1
|
Chen K, Gao Z. Acacetin, a Natural Flavone with Potential in Improving Liver Disease Based on Its Anti-Inflammation, Anti-Cancer, Anti-Infection and Other Effects. Molecules 2024; 29:4872. [PMID: 39459239 PMCID: PMC11509893 DOI: 10.3390/molecules29204872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Liver disease is a global public problem, and the cost of its therapy is a large financial burden to governments. It is well known that drug therapy plays a critical role in the treatment of liver disease. However, present drugs are far from meeting clinical needs. Lots of efforts have been made to find novel agents to treat liver disease in the past several decades. Acacetin is a dihydroxy and monomethoxy flavone, named 5,7-dihydroxy-4'-methoxyflavone, which can be found in diverse plants. It has been reported that acacetin exhibits multiple pharmacological activities, including anti-cancer, anti-inflammation, anti-virus, anti-obesity, and anti-oxidation. These studies indicate the therapeutic potential of acacetin in liver disease. This review discussed the comprehensive information on the pathogenesis of liver disease (cirrhosis, viral hepatitis, drug-induced liver injury, and hepatocellular carcinoma), then introduced the biological source, structural features, and pharmacological properties of acacetin, and the possible application in preventing liver disease along with the pharmacokinetic and toxicity of acacetin, and future research directions. We systemically summarized the latest research progress on the potential therapeutic effect of acacetin on liver disease and existing problems. Based on the present published information, the natural flavone acacetin is an anticipated candidate agent for the treatment of liver disease.
Collapse
Affiliation(s)
- Kuihao Chen
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd., Ningbo 315211, China
| | - Zhe Gao
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo 315211, China
| |
Collapse
|
2
|
Kamau SW, Ngugi MP, Mwitari PG, Njeru SN. Network pharmacology, molecular docking and experimental approaches of the anti-proliferative effects of Rhamnus prinoides ethyl-acetate extract in cervical cancer cells. Heliyon 2024; 10:e37324. [PMID: 39290290 PMCID: PMC11407055 DOI: 10.1016/j.heliyon.2024.e37324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Background Cervical cancer, one of the lethal cancers among women, is a challenging disease to treat. The current therapies often come with severe side effects and the risk of resistance development. Traditional herbal medicine, with its potential to offer effective and less toxic options, is a promising avenue. This study was undertaken to investigate the potential of Rhamnus prinoides (R. prinoides) root bark extracts in selectively inhibiting the proliferation of cervical cancer cells, using the HeLa cell line as an in vitro model. Methods R. prinoides plant extracts were first screened at a fixed concentration of 200 μg/ml to determine the active extract. The selective anti-proliferative activity of the active extract was evaluated in a concentration dilution assay using the (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide) MTT assay on cancerous (HeLa) cells and non-cancerous (Vero) cells to determine the half-maximal inhibitory (IC50) and half-cytotoxic concentrations (CC50), respectively. Functional assays on cell morphology (by microscopy), cell migration (wound healing assay) and cell cycle (by flow cytometry) were also conducted. The active extract was analyzed using Gas Chromatography/Mass Spectrometry (GC/MS) to determine any compounds it contained. Following identification of possible gene targets by network pharmacology, the genes were validated by molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR). Results The ethyl acetate extract of R. prinoides (EARP), the most active extract, selectively inhibited the growth of cervical cancer cells, their migration and induced cell cycle arrest at the S phase. In silico analysis revealed that squalene, 3,3a,6,6-tetramethyl-4,5,5a,7,8,9-hexahydro-1H-cyclopenta[i]indene and Olean-12-en-3.beta.-ol, acetate showed acceptable drug-like characteristics and may be partly attributed to the bioactivity demonstrated and the deregulation of the mRNA expression of AKT1, NF-κB, p53, Bax, Bcl-2, and Er-b-B2. Conclusion This study, for the first time, demonstrates the anti-proliferation effects of EARP and forms a firm foundation for further drug development studies.
Collapse
Affiliation(s)
- Sally Wambui Kamau
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Kenya
| | - Peter Githaiga Mwitari
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
| | - Sospeter Ngoci Njeru
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
| |
Collapse
|
3
|
Binjawhar DN, Al-Salmi FA, Alghamdi MA, Abu Ali OA, Fayad E, Rizzk YW, Ali NM, El-Deen IM, Eltamany EH. In vitro anti-breast cancer study of hybrid cinnamic acid derivatives bearing 2-thiohydantoin moiety. Future Med Chem 2024; 16:1665-1684. [PMID: 38949859 PMCID: PMC11370905 DOI: 10.1080/17568919.2024.2366694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: To synthesize new hybrid cinnamic acids (10a, 10b and 11) and ester derivatives (7, 8 and 9) and investigate their anti-breast cancer activities.Materials & methods: Compounds 7-11 were evaluated (in vitro) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted.Results: Several components were discovered to be active, mainly component 11, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9.Conclusion: The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Fawziah A Al-Salmi
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Youstina William Rizzk
- Department of Chemistry (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Nourhan M Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Mohey El-Deen
- Department of Chemistry (The Division of Organic Chemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Elsayed H Eltamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Husain JH, Arumugam D, Nawabjohn MS, Kumaran S, Pandurangan AK. Green Synthesis of Silver Nanoparticles Using centratherum anthelminticum Extract against Breast Cancer Cells. Asian Pac J Cancer Prev 2024; 25:2711-2721. [PMID: 39205569 PMCID: PMC11495458 DOI: 10.31557/apjcp.2024.25.8.2711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE According to an international survey, the cancer occurrence in the breast is the foremost in women. Surgery and chemotherapy remain the definitive treatment for the breast cancer. The bio-green methods of synthesizing silver nanoparticles are cost-effective and eco-friendly when parallel to physical and chemical methods. In addition, they effectively control pathogenic microorganisms. Former research studies reveal that kalijiri a common name for Centratherum anthelminticum is used as a traditional medicine for various ailments including anti-bacterial, anti-fungal, antidiabetic and anticancer. Our present research study focal points on the green synthesis of silver nanoparticles using aqueous seed extract of Centratherum anthelminticum and the evaluation of their antioxidant and cytotoxic activity. METHODS An aqueous extract of seeds from Centratherum anthelminticum was prepared by boiling it with distilled water. The silver nanoparticles were synthesized from the seeds of Centratherum anthelminticum and characterized by various methods such as UV-Visible spectroscopy, FT-IR, Transmission electron microscopy, DLS and X-ray diffraction to confirm the formation of nanoparticles. RESULTS The cytotoxic analysis of MDA-MB-231 cells was tested with the synthesized silver nanoparticles complex. The observed result was IC50 of 35.06±1.2 and it was not shown any toxicity to the non-cancerous cell line. CONCLUSION In a nutshell, the synthesized silver nanoparticles from the seeds of Centratherum anthelminticum may be used for the treatment of breast cancer. Further studies are warranted to furnish the mechanism of action.
