1
|
López-Guzmán C, Herrera J, Zapata J, Pabón A, Weis UK, Vásquez AM. Natural hemozoin and β-hematin induce tissue damage and apoptosis in human placental explants. Toxicol Rep 2025; 14:101857. [PMID: 39758805 PMCID: PMC11697793 DOI: 10.1016/j.toxrep.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Hemozoin (HZ) is a waste product of hemoglobin digestion by Plasmodium and has been implicated in several pathological processes, including inflammation, oxidative stress, endothelial dysfunction, and immune dysregulation. Studying the effects of HZ on the human placenta is essential to understanding the impact of malaria infection during pregnancy. The present study explored the impact of HZ produced by Plasmodium and β-hematin, referred to here as natural HZ (nHZ) and synthetic HZ (sHZ), respectively, on human placental explants exposed in vitro. Methodology nHZ was derived from Plasmodium falciparum cultures and isolated using magnetic MACS® Separation Columns (Miltenyi Biotec, Auburn, CA) [1]. sHZ was synthesized from hemin closure in an aqueous solution. Both nHZ and sHZ were characterized by infrared spectroscopy and scanning electron microscopy. Human placental explants (HPE) were exposed to 5 and 10 μg/mL of nHZ and sHZ for 24 h, and tissue integrity was studied using histological and immunohistochemical techniques. Results The studies have demonstrated that the exposition of both the nHZ and sHZ to placental tissue are comparable and cause effects in increased STB detachment, dysregulation of collagen distribution in the villous stroma, and increase in the frequency of cell apoptosis. This contributes to the understanding of the pathophysiology of malaria in pregnancy using synthetic products such as β-hematin.
Collapse
Affiliation(s)
| | - Julieth Herrera
- Grupo Malaria, Universidad de Antioquia, Colombia
- Grupo de Estado Sólido, Universidad de Antioquia, Colombia
- Laboratorio Análisis de Residuos, Universidad de Antioquia, Colombia
| | - Julián Zapata
- Laboratorio Análisis de Residuos, Universidad de Antioquia, Colombia
| | | | | | - Ana María Vásquez
- Grupo Malaria, Universidad de Antioquia, Colombia
- Escuela de Microbiología, Universidad de Antioquia, Colombia
| |
Collapse
|
2
|
Perry M, Hamza I. Heme and immunity: The heme oxygenase dichotomy. J Inorg Biochem 2025; 267:112844. [PMID: 39978176 DOI: 10.1016/j.jinorgbio.2025.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Heme, an iron containing organic ring, is required for a diverse range of biological processes across all forms of life. Although this nutrient is essential, its pro-inflammatory and cytotoxic properties can lead to cellular damage. Heme oxygenase 1 (HO-1) is an endoplasmic reticulum (ER)-anchored enzyme that degrades heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The induction of HO-1 by heme presents an interesting dichotomy in the cell: CO and BV possess anti-inflammatory and antioxidant properties while free iron can be detrimental as it can generate hydroxyl radicals through the Fenton reaction. The heme/HO-1 axis is tightly regulated, and can influence cell fate, local tissue environments, and disease outcomes during pathogen infection. In this review we explore the role of heme during macrophage polarization and its ability to act as an immune activator while also examining the contribution of HO-1 and heme during infections with intracellular and extracellular pathogens. We highlight work from the emerging field of nutritional immunity of heme and iron, and how the substrates and byproducts of heme metabolism via HO-1 can be beneficial to the host or the pathogen depending on the context.
Collapse
Affiliation(s)
- Melissa Perry
- Graduate Program in Biological Sciences, University of Maryland, College Park, MD 20742, USA; Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
3
|
Zhang Z, Rana I, Nam J. Metal coordination polymer nanoparticles for cancer therapy. Essays Biochem 2025; 69:EBC20253012. [PMID: 40209056 DOI: 10.1042/ebc20253012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
Metal ions are essential elements in biological processes and immune homeostasis. They can regulate cancer cell death through multiple distinct molecular pathways and stimulate immune cells implicated in antitumor immune responses, suggesting opportunities to design novel metal ion-based cancer therapies. However, their small size and high charge density result in poor target cell uptake, uncontrolled biodistribution, and rapid clearance from the body, reducing therapeutic efficacy and increasing potential off-target toxicity. Metal coordination polymer nanoparticles (MCP NPs) are nanoscale polymer networks composed of metal ions and organic ligands linked via noncovalent coordination interactions. MCP NPs offer a promising nanoplatform for reshaping metal ions into more drug-like formulations, improving their in vivo pharmacological performance and therapeutic index for cancer therapy applications. This review provides a comprehensive overview of the inherent biological functions of metal ions in cancer therapy, showcasing examples of MCP NP systems designed for preclinical cancer therapy applications where drug delivery principles play a critical role in enhancing therapeutic outcomes. MCP NPs offer versatile metal ion engineering approaches using selected metal ions, various organic ligands, and functional payloads, enabling on-demand nano-drug designs that can significantly improve therapeutic efficacy and reduce side effects for effective cancer therapy.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- College of Pharmacy, Chonnam National University, Gwanju 61186, South Korea
| | - Isra Rana
- College of Pharmacy, Chonnam National University, Gwanju 61186, South Korea
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwanju 61186, South Korea
| |
Collapse
|
4
|
Barik P, Mondal S. Immunomodulatory effects of metal nanoparticles: current trends and future prospects. NANOSCALE 2025. [PMID: 40202489 DOI: 10.1039/d5nr01030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The advent of nanotechnology has steered into a new era of medical advancements, with metal nanoparticles (MNPs) emerging as potent agents for precise regulation of the immune system. This review provides a comprehensive overview of the immunomodulatory roles of MNPs, including gold, silver, and metal oxide nanoparticles, in regulating innate and adaptive immunity. Additionally, we discuss the immunological effects of metal ions and metal complexes, offering a comparative analysis with nanoparticulate systems. We analyse cutting-edge strategies utilising MNPs to optimise vaccine efficacy, achieve targeted delivery to immune cells, and orchestrate inflammatory responses. Additionally, we discuss the therapeutic potential of MNPs in combating autoimmune diseases, cancers, and infectious agents, which is evaluated within the framework of precision medicine. Furthermore, we critically assess challenges such as biocompatibility, potential toxicity, and regulatory hurdles. Finally, we propose future directions for integrating MNPs with advanced delivery systems and other nanomaterials to propel the frontiers of immunotherapy. This review aims to provide a foundational understanding of MNP-mediated immunomodulation, inspiring further research and development in this burgeoning field.
Collapse
Affiliation(s)
- Puspendu Barik
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Samiran Mondal
- Department of Chemistry, Rammohan College (University of Calcutta), 102/1-Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
5
|
Wang Z, Liu W. Hemin as a protective agent in an in vitro model of hypoxia/reoxygenation-induced injury. SAGE Open Med 2025; 13:20503121251329163. [PMID: 40143929 PMCID: PMC11938892 DOI: 10.1177/20503121251329163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Ischemia-reperfusion injury exacerbates myocardial damage and affects the prognosis of patients with ST-elevation myocardial infarction. This study investigates the potential cytoprotective effects of hemin in an in vitro cardiomyocyte model subjected to hypoxia/reoxygenation, a simulation of ischemia-reperfusion injury, building upon previous evidence of hemin's efficacy in modulating ischemia-reperfusion injuries in various biological tissues. Methods H9c2 cardiomyocytes were exposed to a simulated hypoxia/reoxygenation environment. The experimental setup included pretreatment with hemin at varying concentrations, with subsequent assessment in the presence and absence of a heme oxygenase-1 inhibitor (Zinc-Protoporphyrin IX (heme oxygenase-1 inhibitor)). Results Pretreatment with 5 μM hemin notably attenuated the oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation exposure, while simultaneously upregulating heme oxygenase-1 expression. This protective effect was found to be heme oxygenase-1 dependent, as evidenced by its attenuation upon the introduction of Zinc-Protoporphyrin IX (heme oxygenase-1 inhibitor), a heme oxygenase-1 inhibitor. Conclusion The findings suggest that low-dose, short-term hemin pretreatment can effectively reduce hypoxia/reoxygenation-induced cellular damage in cardiomyocytes through the upregulation of heme oxygenase-1. These results underscore the therapeutic potential of hemin in attenuating myocardial hypoxia/reoxygenation injury.
Collapse
Affiliation(s)
- Zuoyan Wang
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, China
| | - Wei Liu
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, China
| |
Collapse
|
6
|
Rehill AM, McCluskey S, Ledwith AE, Ryan TAJ, Ünlü B, Leon G, Charles-Messance H, Gilbert EH, Klavina P, Day EA, Coppinger J, O’Sullivan JM, McMahon C, O’Donnell JS, Curtis AM, O’Neill LAJ, Sheedy FJ, Preston RJS. Trained immunity causes myeloid cell hypercoagulability. SCIENCE ADVANCES 2025; 11:eads0105. [PMID: 40053582 PMCID: PMC11887800 DOI: 10.1126/sciadv.ads0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The pathogenic basis for increased thrombotic risk in individuals with inflammatory diseases is poorly understood. Myeloid cell "trained immunity" describes persistent innate immune cell memory arising from prior exposure to an inflammatory stimulus, leading to an enhanced immune response to subsequent unrelated stimuli. We identify enhanced myeloid cell prothrombotic activity as a maladaptive consequence of trained immunity. Lipopolysaccharide (LPS) stimulation of macrophages trained previously with β-glucan or heme exhibited significantly enhanced procoagulant activity compared to macrophages stimulated with LPS alone, which was mediated by enhanced acid sphingomyelinase-mediated tissue factor decryption. Furthermore, splenic monocytes isolated from β-glucan-trained mice revealed enhanced procoagulant activity up to 4 weeks after β-glucan administration compared to monocytes from control mice over the same time period. Moreover, hematopoietic progenitor cells and bone marrow interstitial fluid from β-glucan-trained mice had enhanced procoagulant activity compared to control mice. Trained immunity and associated metabolic perturbations may therefore represent an opportunity for targeted intervention in immunothrombotic disease development.
