1
|
Woo S, Park PG, An T, Fatima M, Moon YE, Lee SY, Youn H, Hong KJ. Mini-review on the therapeutic vaccines targeting chronic infectious diseases: Evaluation system of therapeutic vaccines targeting HPV and EBV-related cancers. Hum Vaccin Immunother 2025; 21:2457187. [PMID: 39957237 PMCID: PMC11834422 DOI: 10.1080/21645515.2025.2457187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
Chronic infectious diseases are threatening human health today, and their public health severity is increasing. The efficacy issues of drugs and the increase in drug-resistant pathogens require new response strategies for chronic infectious diseases, and therapeutic vaccines have recently been proposed as an effective alternative. However, research on therapeutic vaccines is still relatively underdeveloped. To solve this problem, an accurate understanding of the status and the challenge at hand of therapeutic vaccines targeting chronic infectious diseases is needed. In the present review, we provide an overview of the latest research trends in therapeutic vaccines targeting chronic infectious diseases and summarize the development status of therapeutic vaccines currently undergoing clinical research, focusing on the cases of human papillomavirus (HPV) and Epstein-Barr virus (EBV) as representative examples. We highlight the importance of standard methods for the evaluation of therapeutic vaccine, focusing on the cell-mediated immune response, which might accelerate therapeutic vaccine development.
Collapse
Affiliation(s)
- Seungkyun Woo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ye-Eun Moon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kee-Jong Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Korea
| |
Collapse
|
2
|
Kim IE, Oduor C, Stamp J, Luftig MA, Moormann AM, Crawford L, Bailey JA. Incorporation of Epstein-Barr viral variation implicates significance of Latent Membrane Protein 1 in survival prediction and prognostic subgrouping in Burkitt lymphoma. Int J Cancer 2025; 156:2188-2199. [PMID: 40047459 PMCID: PMC11971018 DOI: 10.1002/ijc.35384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025]
Abstract
Although Epstein-Barr virus (EBV) plays a role in Burkitt lymphoma (BL) tumorigenesis, it is unclear if EBV genetic variation impacts clinical outcomes. From 130 publicly available whole-genome tumor sequences of EBV-positive BL patients, we used least absolute shrinkage and selection operator (LASSO) regression and Bayesian variable selection models within a Cox proportional hazards framework to select the top EBV variants, putative driver genes, and clinical features associated with patient survival time. These features were incorporated into survival prediction and prognostic subgrouping models. Our model yielded 22 EBV variants, including seven in latent membrane protein 1 (LMP1), as most associated with patient survival time. Using the top EBV variants, driver genes, and clinical features, we defined three prognostic subgroups that demonstrated differential survival rates, laying the foundation for incorporating EBV variants such as those in LMP1 as predictive biomarker candidates in future studies.
Collapse
Affiliation(s)
- Isaac E. Kim
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Cliff Oduor
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Julian Stamp
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Microsoft Research, Cambridge, MA, USA
| | - Jeffrey A. Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Mutalik C, Sharma S, Yougbaré S, Chen CY, Kuo TR. Nanoplasmonic Biosensors: A Comprehensive Overview and Future Prospects. Int J Nanomedicine 2025; 20:5817-5836. [PMID: 40356858 PMCID: PMC12067471 DOI: 10.2147/ijn.s521442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Recent nanotechnological advancements have resulted in a paradigm shift in biosensing applications through the advent of nanoplasmonic biosensors. These devices integrate nanomaterials with phenomena like surface plasmon resonance (SPR) and localized SPR (LSPR) to address the critical diagnostic and analytical needs across medicine, food safety, and drug discovery. Leveraging metals like gold and silver, these sensors exhibit enhanced optical and electronic properties, enabling the detection of biomolecules at ultralow concentrations. However, despite their transformative potential, challenges concerning stability, reproducibility, cost-efficiency, and scalability impede widespread implementation. This review offers a rigorous analysis of nanoplasmonic biosensors, emphasizing their underlying operational mechanisms and diverse applications. It also delves into design paradigms, fabrication protocols, and optimization strategies while concurrently examining prevailing challenges and prospective advancements. Furthermore, it highlights emerging trends, such as hybrid plasmonic nanostructures, conferring advantages in miniaturization, automation, and high-throughput analysis, thereby establishing a robust foundation for future innovation in the field.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Center for Airborne Infection & Transmission Science, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shashwat Sharma
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro, BP 21811, Burkina Faso
| | - Chih-Yu Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- School of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
4
|
Athamneh RY, Swaity HA, Al Moman W, Al-Taweil HI, Benbraiek A, Khalifeh AH. Molecular Characterization of Epstein - Barr virus Based on EBNA3C Protein among Hematopoietic Stem Cell Transplant Recipients in Jordan. Mediterr J Hematol Infect Dis 2025; 17:e2025032. [PMID: 40375912 PMCID: PMC12081047 DOI: 10.4084/mjhid.2025.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/12/2025] [Indexed: 05/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV), a human herpes virus, presents significant risks to hematopoietic stem cell transplant (HSCT) recipients due to immunosuppressive treatments. Two genotypes of EBV can infect humans: EBV1 and EBV2. These genotypes differ in their latent genes. One important latent protein is EBNA3, which plays a crucial role in immune evasion and pathogenesis of EBV. Objectives This study characterizes EBV genotypes among HSCT recipients in Jordan and examines the relationship between EBV positivity and demographic factors. Methods A retrospective observational study was conducted at the Jordanian Royal Medical Services Hospital (JRMS) from January to October 2024. Blood samples were collected from the virology department, and plasma was separated. EBV-DNA detection was performed using quantitative real-time PCR, while conventional PCR targeted EBNA3C genes for genotyping. Results Out of 93 EBV-positive HSCT recipients, 31 underwent genotyping analysis. The findings revealed a predominance of EBV2, detected in 26 samples (84%), while 5 samples (16%) exhibited mixed infections. Notably, EBV1 was not identified in any samples. A significant association was found between EBV positivity and male recipients, with a markedly higher prevalence in individuals under 18 years of age (P<0.0001). Conclusion EBV2 was the predominant genotype among HSCT recipients in Jordan, with coinfections of EBV1 and EBV2. Understanding the prevalent genotypes in transplant patients is crucial for managing EBV-related complications, ultimately improving patient outcomes. This study highlights the need for continuous monitoring and characterization of EBV genotypes in immunocompromised populations.
Collapse
Affiliation(s)
- Rabaa Y Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Hiba A Swaity
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Waleed Al Moman
- Department of Basic Pathological Sciences, Faculty of Medicine, Yarmouk University, Jordan
| | - Hayyan I Al-Taweil
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Assia Benbraiek
- Medical and Clinical Laboratory Technology, Faculty of Allied Medical Sciences, Allied Science Private University
| | - Anas H Khalifeh
- Department of Community & Mental Health Nursing, Faculty of Nursing, Zarqa University, Zarqa, Jordan
| |
Collapse
|
5
|
Tsotridou E, Hatzipantelis E. Epstein-Barr Infection, Hodgkin's Lymphoma, and the Immune System: Insights into the Molecular Mechanisms Facilitating Immune Evasion. Cancers (Basel) 2025; 17:1481. [PMID: 40361408 PMCID: PMC12071159 DOI: 10.3390/cancers17091481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Epstein-Barr virus (EBV) constitutes a very common pathogen and a well-characterized carcinogen. EBV has the ability to establish a chronic latent infection, during which only a subset of the viral genes is expressed. EBV is implicated in multiple malignancies, including Hodgkin's lymphoma (HL). HL mainly affects adolescents and young adults and has an overall favorable prognosis. However, relapsed or refractory disease still poses a therapeutic challenge. EBV does not only induce malignant transformation but also hinders the detection and clearance of the neoplastic cells by the immune system. The proteins and non-coding RNAs expressed in latency IIa, which is associated with HL, employ a variety of mechanisms to target different steps of innate and adaptive immunity, to take advantage of the immunosuppressant effect of immune checkpoints, and to shape the microenvironment to support the survival and proliferation of malignant cells. They suppress the expression or promote the degradation of pattern-recognition receptors, interfere with type I interferon and proinflammatory cytokine mediated signaling, and hinder the effector function of natural killer cells. The processing and presentation of peptides to CD4 and CD8 T cells are also hampered. EBV induces the expression of immune checkpoints, the secretion of immunosuppressive cytokines, and the efflux of regulatory T cells in the tumor microenvironment. The current review provides a comprehensive overview of the molecular mechanisms underlying this complex interplay between EBV and the immune system in HL with focus on clinical data from the pediatric population, which is the key for developing novel, effective therapeutic interventions.
Collapse
Affiliation(s)
- Eleni Tsotridou
- Children’s and Adolescents’ Hematology Oncology Unit, 2nd Department of Paediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece;
| | | |
Collapse
|
6
|
Kyriakidou A, Papapostolou A, Picolos MK. Epstein-Barr Virus Induced Myositis in a Patient with Mitochondrial Diabetes. Eur J Case Rep Intern Med 2025; 12:005197. [PMID: 40270659 PMCID: PMC12013255 DOI: 10.12890/2025_005197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 04/25/2025] Open
Abstract
Epstein-Barr virus (EBV) is a rare but well-known trigger for acute myositis. Diagnosis is primarily based on the clinical presentation and an accounting laboratory profile. Patients with mitochondrial dysfunction are potentially at a higher risk of myopathic exacerbations upon exposure to acute insults. This is due to the high energy requirements of myofibers and their reliance on sufficient mitochondrial performance. Hence, any mitochondrial insult can compromise the function of myofibers. This has implications on the management of people with pre-existing mitochondrial dysfunction, with scope for preventative measures and a lower threshold for diagnosis of myopathies. Usually, management is limited to conservative measures. Medications which predispose to muscle injury need to be withheld during the acute episode and their long-term need reviewed based on a risk-benefit analysis. Here, we present a case of acute EBV-induced myositis on a background of maternally inherited diabetes and deafness and chronic statin intake. LEARNING POINTS Myositis can be an infrequent complication of Epstein-Barr virus infection.The presence of mitochondrial dysfunction could potentially increase the risk of myositis. In patients with mitochondrial diabetes a prolonged course of acute myositis symptoms can be expected.Statins should be discontinued during an acute myositis episode in patients with mitochondrial diabetes but can potentially be re-initiated (with preference to hydrophilic ones) after episode resolution at the lowest possible dose.