Collapse
Affiliation(s)
- Javeed Hameed Husain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| | - Deepan Arumugam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| | - Mohamed Suhail Nawabjohn
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| | - Sekar Kumaran
- Department of Botany, Government Arts and Science College, Harur, Tamil Nadu, India.
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| |
Collapse
|
5
|
Iwar K, Ochar K, Seo YA, Ha BK, Kim SH. Alliums as Potential Antioxidants and Anticancer Agents. Int J Mol Sci 2024; 25:8079. [PMID: 39125648 PMCID: PMC11312234 DOI: 10.3390/ijms25158079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
The genus Allium plants, including onions, garlic, leeks, chives, and shallots, have long been recognized for their potential health benefits, particularly in oxidative and cancer prevention. Among them, onions and garlic have been extensively studied, unveiling promising biological activities that are indicative of their potential as potent antioxidant and anticancer agents. Research has revealed a rich repository of bioactive compounds in Allium species, highlighting their antioxidative properties and diverse mechanisms that target cancer cells. Compounds such as allicin, flavonoids, and organosulfur compounds (OSCs) exhibit notable antioxidant and anticancer properties, affecting apoptosis induction, cell cycle arrest, and the inhibition of tumor proliferation. Moreover, their antioxidant and anti-inflammatory attributes enhance their potential in cancer therapy. Studies exploring other Allium species beyond onions and garlic have revealed similar biological activities, suggesting a broad spectrum of natural products that could serve as promising candidates for developing novel anticancer treatments. Understanding the multifaceted potential of Allium plants will pave the way for innovative strategies in oxidative and cancer treatment and prevention, offering new avenues for pharmaceutical research and dietary interventions. Therefore, in this review, we compile an extensive analysis of the diversity of various Allium species, emphasizing their remarkable potential as effective agents.
Collapse
Affiliation(s)
- Kanivalan Iwar
- National Agrobiodiversity Centre, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.I.); (K.O.)
| | - Kingsley Ochar
- National Agrobiodiversity Centre, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.I.); (K.O.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Institute, Bunso P.O. Box 7, Ghana
| | - Yun Am Seo
- Department of Data Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Centre, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.I.); (K.O.)
| |
Collapse
|
6
|
El-Deen IM, Eltamany EH, Ali NM. In vitro cytotoxicity screening of some 3-substituted-4-oxo-imidazolidin-2-(1H)-thione derivatives as anticancer drug. Future Med Chem 2024; 16:1379-1393. [PMID: 39190474 DOI: 10.1080/17568919.2024.2350925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/25/2024] [Indexed: 08/28/2024] Open
Abstract
Aim: This study aimed to investigate the in vitro antitumor activity of new series of 2-thiohydanotin derivatives (7 and 9) against two cancer cell lines.Materials & methods: A new series of 2-thioxoimidazolidine derivatives (3-9) were synthesized and investigated for its structure through spectral analysis and also tested against (HepG-2) and (HCT-116) cell line.Results: Among the synthesized compounds, compound 7 halted liver cancer cells at the G0/G1 phase and triggered apoptosis of liver cancer. Contrarily, compound 9 caused colon cancer cells to be arrested at the S phase and trigger apoptosis. Also, they had a good inhibitory effect on (Nrf2).Conclusion: Both compounds had attractive lead molecules for the creation of colon and liver cancer medications.
Collapse
Affiliation(s)
- Ibrahim Mohey El-Deen
- Department of Chemistry (The Division of Organic Chemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Elsayed H Eltamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nourhan M Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Praphasawat R, Singsai K, Muenkaew P, Sirisawat S, Jaewcharoenchai W, Thakaew S, Komkhan S, Rawangkan A. Momordica cochinchinensis (Gac) Aril Suppresses Proliferation and Induces Apoptosis of Colorectal Cancer Cells. Asian Pac J Cancer Prev 2024; 25:1579-1587. [PMID: 38809629 PMCID: PMC11318799 DOI: 10.31557/apjcp.2024.25.5.1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Gac aril contains high level of carotenoids. This carotenoid possesses several pharmacological properties including antioxidant, anti-inflammatory, and anti-tumor activities. OBJECTIVE To investigate the anti-cancer activity of Gac aril extract on human colorectal cancer cells and its related mechanisms. METHODS Colorectal cancer cell lines HCT116 and HT29 were treated with Gac aril extract and its effects on cytotoxicity and anti-proliferation were analyzed using the MTT/MTS and colony formation assay, respectively. Then, further related mechanisms responsible for anti-proliferation were investigated by cell death detection ELISA and Flow cytometry. RESULTS The results showed that treated cells became rounded up and there was a loss of contact with neighboring cells, leading to a reduction of cell viability. The cytotoxic effects were evaluated IC50 for HCT116 and HT29 cells were 2.16 mg/mL and 1.29 mg/mL, respectively but it not toxic to normal HEK293 at the same dose. Moreover, Gac aril extract significantly inhibits proliferative ability with increasing concentrations having a greater effect. Subsequently, the cellular mechanism responsible for suppressive proliferation was validated. It shows apoptosis induction and arrest of cell cycle. CONCLUSION Our findings demonstrated that Gac aril extract can induce apoptosis and arrest of cell cycle at S and G2/M phases in both HCT116 and HT29 colorectal cancer cells.
Collapse
Affiliation(s)
- Ratsada Praphasawat
- Department of Pathology, School of Medicine, University of Phayao, Thailand.
- Unit of Excellence of Pharmacological Research on Medicinal Plants, University of Phayao, Thailand.
| | - Kanathip Singsai
- Unit of Excellence of Pharmacological Research on Medicinal Plants, University of Phayao, Thailand.