Collapse
Affiliation(s)
- Aisling M. Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Seán McCluskey
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Anna E. Ledwith
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Tristram A. J. Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Betül Ünlü
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | | | - Edmund H. Gilbert
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula Klavina
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Emily A. Day
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Judith Coppinger
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jamie M. O’Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Corrina McMahon
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M. Curtis
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Luke A. J. O’Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Frederick J. Sheedy
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
7
|
Song J, Li N, Yang Y, Chen B, Hu J, Tian Y, Lin L, Qin Z. Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110106. [PMID: 39755287 DOI: 10.1016/j.fsi.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue. Quantitative real-time PCR and western blotting confirmed that PHZ treatment significantly upregulated Real-time fluorescence quantitative PCR and Western blot confirmed that PHZ treatment significantly up-regulated the expression of iron metabolism-related genes and proteins, including transferrin (Tf), ferritin, ferroportin 1 (FPN1), transferrin receptor 1 (TfR1), nuclear receptor coactivator 4 (NCOA4), divalent metal transporter 1 (DMT1), and six-transmembrane epithelial antigen of prostate 3 (STEAP3). Further investigation of PHZ-induced hemolysis effects on tissues showed that inflammation- and antioxidant enzyme-related genes in the liver and head kidney were significantly upregulated, indicating that hemolysis activated the antioxidant system and intensified inflammatory responses. Perls' staining revealed iron deposition in the head kidney and liver at ten and fourteen days post-PHZ injection. Moreover, β-galactosidase staining and transmission electron microscopy showed increased cellular senescence and mitochondrial damage, respectively, as a result of PHZ-induced hemolysis. In vitro assays with hemin treatment demonstrated increased Fe2+ content in CIK and L8824 cells, which induced oxidative stress, upregulated iron metabolism and inflammatory genes, and ultimately led to cell death. These findings suggest that excessive Hb release during sustained hemolysis leads to iron overload, elevates reactive oxygen species production, disrupts antioxidant balance, and ultimately causes cellular damage.
Collapse
Affiliation(s)
- Jialing Song
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Ningjing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Bing Chen
- Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jiaxiang Hu
- SiChuan Water Conservancy Vocational College, Cheng Du, Si Chuan Province, 610000, China
| | - Ye Tian
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
8
|
Mestekemper AN, Pirschel W, Krieg N, Paulmann MK, Daniel C, Amann K, Coldewey SM. Reduction in Renal Heme Oxygenase-1 Is Associated with an Aggravation of Kidney Injury in Shiga Toxin-Induced Murine Hemolytic-Uremic Syndrome. Toxins (Basel) 2024; 16:543. [PMID: 39728801 PMCID: PMC11679022 DOI: 10.3390/toxins16120543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli, primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by Hmox1) in HUS has not yet been investigated. We hypothesized that HO-1, also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS. The effect of tamoxifen-induced Hmox1 gene deletion on renal HO-1 expression, disease progression and AKI was investigated in mice 7 days after HUS induction. Renal HO-1 levels were increased in Stx-challenged mice with tamoxifen-induced Hmox1 gene deletion (Hmox1R26Δ/Δ) and control mice (Hmox1lox/lox). This HO-1 induction was significantly lower (-43%) in Hmox1R26Δ/Δ mice compared to Hmox1lox/lox mice with HUS. Notably, the reduced renal HO-1 expression was associated with an exacerbation of kidney injury in mice with HUS as indicated by a 1.7-fold increase (p = 0.02) in plasma neutrophil gelatinase-associated lipocalin (NGAL) and a 1.3-fold increase (p = 0.06) in plasma urea, while other surrogate parameters for AKI (e.g., periodic acid Schiff staining, kidney injury molecule-1, fibrin deposition) and general disease progression (HUS score, weight loss) remained unchanged. These results indicate a potentially protective role of HO-1 in the pathogenesis of Stx-mediated AKI in HUS.
Collapse
Affiliation(s)
- Antonio N. Mestekemper
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.N.M.); (N.K.); (M.K.P.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Wiebke Pirschel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.N.M.); (N.K.); (M.K.P.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.N.M.); (N.K.); (M.K.P.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Maria K. Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.N.M.); (N.K.); (M.K.P.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.D.); (K.A.)
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.D.); (K.A.)
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.N.M.); (N.K.); (M.K.P.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
9
|
Wu YK, Chung HW, Chen YT, Chen HC, Chen IH, Su WL. Association of LVV-Hemorphin-7 with Sepsis and Shock: Roles of Cathepsin D and G in Hemoglobin Metabolism in a Prospective ICU Cohort Study. Biomedicines 2024; 12:2789. [PMID: 39767696 PMCID: PMC11673980 DOI: 10.3390/biomedicines12122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sepsis is a leading cause of mortality in intensive care units (ICUs). Cell-free hemoglobin (CFH) released during sepsis interacts with lysosomal enzymes from neutrophils and macrophages. This study aims to examine the association of LVV-hemorphin-7 (LVV-H7), cathepsin D, and cathepsin G with sepsis and shock in ICU patients. METHODS A prospective observational cohort study was conducted in the medical ICU of a tertiary referral hospital in Taiwan. The patients with an acute increasing sequential organ failure assessment (SOFA) score ≥ 2 between 2022 and 2023. Blood samples from 40 healthy controls were obtained from the hospital biobank. CFH metabolites, including LVV-H7 and lysosomal enzyme cathepsin D and cathepsin G, were compared between the sepsis (definite and probable) and non-sepsis (possible sepsis) groups. Multivariate logistic regression analyzed factors associated with sepsis and shock. RESULTS Among 120 patients, 75 were classified as septic and 45 as non-septic. Significant differences were observed in CFH, cathepsin D, cathepsin G, and LVV-H7 levels between sepsis and non-sepsis groups. LVV-H7 was a significant predictor for sepsis (adjusted OR [aOR] 1.009, 95% CI 1.005-1.013; p < 0.001) and shock (aOR 1.005, 95% CI 1.002-1.008; p < 0.05). Cathepsin G predicted non-shock (aOR 0.917, 95% CI 0.848-0.991; p < 0.05), while cathepsin D predicted septic shock (aOR 1.001, 95% CI 1.000-1.002; p < 0.05). CONCLUSIONS LVV-H7, cathepsin D, and cathepsin G are associated with the classification of sepsis and shock episodes in critically ill patients with elevated SOFA scores.
Collapse
Affiliation(s)
- Yao-Kuang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Hsueh-Wen Chung
- Department of Nursing, College of Nursing, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
| | - Yi-Ting Chen
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsing-Chun Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County 622, Taiwan; (H.-C.C.); (I.-H.C.)
| | - I-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County 622, Taiwan; (H.-C.C.); (I.-H.C.)
| | - Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| |
Collapse
|
10
|
Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem 2024; 479:3273-3291. [PMID: 38427167 DOI: 10.1007/s11010-024-04948-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic
- First Department of Internal Medicine-Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
12
|
García-Caballero C, Guerrero-Hue M, Vallejo-Mudarra M, Palomino Antolin A, Decouty-Pérez C, Sánchez-Mendoza LM, Villalba JM, González-Reyes JA, Opazo-Rios L, Vázquez-Carballo C, Herencia C, Leiva-Cepas F, Cortegano I, Andrés BD, Egido J, Egea J, Moreno JA. Nox4 is involved in acute kidney injury associated to intravascular hemolysis. Free Radic Biol Med 2024; 225:430-444. [PMID: 39413979 DOI: 10.1016/j.freeradbiomed.2024.10.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Massive intravascular hemolysis occurs not unfrequently in many clinical conditions. Breakdown of erythrocytes promotes the accumulation of heme-derivates in the kidney, increasing oxidative stress and cell death, thus promoting acute kidney injury (AKI). NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in the kidney, however it is unknown the role of Nox4 in hemolysis and whether inhibition of this enzyme may protect from heme-mediated injury. To answer these questions, we elicited intravascular hemolysis in wild type and Nox4 knockout mice. We also evaluated whether nephrotoxic effects of heme may be reduced by using Nox4 siRNA and pharmacologic inhibition with GKT137831, a Nox4 inhibitor, both in vivo and in cultured renal cells. Our results showed that induction of massive hemolysis elicited AKI characterized by loss of renal function, morphological alterations of the tubular epithelium and podocytes, oxidative stress, inflammation, mitochondrial dysfunction, blockade of autophagy and cell death. These pathological effects were significantly prevented in Nox4-deficient mice and in animals treated with GKT137831. In vitro studies showed that Nox4 disruption by specific siRNAs or Nox4 inhibitors declined heme-mediated ROS production and cell death. Our data identify Nox4 as a key enzyme involved in intravascular hemolysis-induced AKI. Thus, Nox4 inhibition may be a potential therapeutic approach to prevent renal damage in patients with severe hemolytic crisis.
