurosci 2022; 42:5085-5101. [PMID: 35589390 PMCID: PMC9233440 DOI: 10.1523/jneurosci.2481-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.
Collapse
Affiliation(s)
- John W McLean
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Julie A Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Tina Tian
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer A Watson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary VanHart
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrew J Bean
- Graduate College, Rush University, Chicago, Illinois 60612
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Eroboghene Ubogu
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Scott M Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
32
|
Zlotos DP, Mandour YM, Jensen AA. Strychnine and its mono- and dimeric analogues: a pharmaco-chemical perspective. Nat Prod Rep 2022; 39:1910-1937. [PMID: 35380133 DOI: 10.1039/d1np00079a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to November 2021Since its isolation in 1818, strychnine has attracted the attention of a plethora of chemists and pharmacologists who have established its structure, developed total syntheses, and examined its complex pharmacology. While numerous reviews on structure elucidation and total synthesis of strychnine are available, reports on structure-activity relationships (SARs) of this fascinating alkaloid are rare. In this review, we present and discuss structures, synthetic approaches, metabolic transformations, and the diverse pharmacological actions of strychnine and its mono- and dimeric analogues. Particular attention is given to its SARs at glycine receptors (GlyRs) in light of recently published high-resolution structures of strychnine-GlyR complexes. Other pharmacological actions of strychnine and its derivatives, such as their antagonistic properties at nicotinic acetylcholine receptors (nAChRs), allosteric modulation of muscarinic acetylcholine receptors as well as anti-cancer and anti-plasmodial effects are also critically reviewed, and possible future developments in the field are discussed.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt.
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Raffa P, Easler M, Urciuolo A. Three-dimensional in vitro models of neuromuscular tissue. Neural Regen Res 2022; 17:759-766. [PMID: 34472462 PMCID: PMC8530117 DOI: 10.4103/1673-5374.322447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a dynamic tissue in which homeostasis and function are guaranteed by a very defined three-dimensional organization of myofibers in respect to other non-muscular components, including the extracellular matrix and the nervous network. In particular, communication between myofibers and the nervous system is essential for the overall correct development and function of the skeletal muscle. A wide range of chronic, acute and genetic-based human pathologies that lead to the alteration of muscle function are associated with modified preservation of the fine interaction between motor neurons and myofibers at the neuromuscular junction. Recent advancements in the development of in vitro models for human skeletal muscle have shown that three-dimensionality and integration of multiple cell types are both key parameters required to unveil pathophysiological relevant phenotypes. Here, we describe recent achievement reached in skeletal muscle modeling which used biomaterials for the generation of three-dimensional constructs of myotubes integrated with motor neurons.
Collapse
Affiliation(s)
- Paolo Raffa
- Institute of Pediatric Research IRP, Padova, Italy
| | - Maria Easler
- Institute of Pediatric Research IRP, Padova, Italy
| | - Anna Urciuolo
- Institute of Pediatric Research IRP, Padova, Italy
- Molecular Medicine Department, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Elgoyhen AB. The α9α10 nicotinic acetylcholine receptor: a compelling drug target for hearing loss? Expert Opin Ther Targets 2022; 26:291-302. [PMID: 35225139 PMCID: PMC9007918 DOI: 10.1080/14728222.2022.2047931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hearing loss is a major health problem, impacting education, communication, interpersonal relationships, and mental health. Drugs that prevent or restore hearing are lacking and hence novel drug targets are sought. There is the possibility of targeting the α9α10 nicotinic acetylcholine receptor (nAChR) in the prevention of noise-induced, hidden hearing loss and presbycusis. This receptor mediates synaptic transmission between medial olivocochlear efferent fibers and cochlear outer hair cells. This target is key since enhanced olivocochlear activity prevents noise-induced hearing loss and delays presbycusis. AREAS COVERED The work examines the α9α10 nicotinic acetylcholine receptor (nAChR), its role in noise-induced, hidden hearing loss and presbycusis and the possibility of targeting. Data has been searched in Pubmed, the World Report on Hearing from the World Health Organization and the Global Burden of Disease Study 2019. EXPERT OPINION The design of positive allosteric modulators of α9α10 nAChRs is proposed because of the advantage of reinforcing the medial olivocochlear (MOC)-hair cell endogenous neurotransmission without directly stimulating the target receptors, therefore avoiding receptor desensitization and reduced efficacy. The time is right for the discovery and development of α9α10 nAChRs targeting agents and high throughput screening assays will support this.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