- Division of Pharmacology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Thailand.
| | - Phuridee Muenkaew
- Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Thailand.
| | - Sarita Sirisawat
- Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Thailand.
| | - Watanyu Jaewcharoenchai
- Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Thailand.
| | - Sinitra Thakaew
- Department of Microbiology, School of Medical Science, University of Phayao, Thailand.
| | - Supatthra Komkhan
- Department of Microbiology, School of Medical Science, University of Phayao, Thailand.
| | - Anchalee Rawangkan
- Department of Microbiology, School of Medical Science, University of Phayao, Thailand.
| |
Collapse
|
8
|
Nivetha S, Srivalli T, Sathya PM, Mohan H, Karthi N, Muralidharan K, Ramalingam V. Nickel-doped vanadium pentoxide (Ni@V 2O 5) nanocomposite induces apoptosis targeting PI3K/AKT/mTOR signaling pathway in skin cancer: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2024; 234:113763. [PMID: 38262106 DOI: 10.1016/j.colsurfb.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.
Collapse
Affiliation(s)
- Selvaraju Nivetha
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur 621212, Tamil Nadu, India
| | - Thimmarayan Srivalli
- PG and Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur-635601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Natesan Karthi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea; School of Allied Health Sciences, REVA University, Kattigenahalli, Bengaluru - 560064, Karnataka, India
| | - Kathirvel Muralidharan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Diab SE, Tayea NA, Elwakil BH, Elshewemi SS, Gad AAEM, Abdulmalek SA, Ghareeb DA, Olama ZA. In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway. Sci Rep 2024; 14:2433. [PMID: 38286826 PMCID: PMC10825195 DOI: 10.1038/s41598-024-52722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
The present work aimed to assess the potential effect of sericin/propolis/fluorouracil nanoformula against colorectal cancer (CRC) (the fourth most common cause of cancer-related mortalities). A novel anti-cancerous formula of the synthesized sericin/propolis nanoparticles was developed and tested both in vitro (using Caco-2 cell line) and in vivo (in experimentally induced colorectal cancer animal models). The combination index of the prepared nanoformula proved that the combination between sericin/propolis nanoparticles and 5-fluorouracil demonstrated the highest synergistic effect (0.86), with dose reduction index (DRI) of the chemotherapeutic drug reaching 1.49. The mechanism of action of the prepared nanoformula revealed that it acts through the inhibition of the PI3K/AKT/mTOR signaling pathway and consequently inhibiting cancerous cells proliferation. Treatment and prophylactic studies of both sericin and propolis showed increased TBARS (Thiobarbituric Acid Reactive Substance) formation, downregulated BCL2 (B-cell lymphoma 2) and activated BAX, Caspase 9 and Caspase 3 expression. The prepared nanoformula decreased the ROS (Reactive Oxygen Species) production in vivo owing to PI3K/AKT/mTOR pathway inhibition and FOXO-1 (Forkhead Box O1) activation that resulted in autophagy/apoptosis processes stimulation. The potent anticancer effect of the prepared nanoformula was further emphasized through the in vivo histopathological studies of experimentally induced tumors. The newly formulated sericin/propolis/fluorouracil nanoparticles exhibited clear-cut cytotoxic effects toward tumor cells with provided evidence for the prophylactic effect.
Collapse
Affiliation(s)
- Shaimaa E Diab
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nourhan A Tayea
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Bassma H Elwakil
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Salma S Elshewemi
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abir Abd El Mageid Gad
- Applied Entomology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Zakia A Olama
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Elderdery AY, Alzerwi NAN, Alzahrani B, Alsrhani A, Alsultan A, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alzahrani AM, Alabdulsalam AA, Mohamedain A, Subbiah SK, Mok PL. Nanocomposites of iron oxide, sodium alginate, and eugenol induce apoptosis via PI3K/Akt/mTOR signaling in Hep3 cells and in vivo hepatotoxicity in the zebrafish model. Int J Biol Macromol 2024; 256:127490. [PMID: 37979758 DOI: 10.1016/j.ijbiomac.2023.127490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 11/20/2023]
Abstract
Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment. Nanotechnology is concerned with the biological and physical properties of nanoparticles in the therapeutic use of drugs. In the current work, formulation, and characterization of α-Fe2O3-Sodium Alginate-Eugenol nanocomposites (FSE NCs) using several approaches like SEM and TEM, UV-visible, FTIR, and PL spectroscopy, XRD, EDAX, and DLS studies have been performed. With an average size of 50 nm, the rhombohedral structure of NCs was identified. Further, their anticancer activity against Hep3B liver cancer cell lines has been performed by cell viability, dual staining, DCFH-DA, Annexin-V/-FITC/PI, cell cycle analysis methods, and PI3K/Akt/mTOR signaling proteins were studied to assess the anticancer effects of the NCs in Hep3B cells. Also, anti-cancer activity on animal modeling in-vivo using zebra fishes to hematological parameters, liver enzymes, and histopathology study effectiveness was noticed. Moreover, the NCs reduced the viability, elevated the ROS accumulation, diminished the membrane integrity, reduced the antioxidants, blocked the cell cycle, and triggered the PI3K/Akt/mTOR signaling axis that eventually resulted in cell death. As a result, FSE NCs possess huge potential for use as a possible anticancer candidate.
Collapse
Affiliation(s)
- Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah 11952, Riyadh, Saudi Arabia.
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Saudi Arabia.
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah 11952, Riyadh, Saudi Arabia.
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabi.
| | - Fares Rayzah
- Department of Surgery, Aseer Central Hospital, Abha, Saudi Arabia
| | - Yaser Baksh
- Department of Surgery, Iman General Hospital, Riyadh, Saudi Arabia.
| | - Ahmed M Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P. O. Box 66, Al-Majmaah 11952, Riyadh, Saudi Arabia.
| | - Abdulrahim A Alabdulsalam
- Department of Pathology & Laboratory Medicine, King Abdulaziz Hospital, Ministry of National Guard Health Affairs, Al-Ahsa, Saudi Arabia.
| | - A Mohamedain
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Alhofuf, Saudi Arabia
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, India.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Mohamed MF, Ibrahim NS, Saddiq AA, Abdelhamid IA. Novel 3-(pyrazol-4-yl)-2-(1H-indole-3-carbonyl)acrylonitrile derivatives induce intrinsic and extrinsic apoptotic death mediated P53 in HCT116 colon carcinoma. Sci Rep 2023; 13:22486. [PMID: 38110432 PMCID: PMC10728220 DOI: 10.1038/s41598-023-48494-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
A novel series of α-cyano indolylchalcones was prepared, and their chemical structures were confirmed based on the different spectral data. Among them, compound 7f was observed to be the most effective bioactive chalcone with distinguished potency and selectivity against colorectal carcinoma (HCT116) with IC50 value (6.76 µg/mL) relative to the positive control (5 FU) (77.15 µg/mL). In a preliminary action study, the acrylonitrile chalcone 7f was found to enhance apoptotic action via different mechanisms like inhibition of some anti-apoptotic protein expression, regulation of some apoptotic proteins, production of caspases, and cell cycle arrest. All mechanisms suggested that compound 7f could act as a professional chemotherapeutic agent. Also, a molecular docking study was achieved on some selected proteins implicated in cancer (Caspase 9, XIAP, P53 mutant Y220C, and MDM2) which showed variable interactions with compound 7f with good Gibbs free energy scores.