Collapse
Affiliation(s)
- Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Alejandra Palomino Antolin
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Celine Decouty-Pérez
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Luz Marina Sánchez-Mendoza
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - José Antonio González-Reyes
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - Lucas Opazo-Rios
- Health Science Faculty, University of Las Américas, Concepción, Talcahuano, Chile.
| | - Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain.
| | - Carmen Herencia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain.
| | - Fernando Leiva-Cepas
- Departament of Morphological and Sociosanitary Sciences, Pathology Unit, Faculty of Medicine and Nurse, University of Cordoba/Pathology Unit, Hospital Universitario Reina Sofía, Cordoba, Spain.
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain.
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain.
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Javier Egea
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| |
Collapse
|
13
|
Valuparampil Varghese M, James J, Bharti D, Rischard F, Rafikova O, Rafikov R. Circulating free heme induces cytokine storm and pulmonary hypertension through the MKK3/p38 axis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L574-L586. [PMID: 39197168 PMCID: PMC11482467 DOI: 10.1152/ajplung.00422.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024] Open
Abstract
Hemolysis is associated with pulmonary hypertension (PH), but the direct contribution of circulating free heme to the PH pathogenesis remains unclear. Here, we show that the elevated levels of circulating free heme are sufficient to induce PH and inflammatory response in mice and confirm the critical role of mitogen-activated protein kinase kinase-3 (MKK3)-mediated pathway in free heme signaling. Following the continuous infusion of heme for 2 wk, wild-type (WT) but not MKK3 knockout (KO) mice develop PH, as evidenced by a significantly elevated right ventricular (RV) systolic pressure, RV hypertrophy, and pulmonary vascular remodeling. The MKK3/p38 axis, markedly activated by heme infusion in WTs, results in upregulated proliferative/cytokine signaling targets Akt, ERK1/2, and STAT3, which were abrogated in MKK3 KO mice. Moreover, the MKK3 KOs were protected against heme-mediated endothelial barrier dysfunction by restoring the tight junction protein zonula occludens-1 expression and diminishing the inflammatory cell infiltration in the lungs. Plasma cytokine multiplex analysis revealed a severe cytokine storm already 24 h after initiation of heme infusion, with a significant increase of 19 cytokines, including IL-1b, IL-2, IL-6, IL-9, and TNF-a, in WT animals and complete attenuation of cytokine production in MKK3 KO mice. Together, these findings reveal a causative role of circulating free heme in PH through activating inflammatory and proliferative responses. The central role of MKK3 in orchestrating the heme-mediated pathogenic response supports MKK3 as an attractive therapeutic target for PH and other lung inflammatory diseases linked to hemolytic anemia.NEW & NOTEWORTHY This study demonstrates that elevated levels of circulating free heme can induce pulmonary hypertension (PH) and inflammation in mice. Continuous heme infusion activated the MKK3/p38 pathway, leading to increased right ventricular pressure, right ventricular hypertrophy, and vascular remodeling. This activation upregulated signaling cascades such as Akt, ERK1/2, and STAT3, whereas MKK3 knockout mice were protected against these changes and had reduced inflammatory responses, highlighting MKK3's potential as a therapeutic target for PH.
Collapse
Affiliation(s)
- Mathews Valuparampil Varghese
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Joel James
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Dinesh Bharti
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Franz Rischard
- Department of Medicine, The University of Arizona College of Medicine - Tucson, Tucson, Arizona, United States
| | - Olga Rafikova
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Ruslan Rafikov
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
14
|
Barbu IA, Toma VA, Moț AC, Vlase AM, Butiuc-Keul A, Pârvu M. Chemical Composition and Antioxidant Activity of Six Allium Extracts Using Protein-Based Biomimetic Methods. Antioxidants (Basel) 2024; 13:1182. [PMID: 39456436 PMCID: PMC11504208 DOI: 10.3390/antiox13101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Medicinal plants are a valuable reservoir of novel pharmacologically active compounds. ROS and free radicals are primary contributors to oxidative stress, a condition associated with the onset of degenerative diseases such as cancer, coronary heart disease, and vascular disease. In this study, we used different spectrophotometry methods to demonstrate the antioxidant properties of 6 Allium extracts: Allium fistulosum; Allium ursinum; Allium cepa: Arieș red cultivar of A. cepa, and white variety of A. cepa; Allium sativum; and Allium senescens subsp. montanum. HPLC-MS determined the chemical composition of the extracts. Among the tested extracts, the Arieș red cultivar of A. cepa stands out as having the best antioxidant activity, probably due to the high content of polyphenols and alliin (12.67 µg/mL and 3565 ng/mL, respectively). The results obtained in this study show that Allium extracts have antioxidant activity, but also free radical scavenging capabilities. Also, their interactions with cytochrome c and hemoglobin can be the basis of future studies to create treatments for oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ioana Andreea Barbu
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Vlad Alexandru Toma
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., 400015 Cluj-Napoca, Romania
- “Maya and Nicolae Simionescu”, Romanian Society for Cell Biology, 050568 Bucharest, Romania
| | - Augustin Cătălin Moț
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Butiuc-Keul
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Scott MA, Valeris-Chacin R, Thompson AC, Woolums AR, Karisch BB. Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease. Front Immunol 2024; 15:1412766. [PMID: 39346910 PMCID: PMC11427276 DOI: 10.3389/fimmu.2024.1412766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Bovine respiratory disease (BRD) remains the leading infectious disease in beef cattle production systems. Host gene expression upon facility arrival may indicate risk of BRD development and severity. However, a time-course approach would better define how BRD development influences immunological and inflammatory responses after disease occurrences. Here, we evaluated whole blood transcriptomes of high-risk beef cattle at three time points to elucidate BRD-associated host response. Sequenced jugular whole blood mRNA from 36 cattle (2015: n = 9; 2017: n = 27) across three time points (n = 100 samples; days [D]0, D28, and D63) were processed through ARS-UCD1.2 reference-guided assembly (HISAT2/Stringtie2). Samples were categorized into BRD-severity cohorts (Healthy, n = 14; Treated 1, n = 11; Treated 2+, n = 11) via frequency of antimicrobial clinical treatment. Assessment of gene expression patterns over time within each BRD cohort was modeled through an autoregressive hidden Markov model (EBSeq-HMM; posterior probability ≥ 0.5, FDR < 0.01). Mixed-effects negative binomial models (glmmSeq; FDR < 0.05) and edgeR (FDR < 0.10) identified differentially expressed genes between and across cohorts overtime. A total of 2,580, 2,216, and 2,381 genes were dynamically expressed across time in Healthy, Treated 1, and Treated 2+ cattle, respectively. Genes involved in the production of specialized resolving mediators (SPMs) decreased at D28 and then increased by D63 across all three cohorts. Accordingly, SPM production and alternative complement were differentially expressed between Healthy and Treated 2+ at D0, but not statistically different between the three groups by D63. Magnitude, but not directionality, of gene expression related to SPM production, alternative complement, and innate immune response signified Healthy and Treated 2+ cattle. Differences in gene expression at D63 across the three groups were related to oxygen binding and carrier activity, natural killer cell-mediated cytotoxicity, cathelicidin production, and neutrophil degranulation, possibly indicating prolonged airway pathology and inflammation weeks after clinical treatment for BRD. These findings indicate genomic mechanisms indicative of BRD development and severity over time.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Robert Valeris-Chacin
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Alexis C Thompson
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX, United States
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
16
|
Xue J, Li XA. Therapeutics for sickle cell disease intravascular hemolysis. Front Physiol 2024; 15:1474569. [PMID: 39345787 PMCID: PMC11427376 DOI: 10.3389/fphys.2024.1474569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder predominantly affecting individuals of African descent, with a significant global health burden. SCD is characterized by intravascular hemolysis, driven by the polymerization of mutated hemoglobin within red blood cells (RBCs), leading to vascular inflammation, organ damage, and heme toxicity. Clinical manifestations include acute pain crises, hemolytic anemia, and multi-organ dysfunction, imposing substantial morbidity and mortality challenges. Current therapeutic strategies mitigate these complications by increasing the concentration of RBCs with normal hemoglobin via transfusion, inducing fetal hemoglobin, restoring nitric oxide signaling, inhibiting platelet-endothelium interaction, and stabilizing hemoglobin in its oxygenated state. While hydroxyurea and gene therapies show promise, each faces distinct challenges. Hydroxyurea's efficacy varies among patients, and gene therapies, though effective, are limited by issues of accessibility and affordability. An emerging frontier in SCD management involves harnessing endogenous clearance mechanisms for hemolysis products. A recent work by Heggland et al. showed that CD-36-like proteins mediate heme absorption in hematophagous ectoparasite, a type of parasite that feeds on the blood of its host. This discovery underscores the need for further investigation into scavenger receptors (e.g., CD36, SR-BI, SR-BII) for their possible role in heme uptake and detoxification in mammalian species. In this review, we discussed current SCD therapeutics and the specific stages of pathophysiology they target. We identified the limitations of existing treatments and explored potential future developments for novel SCD therapies. Novel therapeutic targets, including heme scavenging pathways, hold the potential for improving outcomes and reducing the global burden of SCD.