35
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. GeroScience 2022; 44:1199-1213. [PMID: 34981273 DOI: 10.1007/s11357-021-00510-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
The escalation of life expectancy is accompanied by an increase in the prevalence of age-related conditions, such as sarcopenia. Sarcopenia, a muscle condition defined by low muscle strength, muscle quality or quantity, and physical performance, has a high prevalence among the elderly and is associated to increased mortality. The neuromuscular system has been emerging as a key contributor to sarcopenia pathogenesis. Indeed, the age-related degeneration of the neuromuscular junction (NMJ) function and structure may contribute to the loss of muscle strength and ultimately to the loss of muscle mass that characterize sarcopenia. The present mini-review discusses important signaling pathways involved in the function and maintenance of the NMJ, giving emphasis to the ones that might contribute to sarcopenia pathogenesis. Some conceivable biomarkers, such as C-terminal agrin fragment (CAF) and brain-derived neurotrophic factor (BDNF), and therapeutic targets, namely acetylcholine and calcitonin gene-related peptide (CGRP), can be retrieved, making way to future studies to validate their clinical use.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
36
|
Whole and fractionated human platelet lysate biomaterials-based biotherapy induces strong neuroprotection in experimental models of amyotrophic lateral sclerosis. Biomaterials 2021; 280:121311. [PMID: 34952382 DOI: 10.1016/j.biomaterials.2021.121311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons leading to death within 3 years and without a curative treatment. Neurotrophic growth factors (NTFs) are pivotal for cell survival. A reason for the lack of patient efficacy with single recombinant NTF brain infusion is likely to be due to the synergistic neuroprotective action of multiple NTFs on a diverse set of signaling pathways. Fractionated (protein size <50, <30, <10, <3 kDa) heat-treated human platelet lysate (HHPL) preparations were adapted for use in brain tissue with the aim of demonstrating therapeutic value in ALS models and further elucidation of the mechanisms of action. In neuronal culture all fractions induced Akt-dependent neuroprotection as well as a strong anti-apoptotic and anti-ferroptotic action. In the <3 kDa fraction anti-ferroptotic properties were shown to be GPX4 dependent highlighting a role for other platelet elements associated with NTFs. In the SOD1G86R mouse model, lifespan was strongly increased by intracerebroventricular delivery of HHPL or by intranasal administration of <3 kDa fraction. Our results suggest that the platelet lysate biomaterials are neuroprotective in ALS. Further studies would now validate theragnostic biomarker on its antiferroptotic action, for further clinical development.
Collapse
|
37
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
38
|
Cimpoca-Raptis BA, Ciobanu AM, Gica N, Peltecu G, Mitrea D, Panaitescu AM. Fetal Surveillance in Pregnancies with Myasthenia Gravis. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1277. [PMID: 34833495 PMCID: PMC8624595 DOI: 10.3390/medicina57111277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune condition, that commonly impacts adult women of reproductive age. Myasthenia gravis in pregnancy is rare, but the incidence is higher in different geographical areas. Pregnancies in mothers with MG can have an unfortunate outcome. Acetylcholine receptor antibodies may pass into the fetal circulation and can affect the fetal neuromuscular junction, generating transient MG or even fetal arthrogryposis. The 2016 and 2021 International Consensus Guidance for Management of Myasthenia Gravis issued by Myasthenia Gravis Foundation of America is lacking in recommendation for fetal surveillance for pregnancies in women with MG. The aim of this paper is to highlight fetal and neonatal complications in mothers with MG and to offer antenatal care insights. Close maternal and pregnancy monitoring can improve pregnancy outcome. Patients with MG should be encouraged to conceive, to avoid triggers for exacerbations of the disease during pregnancy and a multidisciplinary team should be established to ensure the optimal support and therapy.
Collapse
Affiliation(s)
- Brîndușa Ana Cimpoca-Raptis
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.A.C.-R.); (N.G.); (G.P.); (A.M.P.)
- Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Anca Marina Ciobanu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.A.C.-R.); (N.G.); (G.P.); (A.M.P.)
- Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Nicolae Gica
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.A.C.-R.); (N.G.); (G.P.); (A.M.P.)
- Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Gheorghe Peltecu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.A.C.-R.); (N.G.); (G.P.); (A.M.P.)
- Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Dan Mitrea
- Neuroaxis, Neurology Clinic, 011302 Bucharest, Romania;
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.A.C.-R.); (N.G.); (G.P.); (A.M.P.)