Collapse
Affiliation(s)
- Magda F Mohamed
- Department of Chemistry, College of Science and Arts at Khaulis, University of Jeddah, Jeddah, Saudi Arabia.
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt.
| | - Nada S Ibrahim
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | - Amna A Saddiq
- Department of Biology, College of Science and Arts at Khaulis, University of Jeddah, Jeddah, Saudi Arabia
| | | |
Collapse
|
12
|
Bhatkar D, Ananda N, Lokhande KB, Khunteta K, Jain P, Hebale A, Sarode SC, Sharma NK. Organic Acids Derived from Saliva-amalgamated Betel Quid Filtrate Are Predicted as a Ten-eleven Translocation-2 Inhibitor. J Cancer Prev 2023; 28:115-130. [PMID: 37830116 PMCID: PMC10564634 DOI: 10.15430/jcp.2023.28.3.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 10/14/2023] Open
Abstract
There is a lack of evidence regarding the use of betel quid (BQ) and its potential contribution to oral cancer. Limited attention has been directed towards investigating the involvement of BQ-derived organic acids in the modulation of metabolic-epigenomic pathways associated with oral cancer initiation and progression. We employed novel protocol for preparing saliva-amalgamated BQ filtrate (SABFI) that mimics the oral cavity environment. SABFI and saliva control were further purified by an in-house developed vertical tube gel electrophoresis tool. The purified SABFI was then subjected to liquid chromatography-high resolution mass spectrometry analysis to identify the presence of organic acids. Profiling of SABFI showed a pool of prominent organic acids such as citric acid. malic acid, fumaric acid, 2-methylcitric acid, 2-hydroxyglutarate, cis-aconitic acid, succinic acid, 2-hydroxyglutaric acid lactone, tartaric acid and β-ketoglutaric acid. SABFI showed anti-proliferative and early apoptosis effects in oral cancer cells. Molecular docking and molecular dynamics simulations predicted that SABFI-derived organic acids as potential inhibitors of the epigenetic demethylase enzyme, Ten-Eleven Translocation-2 (TET2). By binding to the active site of α-ketoglutarate, a known substrate of TET2, these organic acids are likely to act as competitive inhibitors. This study reports a novel approach to study SABFI-derived organic acids that could mimic the chemical composition of BQ in the oral cavity. These SABFI-derived organic acids projected as inhibitors of TET2 and could be explored for their role oral cancer.
Collapse
Affiliation(s)
- Devyani Bhatkar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nistha Ananda
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kratika Khunteta
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Priyadarshini Jain
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ameya Hebale
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
13
|
A'yun Q, Susilo RJK, Hayaza S, Fikriyah N, Musthoza FS, Islamatasya U, Rohmatika AU, Winarni D, Wahyuningsih SPA, Doong RA, Karsari D, Yanti AD, Fahmi MZ, Darmanto W. The Effect of G. applanatum Crude Polysaccharide Extract on Proinflammatory Cytokines and Proapoptotic Caspases in HeLa Cell Line: An In Vitro Study. Adv Pharmacol Pharm Sci 2023; 2023:3593295. [PMID: 37767520 PMCID: PMC10522430 DOI: 10.1155/2023/3593295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Polysaccharide extracts exhibit promise as potential anticancer agents. Among the fungi rich in polysaccharide content, G. applanatum stands out; however, its anticancer activity necessitates further investigation. This study aims to explore the impact of G. applanatum crude polysaccharide (GACP) extract by assessing its effects on cell viability, levels of proinflammatory cytokines such as TNF-α, IFN-γ, IL-2, and IL-12, and levels of proapoptotic markers including caspase-3 and caspase-9, as well as the percentages of necrosis and apoptosis in the HeLa cell line. Employing the HeLa cell line as a research model, four groups were studied: KN (media and DMSO), K+ (doxorubicin 10 μg/mL), P1 (G. applanatum extract 200 μg/mL), and P2 (G. applanatum extract 400 μg/mL). The G. applanatum extract was obtained via boiling distilled water. Anticancer activity was evaluated through the MTT test (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) conducted over three treatment durations (24, 48, and 72 hours). Cytokine levels and caspase-3 and caspase-9 levels were assessed using the ELISA test. Cell apoptosis was determined using the Annexin V-PI biomarker and analyzed through flow cytometry. The MTT test exhibited optimal results at the 48-hour treatment mark. Cytokine level analysis revealed significant reductions in TNF-α, IFN-γ, IL-2, and IL-12 levels (p < 0.005). Concurrently, caspase-3 and caspase-9 levels exhibited substantial increases (p < 0.005). Flow cytometry highlighted the highest percentage of apoptosis in HeLa cells. In conclusion, G. applanatum's polysaccharide extract demonstrates potential as an anticancer and therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Qurrotu A'yun
- Magister Program in Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Raden Joko Kuncoroningrat Susilo
- Department of Nanotechnology Engineering, Faculty of Advance Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Suhailah Hayaza
- Department of Nanotechnology Engineering, Faculty of Advance Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nur'aini Fikriyah
- Magister Program in Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Fina Syifa'una Musthoza
- Magister Program in Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ufairanisa Islamatasya
- Magister Program in Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aulia Umi Rohmatika
- Magister Program in Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ruey-an Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Sec. 2 Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Deya Karsari
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aristika Dinar Yanti
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochammad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Win Darmanto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
- Institute of Science Technology and Health, Jombang 61419, Indonesia
| |
Collapse
|
14
|