Collapse
Affiliation(s)
- Jianyao Xue
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Xiang-An Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Lexington VA Healthcare System, Lexington, KY, United States
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
17
|
Wang F, Glenn AJ, Tessier AJ, Mei Z, Haslam DE, Guasch-Ferré M, Tobias DK, Eliassen AH, Manson JE, Clish C, Lee KH, Rimm EB, Wang DD, Sun Q, Liang L, Willett WC, Hu FB. Integration of epidemiological and blood biomarker analysis links haem iron intake to increased type 2 diabetes risk. Nat Metab 2024; 6:1807-1818. [PMID: 39138340 DOI: 10.1038/s42255-024-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Dietary haem iron intake is linked to an increased risk of type 2 diabetes (T2D), but the underlying plasma biomarkers are not well understood. We analysed data from 204,615 participants (79% females) in three large US cohorts over up to 36 years, examining the associations between iron intake and T2D risk. We also assessed plasma metabolic biomarkers and metabolomic profiles in subsets of 37,544 (82% females) and 9,024 (84% females) participants, respectively. Here we show that haem iron intake but not non-haem iron is associated with a higher T2D risk, with a multivariable-adjusted hazard ratio of 1.26 (95% confidence interval 1.20-1.33; P for trend <0.001) comparing the highest to the lowest quintiles. Haem iron accounts for significant proportions of the T2D risk linked to unprocessed red meat and specific dietary patterns. Increased haem iron intake correlates with unfavourable plasma profiles of insulinaemia, lipids, inflammation and T2D-linked metabolites. We also identify metabolites, including L-valine and uric acid, potentially mediating the haem iron-T2D relationship, highlighting their pivotal role in T2D pathogenesis.
Collapse
Affiliation(s)
- Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea J Glenn
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Anne-Julie Tessier
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhendong Mei
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle E Haslam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dong D Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Guo Q, Li J, Wang MR, Zhao M, Zhang G, Tang S, Xiong LB, Gao B, Wang FQ, Wei DZ. Multidimensional engineering of Saccharomyces cerevisiae for the efficient production of heme by exploring the cytotoxicity and tolerance of heme. Metab Eng 2024; 85:46-60. [PMID: 39019249 DOI: 10.1016/j.ymben.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.
Collapse
Affiliation(s)
- Qidi Guo
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacun Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming-Rui Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Gege Zhang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Tang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang-Bin Xiong
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
19
|
Chowdhury P, Dey Talukdar P, Mukherjee P, Dey D, Chatterji U, Sengupta S. Hemin-induced reactive oxygen species triggers autophagy-dependent macrophage differentiation and pro-inflammatory responses in THP-1 cells. Exp Cell Res 2024; 442:114216. [PMID: 39182663 DOI: 10.1016/j.yexcr.2024.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The toxic effect of oxidized-heme, also known as hemin, is implicated in developing adverse clinical outcome in various hematolytic diseases. To simulate and reconstruct the molecular events associated with hemin exposure on circulating monocytes, we employed a THP-1 cell line based in vitro model. Flow cytometry and Western blot analyses were subsequently applied. Hemin-treated THP-1 produced ROS in a dose-dependent manner which resulted in 10-30 % of cell death primarily through apoptosis. Surviving cells induced autophagy which too was ROS-dependent, as revealed by application of N-acetyl-L-cysteine. Hemin-mediated autophagy promoted differentiation of CD14+ THP-1 cells into CD11b+ macrophages. Application of 3-methyladenine, reinforced that differentiation of THP-1 was an autophagy-dependent process. It was revealed that despite a higher polarization towards M2-macrophage, synthesis of pro-inflammatory cytokines namely TNF-α, IL-1A, IL-2, IL-8 and IL-17A predominated. IL-6, a pleiotropic cytokine, was also elevated. It may thus be surmised that hemin-induced pro-inflammatory response in THP-1 is downstream to ROS-dependent autophagy and monocyte differentiation. This finding is translationally meaningful as hemin is already approved by FDA for amelioration of acute porphyria and is actively considered as a therapeutic agent for other diseases. This study underscores the need of further research untangling the reciprocal regulation of inflammatory signaling and autophagy under oxidative stress.
Collapse
Affiliation(s)
- Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Priyanka Dey Talukdar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Mukherjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Debangana Dey
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
20
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Belot A, Puy H, Hamza I, Bonkovsky HL. Update on heme biosynthesis, tissue-specific regulation, heme transport, relation to iron metabolism and cellular energy. Liver Int 2024; 44:2235-2250. [PMID: 38888238 PMCID: PMC11625177 DOI: 10.1111/liv.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.
Collapse
Affiliation(s)
- Audrey Belot
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Herve Puy
- Centre Français des Porphyries, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, INSERM U1149, Paris, France
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Herbert L. Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| |
Collapse
|
22
|
Ludwig N, Cucinelli S, Hametner S, Muckenthaler MU, Schirmer L. Iron scavenging and myeloid cell polarization. Trends Immunol 2024; 45:625-638. [PMID: 39054114 DOI: 10.1016/j.it.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Myeloid cells that populate all human organs and blood are a versatile class of innate immune cells. They are crucial for sensing and regulating processes as diverse as tissue homeostasis and inflammation and are frequently characterized by their roles in either regulating or promoting inflammation. Recent studies in cultured cells and mouse models highlight the role of iron in skewing the functional properties of myeloid cells in tissue damage and repair. Here, we review certain emerging concepts on how iron influences and determines myeloid cell polarization in the context of its uptake, storage, and metabolism, including in conditions such as multiple sclerosis (MS), sickle cell disease, and tumors.
Collapse
Affiliation(s)
- Natalie Ludwig
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Stefania Cucinelli
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria; Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
23
|
Zhang X, Yang YX, Lu JJ, Hou DY, Abudukeyoumu A, Zhang HW, Li MQ, Xie F. Active Heme Metabolism Suppresses Macrophage Phagocytosis via the TLR4/Type I IFN Signaling/CD36 in Uterine Endometrial Cancer. Am J Reprod Immunol 2024; 92:e13916. [PMID: 39166450 DOI: 10.1111/aji.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Uterine endometrial cancer (UEC) is a common gynecological estrogen-dependent carcinoma, usually accompanied by intermenstrual bleeding. Active heme metabolism frequently plays an increasingly important role in many diseases, especially in cancers. Tumor-associated macrophages (TAMs) are the major population in the immune microenvironment of UEC. However, the roles of heme metabolisms in the crosstalk between UEC cells (UECCs) and macrophages are unclear. MATERIALS AND METHODS In our study, by using TCGA database analysis, integration analysis of the protein-protein interaction (PPI) network and sample RNA transcriptome sequencing were done. The expression level of both heme-associated molecules and iron metabolism-related molecules were measured by quantitative real-time polymerase chain reaction. Heme level detection was done through dehydrohorseradish peroxidase assay. In addition to immunohistochemistry, phagocytosis assay of macrophages, immunofluorescence staining, intracellular ferrous iron staining, as well as enzyme-linked immune sorbent assay were performed. RESULTS In the study, we verified that heme accumulation in UECCs is apparently higher than in endometrial epithelium cells. Low expression of succinate dehydrogenase B under the regulation of estrogen contributes to over-production of succinate and heme accumulation in UECC. More importantly, excessive heme in UECCs impaired macrophage phagocytosis by regulation of CD36. Mechanistically, this process is dependent on toll-like receptor (TLR4)/type I interferons alpha (IFN Iα) regulatory axis in macrophage. CONCLUSION Collectively, these findings elucidate that active heme metabolism of UECCs directly decreases phagocytosis by controlling the secretion of TLR4-mediated IFN Iα and the expression of CD36, and further contributing to the immune escape of UEC.
Collapse
Affiliation(s)
- Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yi-Xing Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ding-Yu Hou
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Hong-Wei Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Pradhan P, Vijayan V, Liu B, Martinez-Delgado B, Matamala N, Nikolin C, Greite R, DeLuca DS, Janciauskiene S, Motterlini R, Foresti R, Immenschuh S. Distinct metabolic responses to heme in inflammatory human and mouse macrophages - Role of nitric oxide. Redox Biol 2024; 73:103191. [PMID: 38762951 PMCID: PMC11130737 DOI: 10.1016/j.redox.2024.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024] Open
Abstract
Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.
Collapse
Affiliation(s)
- Pooja Pradhan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Vijith Vijayan
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Robert Greite
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - David S. DeLuca
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | | | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Tu C, Yang S, Yang M, Liu L, Tao J, Zhang L, Huang X, Tian Y, Li N, Lin L, Qin Z. Mechanisms of persistent hemolysis-induced middle kidney injury in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109603. [PMID: 38704112 DOI: 10.1016/j.fsi.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.