Collapse
Affiliation(s)
| | | | - Michalis K Picolos
- Alithias Endocrinology Center, Nicosia, Cyprus
- European University, Nicosia, Cyprus
| |
Collapse
|
7
|
Reikvam H, Tsykunova G, Sandnes M, Wendelbo Ø. Infectious complications and the utility of serum and cellular markers of infections in the setting of allogeneic hematopoietic stem cell transplantation. Expert Rev Clin Immunol 2025; 21:291-303. [PMID: 39760208 DOI: 10.1080/1744666x.2025.2450014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients are severely immunocompromised and susceptible to bacterial, viral, and fungal infections. Despite improved anti-microbial prophylaxis and preemptive strategies, bacterial bloodstream infections (BSIs) occur frequently in allo-HSCT recipients and are associated with increased morbidity and mortality. Cytomegalovirus (CMV) and Epstein Barr virus (EBV) are the most relevant viruses following allo-HSCT and remain major concerns. Fungal infections, including those caused by Candida and Aspergillus species, are persistent and feared complications. AREAS COVERED We aim to provide clinicians caring for allo-HSCT recipients with a comprehensive overview of the risk factors that predispose patients to common bacterial, fungal, and viral infections during the first years post-transplant. The focus is on the value of noninvasive diagnostic biomarkers and serological assays in enhancing the early detection and management of these infections. EXPERT OPINION Effective management of infectious complications following allo-HSCT relies on continuous immune recovery monitoring and the implementation of advanced diagnostic methods. Utilizing noninvasive diagnostic methods is crucial for early detection and different intervention strategies. The development and integration of reliable microbiological markers into clinical practice is essential for enhancing patient outcomes and mitigating infection-related risks. Emphasizing diagnostic innovation will be pivotal in advancing patient care post-allo-HSCT.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hemato- oncology, Østfold Hospital, Grålum, Norway
| | - Miriam Sandnes
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Wendelbo
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Faculty of Health, VID Specialized University, Bergen, Norway
| |
Collapse
|
8
|
Wohlwend J, Nathan A, Shalon N, Crain CR, Tano-Menka R, Goldberg B, Richards E, Gaiha GD, Barzilay R. Deep learning enhances the prediction of HLA class I-presented CD8 + T cell epitopes in foreign pathogens. NAT MACH INTELL 2025; 7:232-243. [PMID: 40008296 PMCID: PMC11847706 DOI: 10.1038/s42256-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025]
Abstract
Accurate in silico determination of CD8+ T cell epitopes would greatly enhance T cell-based vaccine development, but current prediction models are not reliably successful. Here, motivated by recent successes applying machine learning to complex biology, we curated a dataset of 651,237 unique human leukocyte antigen class I (HLA-I) ligands and developed MUNIS, a deep learning model that identifies peptides presented by HLA-I alleles. MUNIS shows improved performance compared with existing models in predicting peptide presentation and CD8+ T cell epitope immunodominance hierarchies. Moreover, application of MUNIS to proteins from Epstein-Barr virus led to successful identification of both established and novel HLA-I epitopes which were experimentally validated by in vitro HLA-I-peptide stability and T cell immunogenicity assays. MUNIS performs comparably to an experimental stability assay in terms of immunogenicity prediction, suggesting that deep learning can reduce experimental burden and accelerate identification of CD8+ T cell epitopes for rapid T cell vaccine development.
Collapse
Affiliation(s)
- Jeremy Wohlwend
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Anusha Nathan
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA USA
| | - Nitan Shalon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Charles R. Crain
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
| | - Rhoda Tano-Menka
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
| | | | - Emma Richards
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
| | - Gaurav D. Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA USA
| | - Regina Barzilay
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
9
|
Flynn TG, Paredes Olortegui M, Garcia Bardales PF, Schiaffino F, Pinedo Vasquez TN, Shapiama López WV, Peñataro Yori P, Ramal Asayag CJ, Meza Sánchez GR, Colston JM, Kosek MN. Epstein-Barr Virus in the RIVERA Case-Control Study of Acute Febrile Illness: Acute Mononucleosis Nearly Absent as an Etiology in the Peruvian Amazon. Am J Trop Med Hyg 2025; 112:200-207. [PMID: 39531721 PMCID: PMC11720789 DOI: 10.4269/ajtmh.24-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
Large diagnostic panels allow for pathogens with high or low likelihood of causing attributable illness to be tested simultaneously. Infectious mononucleosis (IM) due to primary infection with Epstein-Barr virus (EBV) is a common cause of acute febrile illness (AFI) in case series from high-income countries, though its contribution to AFI in tropical low-income settings is unclear. As part of a case-control study using multiplex quantitative polymerase chain reaction (qPCR) diagnostics, we set out to determine if primary EBV infection was an underrecognized cause of AFI in the Peruvian Amazon. Presence of EBV DNA in whole-blood samples was equally prevalent among febrile cases and afebrile controls (34.6% [247/714] versus 35.7% [248/695]) and was not correlated with classic IM symptoms. Given the clear lack of clinical significance of the whole-blood PCR results, additional testing was pursued to ascertain the true prevalence of IM among cases of AFI in this population. The presence of EBV DNA in plasma, a marker of active EBV-related processes, was detected in 7% (5/68). Anti-EBNA-1 IgG, a late marker of prior infection, was tested via ELISA and detected in 4/5 of the plasma-positive patients, thereby excluding an acute primary EBV infection in all but one patient. Infectious mononucleosis due to primary infection with EBV was not an important etiology of AFI in the Peruvian Amazon, despite high rates of initial test positivity.
Collapse
Affiliation(s)
- Thomas G. Flynn
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | | | - Francesca Schiaffino
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martín de Porres, Perú
| | | | | | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia
- Asociación Benéfica Prisma, Investigaciones Biomédicas, Iquitos, Perú
| | | | | | - Josh M. Colston
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia
- Asociación Benéfica Prisma, Investigaciones Biomédicas, Iquitos, Perú
| |
Collapse
|
10
|
Zhou B, Liang C, Li P, Xiao H. Revisiting X-linked congenital ichthyosis. Int J Dermatol 2025; 64:51-61. [PMID: 39086014 DOI: 10.1111/ijd.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
X-linked recessive ichthyosis (XLI) is a hereditary skin disease characterized by generalized dryness and scaling of the skin, with frequent extracutaneous manifestations. It is the second most common type of ichthyosis, with a prevalence of 1/6,000 to 1/2,000 in males and without any racial or geographical differences. The causative gene for XLI is the steroid sulfatase gene (STS), located on Xp22.3. STS deficiency causes an abnormal cholesterol sulfate (CS) accumulation in the stratum corneum (SC). Excess CS induces epidermal permeability barrier dysfunction and scaling abnormalities. This review summarizes XLI's genetic, clinical, and pathological features, pathogenesis, diagnosis and differential diagnoses, and therapeutic perspectives. Further understanding the role of the STS gene pathogenic variants in XLI may contribute to a more accurate and efficient clinical diagnosis of XLI and provide novel strategies for its treatment and prenatal diagnosis.
Collapse
Affiliation(s)
- Baishun Zhou
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Cancan Liang
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Peiyao Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Heng Xiao
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
11
|
Umar R, Moin K, Iqbal T, Sudha RK, Jaiganesh T. Complete Heart Block: A Rare Initial Presentation of Epstein-Barr Virus-Induced Myocarditis. Cureus 2025; 17:e77884. [PMID: 39991404 PMCID: PMC11846672 DOI: 10.7759/cureus.77884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Myocarditis, a rare but serious condition often caused by viral infections, rarely manifests with cardiac involvement in healthy individuals infected with Epstein-Barr virus (EBV). We present a case of a 51-year-old diabetic presenting with exertional dyspnoea, pleuritic chest pain, and intermittent fever. Investigations revealed elevated C-reactive protein (CRP), brain natriuretic peptide (BNP), high sensitive troponin, creatine kinase (CK) levels, and complete heart block on ECG. Echocardiography showed reduced ejection fraction and cardiac MRI confirmed myocarditis. Epstein-Barr virus was confirmed as the underlying cause. He was treated with prednisone, acyclovir, and a permanent pacemaker. Due to serious complications associated with myocarditis such as acute heart failure and arrhythmias, it is imperative to emphasize the importance of early recognition and timely intervention of atypical presentations.
Collapse
Affiliation(s)
- Ridha Umar
- Medical School, University of Sharjah, Sharjah, ARE
| | - Kinza Moin
- Department of Emergency Medicine, Tawam Hospital, Al Ain, ARE
| | - Tarab Iqbal
- Department of Emergency Medicine, Tawam Hospital, Al Ain, ARE
| | - Resshme K Sudha
- Department of Emergency Medicine, Tawam Hospital, Al Ain, ARE
| | | |
Collapse
|
12
|
Musa M, Bale BI, Suleman A, Aluyi-Osa G, Chukwuyem E, D’Esposito F, Gagliano C, Longo A, Russo A, Zeppieri M. Possible viral agents to consider in the differential diagnosis of blepharoconjunctivitis. World J Virol 2024; 13:97867. [PMID: 39722756 PMCID: PMC11551683 DOI: 10.5501/wjv.v13.i4.97867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Blepharoconjunctivitis poses a diagnostic challenge due to its diverse etiology, including viral infections. Blepharoconjunctivits can be acute or chronic, self-limiting, or needing medical therapy. AIM To review possible viral agents crucial for accurate differential diagnosis in cases of blepharoconjunctivitis. METHODS The PubMed database was searched for records relating to viral blepharoconjunctivitis. The search string generated was "("virally"[All Fields] OR "virals"[All Fields] OR "virology"[MeSH Terms] OR "virology"[All Fields] OR "viral"[All Fields]) AND "Blepharoconjunctivitis"[All Fields]". RESULTS A total of 24 publications were generated from the search string. Reference lists from each relevant article were also searched for more information and included in this review. Viral etiologies such as adenovirus, herpes simplex virus (HSV), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV) are frequently implicated. Adenoviral infections manifest with follicular conjunctivitis and preauricular lymphadenopathy, often presenting as epidemic keratoconjunctivitis. HSV and VZV infections can result in herpetic keratitis and may exhibit characteristic dendritic corneal ulcers. EBV, although less common, can cause unilateral or bilateral follicular conjunctivitis, particularly in immunocompromised individuals. Other potential viral agents, such as enteroviruses and molluscum contagiosum virus, should also be considered, especially in pediatric cases. CONCLUSION Prompt recognition of these viral etiologies is essential for appropriate management and prevention of complications. Thus, a thorough understanding of the clinical presentation, epidemiology, and diagnostic modalities is crucial for accurate identification and management of viral blepharoconjunctivitis.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | | | - Ayuba Suleman
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Ekele Chukwuyem
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group Unit, Imperial College, London NW1 5QH, United Kingdom
- GENOFTA srl, Via A. Balsamo, 93, Naples 80065, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Catania 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Antonio Longo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Andrea Russo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
13
|
Motlaghzadeh S, Tabatabaei F, Eshragh F, Tavakoli A, Mobasheri N, Kiani SJ, Saadati H, Asli S, Chegeni AM, Letafati A, Khatami A, Hosseini M, Salavatiha Z, Babaei A, Fakheri Sueini V, Asadi D, Keyvanlou Z, Maskouni EJ, Bahavar A, Sorouri Majd M, Esfandiari AH, Khazaee H, Soleymani P, Shahamiri K, Moazamiyanfar R, Shirazi SB, Hafezi A, Zarei M, Khalesi Z, Ghorbani S. Association of viral infection with bladder cancer: A systematic review and meta-analysis. Pathol Res Pract 2024; 264:155633. [PMID: 39504615 DOI: 10.1016/j.prp.2024.155633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Bladder cancer (BC) is the tenth most common cancer with the highest mortality rate. Since the etiological role of viral infection in the development of BC is less known, the aim of the present study was to examine the pooled prevalence and possible relationship between viral infection and BC. METHODS A systematic search of major online databases was conducted to investigate relevant studies. We estimated the pooled odds ratio (OR), 95 % confidence interval (CI), and heterogeneity for all studies by using meta-analysis and forest plots. All data were analyzed using Stata Software v.14.1. RESULTS We analyzed 87 articles (97 datasets), which included 59 case-control and 38 cross-sectional designs. The pooled prevalence of viral infection among BC patients was 17.59 % (95 % CI: 13.09-22.55 %; I2 = 96.34 %). Our subgroup analysis indicated that the pooled prevalence of human herpesvirus (HHV), papillomavirus (HPV), polyomavirus, and adenovirus was 33.67 %, 15.18 %, 7.46 %, and 30.14 %, respectively. We detected a significant relationship between viral infection and BC [summary OR 2.34 (95 % CI 1.56-3.51; I2 = 58.0 %)]. CONCLUSIONS This possible association was exhibited for Epstein-Barr virus (EBV) and HPV. Our finding indicated that HPV and EBV infections with significant associations with BC can be considered as possible risk factors for BC. Although the specific molecular mechanism of the role of viruses in the development of BC has not been identified, persistent viral infection, oncogenic protein expression, apoptosis inhibition, cell cycle promotion, and disruption of signaling pathways in bladder tissue are possible pathways for the role of viruses in the development of BC.