- Filantropia Clinical Hospital, 011132 Bucharest, Romania
| |
Collapse
|
39
|
Tamáš M, Pankratova S, Schjerling P, Soendenbroe C, Yeung CC, Pennisi CP, Jakobsen JR, Krogsgaard MR, Kjaer M, Mackey AL. Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons. Physiol Rep 2021; 9:e15077. [PMID: 34713978 PMCID: PMC8554775 DOI: 10.14814/phy2.15077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
Insight into the bidirectional signaling between primary human myogenic cells and neurons is lacking. For this purpose, human myogenic cells were derived from the semitendinosus and gracilis muscles of five healthy individuals and co-cultured with cerebellar granule neurons from two litters of 7-day-old Wistar rat pups, in muscle medium or neural medium, alongside monocultures of myogenic cells or neurons. RT-PCR was performed to determine human mRNA levels of GAPDH, Ki67, myogenin, and MUSK, and the acetylcholine receptor subtypes CHRNA1, CHRNB1, CHRNG, CHRND, and CHRNE, and rat mRNA levels of GAPDH, Fth1, Rack1, vimentin, Cdh13, and Ppp1r1a. Immunocytochemistry was used to evaluate neurite outgrowth (GAP43) in the presence and absence of myogenic cells. Co-culture with primary neurons lead to higher myogenic cell gene expression levels of GAPDH, myogenin, MUSK, CHRNA1, CHRNG, and CHRND, compared to myogenic cells cultured alone. It appeared that neurons preferentially attached to myotubes and that neurite outgrowth was enhanced when neurons were cultured with myogenic cells compared to monoculture. In neural medium, rat mRNA levels of GAPDH, vimentin, Cdh13, and Ppp1r1a were greater in co-culture, versus monoculture, whereas in muscle medium co-culture lead to lower levels of Fth1, Rack1, vimentin, and Cdh13 than monoculture. These findings demonstrate mutually beneficial stimulatory signaling between rat cerebellar granule neurons and human myogenic cells, providing support for an active role for both the neuron and the muscle cell in stimulating neurite growth and myogenesis. Bidirectional muscle nerve signaling.
Collapse
Affiliation(s)
- Michal Tamáš
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Stanislava Pankratova
- Laboratory of Neural PlasticityDepartment of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Peter Schjerling
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Casper Soendenbroe
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- XlabDepartment of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ching‐Yan Chloé Yeung
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Cristian Pablo Pennisi
- Regenerative Medicine GroupDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - Jens R. Jakobsen
- Section for Sports Traumatology M51Department of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Michael R. Krogsgaard
- Section for Sports Traumatology M51Department of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Michael Kjaer
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Abigail L. Mackey
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- XlabDepartment of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
40
|
Alberola-Die A, Encinar JA, Cobo R, Fernández-Ballester G, González-Ros JM, Ivorra I, Morales A. Peimine, an Anti-Inflammatory Compound from Chinese Herbal Extracts, Modulates Muscle-Type Nicotinic Receptors. Int J Mol Sci 2021; 22:ijms222011287. [PMID: 34681946 PMCID: PMC8539251 DOI: 10.3390/ijms222011287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Fritillaria bulbs are used in Traditional Chinese Medicine to treat several illnesses. Peimine (Pm), an anti-inflammatory compound from Fritillaria, is known to inhibit some voltage-dependent ion channels and muscarinic receptors, but its interaction with ligand-gated ion channels remains unexplored. We have studied if Pm affects nicotinic acetylcholine receptors (nAChRs), since they play broad functional roles, both in the nervous system and non-neuronal tissues. Muscle-type nAChRs were incorporated to Xenopus oocytes and the action of Pm on the membrane currents elicited by ACh (IAChs) was assessed. Functional studies were combined with virtual docking and molecular dynamics assays. Co-application of ACh and Pm reversibly blocked IACh, with an IC50 in the low micromolar range. Pm inhibited nAChR by: (i) open-channel blockade, evidenced by the voltage-dependent inhibition of IAch, (ii) enhancement of nAChR desensitization, revealed by both an accelerated IACh decay and a decelerated IACh deactivation, and (iii) resting-nAChR blockade, deduced from the IACh inhibition elicited by Pm when applied before ACh superfusion. In good concordance, virtual docking and molecular dynamics assays demonstrated that Pm binds to different sites at the nAChR, mostly at the transmembrane domain. Thus, Pm from Fritillaria bulbs, considered therapeutic herbs, targets nAChRs with high affinity, which might account for its anti-inflammatory actions.
Collapse
Affiliation(s)
- Armando Alberola-Die
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
| | - José Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain; (J.A.E.); (G.F.-B.); (J.M.G.-R.)
| | - Raúl Cobo
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain; (J.A.E.); (G.F.-B.); (J.M.G.-R.)
| | - José Manuel González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain; (J.A.E.); (G.F.-B.); (J.M.G.-R.)
| | - Isabel Ivorra
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
| | - Andrés Morales
- División de Fisiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain; (A.A.-D.); (R.C.); (I.I.)