Collapse
Affiliation(s)
- Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Ye Tian
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Ningjing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
26
|
Shao WM, Ye LW, Zhang LM, Wang YL, Liu H, He D, Zhu JL, Lyu J, Yin H. Relationship between the magnitude of haemoglobin changes and long-term mortality in patients with sepsis: a retrospective cohort study. BMC Infect Dis 2024; 24:577. [PMID: 38862875 PMCID: PMC11167884 DOI: 10.1186/s12879-024-09476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Sepsis is a common and severe disease with a high mortality rate in intensive care unit (ICU). The hemoglobin (HGB) level is a key parameter for oxygen supply in sepsis. Although HGB is associated with the progression of inflammation in sepsis patients, its role as a marker following sepsis treatment remains unclear. Here, we studied the correlation between early temporal changes in HGB levels and long-term mortality rates in septic patients. METHOD In this retrospective study of data on patients with sepsis from the Medical Information Mart for Intensive Care (MIMIC) IV database, the outcome was long-term mortality. Patients were divided based on the cut-off of the HGB percentage for receiver operating characteristic (ROC) curve calculation. Kaplan-Meier (KM) survival curves and Cox proportional hazards regression models were used to analyse the associations between groups and outcomes. Propensity score matching (PSM) was used to verify the results. RESULTS In this study, 2042 patients with sepsis and changes in HGB levels at day 4 after admission compared to day 1 were enrolled and divided into two groups: group 1 (n = 1147) for those with reduction of HGB < 7% and group 2 (n = 895) for those with dropping ≥ 7%. The long-term survival chances of sepsis with less than a 7% reduction in the proportion of HGB at day four were significantly higher than those of patients in the group with a reduction of 7% or more. After adjusting for covariates in the Cox model, the hazard ratios (HRs) with 95% confidence intervals (CIs) for long-term all-cause mortality in the group with a reduction of 7% or more were as follows: 180 days [HR = 1.41, 95% CI (1.22 to 1.63), P < 0.001]; 360 days [HR = 1.37, 95% CI (1.21 to 1.56), P < 0.001]; 540 days [HR = 1.35, 95% CI (1.20 to 1.53), P < 0.001]; 720 days [HR = 1.45, 95% CI (1.29 to 1.64), P < 0.001]. Additionally, the long-term survival rates, using Kaplan-Meier analysis, for the group with a reduction of 7% or more were lower compared to the group with less than 7% reduction at 180 days (54.3% vs. 65.3%, P < 0.001), 360 days (42.3% vs. 50.9%, P < 0.001), 540 days (40.2% vs. 48.6%, P < 0.001), and 720 days (35.5% vs. 46.1%, P < 0.001). The same trend was obtained after using PSM. CONCLUSION A ≥ 7% decrease in HGB levels on Day 4 after admission was associated with worse long-term prognosis in sepsis patients admitted to the ICU.
Collapse
Affiliation(s)
- Wen-Ming Shao
- Emergency Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu-Wei Ye
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu-Ming Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Long Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Liu
- Emergency Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan He
- Department of Anaesthesiology, Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jia-Liang Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Haiyan Yin
- Emergency Department, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
27
|
Tao J, Liu L, Huang X, Tu C, Zhang L, Yang S, Bai Y, Li L, Qin Z. FerrylHb induces inflammation and cell death in grass carp (Ctenopharyngodon idella) hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109474. [PMID: 38513914 DOI: 10.1016/j.fsi.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12 h of incubation of the L8824 cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.
Collapse
Affiliation(s)
- Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Chenming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
28
|
Kciuk M, Garg N, Dhankhar S, Saini M, Mujwar S, Devi S, Chauhan S, Singh TG, Singh R, Marciniak B, Gielecińska A, Kontek R. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals (Basel) 2024; 17:701. [PMID: 38931368 PMCID: PMC11206995 DOI: 10.3390/ph17060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala 133207, Haryana, India;
- Swami Vivekanand College of Pharmacy, Ramnagar, Banur 140601, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, Punjab, India;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| |
Collapse
|
29
|
Torres A, Michea MA, Végvári Á, Arce M, Pérez V, Alcota M, Morales A, Vernal R, Budini M, Zubarev RA, González FE. A multi-platform analysis of human gingival crevicular fluid reveals ferroptosis as a relevant regulated cell death mechanism during the clinical progression of periodontitis. Int J Oral Sci 2024; 16:43. [PMID: 38802345 PMCID: PMC11130186 DOI: 10.1038/s41368-024-00306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Ferroptosis is implicated in the pathogenesis of numerous chronic-inflammatory diseases, yet its association with progressive periodontitis remains unexplored. To investigate the involvement and significance of ferroptosis in periodontitis progression, we assessed sixteen periodontitis-diagnosed patients. Disease progression was clinically monitored over twelve weeks via weekly clinical evaluations and gingival crevicular fluid (GCF) collection was performed for further analyses. Clinical metrics, proteomic data, in silico methods, and bioinformatics tools were combined to identify protein profiles linked to periodontitis progression and to explore their potential connection with ferroptosis. Subsequent western blot analyses validated key findings. Finally, a single-cell RNA sequencing (scRNA-seq) dataset (GSE164241) for gingival tissues was analyzed to elucidate cellular dynamics during periodontitis progression. Periodontitis progression was identified as occurring at a faster rate than traditionally thought. GCF samples from progressing and non-progressing periodontal sites showed quantitative and qualitatively distinct proteomic profiles. In addition, specific biological processes and molecular functions during progressive periodontitis were revealed and a set of hub proteins, including SNCA, CA1, HBB, SLC4A1, and ANK1 was strongly associated with the clinical progression status of periodontitis. Moreover, we found specific proteins - drivers or suppressors - associated with ferroptosis (SNCA, FTH1, HSPB1, CD44, and GCLC), revealing the co-occurrence of this specific type of regulated cell death during the clinical progression of periodontitis. Additionally, the integration of quantitative proteomic data with scRNA-seq analysis suggested the susceptibility of fibroblasts to ferroptosis. Our analyses reveal proteins and processes linked to ferroptosis for the first time in periodontal patients, which offer new insights into the molecular mechanisms of progressive periodontal disease. These findings may lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M Angélica Michea
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Valentina Pérez
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alicia Morales
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Cellular and Molecular Pathology, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fermín E González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.
| |
Collapse
|
30
|
Brothers RO, Turrentine KB, Akbar M, Triplett S, Zhao H, Urner TM, Goldman-Yassen A, Jones RA, Knight-Scott J, Milla SS, Bai S, Tang A, Brown RC, Buckley EM. The influence of voxelotor on cerebral blood flow and oxygen extraction in pediatric sickle cell disease. Blood 2024; 143:2145-2151. [PMID: 38364110 PMCID: PMC11443564 DOI: 10.1182/blood.2023022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Voxelotor is an inhibitor of sickle hemoglobin polymerization that is used to treat sickle cell disease. Although voxelotor has been shown to improve anemia, the clinical benefit on the brain remains to be determined. This study quantified the cerebral hemodynamic effects of voxelotor in children with sickle cell anemia (SCA) using noninvasive diffuse optical spectroscopies. Specifically, frequency-domain near-infrared spectroscopy combined with diffuse correlation spectroscopy were used to noninvasively assess regional oxygen extraction fraction (OEF), cerebral blood volume, and an index of cerebral blood flow (CBFi). Estimates of CBFi were first validated against arterial spin-labeled magnetic resonance imaging (ASL-MRI) in 8 children with SCA aged 8 to 18 years. CBFi was significantly positively correlated with ASL-MRI-measured blood flow (R2 = 0.651; P = .015). Next, a single-center, open-label pilot study was completed in 8 children with SCA aged 4 to 17 years on voxelotor, monitored before treatment initiation and at 4, 8, and 12 weeks (NCT05018728). By 4 weeks, both OEF and CBFi significantly decreased, and these decreases persisted to 12 weeks (both P < .05). Decreases in CBFi were significantly correlated with increases in blood hemoglobin (Hb) concentration (P = .025), whereas the correlation between decreases in OEF and increases in Hb trended toward significance (P = .12). Given that previous work has shown that oxygen extraction and blood flow are elevated in pediatric SCA compared with controls, these results suggest that voxelotor may reduce cerebral hemodynamic impairments. This trial was registered at www.ClinicalTrials.gov as #NCT05018728.
Collapse
Affiliation(s)
- Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Katherine B. Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Mariam Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Tara M. Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Adam Goldman-Yassen
- Department of Radiology and Imaging Sciences, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
| | - Richard A. Jones
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Jack Knight-Scott
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Sarah S. Milla
- Department of Pediatric Radiology, Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA
| | - Amy Tang
- Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - R. Clark Brown
- Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
31
|
Hou DY, Lu JJ, Zhang X, Abudukeyoumu A, Li MQ, Zhu XY, Xie F. Heme metabolism and HO-1 in the pathogenesis and potential intervention of endometriosis. Am J Reprod Immunol 2024; 91:e13855. [PMID: 38745499 DOI: 10.1111/aji.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.