Mickymaray S, Al Aboody MS, Eraqi MM, Alhoqail WA, Alothaim AS, Suresh K, Arulselvan P. Chitosan-encapsulated nickel oxide, tin dioxide, and farnesol nanoparticles: Antimicrobial and anticancer properties in breast cancer cells. Int J Biol Macromol 2023; 248:125799. [PMID: 37451381 DOI: 10.1016/j.ijbiomac.2023.125799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Breast cancer is the most frequent cancer in women; however, it is curable in most cases (up to 80 %) when detected and treated at an early non-metastatic stage. Nanotechnology has led to the development of potential chemotherapeutic techniques, particularly for tumor treatment. Nanotechnology has therapeutic and pharmaceutical applications. Chitosan, a natural polymer derived from chitin, has been extensively studied for its potential applications in a wide range of fields. This includes medicine for its anticancer properties. In the present study, Chitosan-encapsulated-NiO-TiO2-Farnesol hybrid nanomaterials (CNTF HNMs) were synthesized and characterized using several techniques, including electron microscopy (TEM, FE-SEM), spectroscopy (UV-visible [UV-Vis], Fourier Transform Infrared [FT-IR] spectroscopy, and photoluminescence [PL]), energy-dispersive X-ray spectroscopy (EDX) composition analysis, X-ray diffraction, and dynamic light scattering (DLS) analyses. With an estimated average crystallite size of 34.8 nm, the face-cantered cubic crystalline structure of the CNTF HNMs is identified. Cell viability assay by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DAPI (4',6-diamidino-2-phenylindole) staining, dual AO/EtBr (Acridine Orange/ Ethidium bromide), JC-1 (5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide), DCFH-DA (Dichloro-dihydro-fluorescein diacetate), Annexin V-FITC (Fluorescein isothiocyanate) /PI (Propidium Iodide), and cell cycle study was used to assess the ability of nanoparticles (NPs) to kill MDA-MB-231 cells. The CNTF HNMs had high antibacterial effectiveness against multi-drug resistant extended-spectrum beta-lactamases (ESBL)-producing gram-negative bacterial pathogens and reference strains. The findings suggest that NPs increased the number of reactive oxygen species (ROS), changed the Δψm, and initiated apoptosis. There is enormous potential for CNTF HNMs as both antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia; Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Mohammed Saleh Al Aboody
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia.
| | - Mostafa M Eraqi
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia; Microbiology and Immunology Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Wardha A Alhoqail
- Department of Biology, College of Education, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia.
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia.
| | - Kaviya Suresh
- Department of Pharmaceutics, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600 116, India
| | - Palanisamy Arulselvan
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu 637408, India; Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Thanjavur, Tamil Nadu, India
| |
Collapse
|
15
|
Fahmy S, Nasr S, Ramzy A, Dawood AS, Abdelnaser A, Azzazy HMES. Cytotoxic and Antioxidative Effects of Geranium Oil and Ascorbic Acid Coloaded in Niosomes against MCF-7 Breast Cancer Cells. ACS OMEGA 2023; 8:22774-22782. [PMID: 37396262 PMCID: PMC10308595 DOI: 10.1021/acsomega.3c01681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Geranium oil (GO) has antiproliferative, antiangiogenic, and anti-inflammatory properties. Ascorbic acid (AA) is reported to inhibit the formation of reactive oxygen species, sensitize cancer cells, and induce apoptosis. In this context, AA, GO, and AA-GO were loaded into niosomal nanovesicles to ameliorate the physicochemical properties of GO and improve its cytotoxic effects using the thin-film hydration technique. The prepared nanovesicles had a spherical shape with average diameters ranging from 200 to 300 nm and exhibited outstanding surface negative charges, high entrapment efficiencies, and a controlled sustained release over 72 h. Entrapping AA and GO in niosomes resulted in a lower IC50 value than free AA and GO when tested on MCF-7 breast cancer cells. In addition, flow cytometry analysis showed higher apoptotic cells in the late apoptotic stage upon treating the MCF-7 breast cancer cells with AA-GO niosomal vesicles compared to treatments with free AA, free GO, and AA or GO loaded into niosomal nanovesicles. Assessing the antioxidant effect of the free drugs and loaded niosomal nanovesicles showed enhanced antioxidant activity of AA-GO niosomal vesicles. These findings suggest the AA-GO niosomal vesicles as a potential treatment strategy against breast cancer, possibly through scavenging free radicals.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, Cairo 11835, Egypt
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Soad Nasr
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Asmaa Ramzy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Abdelhameed S. Dawood
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Anwar Abdelnaser
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
16
|
Alsrhani A, Elderdery AY, Alzahrani B, Alzerwi NAN, Althobiti MM, Rayzah M, Idrees B, Elkhalifa AME, Subbiah SK, Mok PL. Therapeutic Potential of Albumin Nanoparticles Encapsulated Visnagin in MDA-MB-468 Triple-Negative Breast Cancer Cells. Molecules 2023; 28:molecules28073228. [PMID: 37049991 PMCID: PMC10096807 DOI: 10.3390/molecules28073228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is among the most recurrent malignancies, and its prevalence is rising. With only a few treatment options available, there is an immediate need to search for better alternatives. In this regard, nanotechnology has been applied to develop potential chemotherapeutic techniques, particularly for cancer therapy. Specifically, albumin-based nanoparticles are a developing platform for the administration of diverse chemotherapy drugs owing to their biocompatibility and non-toxicity. Visnagin, a naturally derived furanochromone, treats cancers, epilepsy, angina, coughs, and inflammatory illnesses. In the current study, the synthesis and characterization of albumin visnagin (AV) nanoparticles (NPs) using a variety of techniques such as transmission electron microscopy, UV-visible, Fourier transform infrared, energy dispersive X-ray composition analysis, field emission scanning electron microscopy, photoluminescence, X-Ray diffraction, and dynamic light scattering analyses have been carried out. The MTT test, dual AO/EB, DCFH-DA, Annexin-V-FITC/PI, Propidium iodide staining techniques as well as analysis of apoptotic proteins, antioxidant enzymes, and PI3K/Akt/mTOR signaling analysis was performed to examine the NPs' efficacy to suppress MDA-MB-468 cell lines. The NPs decreased cell viability increased the amount of ROS in the cells, disrupted membrane integrity, decreased the level of antioxidant enzymes, induced cell cycle arrest, and activated the PI3K/Akt/mTOR signaling cascade, ultimately leading to cell death. Thus, AV NPs possesses huge potential to be employed as a strong anticancer therapy alternative.