Collapse
Affiliation(s)
- Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farbod Tabatabaei
- Faculty of Converting Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Eshragh
- Microbiology of Pathogenic Microorganisms, Faculty of Converging Sciences and Technologies, Tehran Islamic Azad University Sciences and Research Branch, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafise Mobasheri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Saadati
- Department of Epidemiology and Biostatistics, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samira Asli
- Clinical Research Center, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ardalan Maleki Chegeni
- Virology Department, Faculty of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdiyeh Hosseini
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Salavatiha
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Venus Fakheri Sueini
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dorna Asadi
- Department of Microbiology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Zahra Keyvanlou
- Department of Virology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Elham Jafari Maskouni
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Golesatn, Iran
| | - Mahdieh Sorouri Majd
- Department of Medical Sciences, Faculty of Paramedical, Qom branch, Islamic Azad University, Qom, Iran
| | - Amir Hossein Esfandiari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasti Khazaee
- Department of Nursery and Midwifery, Chalus Branch, Islamic Azad University, Chalus, Iran
| | - Parastoo Soleymani
- Advanced Science Faculty, Islamic Tehran Azad University, Medical Branch, Tehran, Iran
| | - Kamal Shahamiri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Bourenjan Shirazi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Arya Hafezi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zarei
- Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zohreh Khalesi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saied Ghorbani
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Xu M, Su M, Chen G. Epstein-Barr Virus Antibodies and Autoimmune Diseases: A Bidirectional Mendelian Randomization Analysis. Viral Immunol 2024; 37:451-458. [PMID: 39562522 DOI: 10.1089/vim.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
This study aims to evaluate the estimate of causal relationship between Epstein-Barr virus (EBV) antibody levels and autoimmune diseases (AIDs), such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), through bidirectional two-sample Mendelian randomization (MR) analysis. Despite 50 years of research into the link between EBV infection and AIDs, inconsistent results persist due to the complex mechanisms of EBV within the body. We utilized large-scale genome-wide association studies (GWAS) data from the Integrative Epidemiology Unit (IEU) Open GWAS Project database to conduct rigorous MR analysis, incorporating various sensitivity analyses to assess potential impacts and ensure robustness. EBV antibodies (including VCA-IgG, ZEBRA-IgG, EBNA-1-IgG, and EA-D-IgG) were used as exposure variables, whereas RA and SLE served as outcome variables. In the reverse analysis, RA and SLE were treated as exposure variables and EBV antibodies as outcome variables. When EBV antibodies are designated as the exposure variables, the random-effects inverse-variance weighted (IVW) analysis indicated a significant negative genetic causal relationship between EBV EA-D antibody levels and RA (p = 0.007, odds ratio [OR] = 0.700, 95% confidence interval [CI] = [0.539-0.907]). No significant genetic causal relationship was found between SLE and EBV antibody levels. When RA and SLE are designated as the exposure variables, the random-effects IVW analysis revealed significant positive genetic causal relationships between SLE and EBV ZEBRA antibody levels (p = 0.009, OR = 1.028, 95% CI = [1.007-1.050]) and EBV EA-D antibody levels (p = 0.005, OR = 1.032, 95% CI = [1.009-1.054]). No significant genetic causal relationship was observed between RA and EBV antibody levels. This study offers compelling evidence of a causal relationship between EBV antibody levels and AIDs through MR analysis. Our findings lay a new foundation and perspective for future research directions, clinical prognosis, and treatment.
Collapse
Affiliation(s)
- Meiling Xu
- Department of Rheumatology and Immunology, China-Japan, Union Hospital of Jilin University Xiantai, Street No.126, Changchun, Jilin Province, 130033, China
| | - Meihua Su
- Department of Rheumatology and Immunology, China-Japan, Union Hospital of Jilin University Xiantai, Street No.126, Changchun, Jilin Province, 130033, China
| | - Guangyong Chen
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun City, China
| |
Collapse
|
15
|
Zhao ZF, Liu ZJ, Wang Y, Sun YQ, Xu LP, Zhang XH, Huang XJ, Pei XY. [Analysis of CMV and EBV infection in healthy populations in China before and after the COVID-19 pandemic]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:986-990. [PMID: 39746690 PMCID: PMC11886679 DOI: 10.3760/cma.j.cn121090-20240910-00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 01/04/2025]
Abstract
Objective: This study aimed to assess the infection status of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) in healthy populations in China over the past decade and analyze the differences in CMV and EBV infection and related risk factors in healthy populations before and after the lifting of coronavirus disease 2019 (COVID-19) pandemic control measures. Methods: This study retrospectively analyzes the CMV and EBV infection status of 8 827 healthy donors who underwent prehematopoietic stem cell transplantation screening at Peking University People's Hospital from January 2014 to December 2023. Logistic regression analysis was conducted to determine the risk factors for CMV and EBV infection. Results: The CMV and EBV IgG positivity rates were 94.52% and 95.40% among the healthy donors, respectively, with no significant differences before and after the lifting of pandemic control measures (all P value>0.05). However, IgG antibody titers increased [CMV: (100.44±36.50) U/ml vs (109.98±36.31) U/ml, P<0.001; EBV: (281.57±226.79) U/ml vs (361.08±268.58) U/ml, P<0.001] after lifting the COVID-19 restrictions. However, the CMV IgM positivity rate remained unchanged. The EBV IgM positivity rate significantly increased after lifting measures (2.77% vs 6.29%, P<0.001), reaching 8.10% within 3 months. Further analysis of the factors affecting EBV IgM positivity revealed that gender (OR=1.479, 95% CI 1.169-1.872, P=0.001), age[compared with the group younger than 18 years, the 18-50-year age group (OR=0.584, 95% CI 0.421-0.820, P=0.002), the >50-year age group (OR=0.389, 95% CI 0.248-0.610, P<0.001) ], and the lifting of COVID-19 restrictions (OR=2.360, 95% CI 1.287-3.047, P<0.001) were independent factors influencing EBV IgM positivity in the general population. The EBV IgM positivity rate in individuals under 18 years old was not affected by gender or the lifting of COVID-19 restrictions when stratified by age group. Both genders (OR=1.499, 95% CI 1.138 - 1.975, P=0.004) and the lifting of COVID-19 restrictions (OR=2.608, 95% CI 1.940-3.507, P<0.001) were independent factors affecting EBV IgM positivity in the 18-50-year age group. The lifting of COVID-19 restrictions (OR=2.222, 95% CI 1.101-4.484, P=0.026) was the sole independent factor affecting EBV IgM positivity in individuals over 50 years old. Conclusions: Previous infection rates of CMV and EBV are high in healthy populations in China, which increase with age. COVID-19 infection may increase EBV reactivation rates in healthy individuals, with a more pronounced effect on those aged >18 years.
Collapse
Affiliation(s)
- Z F Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Z J Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X Y Pei
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
16
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
McCallum M, Veesler D. Computational design of prefusion-stabilized Herpesvirus gB trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619923. [PMID: 39484573 PMCID: PMC11526958 DOI: 10.1101/2024.10.23.619923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In the absence of effective vaccines, human-infecting members of the Herpesvirus family cause considerable morbidity and mortality worldwide. Herpesvirus infection relies on receptor engagement by a gH/gL glycoprotein complex which induces large-scale conformational changes of the gB glycoprotein to mediate fusion of the viral and host membranes and infection. The instability of all herpesvirus gBs have hindered biochemical and functional studies, thereby limiting our understanding of the infection mechanisms of these pathogens and preventing vaccine design. Here, we computationally stabilized and structurally characterized the Epstein-Barr virus prefusion gB ectodomain trimer, providing an atomic-level description of this key therapeutic target. We show that this stabilization strategy is broadly applicable to other herpesvirus gB trimers and identified conformational intermediates supporting a previously unanticipated mechanism of gB-mediated fusion. These findings provide a blueprint to develop vaccine candidates for these pathogens with major public health burden.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
18
|
You H, Kim J. Acute Retinal Necrosis Associated with Epstein-Barr Virus Successfully Treated with Antiviral Treatment: A Case Report. Microorganisms 2024; 12:2065. [PMID: 39458374 PMCID: PMC11510521 DOI: 10.3390/microorganisms12102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Epstein-Barr virus (EBV) is a rare cause of acute retinal necrosis (ARN) and is known for its poor prognosis and limited response to conventional antiviral treatment. Herein, we report a case of EBV ARN successfully treated with conventional systemic acyclovir and intravitreal ganciclovir injection. An 85-year-old man presented with visual disturbance of the right eye from 10 days prior. His visual acuity was 20/200 in the right eye and slit lamp examination showed keratic precipitates, 4+ anterior chamber cells, and 1+ anterior vitreous cells. Fundus examination revealed multiple retinal hemorrhages and yellow-whitish necrotic lesion. The patient was clinically diagnosed with ARN. A few days later, EBV DNA was identified in the aqueous humor and in the serum PCR assay. The patient received 350 mg of intravenous acyclovir three times a day with oral prednisolone, and an intravitreal ganciclovir injection (2 mg per dose) was given five times. Over the course of seven weeks, systemic acyclovir was switched to 1g of per-oral valaciclovir three times a day, and oral steroids were successfully tapered. His visual acuity improved to 20/100, and the previous necrotic lesion was markedly decreased in size. Intravenous acyclovir combined with intravitreal ganciclovir may yield successful treatment outcomes in acute retinal necrosis caused by EBV.