Collapse
Affiliation(s)
- Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Phan UTT, Nguyen HD, Nguyen TKO, Tran TH, Le TH, Tran TTP. Anti-inflammatory effect of Piper longum L. fruit methanolic extract on lipopolysaccharide-treated RAW 264.7 murine macrophages. Heliyon 2024; 10:e26174. [PMID: 38404825 PMCID: PMC10884859 DOI: 10.1016/j.heliyon.2024.e26174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Context The Piper species was studied several potential properties such as anti-tumor, anti-inflammatory and antioxidant activity. However, the specific anti-inflammatory activity of the extract from the fruits of P. longum L. has not been investigated. Objectives Our study want to examine the anti-inflammatory effects of P. longum L. fruit methanolic extracts (PLE) on lipopolysachharide (LPS)-stimulated RAW 264.7 murine macrophages to understand the mechanism of this effect. Method This study examined the chemical profiling of PLE by LC-HRMS analysis and measured the presence of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the supernatant using the Griess reagent assay and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA expression of IL-6, TNF-α, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, the protein expression of COX-2, iNOS and the phosphorylation of MAPK family, c-Jun N-terminal kinase (JNK), p38 in protein level were observed by western blotting. Result PLE have detected 66 compounds which belong to different classes such as alkaloids, flavonoids, terpenoids, phenolics, lactones, and organic acids inhibited nitric oxide products with the IC50 = 28.5 ± 0.91 μg/mL. Moreover, PLE at 10-100 μg/mL up-regulate HO-1 protein expression from 3 to 10 folds at 3 h. It also downregulated the mRNA and protein expression of iNOS, COX-2, decreased IL-6 and TNF-α secretion by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, specifically by decreasing the phosphorylation of p38 and JNK. Conclusion These results shown chemical profiling of PLE and demonstrated that PLE exhibits anti-inflammatory effects by regulating the MAPK family and could be a potential candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Uyen Thi Tu Phan
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Hai Dang Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Kieu Oanh Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Viet Nam
| | - Thanh Huong Le
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Thu Phuong Tran
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
33
|
Hopp MT, Holze J, Lauber F, Holtkamp L, Rathod DC, Miteva MA, Prestes EB, Geyer M, Manoury B, Merle NS, Roumenina LT, Bozza MT, Weindl G, Imhof D. Insights into the molecular basis and mechanism of heme-triggered TLR4 signalling: The role of heme-binding motifs in TLR4 and MD2. Immunology 2024; 171:181-197. [PMID: 37885279 DOI: 10.1111/imm.13708] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Haemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing. We report the interaction of TLR4, MD2 and the TLR4-MD2 complex with heme and the consequences thereof by employing biochemical, spectroscopic, bioinformatic and physiologically relevant approaches. Heme binding occurs transiently through interaction with up to four HBMs in TLR4, two HBMs in MD2 and at least four HBMs in their complex. Functional studies highlight that mutations of individual HBMs in TLR4 preserve full receptor activation by heme, suggesting that heme interacts with TLR4 through different binding sites independently of MD2. Furthermore, we confirm and extend the major role of TLR4 for heme-mediated cytokine responses in human immune cells.
Collapse
Affiliation(s)
- Marie-T Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- Department of Chemistry, Institute of Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Janine Holze
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Felicitas Lauber
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Laura Holtkamp
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Dhruv C Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Maria A Miteva
- CNRS UMR 8038 CiTCoM, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
- INSERM U 1268 Medicinal Chemistry and Translational Research, Paris, France
| | - Elisa B Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR8253, Université Paris Cité, Faculté de médecine Necker, Paris, France
| | - Nicolas S Merle
- Centre de Recherche des Cordeliers, UMR_S 1138, INSERM, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Universités, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, UMR_S 1138, INSERM, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Universités, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France
| | - Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Günther Weindl
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Snider AP, Gomes RS, Summers AF, Tenley SC, Abedal-Majed MA, McFee RM, Wood JR, Davis JS, Cupp AS. Identification of Lipids and Cytokines in Plasma and Follicular Fluid before and after Follicle-Stimulating Hormone Stimulation as Potential Markers for Follicular Maturation in Cattle. Animals (Basel) 2023; 13:3289. [PMID: 37894013 PMCID: PMC10603728 DOI: 10.3390/ani13203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.
Collapse
Affiliation(s)
- Alexandria P. Snider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Renata S. Gomes
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | | | - Sarah C. Tenley
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198, USA;
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| |
Collapse
|
35
|
Xu H, Xiong S, Chen Y, Ye Q, Guan N, Hu Y, Wu J. Flagella of Tumor-Targeting Bacteria Trigger Local Hemorrhage to Reprogram Tumor-Associated Macrophages for Improved Antitumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303357. [PMID: 37310893 DOI: 10.1002/adma.202303357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Indexed: 06/15/2023]
Abstract
Tumor-associated macrophages (TAMs) exhibit an immunosuppressive M2 phenotype and lead to failure of antitumor therapy. Infiltrated erythrocytes during hemorrhage are recognized as a promising strategy for polarizing TAMs. However, novel materials that precisely induce tumor hemorrhage without affecting normal coagulation still face challenges. Here, tumor-targeting bacteria (flhDC VNP) are genetically constructed to realize precise tumor hemorrhage. FlhDC VNP colonizes the tumor and overexpresses flagella during proliferation. The flagella promote the expression of tumor necrosis factor α, which induces local tumor hemorrhage. Infiltrated erythrocytes during the hemorrhage temporarily polarize macrophages to the M1 subtype. In the presence of artesunate, this short-lived polarization is transformed into a sustained polarization because artesunate and heme form a complex that continuously produces reactive oxygen species. Therefore, the flagella of active tumor-targeting bacteria may open up new strategies for reprogramming TAMs and improving antitumor therapy.
Collapse
Affiliation(s)
- Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Shuqin Xiong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Yiyun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Nan Guan
- Molecular, Cellular and Development Biology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| |
Collapse
|
36
|
Grigorov I, Pejić S, Todorović A, Drakulić D, Veljković F, Vukajlović JM, Bobić K, Soldatović I, Đurašević S, Jasnić N, Stanković S, Glumac S, Mihailović-Vučinić V, Milenković B. Serum High-Mobility Group Box 1 and Heme Oxygenase-1 as Biomarkers in COVID-19 Patients at Hospital Admission. Int J Mol Sci 2023; 24:13164. [PMID: 37685970 PMCID: PMC10488018 DOI: 10.3390/ijms241713164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The careful monitoring of patients with mild/moderate COVID-19 is of particular importance because of the rapid progression of complications associated with COVID-19. For prognostic reasons and for the economic management of health care resources, additional biomarkers need to be identified, and their monitoring can conceivably be performed in the early stages of the disease. In this retrospective cross-sectional study, we found that serum concentrations of high-mobility group box 1 (HMGB1) and heme oxygenase-1 (HO-1), at the time of hospital admission, could be useful biomarkers for COVID-19 management. The study included 160 randomly selected recovered patients with mild to moderate COVID-19 on admission. Compared with healthy controls, serum HMGB1 and HO-1 levels increased by 487.6 pg/mL versus 43.1 pg/mL and 1497.7 pg/mL versus 756.1 pg/mL, respectively. Serum HO-1 correlated significantly with serum HMGB1, oxidative stress parameters (malondialdehyde (MDA), the phosphatidylcholine/lysophosphatidylcholine ratio (PC/LPC), the ratio of reduced and oxidative glutathione (GSH/GSSG)), and anti-inflammatory acute phase proteins (ferritin, haptoglobin). Increased heme catabolism/hemolysis were not detected. We hypothesize that the increase in HO-1 in the early phase of COVID-19 disease is likely to have a survival benefit by providing protection against oxidative stress and inflammation, whereas the level of HMGB1 increase reflects the activity of the innate immune system and represents levels within which the disease can be kept under control.
Collapse
Affiliation(s)
- Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Snežana Pejić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Ana Todorović
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Dunja Drakulić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Filip Veljković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Jadranka Miletić Vukajlović
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Katarina Bobić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Ivan Soldatović
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.)
| | - Sanja Stanković
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- Institute of Pathology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (V.M.-V.); (B.M.)
| | - Violeta Mihailović-Vučinić
- Institute of Pathology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (V.M.-V.); (B.M.)
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislava Milenković
- Institute of Pathology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (V.M.-V.); (B.M.)
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
37
|
Vinchi F. Not All Heme is "Free" in Sickle Cell Disease. Hemasphere 2023; 7:e910. [PMID: 37346451 PMCID: PMC10281323 DOI: 10.1097/hs9.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Affiliation(s)
- Francesca Vinchi
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NY, USA
| |
Collapse
|
38
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
39
|
Marques C, Hajipour MJ, Marets C, Oudot A, Safavi-Sohi R, Guillemin M, Borchard G, Jordan O, Saviot L, Maurizi L. Identification of the Proteins Determining the Blood Circulation Time of Nanoparticles. ACS NANO 2023. [PMID: 37379064 DOI: 10.1021/acsnano.3c02041] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The therapeutic efficacy and adverse impacts of nanoparticles (NPs) are strongly dependent on their systemic circulation time. The corona proteins adsorbed on the NPs determine their plasma half-lives, and hence, it is crucial to identify the proteins shortening or extending their circulation time. In this work, the in vivo circulation time and corona composition of superparamagnetic iron oxide nanoparticles (SPIONs) with different surface charges/chemistries were analyzed over time. SPIONs with neutral and positive charges showed the longest and shortest circulation times, respectively. The most striking observation was that corona-coated NPs with similar opsonin/dysopsonin content showed different circulation times, implying these biomolecules are not the only contributing factors. Long-circulating NPs adsorb higher concentrations of osteopontin, lipoprotein lipase, coagulation factor VII, matrix Gla protein, secreted phosphoprotein 24, alpha-2-HS-glycoprotein, and apolipoprotein C-I, while short-circulating NPs adsorb higher amounts of hemoglobin. Therefore, these proteins may be considered to be determining factors governing the NP systemic circulation time.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Mohammad Javad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California 94304, United States
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| | - Alexandra Oudot
- Plateforme d'Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Reihaneh Safavi-Sohi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mélanie Guillemin
- Plateforme d'Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| |
Collapse
|
40
|
Sharma R, Antypiuk A, Vance SZ, Manwani D, Pearce Q, Cox JE, An X, Yazdanbakhsh K, Vinchi F. Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease. Blood 2023; 141:3091-3108. [PMID: 36952641 PMCID: PMC10315632 DOI: 10.1182/blood.2022018026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid β-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.