- Correspondence: ; Tel.: +34-96-590-3949
| |
Collapse
|
41
|
Abstract
Eye movements are indispensable for visual image stabilization during self-generated and passive head and body motion and for visual orientation. Eye muscles and neuronal control elements are evolutionarily conserved, with novel behavioral repertoires emerging during the evolution of frontal eyes and foveae. The precise execution of eye movements with different dynamics is ensured by morphologically diverse yet complementary sets of extraocular muscle fibers and associated motoneurons. Singly and multiply innervated muscle fibers are controlled by motoneuronal subpopulations with largely selective premotor inputs from task-specific ocular motor control centers. The morphological duality of the neuromuscular interface is matched by complementary biochemical and molecular features that collectively assign different physiological properties to the motor entities. In contrast, the functionality represents a continuum where most motor elements contribute to any type of eye movement, although within preferential dynamic ranges, suggesting that signal transmission and muscle contractions occur within bands of frequency-selective pathways.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
42
|
Pelosi L, Berardinelli MG, Forcina L, Ascenzi F, Rizzuto E, Sandri M, De Benedetti F, Scicchitano BM, Musarò A. Sustained Systemic Levels of IL-6 Impinge Early Muscle Growth and Induce Muscle Atrophy and Wasting in Adulthood. Cells 2021; 10:1816. [PMID: 34359985 PMCID: PMC8306542 DOI: 10.3390/cells10071816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
IL-6 is a pleiotropic cytokine that can exert different and opposite effects. The muscle-induced and transient expression of IL-6 can act in an autocrine or paracrine manner, stimulating anabolic pathways associated with muscle growth, myogenesis, and with regulation of energy metabolism. In contrast, under pathologic conditions, including muscular dystrophy, cancer associated cachexia, aging, chronic inflammatory diseases, and other pathologies, the plasma levels of IL-6 significantly increase, promoting muscle wasting. Nevertheless, the specific physio-pathological role exerted by IL-6 in the maintenance of differentiated phenotype remains to be addressed. The purpose of this study was to define the role of increased plasma levels of IL-6 on muscle homeostasis and the mechanisms contributing to muscle loss. Here, we reported that increased plasma levels of IL-6 promote alteration in muscle growth at early stage of postnatal life and induce muscle wasting by triggering a shift of the slow-twitch fibers toward a more sensitive fast fiber phenotype. These findings unveil a role for IL-6 as a potential biomarker of stunted growth and skeletal muscle wasting.
Collapse
Affiliation(s)
- Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Maria Grazia Berardinelli
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.P.); (M.G.B.); (L.F.)
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant’Andrea Hospital, “Sapienza” University, 00161 Rome, Italy;
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy;
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy;
- Department of Biomedical Sciences, University of Padova, 35121 Padua, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children’s Hospital, 00146 Rome, Italy;
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy;
| | - Antonio Musarò
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy
- Scuola Superiore di Studi Avanzati Sapienza (SSAS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
43
|
Agonist efficiency from concentration-response curves: Structural implications and applications. Biophys J 2021; 120:1800-1813. [PMID: 33675765 DOI: 10.1016/j.bpj.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Agonists are evaluated by a concentration-response curve (CRC), with a midpoint (EC50) that indicates potency, a high-concentration asymptote that indicates efficacy, and a low-concentration asymptote that indicates constitutive activity. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that η can be calculated from EC50 and the asymptotes of a CRC derived from either single-channel or whole-cell responses. For 20 agonists of skeletal muscle nicotinic receptors, the distribution of η-values is bimodal with population means at 51% (including acetylcholine, nornicotine, and dimethylphenylpiperazinium) and 40% (including epibatidine, varenicline, and cytisine). The value of η is related inversely to the size of the agonist's headgroup, with high- versus low-efficiency ligands having an average volume of 70 vs. 102 Å3. Most binding site mutations have only a small effect on acetylcholine efficiency, except for αY190A (35%), αW149A (60%), and those at αG153 (42%). If η is known, the EC50 and high-concentration asymptote can be calculated from each other. Hence, an entire CRC can be estimated from the response to a single agonist concentration, and efficacy can be estimated from EC50 of a CRC that has been normalized to 1. Given η, the level of constitutive activity can be estimated from a single CRC.