Collapse
Affiliation(s)
| | - Joonhyung Kim
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| |
Collapse
|
19
|
Gharibzadeh M, Jalilian S, Makvandi M, Seyedian SS, Azaran A. Molecular detection of Epstein-Barr virus in paraffin-embedded tissue samples of patients suffering gastric cancer in Ahvaz, Iran: a case-control study. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:689-697. [PMID: 39534290 PMCID: PMC11551666 DOI: 10.18502/ijm.v16i5.16805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Background and Objectives Gastric cancer (GC) is the third most common cause of cancer-related mortality. Epstein-Barr virus (EBV) is associated with several human tumors. The present research was performed to investigate the prevalence of EBV-associated gastric cancer (EBVaGC) among Iranian patients. Materials and Methods Seventy cases of gastric cancer and 30 cases of gastric ulcer, all preserved in formalin-fixed paraffin-embedded (FFPE), were examined in a case-control study conducted between 2011 and 2018. The specimens underwent analysis to detect the presence of the EBV genome using a Nested-PCR method targeting EBNA1. Subsequently, samples testing positive for the EBNA1 underwent further testing for the presence of the EBER gene using PCR. Finally, Positive samples were subjected to sequencing. Results Five out of 70 cases (7%) were found to be positive for EBV based on EBNA1 testing, while all EBNA1 positive samples were negative for EBER. Notably, EBV was not detected in patients with gastric ulcer. The mean age of EBV-positive gastric carcinomas pateints was 64.5 years. Within this group, 60% were male and 40% were female. A higher prevalence of EBV association was observed in diffuse-type cases, with 60% (3 out of 24) testing positive, compared to intestinal-type cases where 40% (2 out of 46) were EBV-positive. Most cases of EBVaGC belonged to grade Ⅰ. Conclusion This research demonstrates a low prevalence of EBVaGC in Iran. Discrepancies in EBVaGC occurrence among countries could be attributed to epidemiological variables and dietary practices. A comprehensive studies will provide significant contributions to understanding of its etiology.
Collapse
Affiliation(s)
- Mehdi Gharibzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahram Jalilian
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeid Seyedian
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azarakhsh Azaran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Malpica L, Marques-Piubelli ML, Beltran BE, Chavez JC, Miranda RN, Castillo JJ. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2024 update on the diagnosis, risk-stratification, and management. Am J Hematol 2024; 99:2002-2015. [PMID: 38957951 DOI: 10.1002/ajh.27430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
DISEASE OVERVIEW Epstein Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) is an aggressive B-cell lymphoma associated with EBV infection included in the WHO classification of lymphoid neoplasms since 2016. Although historically associated to poor prognosis, outcomes seem to have improved in the era of chemoimmunotherapy. DIAGNOSIS The diagnosis is established through meticulous pathological evaluation. Detection of EBV-encoded RNA (EBER) is the standard diagnostic method. The ICC 2022 specifies EBV+ DLBCL, NOS as occurring when >80% of malignant cells express EBER, whereas the WHO-HAEM5 emphasizes that the majority of tumor cells should be EBER positive without setting a defined threshold. The differential diagnosis includes plasmablastic lymphoma, DLBCL associated with chronic inflammation, primary effusion lymphoma, among others. RISK-STRATIFICATION The International Prognostic Index (IPI) and the Oyama score can be used for risk-stratification. The Oyama score includes age >70 years and presence of B symptoms. The expression of CD30 and PD-1/PD-L1 are emerging as potential adverse but targetable biomarkers. MANAGEMENT Patients with EBV+ DLBCL, NOS, should be staged and managed following similar guidelines than patients with EBV-negative DLBCL. EBV+ DLBCL, NOS, however, might have a worse prognosis than EBV-negative DLBCL in the era of chemoimmunotherapy. Therefore, inclusion of patients in clinical trials when available is recommended. There is an opportunity to study and develop targeted therapy in the management of patients with EBV+ DLBCL, NOS.
Collapse
Affiliation(s)
- Luis Malpica
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brady E Beltran
- Department of Oncology and Radiotherapy, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru, Instituto de Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Peru
| | - Julio C Chavez
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Osorio JC, Armijo A, Carvajal FJ, Corvalán AH, Castillo A, Fuentes-Pananá EM, Moreno-León C, Romero C, Aguayo F. Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression. Cells 2024; 13:1578. [PMID: 39329759 PMCID: PMC11430695 DOI: 10.3390/cells13181578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is involved in the development of lymphomas, nasopharyngeal carcinomas (NPC), and a subgroup of gastric carcinomas (GC), and has also been detected in lung carcinomas, even though the role of the virus in this malignancy has not yet been established. BamH1-A Rightward Frame 1 (BARF1), a suggested exclusive epithelial EBV oncoprotein, is detected in both EBV-associated GCs (EBVaGC) and NPC. The expression and role of BARF1 in lung cancer is unknown. METHODS A total of 158 lung carcinomas including 80 adenocarcinomas (AdCs) and 78 squamous cell carcinomas (SQCs) from Chilean patients were analyzed for EBV presence via polymerase chain reaction (PCR), Immunohistochemistry (IHC), or chromogenic in situ hybridization (CISH). The expression of BARF1 was evaluated using Reverse Transcription Real-Time PCR (RT-qPCR). Additionally, A549 and BEAS-2B lung epithelial cells were transfected with a construct for ectopic BARF1 expression. Cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were evaluated. RESULTS We found that EBV was present in 37 out of 158 (23%) lung carcinomas using PCR. Considering EBV-positive specimens using PCR, IHC for Epstein-Barr nuclear antigen 1 (EBNA1) detected EBV in 24 out of 30 (80%) cases, while EBERs were detected using CISH in 13 out of 16 (81%) cases. Overall, 13 out of 158 (8%) lung carcinomas were shown to be EBV-positive using PCR/IHC/CISH. BARF1 transcripts were detected in 6 out of 13 (46%) EBV-positive lung carcinomas using RT qPCR. Finally, lung cells ectopically expressing BARF1 showed increased migration, invasion, and EMT. CONCLUSIONS EBV is frequently found in lung carcinomas from Chile with the expression of BARF1 in a significant subset of cases, suggesting that this viral protein may be involved in EBV-associated lung cancer progression.
Collapse
Affiliation(s)
- Julio C. Osorio
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| | - Alvaro Armijo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Francisco J. Carvajal
- Department of Hematology and Oncology, School of Medicine and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (F.J.C.); (A.H.C.)
| | - Alejandro H. Corvalán
- Department of Hematology and Oncology, School of Medicine and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (F.J.C.); (A.H.C.)
| | - Andrés Castillo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760032, Colombia;
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Carolina Moreno-León
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| |
Collapse
|
22
|
Mharrach I, Anouar Tadlaoui K, Laraqui A, Ennibi K, Hamedoun L, Ameur A, Alami M, El Ghazzaly A, Ennaji MM. Comparative Study Analysis of Epstein-Barr Virus Infection: Tissue Versus Blood Samples in Patients With Prostatic Adenocarcinoma and Its Correlation With Clinicopathological Parameters. Cureus 2024; 16:e66048. [PMID: 39224737 PMCID: PMC11367065 DOI: 10.7759/cureus.66048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and a leading cause of cancer-related mortality in men. The diagnosis and treatment of PCa carry considerable medical, psychological, and economic implications. Among the risk factors contributing to cancer, viral infections, notably Epstein-Barr virus (EBV), play a significant role. It is recognized as an oncogenic virus associated with various lymphomas, nasopharyngeal carcinomas, and breast cancer cases but its role in PCa remains unclear. This study aims to contrast the prevalence of EBV in blood and tissue samples of PCa patients and assess its correlation with tumor clinicopathological criteria. In this prospective study, 50 fresh biopsies and 50 blood samples were collected from patients with a confirmed diagnosis of PCa. EBV DNA was detected using polymerase chain reaction (PCR). A statistical analysis was then conducted to examine the correlation between EBV prevalence and PCa clinicopathological characteristics. EBV DNA was detected in 38% of PCa blood samples and 64% of PCa tissue samples, with a higher prevalence in tissue samples (p = 0.009). The statistical analysis revealed a significant correlation between EBV infection and pathological Gleason score (p = 0.041) in PCa tissue, as well as pathological T-stage (p = 0.02) in PCa blood. The results show that patients with PCa have higher levels of EBV in their tissues than in their blood, suggesting that EBV may play an important role in the etiology of PCa. This paves the way for further research into the function of EBV as a potential biomarker in the development and progression of prostate carcinoma in order to combat oncogenic viruses.
Collapse
Affiliation(s)
- Imane Mharrach
- Oncology, Faculty of Sciences and Techniques- Mohammedia, University Hassan II of Casablanca, Mohammedia, MAR
| | - Kaoutar Anouar Tadlaoui
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies (LVO BEEN), Faculty of Sciences and Techniques- Mohammedia, University Hassan II of Casablanca, Mohammedia, MAR
| | - Abdelilah Laraqui
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Rabat, MAR
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, MAR
- Sequencing Unit, Laboratory of Virology, Royal School of Military Health Service, Rabat, MAR
| | - Khalid Ennibi
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Rabat, MAR
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, MAR
| | - Larbi Hamedoun
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, MAR
- Department of Urology, Mohammed V Military Teaching Hospital, Rabat, MAR
| | - Ahmed Ameur
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, MAR
- Department of Urology, Mohammed V Military Teaching Hospital, Rabat, MAR
| | - Mohammed Alami
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, MAR
- Department of Urology, Mohammed V Military Teaching Hospital, Rabat, MAR
| | - Anouar El Ghazzaly
- Department of Urology, Mohammed V Military Teaching Hospital, Rabat, MAR
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies (LVO BEEN), Faculty of Sciences and Techniques- Mohammedia, University Hassan II of Casablanca, Mohammedia, MAR
| |
Collapse
|
23
|
Oladipo EK, Akinleye TM, Adeyemo SF, Akinboade MW, Siyanbola KF, Adetunji VA, Arowosegbe OA, Olatunji VK, Adaramola EO, Afolabi HO, Ajani CD, Siyanbola TP, Folakanmi EO, Irewolede BA, Okesanya OJ, Ajani OF, Ariyo OE, Jimah EM, Iwalokun BA, Kolawole OM, Oloke JK, Onyeaka H. mRNA vaccine design for Epstein-Barr virus: an immunoinformatic approach. In Silico Pharmacol 2024; 12:68. [PMID: 39070665 PMCID: PMC11269547 DOI: 10.1007/s40203-024-00244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
Epstein-Barr Virus (EBV), structurally similar to other herpes viruses, possess significant global health challenges as it causes infectious mononucleosis and is also associated with various cancers. Due to this widespread impact, an effective messenger RNA (mRNA) vaccine is paramount to help curb its spread, further underscoring the need for its development. This study, following an immunoinformatic approach, aimed to design a comprehensive mRNA vaccine against the EBV by selecting antigenic proteins, predicting Linear B-cell epitopes, cytotoxic T-cell lymphocyte (CTL) and helper T-cell lymphocyte (HTL) epitopes, and assessing vaccine characteristics. Seventy-nine EBV isolates from diverse geographical regions were examined. Additionally, the vaccine construct's physicochemical properties, transmembrane domains, solubility, and secondary structures were analysed. Molecular docking was conducted with Toll-Like Receptor 5 (TLR-5). Population coverage was assessed for selected major histocompatibility complex (MHC) alleles, and immune response was simulated. The result of this study highlighted a vaccine construct with high antigenicity, non-toxicity, and non-allergenicity and possessed favourable physicochemical properties. The vaccine's 3D structure is native-like and strongly binds with TLR-5, indicating a solid affinity with TLR-5. The selected MHC alleles provided broad universal population coverage of 89.1%, and the immune simulations suggested a robust and wide-ranging immunogenic response, activating critical immune cells, antibodies, and cytokines. These findings provide a solid foundation for further development and testing of the EBV candidate vaccine, offering potential solutions for combating EBV infections.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology, Adeleke University, Ede, Osun State Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Oyo State Nigeria
| | - Temitope Michael Akinleye
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Oyo State Nigeria
- Department of Anatomy and Advanced Research Center for Tumor Immunology, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan, 47392 Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | - Olalekan John Okesanya
- Faculty of Medicine, Department of Public Health and Maritime Transport, Laboratory of Hygiene and Epidemiology, University of Thessaly, Papakyriazi 22, Larissa, 41222 Greece
| | - Olumide Faith Ajani
- African Centre for Disease Control and Prevention (African CDC), Addis Ababa, Ethiopia
| | - Olumuyiwa Elijah Ariyo
- Department of Medicine, Infectious Diseases and Tropical Medicine Unit, Federal Teaching Hospital, Ido-Ekiti, Ekiti State Nigeria
| | | | - Bamidele Abiodun Iwalokun
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Julius Kola Oloke
- Department of Natural Science, Precious Cornerstone, Ibadan, 200132 Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
24
|
Zhong L, Zhang W, Liu H, Zhang X, Yang Z, Wen Z, Chen L, Chen H, Luo Y, Chen Y, Feng Q, Zeng MS, Zhao Q, Liu L, Krummenacher C, Zeng YX, Chen Y, Xu M, Zhang X. A cocktail nanovaccine targeting key entry glycoproteins elicits high neutralizing antibody levels against EBV infection. Nat Commun 2024; 15:5310. [PMID: 38906867 PMCID: PMC11192767 DOI: 10.1038/s41467-024-49546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/10/2024] [Indexed: 06/23/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is closely associated with various malignancies. Considering the complex life cycle of EBV, developing vaccines targeting key entry glycoproteins to elicit robust and durable adaptive immune responses may provide better protection. EBV gHgL-, gB- and gp42-specific antibodies in healthy EBV carriers contributed to sera neutralizing abilities in vitro, indicating that they are potential antigen candidates. To enhance the immunogenicity of these antigens, we formulate three nanovaccines by co-delivering molecular adjuvants (CpG and MPLA) and antigens (gHgL, gB or gp42). These nanovaccines induce robust humoral and cellular responses through efficient activation of dendritic cells and germinal center response. Importantly, these nanovaccines generate high levels of neutralizing antibodies recognizing vulnerable sites of all three antigens. IgGs induced by a cocktail vaccine containing three nanovaccines confer superior protection from lethal EBV challenge in female humanized mice compared to IgG elicited by individual NP-gHgL, NP-gB and NP-gp42. Importantly, serum antibodies elicited by cocktail nanovaccine immunization confer durable protection against EBV-associated lymphoma. Overall, the cocktail nanovaccine shows robust immunogenicity and is a promising candidate for further clinical trials.