Collapse
Affiliation(s)
- Richa Sharma
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Ada Antypiuk
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - S. Zebulon Vance
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine, New York, NY
- Pediatric Hematology, The Children's Hospital at Montefiore, New York, NY
| | - Quentinn Pearce
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT
| | - James E. Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | | | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
41
|
Tsiftsoglou SA. Heme Interactions as Regulators of the Alternative Pathway Complement Responses and Implications for Heme-Associated Pathologies. Curr Issues Mol Biol 2023; 45:5198-5214. [PMID: 37367079 DOI: 10.3390/cimb45060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Heme (Fe2+-protoporphyrin IX) is a pigment of life, and as a prosthetic group in several hemoproteins, it contributes to diverse critical cellular processes. While its intracellular levels are tightly regulated by networks of heme-binding proteins (HeBPs), labile heme can be hazardous through oxidative processes. In blood plasma, heme is scavenged by hemopexin (HPX), albumin and several other proteins, while it also interacts directly with complement components C1q, C3 and factor I. These direct interactions block the classical pathway (CP) and distort the alternative pathway (AP). Errors or flaws in heme metabolism, causing uncontrolled intracellular oxidative stress, can lead to several severe hematological disorders. Direct interactions of extracellular heme with alternative pathway complement components (APCCs) may be implicated molecularly in diverse conditions at sites of abnormal cell damage and vascular injury. In such disorders, a deregulated AP could be associated with the heme-mediated disruption of the physiological heparan sulphate-CFH coat of stressed cells and the induction of local hemostatic responses. Within this conceptual frame, a computational evaluation of HBMs (heme-binding motifs) aimed to determine how heme interacts with APCCs and whether these interactions are affected by genetic variation within putative HBMs. Combined computational analysis and database mining identified putative HBMs in all of the 16 APCCs examined, with 10 exhibiting disease-associated genetic (SNPs) and/or epigenetic variation (PTMs). Overall, this article indicates that among the pleiotropic roles of heme reviewed, the interactions of heme with APCCs could induce differential AP-mediated hemostasis-driven pathologies in certain individuals.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
42
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
43
|
Pirenne F, Floch A, Diop S. Alloimmunisation against red blood cells in sickle cell disease: transfusion challenges in high-income and low-income countries. Lancet Haematol 2023:S2352-3026(23)00066-2. [PMID: 37060916 DOI: 10.1016/s2352-3026(23)00066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/17/2023]
Abstract
Sickle cell disease is the most frequent inherited disorder in sub-Saharan Africa and in many high-income countries (HICs). Transfusion is a key element of treatment, but it results in high rates of alloimmunisation against red blood cell antigens and post-transfusion haemolysis, which can be life-threatening in severe cases. The prevention of alloimmunisation is, therefore, an important issue in both HICs and in low-income countries (LICs). In HICs, the main reason for high alloimmunisation rates is blood group disparity between blood donors, who are mostly of European descent, and the patients, who are mostly of African descent. However, alloimmunisation rates also remain high in sub-Saharan Africa despite the homogeneity of blood group antigen frequencies between donors and patients; this occurrence is probably due to matching strategies limited to ABO blood group and RhD. However, other possible underlying causes of alloimmunisation have also been suggested, with each cause affecting HICs and LICs in different ways-eg, the immunogenetic and inflammatory status of the patient and the characteristics of the red blood cell products. In this Viewpoint, we discuss the available data and hypotheses that potentially account for the association of sickle cell disease with high rates of alloimmunisation in both settings, HICs and LICs (focusing particularly on sub-Saharan Africa), and the challenges faced by HICs and LICs to improve prevention of alloimmunisation.
Collapse
Affiliation(s)
- France Pirenne
- Transfusion and Red Blood Cell Diseases, INSERM U955, The Mondor Institute for Biomedical Research, University Paris-Est Créteil, Paris, France; Établissement Français du Sang Ile de France, Paris, France.
| | - Aline Floch
- Transfusion and Red Blood Cell Diseases, INSERM U955, The Mondor Institute for Biomedical Research, University Paris-Est Créteil, Paris, France; Établissement Français du Sang Ile de France, Paris, France
| | - Saliou Diop
- Department of Haematology, National Center Transfusion Sanguine, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
44
|
Sesti-Costa R, Costa FF, Conran N. Role of Macrophages in Sickle Cell Disease Erythrophagocytosis and Erythropoiesis. Int J Mol Sci 2023; 24:ijms24076333. [PMID: 37047304 PMCID: PMC10094208 DOI: 10.3390/ijms24076333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a β-globin gene point mutation that results in the production of sickle hemoglobin that polymerizes upon deoxygenation, causing the sickling of red blood cells (RBCs). RBC deformation initiates a sequence of events leading to multiple complications, such as hemolytic anemia, vaso-occlusion, chronic inflammation, and tissue damage. Macrophages participate in extravascular hemolysis by removing damaged RBCs, hence preventing the release of free hemoglobin and heme, and triggering inflammation. Upon erythrophagocytosis, macrophages metabolize RBC-derived hemoglobin, activating mechanisms responsible for recycling iron, which is then used for the generation of new RBCs to try to compensate for anemia. In the bone marrow, macrophages can create specialized niches, known as erythroblastic islands (EBIs), which regulate erythropoiesis. Anemia and inflammation present in SCD may trigger mechanisms of stress erythropoiesis, intensifying RBC generation by expanding the number of EBIs in the bone marrow and creating new ones in extramedullary sites. In the current review, we discuss the distinct mechanisms that could induce stress erythropoiesis in SCD, potentially shifting the macrophage phenotype to an inflammatory profile, and changing their supporting role necessary for the proliferation and differentiation of erythroid cells in the disease. The knowledge of the soluble factors, cell surface and intracellular molecules expressed by EBI macrophages that contribute to begin and end the RBC’s lifespan, as well as the understanding of their signaling pathways in SCD, may reveal potential targets to control the pathophysiology of the disease.
Collapse
|
45
|
Conger AK, Tomasek T, Riedmann KJ, Douglas JS, Berkey LE, Ware LB, Bastarache JA, Meegan JE. Hemoglobin increases leukocyte adhesion and initiates lung microvascular endothelial activation via Toll-like receptor 4 signaling. Am J Physiol Cell Physiol 2023; 324:C665-C673. [PMID: 36717098 PMCID: PMC9970650 DOI: 10.1152/ajpcell.00211.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Cell-free hemoglobin is a pathophysiological driver of endothelial injury during sepsis and acute respiratory distress syndrome (ARDS), but the precise mechanisms are not fully understood. We hypothesized that hemoglobin (Hb) increases leukocyte adhesion and endothelial activation in human lung microvascular endothelial cells (HLMVEC). We stimulated primary HLMVEC, or leukocytes isolated from healthy human donors, with Hb (0.5 mg/mL) and found that leukocyte adhesion to lung endothelium in response to Hb is an endothelial-dependent process. Next, we stimulated HLMVEC with Hb over time (1, 3, 6, and 24 h) and found increased transcription and release of inflammatory cytokines (IL-1β, IL-8, and IL-6). In addition, Hb exposure variably upregulated transcription, total protein expression, and cell-surface localization of adhesion molecules E-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Since VCAM-1 was most upregulated by Hb, we further tested mechanisms for Hb-mediated upregulation of VCAM-1 in HLMVEC. Although upregulation of VCAM-1 was not prevented by hemoglobin scavenger haptoglobin, heme scavenger hemopexin, or inhibition of nod-like receptor protein 3 (NLRP3) signaling, blocking Toll-like receptor 4 (TLR4) with small molecule inhibitor TAK-242 (1 µM) prevented upregulation of VCAM-1 in response to Hb. Consistently, Hb increased nuclear factor-κB (NF-κB) activation and intracellular reactive oxygen species (ROS), which were both prevented by TLR4 inhibition. Together, these data demonstrate that Hb increases leukocyte-endothelial adhesion and activates HLMVEC through TLR4 signaling, indicating a potential mechanism for Hb-mediated pulmonary vascular injury during inflammatory and hemolytic conditions.