Collapse
Affiliation(s)
- Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Maryam Musleh Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City in Riyadh, Makkah Al Mukarramah Rd, As Sulimaniyah 12233, Saudi Arabia
| | - Ahmed M E Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Malaysia
| |
Collapse
|
17
|
Rivera-Martínez AR, Aguiñiga-Sánchez I, Cadena-Iñiguez J, Soto-Cruz I, Monroy-García A, Gómez-García G, Ledesma-Martínez E, Weiss-Steider B, Santiago-Osorio E. Fruit Extract of Sechium chinantlense (Lira & F. Chiang) Induces Apoptosis in the Human Cervical Cancer HeLa Cell Line. Nutrients 2023; 15:nu15030667. [PMID: 36771372 PMCID: PMC9920575 DOI: 10.3390/nu15030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Sechium edule (Cucurbitaceae) is a commercial species of chayote and is just one of several species in the genus Sechium, whose extracts inhibit proliferation in tumor cell lines. The capacity of the wild species Sechium chinantlense (SCH) as an antitumor agent is unknown, as is the mechanism of action. In the present study, HeLa cervical cancer and HaCaT normal cell lines were treated with SCH and cell proliferation was inhibited in both cell lines in a dose-dependent manner similar to the effect of the antineoplastic agent cisplatin (Cis). Additionally, SCH arrested cell cycle progression but only in HeLa cells and induced apoptosis, as shown by phosphatidylserine translocation and caspase-3 activation, while Cis did so in both cell lines. Exploration of the mechanism of action of SCH in HeLa cells suggests that apoptosis was mediated by the intrinsic signaling pathway since there was no activation of caspase-8, but there was a release of cytochrome-c. These findings suggest that the SCH extract has the potential to selectively kill tumor cells by promoting apoptosis, without harming nontumor cells.
Collapse
Affiliation(s)
- Ana Rocío Rivera-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 56410, Mexico
| | - Jorge Cadena-Iñiguez
- Innovation in Natural Resource Management, Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí CP 78622, Mexico
| | - Isabel Soto-Cruz
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City CP 06720, Mexico
| | - Guadalupe Gómez-García
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico
| | - Edgar Ledesma-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico
| | - Benny Weiss-Steider
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City CP 09230, Mexico
- Correspondence:
| |
Collapse
|
18
|
Su SH, Sundhar N, Kuo WW, Lai SC, Kuo CH, Ho TJ, Lin PY, Lin SZ, Shih CY, Lin YJ, Huang CY. Artemisia argyi extract induces apoptosis in human gemcitabine-resistant lung cancer cells via the PI3K/MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115658. [PMID: 36075273 DOI: 10.1016/j.jep.2022.115658] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi H. Lév. & Vaniot (Asteraceae), also called "Chinese mugwort", is frequently used as a herbal medicine in China, Japan, Korea, and eastern parts of Russia. It is known as "ai ye" in China and "Gaiyou" in Japan. In ancient China, the buds and leaves of A. argyi were commonly consumed before and after Tomb-sweeping Day. It is used to treat malaria, hepatitis, cancer, inflammatory diseases, asthma, irregular menstrual cycle, sinusitis, and pathologic conditions of the kidney and liver. Although A. argyi extract (AAE) has shown anti-tumor activity against various cancers, the therapeutic effect and molecular mechanism of AAE remains to be further studied in lung cancer. AIM OF THE STUDY This study aimed to demonstrate the anti-tumor effect of AAE and its associated biological mechanisms in CL1-0 parent and gemcitabine-resistant (CL1-0-GR) lung cancer cells. EXPERIMENTAL PROCEDURE Human lung cancer cells CL1-0 and CL1-0-GR cells were treated with AAE. Cell viability was assessed using the MTT, colony, and spheroid formation assays. Migration, invasion, and immunofluorescence staining were used to determine the extent of epithelial- mesenchymal transition (EMT). JC-1 and MitoSOX fluorescent assays were performed to investigate the effect of AAE on mitochondria. Apoptosis was detected using the TUNEL assay and flow cytometry with Annexin V staining. RESULT We found that A. argyi significantly decreased cell viability and induced apoptosis, accompanied by mitochondrial membrane depolarization and increased ROS levels in both parent cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0-GR). AAE-induced apoptosis is regulated via the PI3K/AKT and MAPK signaling pathways. It also prevents CL1-0 and CL1-0-GR cancer cell invasion, migration, EMT, colony formation, and spheroid formation. In addition, AAE acts cooperative with commercial chemotherapy drugs to enhance tumor spheroid shrinkage. CONCLUSION Our study provides the first evidence that A. argyi treatment suppresses both parent and gemcitabine-resistant lung cancer cells by inducing ROS, mitochondrial membrane depolarization, and apoptosis, and reducing EMT. Our finding provides insights into the anti-cancer activity of A. argyi and suggests that A. argyi may serve as a chemotherapy adjuvant that potentiates the efficacy of chemotherapeutic agents.
Collapse
Affiliation(s)
- San-Hua Su
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Navaneethan Sundhar
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shang-Chih Lai
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan; School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Tsung-Jung Ho
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Buddhist Tzu Chi Charity Foundation, Hualien, 970, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Cheng Yen Shih
- Buddhist Tzu Chi Charity Foundation, Hualien, 970, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
19
|
Abdelazeem NM, El-Hussieny M, El-Rashedy AA, Elsayed GH. Design, Synthesis, Docking Studies and Biological Evaluation of Novel Benzochromenopyrimidines via Silica Sulfuric Acid Catalyzed Reaction on Apoptosis in Human Cancer Cells. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nagwa M. Abdelazeem
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed A. El-Rashedy
- Natural and Microbial Products Department, National Research Center (NRC), Giza, Egypt
| | - Ghada H. Elsayed
- Hormones Department, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
20
|
Alanazi J, Unnisa A, Alanazi M, Alharby TN, Moin A, Rizvi SMD, Hussain T, Awadelkareem AM, Elkhalifa AO, Faiyaz SSM, Khalid M, Gowda DV. 3-Methoxy Carbazole Impedes the Growth of Human Breast Cancer Cells by Suppressing NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1410. [PMID: 36422540 PMCID: PMC9699412 DOI: 10.3390/ph15111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer represents the most frequently occurring cancer globally among women. As per the recent report of the World Health Organization (WHO), it was documented that by the end of the year 2020, approximately 7.8 million females were positively diagnosed with breast cancer and in 2020 alone, 685,000 casualties were documented due to breast cancer. The use of standard chemotherapeutics includes the frontline treatment option for patients; however, the concomitant side effects represent a major obstacle for their usage. Carbazole alkaloids are one such group of naturally-occurring bioactive compounds belonging to the Rutaceae family. Among the various carbazole alkaloids, 3-Methoxy carbazole or C13H11NO (MHC) is obtained from Clausena heptaphylla as well as from Clausena indica. In this study, MHC was investigated for its anti-breast cancer activity based on molecular interactions with specific proteins related to breast cancer, where the MHC had predicted binding affinities for NF-κB with −8.3 kcal/mol. Furthermore, to evaluate the biological activity of MHC, we studied its in vitro cytotoxic effects on MCF-7 cells. This alkaloid showed significant inhibitory effects and induced apoptosis, as evidenced by enhanced caspase activities and the cellular generation of ROS. It was observed that a treatment with MHC inhibited the gene expression of NF-kB in MCF-7 breast cancer cells. These results suggest that MHC could be a promising medical plant for breast cancer treatment. Further studies are needed to understand the molecular mechanisms behind the anticancer action of MHC.