Collapse
|
44
|
Kudryavtsev D, Isaeva A, Barkova D, Spirova E, Mukhutdinova R, Kasheverov I, Tsetlin V. Point Mutations of Nicotinic Receptor α1 Subunit Reveal New Molecular Features of G153S Slow-Channel Myasthenia. Molecules 2021; 26:molecules26051278. [PMID: 33652901 PMCID: PMC7956382 DOI: 10.3390/molecules26051278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Slow-channel congenital myasthenic syndromes (SCCMSs) are rare genetic diseases caused by mutations in muscle nicotinic acetylcholine receptor (nAChR) subunits. Most of the known SCCMS-associated mutations localize at the transmembrane region near the ion pore. Only two SCCMS point mutations are at the extracellular domains near the acetylcholine binding site, α1(G153S) being one of them. In this work, a combination of molecular dynamics, targeted mutagenesis, fluorescent Ca2+ imaging and patch-clamp electrophysiology has been applied to G153S mutant muscle nAChR to investigate the role of hydrogen bonds formed by Ser 153 with C-loop residues near the acetylcholine-binding site. Introduction of L199T mutation to the C-loop in the vicinity of Ser 153 changed hydrogen bonds distribution, decreased acetylcholine potency (EC50 2607 vs. 146 nM) of the double mutant and decay kinetics of acetylcholine-evoked cytoplasmic Ca2+ rise (τ 14.2 ± 0.3 vs. 34.0 ± 0.4 s). These results shed light on molecular mechanisms of nAChR activation-desensitization and on the involvement of such mechanisms in channelopathy genesis.
Collapse
Affiliation(s)
- Denis Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.I.); (E.S.); (R.M.); (I.K.); (V.T.)
- Correspondence:
| | - Anastasia Isaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.I.); (E.S.); (R.M.); (I.K.); (V.T.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Daria Barkova
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Ekaterina Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.I.); (E.S.); (R.M.); (I.K.); (V.T.)
| | - Renata Mukhutdinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.I.); (E.S.); (R.M.); (I.K.); (V.T.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Igor Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.I.); (E.S.); (R.M.); (I.K.); (V.T.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.I.); (E.S.); (R.M.); (I.K.); (V.T.)
- Institute of Engineering Physics for Biomedicine, MePhi, 115409 Moscow, Russia
| |
Collapse
|
45
|
Terpinskaya TI, Osipov AV, Kryukova EV, Kudryavtsev DS, Kopylova NV, Yanchanka TL, Palukoshka AF, Gondarenko EA, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Mar Drugs 2021; 19:118. [PMID: 33669933 PMCID: PMC7956437 DOI: 10.3390/md19020118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, β2 and β4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.
Collapse
Affiliation(s)
- Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Nina V. Kopylova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Tatsiana L. Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alena F. Palukoshka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Elena A. Gondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| |
Collapse
|
46
|
Son L, Kryukova E, Ziganshin R, Andreeva T, Kudryavtsev D, Kasheverov I, Tsetlin V, Utkin Y. Novel Three-Finger Neurotoxins from Naja melanoleuca Cobra Venom Interact with GABA A and Nicotinic Acetylcholine Receptors. Toxins (Basel) 2021; 13:164. [PMID: 33672715 PMCID: PMC7924340 DOI: 10.3390/toxins13020164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
Cobra venoms contain three-finger toxins (TFT) including α-neurotoxins efficiently binding nicotinic acetylcholine receptors (nAChRs). As shown recently, several TFTs block GABAA receptors (GABAARs) with different efficacy, an important role of the TFTs central loop in binding to these receptors being demonstrated. We supposed that the positive charge (Arg36) in this loop of α-cobratoxin may explain its high affinity to GABAAR and here studied α-neurotoxins from African cobra N. melanoleuca venom for their ability to interact with GABAARs and nAChRs. Three α-neurotoxins, close homologues of the known N. melanoleuca long neurotoxins 1 and 2, were isolated and sequenced. Their analysis on Torpedocalifornica and α7 nAChRs, as well as on acetylcholine binding proteins and on several subtypes of GABAARs, showed that all toxins interacted with the GABAAR much weaker than with the nAChR: one neurotoxin was almost as active as α-cobratoxin, while others manifested lower activity. The earlier hypothesis about the essential role of Arg36 as the determinant of high affinity to GABAAR was not confirmed, but the results obtained suggest that the toxin loop III may contribute to the efficient interaction of some long-chain neurotoxins with GABAAR. One of isolated toxins manifested different affinity to two binding sites on Torpedo nAChR.
Collapse
Affiliation(s)
- Lina Son
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Elena Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
| | - Tatyana Andreeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
| | - Denis Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
| | - Igor Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, ul. Trubetskaya 8, bld. 2, 119991 Moscow, Russia
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
| | - Yuri Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (L.S.); (E.K.); (R.Z.); (T.A.); (D.K.); (I.K.); (V.T.)
| |
Collapse
|