Collapse
Affiliation(s)
- Ling Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hong Liu
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Xinyu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zeyu Yang
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhenfu Wen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Haolin Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yanran Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yanhong Chen
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Lixin Liu
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yongming Chen
- College of Chemistry and Molecular Science, Henan University, Zhengzhou, 450046, China.
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
25
|
Alanazi AE, Alhumaidy AA, Almutairi H, Awadalla ME, Alkathiri A, Alarjani M, Aldawsari MA, Maniah K, Alahmadi RM, Alanazi BS, Eifan S, Alosaimi B. Evolutionary analysis of LMP-1 genetic diversity in EBV-associated nasopharyngeal carcinoma: Bioinformatic insights into oncogenic potential. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105586. [PMID: 38508363 DOI: 10.1016/j.meegid.2024.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
EBV latent membrane protein 1 (LMP-1) is an important oncogene involved in the induction and maintenance of EBV infection and the activation of several cell survival and proliferative pathways. The genetic diversity of LMP-1 has an important role in immunogenicity and tumorigenicity allowing escape from host cell immunity and more metastatic potential of LMP-1 variants. This study explored the evolutionary of LMP-1 in EBV-infected patients at an advanced stage of nasopharyngeal carcinoma (NPC). Detection of genetic variability in LMP-1 genes was carried out using Sanger sequencing. Bioinformatic analysis was conducted for translation and nucleotide alignment. Phylogenetic analysis was used to construct a Bayesian tree for a deeper understanding of the genetic relationships, evolutionary connections, and variations between sequences. Genetic characterization of LMP-1 in NPC patients revealed the detection of polymorphism in LMP-1 Sequences. Motifs were identified within three critical LMP-1 domains, such as PQQAT within CTAR1 and YYD within CTAR2. The presence of the JACK3 region at specific sites within CTAR3, as well as repeat regions at positions (122-132) and (133-143) within CTAR3, was also annotated. Additionally, several mutations were detected including 30 and 69 bp deletions, 33 bp repeats, and 15 bp insertion. Although LMP-1 strains appear to be genetically diverse, they are closely related to 3 reference strains: prototype B95.8, Med- 30 bp deletion, and Med + 30 bp deletion. In our study, one of the strains harboring the 30 bp deletion had both bone and bone marrow metastasis which could be attributed to the fact that LMP-1 is involved in tumor metastasis, evasion and migration of NPC cells. This study provided valuable insights into genetic variability in LMP-1 sequences of EBV in NPC patients. Further functional studies would provide a more comprehensive understanding of the molecular characteristics, epidemiology, and clinical implications of LMP-1 polymorphisms in EBV-related malignancies.
Collapse
Affiliation(s)
- Abdullah E Alanazi
- Comprehensive Cancer Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | | | - Hatim Almutairi
- Bioinformatics Laboratory, Public Health Authority, Riyadh 11451, Saudi Arabia
| | - Maaweya E Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Abdulrahman Alkathiri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Modhi Alarjani
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Mesfer Abdullah Aldawsari
- Department of Health Education, Alyamamah Hospital, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Khalid Maniah
- Department of Biology, King Khalid Military Academy, Riyadh 22140, Saudi Arabia
| | - Reham M Alahmadi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bader S Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia.
| |
Collapse
|
26
|
Rossi C, Inzani FS, Cesari S, Rizzo G, Paulli M, Pedrazzoli P, Lasagna A, Lucioni M. The Role of Oncogenic Viruses in the Pathogenesis of Sporadic Breast Cancer: A Comprehensive Review of the Current Literature. Pathogens 2024; 13:451. [PMID: 38921749 PMCID: PMC11206847 DOI: 10.3390/pathogens13060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most common malignancy in the female sex; although recent therapies have significantly changed the natural history of this cancer, it remains a significant challenge. In the past decade, evidence has been put forward that some oncogenic viruses may play a role in the development of sporadic breast cancer; however, data are scattered and mostly reported as sparse case series or small case-control studies. In this review, we organize and report current evidence regarding the role of high-risk human papillomavirus, mouse mammary tumor virus, Epstein-Barr virus, cytomegalovirus, bovine leukemia virus, human polyomavirus 2, and Merkel cell polyomavirus in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Chiara Rossi
- Section of Anatomic Pathology, Cerba HealthCare Lombardia, 20139 Milan, Italy
| | - Frediano Socrate Inzani
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Stefania Cesari
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Gianpiero Rizzo
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Paulli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Lucioni
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| |
Collapse
|
27
|
Yang NY, Hsieh AYY, Chen Z, Campbell AR, Gadawska I, Kakkar F, Sauve L, Bitnun A, Brophy J, Murray MCM, Pick N, Krajden M, Côté HCF, CIHR Team on Cellular Aging and HIV Comorbidities in Women and Children (CARMA). Chronic and Latent Viral Infections and Leukocyte Telomere Length across the Lifespan of Female and Male Individuals Living with or without HIV. Viruses 2024; 16:755. [PMID: 38793637 PMCID: PMC11125719 DOI: 10.3390/v16050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Chronic/latent viral infections may accelerate immunological aging, particularly among people living with HIV (PLWH). We characterized chronic/latent virus infections across their lifespan and investigated their associations with leukocyte telomere length (LTL). METHODS Participants enrolled in the CARMA cohort study were randomly selected to include n = 15 for each decade of age between 0 and >60 y, for each sex, and each HIV status. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), herpes simplex virus 1 (HSV-1), and HSV-2 infection were determined serologically; HIV, hepatitis C (HCV), and hepatitis B (HBV) were self-reported. LTLs were measured using monochrome multiplex qPCR. Associations between the number of viruses, LTL, and sociodemographic factors were assessed using ordinal logistic and linear regression modeling. RESULTS The study included 187 PLWH (105 female/82 male) and 190 HIV-negative participants (105 female/84 male), ranging in age from 0.7 to 76.1 years. Living with HIV, being older, and being female were associated with harbouring a greater number of chronic/latent non-HIV viruses. Having more infections was in turn bivariately associated with a shorter LTL. In multivariable analyses, older age, living with HIV, and the female sex remained independently associated with having more infections, while having 3-4 viruses (vs. 0-2) was associated with a shorter LTL. CONCLUSIONS Our results suggest that persistent viral infections are more prevalent in PLWH and females, and that these may contribute to immunological aging. Whether this is associated with comorbidities later in life remains an important question.
Collapse
Affiliation(s)
- Nancy Yi Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony Y. Y. Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhuo Chen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Amber R. Campbell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
| | - Izabella Gadawska
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
| | - Fatima Kakkar
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Laura Sauve
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Ari Bitnun
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Jason Brophy
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada;
| | - Melanie C. M. Murray
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Neora Pick
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- British Columbia Center for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
| | | |
Collapse
|
28
|
Maroui MA, Odongo GA, Mundo L, Manara F, Mure F, Fusil F, Jay A, Gheit T, Michailidis TM, Ferrara D, Leoncini L, Murray P, Manet E, Ohlmann T, De Boevre M, De Saeger S, Cosset FL, Lazzi S, Accardi R, Herceg Z, Gruffat H, Khoueiry R. Aflatoxin B1 and Epstein-Barr virus-induced CCL22 expression stimulates B cell infection. Proc Natl Acad Sci U S A 2024; 121:e2314426121. [PMID: 38574017 PMCID: PMC11032484 DOI: 10.1073/pnas.2314426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.