Collapse
Affiliation(s)
- Adrienne K Conger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Toria Tomasek
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle J Riedmann
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Joel S Douglas
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lucia E Berkey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
46
|
Planchais C, Noe R, Gilbert M, Lecerf M, Kaveri SV, Lacroix-Desmazes S, Roumenina LT, Dimitrov JD. Oxidized hemoglobin triggers polyreactivity and autoreactivity of human IgG via transfer of heme. Commun Biol 2023; 6:168. [PMID: 36774392 PMCID: PMC9922299 DOI: 10.1038/s42003-023-04535-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
Intravascular hemolysis occurs in diverse pathological conditions. Extracellular hemoglobin and heme have strong pro-oxidative and pro-inflammatory potentials that can contribute to the pathology of hemolytic diseases. However, many of the effects of extracellular hemoglobin and heme in hemolytic diseases are still not well understood. Here we demonstrate that oxidized hemoglobin (methemoglobin) can modify the antigen-binding characteristics of human immunoglobulins. Thus, incubation of polyclonal or some monoclonal human IgG in the presence of methemoglobin results in an appearance of binding reactivities towards distinct unrelated self-proteins, including the protein constituent of hemoglobin i.e., globin. We demonstrate that a transfer of heme from methemoglobin to IgG is indispensable for this acquisition of antibody polyreactivity. Our data also show that only oxidized form of hemoglobin have the capacity to induce polyreactivity of antibodies. Site-directed mutagenesis of a heme-sensitive human monoclonal IgG1 reveals details about the mechanism of methemoglobin-induced antigen-binding polyreactivity. Further here we assess the kinetics and thermodynamics of interaction of a heme-induced polyreactive human antibody with hemoglobin and myoglobin. Taken together presented data contribute to a better understanding of the functions of extracellular hemoglobin in the context of hemolytic diseases.
Collapse
Affiliation(s)
- Cyril Planchais
- Laboratory of Humoral Immunology, Institut Pasteur, Université Paris Cité, INSERM U1222, 75015 Paris, France
| | - Remi Noe
- grid.4444.00000 0001 2112 9282Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Marie Gilbert
- grid.4444.00000 0001 2112 9282Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maxime Lecerf
- grid.4444.00000 0001 2112 9282Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Srini V. Kaveri
- grid.4444.00000 0001 2112 9282Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- grid.4444.00000 0001 2112 9282Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Lubka T. Roumenina
- grid.4444.00000 0001 2112 9282Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Jordan D. Dimitrov
- grid.4444.00000 0001 2112 9282Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
47
|
Wiatr M, Hadzhieva M, Lecerf M, Noé R, Justesen S, Lacroix-Desmazes S, Dragon-Durey MA, Dimitrov JD. Hyperoxidized Species of Heme Have a Potent Capacity to Induce Autoreactivity of Human IgG Antibodies. Int J Mol Sci 2023; 24:ijms24043416. [PMID: 36834827 PMCID: PMC9960230 DOI: 10.3390/ijms24043416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The interaction of some human antibodies with heme results in posttranslational acquisition of binding to various self- and pathogen-derived antigens. The previous studies on this phenomenon were performed with oxidized heme (Fe3+). In the present study, we elucidated the effect of other pathologically relevant species of heme, i.e., species that were formed after contact of heme with oxidizing agents such as hydrogen peroxide, situations in which heme's iron could acquire higher oxidation states. Our data reveal that hyperoxidized species of heme have a superior capacity to heme (Fe3+) in triggering the autoreactivity of human IgG. Mechanistic studies demonstrated that oxidation status of iron was of critical importance for the heme's effect on antibodies. We also demonstrated that hyperoxidized heme species interacted at higher affinities with IgG and that this binding occurred through a different mechanism as compared to heme (Fe3+). Regardless of their profound functional impact on the antigen-binding properties of antibodies, hyperoxidized species of heme did not affect Fc-mediated functions of IgG, such as binding to the neonatal Fc receptor. The obtained data contribute to a better understanding of the pathophysiological mechanism of hemolytic diseases and of the origin of elevated antibody autoreactivity in patients with some hemolytic disorders.
Collapse
Affiliation(s)
- Marie Wiatr
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maya Hadzhieva
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Sune Justesen
- Immunitrack Aps, Lersoe Park Alle 42, 2100 Copenhagen, Denmark
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Marie-Agnès Dragon-Durey
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Service d’Immunologie Biologique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 75610 Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Correspondence: ; Tel.: +33-144-278206
| |
Collapse
|
48
|
Salgar S, Bolívar BE, Flanagan JM, Anum SJ, Bouchier-Hayes L. The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Transl Res 2023; 252:34-44. [PMID: 36041706 DOI: 10.1016/j.trsl.2022.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Overactive inflammatory responses are central to the pathophysiology of many hemolytic conditions including sickle cell disease. Excessive hemolysis leads to elevated serum levels of heme due to saturation of heme scavenging mechanisms. Extracellular heme has been shown to activate the NLRP3 inflammasome, leading to activation of caspase-1 and release of pro-inflammatory cytokines IL-1β and IL-18. Heme also activates the non-canonical inflammasome pathway, which may contribute to NLRP3 inflammasome formation and leads to pyroptosis, a type of inflammatory cell death. Some clinical studies indicate there is a benefit to blocking the NLRP3 inflammasome pathway in patients with sickle cell disease and other hemolytic conditions. However, a thorough understanding of the mechanisms of heme-induced inflammasome activation is needed to fully leverage this pathway for clinical benefit. This review will explore the mechanisms of heme-induced NLRP3 inflammasome activation and the role of this pathway in hemolytic conditions including sickle cell disease.
Collapse
Affiliation(s)
- Suruchi Salgar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Beatriz E Bolívar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jonathan M Flanagan
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Shaniqua J Anum
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
49
|
Gaastra B, Duncan P, Bakker MK, Hostettler IC, Alg VS, Houlden H, Ruigrok YM, Galea I, Tapper W, Werring D, Bulters D. Genetic variation in NFE2L2 is associated with outcome following aneurysmal subarachnoid haemorrhage. Eur J Neurol 2023; 30:116-124. [PMID: 36148820 PMCID: PMC10092511 DOI: 10.1111/ene.15571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by the NFE2L2 gene) has been implicated in outcome following aneurysmal subarachnoid haemorrhage (aSAH) through its activity as a regulator of inflammation, oxidative injury and blood breakdown product clearance. The aim of this study was to identify whether genetic variation in NFE2L2 is associated with clinical outcome following aSAH. METHODS Ten tagging single nucleotide polymorphisms (SNPs) in NFE2L2 were genotyped and tested for association with dichotomized clinical outcome, assessed by the modified Rankin scale, in both a discovery and a validation cohort. In silico functional analysis was performed using a range of bioinformatic tools. RESULTS One SNP, rs10183914, was significantly associated with outcome following aSAH in both the discovery (n = 1007) and validation cohorts (n = 466). The risk of poor outcome was estimated to be 1.33-fold (95% confidence interval 1.12-1.58) higher in individuals with the T allele of rs10183914 (pmeta-analysis = 0.001). In silico functional analysis identified rs10183914 as a potentially regulatory variant with effects on transcription factor binding in addition to alternative splicing with the T allele, associated with a significant reduction in the NFE2L2 intron excision ratio (psQTL = 1.3 × 10-7 ). CONCLUSIONS The NFE2L2 SNP, rs10183914, is significantly associated with outcome following aSAH. This is consistent with a clinically relevant pathophysiological role for oxidative and inflammatory brain injury due to blood and its breakdown products in aSAH. Furthermore, our findings support NRF2 as a potential therapeutic target following aSAH and other forms of intracranial haemorrhage.
Collapse
Affiliation(s)
- Ben Gaastra
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | - Poppy Duncan
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark K Bakker
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Isabel C Hostettler
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
- Department of Neurosurgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Varinder S Alg
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Henry Houlden
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Ynte M Ruigrok
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ian Galea
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Will Tapper
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Werring
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
50
|
Dang X, Kang Y, Wang X, Cao W, Li M, He Y, Pan X, Ye K, Xu D. Frequent exacerbators of chronic obstructive pulmonary disease have distinguishable sputum microbiome signatures during clinical stability. Front Microbiol 2022; 13:1037037. [PMID: 36532417 PMCID: PMC9753979 DOI: 10.3389/fmicb.2022.1037037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 11/09/2023] Open
Abstract
INTRODUCTION Frequent exacerbation phenotype of chronic obstructive pulmonary disease (COPD) represents a more concerning disease subgroup requiring better prevention and intervention, of which airway microbiome provides new perspective for further exploration. METHODS To investigate whether frequent exacerbators of COPD have distinguishable sputum microbiome during clinical stability, COPD patients at high disease grades with or without frequent exacerbation were recruited for sputum microbiome analysis. Sputum samples were collected during clinical stability and underwent 16S rRNA sequencing, which was then subjected for amplicon sequence variants (ASVs)-based microbiome analysis. RESULTS Our results revealed that compared with healthy controls and infrequent exacerbators, frequent COPD exacerbators have distinguishably dysbiotic sputum microbiome, as featured by fewer ASVs features, lower alpha diversity, distinct beta diversity patterns. Further taxonomic compositional analysis illustrated the structural distinctions between frequent COPD exacerbators and infrequent exacerbators at differential taxa levels and highlighted Stenotrephomonas due to its prominent elevation in frequent COPD exacerbators, providing a promising candidate for further exploration of microbiome biomarker. Moreover, we also demonstrated that frequent exacerbation phenotype is distinguishable from infrequent exacerbation phenotype with respect of functional implications. CONCLUSION Our study demonstrated the first positive correlation between the frequent exacerbation phenotype of COPD and the sputum microbiome during clinical stability in a single-center Chinese COPD cohort and provide potential diagnostic and therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Xiaomin Dang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yongyong Kang
- Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaojian Wang
- Chang’an District Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wen Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Minhui Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying He
- Chang’an District Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinjie Pan
- Chang’an District Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kai Ye
- Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Ministry of Education (MoE) Key Laboratory for Intelligent Networks and Network Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dan Xu
- Ministry of Education (MoE) Key Laboratory of Biomedical Information Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|