Collapse
Affiliation(s)
- Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Muteb Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Tareq Nafea Alharby
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Ha’il 81442, Saudi Arabia
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Ha’il 81442, Saudi Arabia
| | | | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdilaziz, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
21
|
Al Mousa AA, Abouelela ME, Hassane AMA, Al-Khattaf FS, Hatamleh AA, Alabdulhadi HS, Dahmash ND, Abo-Dahab NF. Cytotoxic Potential of Alternaria tenuissima AUMC14342 Mycoendophyte Extract: A Study Combined with LC-MS/MS Metabolic Profiling and Molecular Docking Simulation. Curr Issues Mol Biol 2022; 44:5067-5085. [PMID: 36286059 PMCID: PMC9600980 DOI: 10.3390/cimb44100344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Breast, cervical, and ovarian cancers are among the most serious cancers and the main causes of mortality in females worldwide, necessitating urgent efforts to find newer sources of safe anticancer drugs. The present study aimed to evaluate the anticancer potency of mycoendophytic Alternaria tenuissima AUMC14342 ethyl acetate extract on HeLa (cervical cancer), SKOV-3 (ovarian cancer), and MCF-7 (breast adenocarcinoma) cell lines. The extract showed potent effect on MCF-7 cells with an IC50 value of 55.53 μg/mL. Cell cycle distribution analysis of treated MCF-7 cells revealed a cell cycle arrest at the S phase with a significant increase in the cell population (25.53%). When compared to control cells, no significant signs of necrotic or apoptotic cell death were observed. LC-MS/MS analysis of Alternaria tenuissima extract afforded the identification of 20 secondary metabolites, including 7-dehydrobrefeldin A, which exhibited the highest interaction score (-8.0156 kcal/mol) in molecular docking analysis against human aromatase. Regarding ADME pharmacokinetics and drug-likeness properties, 7-dehydrobrefeldin A, 4'-epialtenuene, and atransfusarin had good GIT absorption and water solubility without any violation of drug-likeness rules. These findings support the anticancer activity of bioactive metabolites derived from endophytic fungi and provide drug scaffolds and substitute sources for the future development of safe chemotherapy.
Collapse
Affiliation(s)
- Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY 40506, USA
| | - Abdallah M. A. Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
| | - Fatimah S. Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Ashraf A. Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Hadeel S. Alabdulhadi
- Research Assistant Internship Program, Vice Rectorate for Graduate Studies and Scientific Research, King Saud University, Deanship of Scientific Research, Riyadh 4545, Saudi Arabia
| | - Noura D. Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Nageh F. Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
| |
Collapse
|
22
|
Ashry NM, El Bahgy HEK, Mohamed A, Alsubhi NH, Alrefaei GI, Binothman N, Alharbi M, Selim S, Almuhayawi MS, Alharbi MT, Nagshabandi MK, Saad AM, El-Saadony MT, Sitohy B. Evaluation of graphene oxide, chitosan and their complex as antibacterial agents and anticancer apoptotic effect on HeLa cell line. Front Microbiol 2022; 13:922324. [PMID: 36267179 PMCID: PMC9577200 DOI: 10.3389/fmicb.2022.922324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer and bacterial infection are the most serious problems threatening people's lives worldwide. However, the overuse of antibiotics as antibacterial and anticancer treatments can cause side effects and lead to drug-resistant bacteria. Therefore, developing natural materials with excellent antibacterial and anticancer activity is of great importance. In this study, different concentrations of chitosan (CS), graphene oxide (GO), and graphene oxide-chitosan composite (GO-CS) were tested to inhibit the bacterial growth of gram-positive (Bacillus cereus MG257494.1) and gram-negative (Pseudomonas aeruginosa PAO1). Moreover, we used the most efficient natural antibacterial material as an anticancer treatment. The zeta potential is a vital factor for antibacterial and anticancer mechanism, at pH 3–7, the zeta potential of chitosan was positive while at pH 7–12 were negative, however, the zeta potential for GO was negative at all pH values, which (p < 0.05) increased in the GO-CS composite. Chitosan concentrations (0.2 and 1.5%) exhibited antibacterial activity against BC with inhibition zone diameters of 4 and 12 mm, respectively, and against PAO1 with 2 and 10 mm, respectively. Treating BC and PAO1 with GO:CS (1:2) and GO:CS (1:1) gave a larger (p < 0.05) inhibition zone diameter. The viability and proliferation of HeLa cells treated with chitosan were significantly decreased (p < 0.05) from 95.3% at 0% to 12.93%, 10.33%, and 5.93% at 0.2%, 0.4%, and 0.60% concentrations of chitosan, respectively. Furthermore, CS treatment increased the activity of the P53 protein, which serves as a tumor suppressor. This study suggests that chitosan is effective as an antibacterial and may be useful for cancer treatment.
Collapse
Affiliation(s)
- Noha M. Ashry
- Department of Agriculture Microbiology, Faculty of Agriculture, Benha University, Qalubia, Egypt
| | - Halla E. K. El Bahgy
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Abdelkader Mohamed
- Department of Soil and Water Research, Nuclear Research Center, Egyptian Atomic Energy Authority, Abou Zaabl, Egypt
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Samy Selim
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohanned T. Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed K. Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- *Correspondence: Mohamed T. El-Saadony
| | - Basel Sitohy
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Basel Sitohy
| |
Collapse
|
23
|
Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, Zúñiga-Miranda J, Arias-Almeida B, Guamán LP. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022; 27:4490. [PMID: 35889361 PMCID: PMC9324072 DOI: 10.3390/molecules27144490] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds' biological activity in vitro.