Collapse
Affiliation(s)
- Mohamed Ali Maroui
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Grace Akinyi Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Lucia Mundo
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Francesca Manara
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Fabrice Mure
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Floriane Fusil
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Antonin Jay
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Thanos M. Michailidis
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Domenico Ferrara
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Paul Murray
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
| | - Evelyne Manet
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng2028, South Africa
| | - François-Loïc Cosset
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Rosita Accardi
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Henri Gruffat
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| |
Collapse
|
29
|
Rani A, Patra P, Verma TP, Singh A, Jain AK, Jaiswal N, Narang S, Mittal N, Parmar HS, Jha HC. Deciphering the Association of Epstein-Barr Virus and Its Glycoprotein M Peptide with Neuropathologies in Mice. ACS Chem Neurosci 2024; 15:1254-1264. [PMID: 38436259 DOI: 10.1021/acschemneuro.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
The reactivation of ubiquitously present Epstein-Barr virus (EBV) is known to be involved with numerous diseases, including neurological ailments. A recent in vitro study from our group unveiled the association of EBV and its 12-amino acid peptide glycoprotein M146-157 (gM146-157) with neurodegenerative diseases, viz., Alzheimer's disease (AD) and multiple sclerosis. In this study, we have further validated this association at the in vivo level. The exposure of EBV/gM146-157 to mice causes a decline in the cognitive ability with a concomitant increase in anxiety-like symptoms through behavioral assays. Disorganization of hippocampal neurons, cell shrinkage, pyknosis, and apoptotic appendages were observed in the brains of infected mice. Inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were found to be elevated in infected mouse brain tissue samples, whereas TNF-α exhibited a decline in the serum of these mice. Further, the altered levels of nuclear factor-kappa B (NF-kB) and neurotensin receptor 2 affirmed neuroinflammation in infected mouse brain samples. Similarly, the risk factor of AD, apolipoprotein E4 (ApoE4), was also found to be elevated at the protein level in EBV/gM146-157 challenged mice. Furthermore, we also observed an increased level of myelin basic protein in the brain cortex. Altogether, our results suggested an integral connection of EBV and its gM146-157 peptide to the neuropathologies.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Tarun Prakash Verma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Anamika Singh
- School of Biotechnology, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Ajay Kumar Jain
- Choithram Hospital and Research Centre, Indore, Madhya Pradesh 452014, India
| | - Neha Jaiswal
- Department of Pathology, Index Medical College and Hospital, Indore, Madhya Pradesh 452016, India
| | - Sanjeev Narang
- Department of Pathology, Index Medical College and Hospital, Indore, Madhya Pradesh 452016, India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
30
|
Hsu YC, Tsai MH, Wu G, Liu CL, Chang YC, Lam HB, Su PY, Lung CF, Yang PS. Role of Epstein-Barr Virus in Breast Cancer: Correlation with Clinical Outcome and Survival Analysis. J Cancer 2024; 15:2403-2411. [PMID: 38495506 PMCID: PMC10937271 DOI: 10.7150/jca.93631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Breast cancer is the most prevalent cancer among women worldwide. The potential involvement of Epstein-Barr virus (EBV) in breast cancer pathogenesis has been a subject of debate, but its correlation with clinical outcomes remains uncertain. Methods: In this study, we collected 276 pathologically confirmed breast cancer tissue samples from the tissue bank of MacKay Memorial Hospital and the National Health Research Institutes in Taiwan. DNA was extracted from frozen tissue using The QIAamp DNA Mini Kit. The Taqman quantitative PCR method was employed to assess the EBV copy number per cell in these samples, using NAMALWA cells as a reference. We performed statistical analyses, including 2 × 2 contingency tables, Cox regression analysis, and Kaplan-Meier survival curves, to explore the association between clinicopathologic factors and survival outcomes in breast cancer patients. We analyzed both relapse survival, which reflects the period patients remain free from cancer recurrence post-treatment, and overall survival, which encompasses all-cause mortality. Results: Our results revealed a significant association between EBV status and relapse survival (hazard ratio: 2.75, 95% CI: 1.30, 5.86; p = 0.008) in breast cancer patients. However, no significant association was found in overall survival outcomes. Additionally, we observed significant associations between ER status and tumor histologic grade with both overall and relapse survival. Patients with EBV-positive tumors exhibited higher recurrence rates compared to those with EBV-negative tumors. Furthermore, we noted significant correlations between EBV status and HER-2 (p = 0.0005) and histological grade (p = 0.02) in our cohort of breast cancer patients. Conclusions: The presence of EBV in breast cancer tumors appears to exert an impact on patient outcomes, particularly concerning recurrence rates. Our findings highlight the significance of considering EBV status as a potential prognostic marker in breast cancer patients. Nonetheless, further research is essential to elucidate the underlying molecular mechanisms and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guani Wu
- Department of Statistics & Data Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Chien-Liang Liu
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Bun Lam
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei- Yu Su
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Fan Lung
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Po-Sheng Yang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
31
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
32
|
Ng Hung Shin PB, Tan SX, Griffin A, Tan A, Kanagarajah V. Cat-scratch disease masquerading as post-transplant lymphoproliferative disorder. J Surg Case Rep 2024; 2024:rjad223. [PMID: 38333562 PMCID: PMC10850050 DOI: 10.1093/jscr/rjad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/04/2023] [Indexed: 02/10/2024] Open
Abstract
Lymphadenopathy in an immunosuppressed patient raises the quintessential diagnostic dilemma: infection or malignancy? We present the case of a transplant recipient on anti-rejection prophylaxis admitted with acute fever, malaise and a swollen right axillary node. The patient had pancytopenia and tested positive for Epstein-Barr virus; nodal core biopsy demonstrated atypical plasma cell infiltration, immediately raising suspicion for post-transplant lymphoproliferative disorder. However, excisional biopsy and Bartonella henselae serology clarified a final diagnosis of cat-scratch disease-a potentially fatal zoonosis requiring a disparate treatment regimen. Here, we explore this patient's investigations, hospital course and recovery, with an emphasis on recognizing and differentiating these diagnostic mimics in post-transplant practice.
Collapse
Affiliation(s)
| | - Samuel X Tan
- Queensland Kidney Transplant Service, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Anthony Griffin
- Queensland Kidney Transplant Service, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Ailin Tan
- Queensland Kidney Transplant Service, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Vijay Kanagarajah
- Queensland Kidney Transplant Service, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
34
|
Li JW, Deng C, Zhou XY, Deng R. The biology and treatment of Epstein-Barr virus-positive diffuse large B cell lymphoma, NOS. Heliyon 2024; 10:e23921. [PMID: 38234917 PMCID: PMC10792184 DOI: 10.1016/j.heliyon.2023.e23921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
EBV positive Diffuse Large B-cell lymphoma, not otherwise specified (EBV+DLBCL-NOS) referred to DLBCL with expression of EBV encoded RNA in tumor nucleus. EBV+DLBCL-NOS patients present with more advanced clinical stages and frequent extranodal involvement. Although rituximab-containing immunochemotherapy regimens can significantly improve outcomes in patients with EBV+DLBCL, the best first-line treatment needs to be further explored. Due to the relatively low incidence and regional variation of EBV+DLBCL-NOS, knowledge about this particular subtype of lymphoma remains limited. Some signaling pathways was abnormally activated in EBV+DLBCL-NOS, including NF-κB and JAK/STAT pathways) and other signal transduction pathways. In addition, immune processes such as interferon response, antigen-presenting system and immune checkpoint molecule abnormalities were also observed. Currently, chimeric antigen receptor T-cell (CAR-T) therapy, chemotherapy combined with immunotherapy and novel targeted therapeutic drugs are expected to improve the prognosis of EBV+DLBCL-NOS patients, but more studies are needed to confirm this.
Collapse
Affiliation(s)
- Ji-Wei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chao Deng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renfang Deng
- Department of Oncology, The Second Hospital of Zhuzhou City, Zhuzhou, 412000, China
| |
Collapse
|
35
|
Nishio M, Saito M, Yoshimori M, Kumaki Y, Ohashi A, Susaki E, Yonese I, Sawada M, Arai A. Clinical significance of anti-Epstein-Barr virus antibodies in systemic chronic active Epstein-Barr virus disease. Front Microbiol 2024; 14:1320292. [PMID: 38260896 PMCID: PMC10800478 DOI: 10.3389/fmicb.2023.1320292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Systemic chronic active Epstein-Barr virus disease (sCAEBV) is a rare and fatal neoplasm, involving clonally proliferating Epstein-Barr virus (EBV)-infected T cells or natural killer cells. Patients with sCAEBV have abnormal titers of anti-EBV antibodies in their peripheral blood, but their significance is unknown. We retrospectively investigated titers and their relationship with the clinical features of sCAEBV using the data collected by the Japanese nationwide survey. Eighty-four patients with sCAEBV were analyzed. The anti-EBV nuclear antigen (EBNA) antibody, targeting EBNA-expressing EBV-positive cells, was found in 87.5% of children (<15 years old), 73.7% of adolescents and young adults (15-39 years old), and 100% of adults (≥40 years old). Anti-EBNA antibody titers were significantly lower and anti-VCA-IgG antibody titers significantly higher in patients with sCAEBV than those in healthy controls (p < 0.0001). Patients with high anti-VCA-IgG and anti-early antigen-IgG antibody (antibodies against the viral particles) levels had significantly better 3-year overall survival rates than those with low titers, suggesting that patients with sCAEBV have a reduced immune response to EBV-infected cells.
Collapse
Affiliation(s)
- Miwako Nishio
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Minori Saito
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mayumi Yoshimori
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Kumaki
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayaka Ohashi
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Eri Susaki
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ichiro Yonese
- Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Megumi Sawada
- Department of Nutrition, Tokyo Kasei University, Tokyo, Japan
| | - Ayako Arai
- Department of Hematology and Biophysical Systems Analysis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Hematology and Oncology, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
36
|
Houen G, Ruprecht K. Editorial: Epstein-Barr Virus and multiple sclerosis. Front Immunol 2024; 14:1330181. [PMID: 38250064 PMCID: PMC10797077 DOI: 10.3389/fimmu.2023.1330181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
- Gunnar Houen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Klemens Ruprecht
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Akolbire DA, Akolbire D, Delapenha R. A Case Report of a Rapidly Progressive Epstein-Barr Virus Encephalitis Infection in an Adult With HIV on Highly Active Antiretroviral Therapy. Cureus 2024; 16:e52392. [PMID: 38361681 PMCID: PMC10869129 DOI: 10.7759/cureus.52392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Epstein-Barr virus (EBV) encephalitis is a rare complication of EBV infection, with most cases described in children. Although some cases of EBV encephalitis have been reported in adults, they have occurred in the presence of other central nervous system infections, superimposed on an underlying neurocognitive disorder, or in immunocompromised states. We present herein a rare case of rapidly progressive EBV encephalitis in an adult male with HIV infection on highly active antiretroviral therapy (HAART) with no pre-existing neurocognitive symptoms. A 52-year-old African American man with HIV infection on HAART presented with acute altered mental status and weakness. On admission, he had normal muscle tone and reflexes, with no signs of meningism. Head CT without contrast showed no acute intracranial pathology. Blood and urine cultures were negative. CSF analysis was suggestive of a viral infection. Viral studies were positive only for EBV DNA by PCR in CSF. The patient received IV acyclovir for two weeks, followed by four weeks of oral valacyclovir with full recovery. Clinicians should consider a diagnosis of EBV encephalitis in HIV-positive patients on HAART who present with acute altered mental status. Treatment with antiviral therapy should be considered in patients with EBV encephalitis.
Collapse
Affiliation(s)
| | - Doris Akolbire
- Internal Medicine, Howard University Hospital, Washington, USA
| | | |
Collapse
|
38
|
Bakhshi A, Eslami N, Norouzi N, Letafatkar N, Amini-Salehi E, Hassanipour S. The association between various viral infections and multiple sclerosis: An umbrella review on systematic review and meta-analysis. Rev Med Virol 2024; 34:e2494. [PMID: 38010852 DOI: 10.1002/rmv.2494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Multiple Sclerosis (MS) is one of the immune-mediated demyelinating disorders. Multiple components, including the environment and genetics, are possible factors in the pathogenesis of MS. Also, it can be said that infections are a key component of the host's response to MS development. Finally, we evaluated the relationship between different pathogens and MS disease in this umbrella research. We systematically collected and analysed multiple meta-analyses focused on one particular topic. We utilised the Scopus, PubMed, and Web of Science databases starting with inception until 30 May 2023. The methodological quality of the analysed meta-analysis has been determined based on Assessing the Methodological Quality of Systematic Reviews 2 and Grade, and graph construction and statistical analysis were conducted using Comprehensive Meta-Analysis. The Confidence Interval of effect size was 95% in meta-analyses, and p < 0.05 indicated a statistically meaningful relationship. The included studies evaluated the association between MS and 12 viruses containing SARS-CoV-2, Epstein-Barr virus (EBV), Hepatitis B virus, varicella-zoster virus (VZV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, HSV-1, HSV-2, Cytomegalovirus, Human Papillomavirus, and influenza. SARS-CoV-2, with a 3.74 odds ratio, has a significantly more potent negative effect on MS among viral infections. After that, EBV, HHV-6, HSV-2, and VZV, respectively, with 3.33, 2.81, 1.76, and 1.72 odds ratios, had a significantly negative relationship with MS (p < 0.05). Although the theoretical evidence mostly indicates that EBV has the greatest effect on MS, recent epidemiological studies have challenged this conclusion and put forward possibilities that SARS-CoV-2 is the culprit. Hence, it was necessary to investigate the effects of SARS-CoV-2 and EBV on MS.
Collapse
Affiliation(s)
- Arash Bakhshi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
39
|
Vincenzi M, Mercurio FA, Leone M. EPHA2 Receptor as a Possible Therapeutic Target in Viral Infections. Curr Med Chem 2024; 31:5670-5701. [PMID: 37828671 DOI: 10.2174/0109298673256638231003111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections. OBJECTIVE Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies. METHODS Research and review articles along with preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database. RESULTS EphA2 assumes a key role in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSION Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| |
Collapse
|
40
|
Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-dimensional structure of the EBV genome plays a crucial role in regulating viral gene expression in EBVaGC. Nucleic Acids Res 2023; 51:12092-12110. [PMID: 37889078 PMCID: PMC10711448 DOI: 10.1093/nar/gkad936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Epstein-Barr virus (EBV) establishes lifelong asymptomatic infection by replication of its chromatinized episomes with the host genome. EBV exhibits different latency-associated transcriptional repertoires, each with distinct three-dimensional structures. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents 1.3-30.9% of all gastric cancers globally. EBV-positive gastric cancers exhibit an intermediate viral transcription profile known as 'Latency II', expressing specific viral genes and noncoding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II and III latencies exhibit different 3D structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV genome at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.
Collapse
Affiliation(s)
- Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Zhao G, Bu G, Liu G, Kong X, Sun C, Li Z, Dai D, Sun H, Kang Y, Feng G, Zhong Q, Zeng M. mRNA-based Vaccines Targeting the T-cell Epitope-rich Domain of Epstein Barr Virus Latent Proteins Elicit Robust Anti-Tumor Immunity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302116. [PMID: 37890462 PMCID: PMC10724410 DOI: 10.1002/advs.202302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/04/2023] [Indexed: 10/29/2023]
Abstract
Epstein-Barr virus (EBV) is associated with various malignancies and infects >90% of the global population. EBV latent proteins are expressed in numerous EBV-associated cancers and contribute to carcinogenesis, making them critical therapeutic targets for these cancers. Thus, this study aims to develop mRNA-based therapeutic vaccines that express the T-cell-epitope-rich domain of truncated latent proteins of EBV, including truncatedlatent membrane protein 2A (Trunc-LMP2A), truncated EBV nuclear antigen 1 (Trunc-EBNA1), and Trunc-EBNA3A. The vaccines effectively activate both cellular and humoral immunity in mice and show promising results in suppressing tumor progression and improving survival time in tumor-bearing mice. Furthermore, it is observed that the truncated forms of the antigens, Trunc-LMP2A, Trunc-EBNA1, and Trunc-EBNA3A, are more effective than full-length antigens in activating antigen-specific immune responses. In summary, the findings demonstrate the effectiveness of mRNA-based therapeutic vaccines targeting the T-cell-epitope-rich domain of EBV latent proteins and providing new treatment options for EBV-associated cancers.
Collapse
Affiliation(s)
- Ge‐Xin Zhao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Long Bu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gang‐Feng Liu
- Department of Head and Neck Surgery Section IIThe Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital519 Kunzhou RoadKunming650118China
| | - Xiang‐Wei Kong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Cong Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Qian Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dan‐Ling Dai
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Xia Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yin‐Feng Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qian Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
42
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
43
|
In A, Stopa BM, Cuoco JA, Stump MS, Apfel LS, Rogers CM. Central Nervous System Lymphoproliferative Disorder Secondary to Methotrexate: A Systematic Literature Review and Case Illustration. World Neurosurg 2023; 179:118-126. [PMID: 37574195 DOI: 10.1016/j.wneu.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Methotrexate is an immunosuppressant commonly used to treat inflammatory conditions, such as rheumatoid arthritis. However, albeit exceedingly rare, it can have serious adverse effects within the central nervous system (CNS), such as methotrexate-associated lymphoproliferative disorder (MTX-LPD). Literature describing the natural history, treatment options, and clinical outcomes of patients with CNS MTX-LPD remains sparse. METHODS We present a systematic literature review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and a case illustration of CNS MTX-LPD. RESULTS A systematic review of the literature revealed 12 published cases of CNS MTX-LPD, plus the case presented herein, for a total of 13 included cases. The most common indication for MTX was rheumatoid arthritis. The most common treatment for the LPD was MTX cessation (12, 92.3%), adjunct chemotherapy (2, 15.4%), total tumor resection (3, 23.1%), or steroid therapy (1, 7.7%). Treatment usually led to improvement of neurological symptoms (9, 69.2%) along with regression of the lesions (3, 23.1%) with no recurrence (6, 46.2%). Death was reported in four cases (30.8%) with a mean time from onset of 11 months. CONCLUSIONS CNS MTX-LPD should be considered in the differential diagnosis for patients who are taking MTX presenting with neurologic symptoms, as immediate withdrawal of MTX has demonstrated good prognosis.
Collapse
Affiliation(s)
- Alexander In
- Department of Neuroscience, Fralin Biomedical Research Institute, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Brittany M Stopa
- Department of Neuroscience, Fralin Biomedical Research Institute, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.
| | - Joshua A Cuoco
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Michael S Stump
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Department of Pathology, Carilion Clinic, Roanoke, Virginia, USA
| | - Lisa S Apfel
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Cara M Rogers
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
44
|
Varshney N, Murmu S, Baral B, Kashyap D, Singh S, Kandpal M, Bhandari V, Chaurasia A, Kumar S, Jha HC. Unraveling the Aurora kinase A and Epstein-Barr nuclear antigen 1 axis in Epstein Barr virus associated gastric cancer. Virology 2023; 588:109901. [PMID: 37839162 DOI: 10.1016/j.virol.2023.109901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Aurora kinase A (AURKA) is one of the crucial cell cycle regulators associated with gastric cancer. Here, we explored Epstein Barr Virus-induced gastric cancer progression through EBV protein EBNA1 with AURKA. We found that EBV infection enhanced cell proliferation and migration of AGS cells and upregulation of AURKA levels. AURKA knockdown markedly reduced the proliferation and migration of the AGS cells even with EBV infection. Moreover, MD-simulation data deciphered the probable connection between EBNA1 and AURKA. The in-vitro analysis through the transcript and protein expression showed that AURKA knockdown reduces the expression of EBNA1. Moreover, EBNA1 alone can enhance AURKA protein expression in AGS cells. Co-immunoprecipitation and NMR analysis between AURKA and EBNA1 depicts the interaction between two proteins. In addition, AURKA knockdown promotes apoptosis in EBV-infected AGS cells through cleavage of Caspase-3, -9, and PARP1. This study demonstrates that EBV oncogenic modulators EBNA1 possibly modulate AURKA in EBV-mediated gastric cancer progression.
Collapse
Affiliation(s)
- Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Sneha Murmu
- Division of Agricultural Bioinformatics (DABin), ICAR-Indian Agricultural Statistics Research Institute (IASRI), India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Siddharth Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | | | - Sunil Kumar
- Division of Agricultural Bioinformatics (DABin), ICAR-Indian Agricultural Statistics Research Institute (IASRI), India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
45
|
Gupta S, Craig JW. Classic Hodgkin lymphoma in young people. Semin Diagn Pathol 2023; 40:379-391. [PMID: 37451943 DOI: 10.1053/j.semdp.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Classic Hodgkin lymphoma (CHL) is a unique form of lymphoid cancer featuring a heterogeneous tumor microenvironment and a relative paucity of malignant Hodgkin and Reed-Sternberg (HRS) cells with characteristic phenotype. Younger individuals (children, adolescents and young adults) are affected as often as the elderly, producing a peculiar bimodal age-incidence profile that has generated immense interest in this disease and its origins. Decades of epidemiological investigations have documented the populations most susceptible and identified multiple risk factors that can be broadly categorized as either biological or environmental in nature. Most risk factors result in overt immunodeficiency or confer more subtle alterations to baseline health, physiology or immune function. Epstein Barr virus, however, is both a risk factor and well-established driver of lymphomagenesis in a significant subset of cases. Epigenetic changes, along with the accumulation of somatic driver mutations and cytogenetic abnormalities are required for the malignant transformation of germinal center-experienced HRS cell precursors. Chromosomal instability and the influence of endogenous mutational processes are critical in this regard, by impacting genes involved in key signaling pathways that promote the survival and proliferation of HRS cells and their escape from immune destruction. Here we review the principal features, known risk factors and lymphomagenic mechanisms relevant to newly diagnosed CHL, with an emphasis on those most applicable to young people.
Collapse
Affiliation(s)
- Srishti Gupta
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA.
| |
Collapse
|
46
|
Perkmann T, Koller T, Perkmann-Nagele N, Ozsvar-Kozma M, Eyre D, Matthews P, Bown A, Stoesser N, Breyer MK, Breyer-Kohansal R, Burghuber OC, Hartl S, Aletaha D, Sieghart D, Quehenberger P, Marculescu R, Mucher P, Radakovics A, Klausberger M, Duerkop M, Holzer B, Hartmann B, Strassl R, Leitner G, Grebien F, Gerner W, Grabherr R, Wagner OF, Binder CJ, Haslacher H. Increasing test specificity without impairing sensitivity: lessons learned from SARS-CoV-2 serology. J Clin Pathol 2023; 76:770-777. [PMID: 36041815 DOI: 10.1136/jcp-2022-208171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Serological tests are widely used in various medical disciplines for diagnostic and monitoring purposes. Unfortunately, the sensitivity and specificity of test systems are often poor, leaving room for false-positive and false-negative results. However, conventional methods were used to increase specificity and decrease sensitivity and vice versa. Using SARS-CoV-2 serology as an example, we propose here a novel testing strategy: the 'sensitivity improved two-test' or 'SIT²' algorithm. METHODS SIT² involves confirmatory retesting of samples with results falling in a predefined retesting zone of an initial screening test, with adjusted cut-offs to increase sensitivity. We verified and compared the performance of SIT² to single tests and orthogonal testing (OTA) in an Austrian cohort (1117 negative, 64 post-COVID-positive samples) and validated the algorithm in an independent British cohort (976 negatives and 536 positives). RESULTS The specificity of SIT² was superior to single tests and non-inferior to OTA. The sensitivity was maintained or even improved using SIT² when compared with single tests or OTA. SIT² allowed correct identification of infected individuals even when a live virus neutralisation assay could not detect antibodies. Compared with single testing or OTA, SIT² significantly reduced total test errors to 0.46% (0.24-0.65) or 1.60% (0.94-2.38) at both 5% or 20% seroprevalence. CONCLUSION For SARS-CoV-2 serology, SIT² proved to be the best diagnostic choice at both 5% and 20% seroprevalence in all tested scenarios. It is an easy to apply algorithm and can potentially be helpful for the serology of other infectious diseases.
Collapse
Affiliation(s)
- Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | | | - Maria Ozsvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - David Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Abbie Bown
- Public Health England Porton Down, Salisbury, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Kathrin Breyer
- Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Robab Breyer-Kohansal
- Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Otto C Burghuber
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Sigmund Freud Private University Vienna, Vienna, Austria
| | - Slyvia Hartl
- Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Sigmund Freud Private University Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniela Sieghart
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Quehenberger
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Patrick Mucher
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Astrid Radakovics
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Miriam Klausberger
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria
| | - Mark Duerkop
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria
| | - Barba Holzer
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Moedling, Austria
| | - Boris Hartmann
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Moedling, Austria
| | - Robert Strassl
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Gerda Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for an Optimized Prediction of Vaccination Success in Pigs, University of Veterinary Medicine Vienna, Vienna, Austria
- The Pirbright Institute, Pirbright, UK (current)
| | - Reingard Grabherr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria
| | - Oswald F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Wien, Austria
| |
Collapse
|
47
|
Zealiyas K, Teshome S, Haile AF, Weigel C, Alemu A, Amogne W, Yimer G, Abebe T, Berhe N, Ahmed EH, Baiocchi RA. Genotype characterization of Epstein-Barr virus among adults living with human immunodeficiency virus in Ethiopia. Front Microbiol 2023; 14:1270824. [PMID: 38029140 PMCID: PMC10644458 DOI: 10.3389/fmicb.2023.1270824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epstein-Barr virus (EBV) is a human lymphotropic herpesvirus with a causative agent in cancer. There are two genotypes of EBV (EBV genotype 1 and EBV genotype 2) that have been shown to infect humans. This study aimed to characterize the EBV genotype among people with human immunodeficiency virus (PWH) and HIV-negative individuals in Ethiopia. Methods DNA was extracted from peripheral blood mononuclear cells (PBMCs). Conventional polymerase chain reaction (cPCR) targeting EBNA3C genes was performed for genotyping. A quantitative real-time PCR (q-PCR) assay for EBV DNA (EBNA1 ORF) detection and viral load quantification was performed. Statistical significance was determined at a value of p < 0.05. Result In this study, 155 EBV-seropositive individuals were enrolled, including 128 PWH and 27 HIV-negative individuals. Among PWH, EBV genotype 1 was the most prevalent (105/128, 82.0%) genotype, followed by EBV genotype 2 (17/128, 13.3%), and mixed infection (6/128, 4.7%). In PWH, the median log10 of EBV viral load was 4.23 copies/ml [interquartile range (IQR): 3.76-4.46], whereas it was 3.84 copies/ml (IQR: 3.74-4.02) in the HIV-negative group. The EBV viral load in PWH was significantly higher than that in HIV-negative individuals (value of p = 0.004). In PWH, the median log10 of EBV viral load was 4.25 copies/ml (IQR: 3.83-4.47) in EBV genotype 1 and higher than EBV genotype 2 and mixed infection (p = 0.032). Conclusion In Ethiopia, EBV genotype 1 was found to be the most predominant genotype, followed by EBV genotype 2. Understanding the genotype characterization of EBV in PWH is essential for developing new and innovative strategies for preventing and treating EBV-related complications in this population.
Collapse
Affiliation(s)
- Kidist Zealiyas
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Seifegebriel Teshome
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Christoph Weigel
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ayinalem Alemu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Wondwossen Amogne
- Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Yimer
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Genetics, Penn Center for Global Genomics & Health Equity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nega Berhe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Elshafa Hassan Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
48
|
Cai L, Xing Y, Xia Y, Zhang Z, Luo Z, Tang Y, Chen Y, Xu X. Comparative study of biomarkers for the early identification of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in infectious mononucleosis. BMC Infect Dis 2023; 23:728. [PMID: 37880605 PMCID: PMC10601177 DOI: 10.1186/s12879-023-08654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND AND AIM Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) and infectious mononucleosis (EBV-IM) share mimic symptoms in the early stages of childhood development. We aimed to examine the clinical features and laboratory indices of these two diseases in children and uncover unique indicators to assist pediatricians in identifying these diseases early. METHODS We collected clinical data from 791 pediatric patients diagnosed with EBV-IM or EBV-HLH, compared the clinical traits and laboratory biomarkers presented in the two groups, and constructed predictive models based on them. RESULTS Patients with EBV-IM had greater ratios of cervical lymphadenopathy, eyelid edema, and tonsillitis, whereas individuals with EBV-HLH were more likely to have hepatomegaly and splenomegaly. When using the criteria of interleukin (IL)-10 > 89.6 pg/mL, interferon (IFN)-γ > 45.6 pg/mL, ferritin > 429 μg/L, D-dimer > 3.15 mg/L and triglycerides > 2.1 mmol/L, the sensitivity was 87.9%, 90.7%, 98.1%, 91.1% and 81.5% to predict EBV-HLH, while the specificity was 98.4%, 96.3%, 96.5%, 94.1% and 80.6%, respectively. A logistic regression model based on four parameters (IL-10, ferritin, D-dimer, and triglycerides) was established to distinguish EBV-HLH patients from EBV-IM patients, with a sensitivity of 98.0% and a specificity of 98.2%. CONCLUSIONS IL-10, IFN-γ, ferritin and D-dimer levels are significantly different between EBV-HLH and EBV-IM. Predictive models based on clinical signs and laboratory findings provide simple tools to distinguish the two situations.
Collapse
Affiliation(s)
- Lisha Cai
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, No. 57 Zhugan Lane, Yan-an Street, Hangzhou, 310003, PR China
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Guizhou Children's Hospital, No. 149 Dalian Rd, Huichuan District, Zunyi, Guizhou, 563000, PR China
| | - Yuan Xing
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, No. 57 Zhugan Lane, Yan-an Street, Hangzhou, 310003, PR China
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Guizhou Children's Hospital, No. 149 Dalian Rd, Huichuan District, Zunyi, Guizhou, 563000, PR China
| | - Yahong Xia
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, No. 57 Zhugan Lane, Yan-an Street, Hangzhou, 310003, PR China
| | - Zihan Zhang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, No. 57 Zhugan Lane, Yan-an Street, Hangzhou, 310003, PR China
| | - Zebin Luo
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, No. 57 Zhugan Lane, Yan-an Street, Hangzhou, 310003, PR China
| | - Yongmin Tang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, No. 57 Zhugan Lane, Yan-an Street, Hangzhou, 310003, PR China
| | - Yan Chen
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Guizhou Children's Hospital, No. 149 Dalian Rd, Huichuan District, Zunyi, Guizhou, 563000, PR China.
| | - Xiaojun Xu
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, No. 57 Zhugan Lane, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
49
|
Wessels E, Albert E, Vreeswijk T, Claas ECJ, Giménez E, Reinhardt B, Sasaki MM, Navarro D. Multi-site performance evaluation of the Alinity m Molecular assay for quantifying Epstein-Barr virus DNA in plasma samples. J Clin Microbiol 2023; 61:e0047223. [PMID: 37728343 PMCID: PMC10654093 DOI: 10.1128/jcm.00472-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023] Open
Abstract
Detection and monitoring of acute infection or reactivation of Epstein-Barr virus (EBV) are critical for treatment decision-making and to reduce the risk of EBV-related malignancies and other associated diseases in immunocompromised individuals. The analytical and clinical performance of the Alinity m EBV assay was evaluated at two independent study sites; analytical performance was assessed by evaluating precision with a commercially available 5-member EBV verification panel, while the clinical performance of the Alinity m EBV assay was compared to the RealTime EBV assay and a laboratory-developed test (LDT) as the routine test of record (TOR). Analytical analysis demonstrated standard deviation (SD) between 0.08 and 0.13 Log IU/mL. A total of 300 remnant plasma specimens were retested with the Alinity m EBV assay, and results were compared to those of the TOR at the respective study sites (n = 148 with the RealTime EBV assay and n = 152 with the LDT EBV assay). Agreement between Alinity m EBV and RealTime EBV or LDT EBV assays had kappa values of 0.88 and 0.84, respectively, with correlation coefficients r of 0.956 and 0.912, while the corresponding observed mean bias was -0.02 and -0.19 Log IU/mL. The Alinity m EBV assay had a short median onboard turnaround time of 2:40 h. Thus, the Alinity m system can shorten the time to results and, therefore, to therapy.
Collapse
Affiliation(s)
- Els Wessels
- Leiden University Medical Center, Leiden, the Netherlands
| | - Eliseo Albert
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Tom Vreeswijk
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Estela Giménez
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| | | | | | - David Navarro
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| |
Collapse
|
50
|
Teshome S, Zealiyas K, Abubeker A, Tadesse F, Balakrishna J, Weigel C, Abebe T, Ahmed EH, Baiocchi RA. Detection and Quantification of the Epstein-Barr Virus in Lymphoma Patients from Ethiopia: Molecular and Serological Approaches. Microorganisms 2023; 11:2606. [PMID: 37894264 PMCID: PMC10608904 DOI: 10.3390/microorganisms11102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a known oncogenic virus associated with various lymphoma subtypes throughout the world. However, there is a lack of information regarding EBV prevalence in lymphoma patients, specifically in Ethiopia. This study aimed to investigate the presence of the EBV and determine its viral load in lymphoma patients from Ethiopia using molecular and serological approaches. Lymphoma patient samples were collected from the Ethiopian population. DNA and serum samples were extracted and subjected to molecular detection methods, including quantitative polymerase chain reaction (qPCR) analysis targeting the EBNA1 gene. Serological analyses were performed using an enzyme-linked immunosorbent assay (ELISA) to detect EBV viral capsid antigen IgG antibodies. EBV DNA was detected in 99% of lymphoma patients using qPCR, and serological analyses showed EBV presence in 96% of cases. A high EBV viral load (>10,000 EBV copies/mL) was observed in 56.3% of patients. The presence of high EBV viral loads was observed in 59.3% of HL patients and 54.8% of NHL patients. This study provides important insights into the prevalence and viral load of the EBV among lymphoma patients in Ethiopia. The findings contribute to the limited knowledge in this area and can serve as a foundation for future research.
Collapse
Affiliation(s)
- Seifegebriel Teshome
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa 9086, Ethiopia; (S.T.); (T.A.)
| | - Kidist Zealiyas
- Ethiopian Public Health Institute (EPHI), Addis Ababa 1242, Ethiopia;
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Abdulaziz Abubeker
- Department of Internal Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia; (A.A.); (F.T.)
| | - Fisihatsion Tadesse
- Department of Internal Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia; (A.A.); (F.T.)
| | - Jayalakshmi Balakrishna
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa 9086, Ethiopia; (S.T.); (T.A.)
| | - Elshafa Hassan Ahmed
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|