Collapse
Affiliation(s)
- Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Benjamin Arias-Almeida
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| |
Collapse
|
24
|
Marzhoseyni Z, Shayestehpour M, Salimian M, Esmaeili D, Saffari M, Fathizadeh H. Designing a novel fusion protein from Streptococcus agalactiae with apoptosis induction effects on cervical cancer cells. Microb Pathog 2022; 169:105670. [PMID: 35809755 DOI: 10.1016/j.micpath.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022]
Abstract
Cervical cancer remains life-threatening cancer in women around the world. Due to the limitations of conventional treatment approaches, there is an urgent need to develop novel and more efficient strategies against cervical cancer. Therefore, the researchers attend to the alternative anti-cancer compounds like bacterial products. Rib and α are known as surface proteins of Streptococcus agalactiae with immunologic effects. In the present study, we designed a new anti-cancer fusion protein (Rib-α) originating from S. agalactiae with in silico methods, and then, the recombinant gene was cloned in the pET-22 (+) expression vector. The recombinant protein was expressed in E. coli BL21. To purify the expressed protein, we applied the Ni-NTA column. The molecular mechanism by which Rib-α is cytotoxic to cancer cells has been discussed based on MTT, flow cytometry, and real-time PCR methods. The engineered fusion protein suppressed the proliferation of the cancer cells at 180 μg/ml. Cytotoxic assessment and morphological changes, augmentation of apoptotic-related genes, upregulation of caspase-3 mRNA, and flow cytometric analysis confirmed that apoptosis might be the principal mechanism of cell death. According to our findings, Rib-α fusion protein motivated the intrinsic apoptosis pathway. Therefore, it can be an exciting candidate to discover a new class of antineoplastic agents.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Morteza Salimian
- Anatomical Science Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Davoud Esmaeili
- Department of Microbiology and Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
25
|
Zohmachhuana A, Malsawmdawngliana, Lalnunmawia F, Mathipi V, Lalrinzuali K, Kumar NS. Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways. Biomed Pharmacother 2022; 150:113039. [PMID: 35658209 DOI: 10.1016/j.biopha.2022.113039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the current study was to examine the efficacy of the leaf, stem and rhizome of Curcuma aeruginosa Roxb. for their phytochemical content, antioxidant and anti-cancer activities. The different parts of C. aeruginosa were subjected to sequential extraction to give three fractions viz., hexane, ethyl acetate and methanol extract. The cytotoxic effect and the mode of action against A-549 human lung adenocarcinoma and HeLa cell lines were examined. C. aeruginosa presented no significant toxic effect in normal human lung cells (L-132). The methanol extracts were found to be the most cytotoxic and further investigation was carried out to understand the effects. The methanol extracts induced DNA damage after 24 h with significant increase in tail DNA and tail moment when compared to untreated control. Up-regulation in the expression of the caspase - 8 and - 3 activity was observed after 48 h of treatment. The mechanism of cell death and apoptosis induced by the methanol extracts on A549 and HeLa cells were studied using fluorescent staining. Bioactive compounds detected from the HPLC revealed phenol and flavonoid compounds: Gallic acid, quercetin, caffeic acid, kaempferol, rutin, coumaric acid and naringenin. GC-MS results identified the presence of sesquiterpenoids: α-curcumene, curzerene curcumenol, curzerenone epicurzerenone, caryophyllene oxide and diterpenoid, andrographolide. These compounds are known for inducing apoptosis in human cancer cells through caspase - dependent pathways. Therefore, C. aeruginosa and its potential to induce apoptosis in cancer cells suggest that they have potential in medical applications.
Collapse
Affiliation(s)
- Alex Zohmachhuana
- Department of Botany, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - F Lalnunmawia
- Department of Botany, Mizoram University, Aizawl 796004, Mizoram, India
| | | | | | - N Senthil Kumar
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| |
Collapse
|
26
|
Wong TY, Menaga S, Huang CYF, Ho SHA, Gan SC, Lim YM. 2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells. Genomics Inform 2022; 20:e7. [PMID: 35399006 PMCID: PMC9001993 DOI: 10.5808/gi.21041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor кB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.
Collapse
Affiliation(s)
- Teck Yew Wong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Subramaniam Menaga
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Siong Hock Anthony Ho
- School of Biosciences, Taylor's University, Lakeside Campus 1, 47500 Subang Jaya, Malaysia
| | - Seng Chiew Gan
- Department of Pre-Clinical Sciences Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia.,Department of Pre-Clinical Sciences Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| |
Collapse
|
27
|
Mohammed Fitri TF, Osman AF, Alosime EM, Othman R, Hashim F, Abdullah MAA. Biomedical PEVA Nanocomposite with Dual Clay Nanofiller: Cytotoxicity, Mechanical Properties, and Biostability. Polymers (Basel) 2021; 13:polym13244345. [PMID: 34960896 PMCID: PMC8705030 DOI: 10.3390/polym13244345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(ethylene-vinyl acetate) (PEVA) nanocomposite incorporating dual clay nanofiller (DCN) of surface modified montmorillonite (S-MMT) and bentonite (Bent) was studied for biomedical applications. In order to overcome agglomeration of the DCN, the S-MMT and Bent were subjected to a physical treatment prior to being mixed with the copolymer to form nanocomposite material. The S-MMT and Bent were physically treated to become S-MMT(P) and Bent(pH-s), respectively, that could be more readily dispersed in the copolymer matrix due to increments in their basal spacing and loosening of their tactoid structure. The biocompatibility of both nanofillers was assessed through a fibroblast cell cytotoxicity assay. The mechanical properties of the neat PEVA, PEVA nanocomposites, and PEVA-DCN nanocomposites were evaluated using a tensile test for determining the best S-MMT(P):Bent(pH-s) ratio. The results were supported by morphological studies by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Biostability evaluation of the samples was conducted by comparing the ambient tensile test data with the in vitro tensile test data (after being immersed in simulated body fluid at 37 °C for 3 months). The results were supported by surface degradation analysis. Our results indicate that the cytotoxicity level of both nanofillers reduced upon the physical treatment process, making them safe to be used in low concentration as dual nanofillers in the PEVA-DCN nanocomposite. The results of tensile testing, SEM, and TEM proved that the ratio of 4:1 (S-MMT(P):Bent(pH-s)) provides a greater enhancement in the mechanical properties of the PEVA matrix. The biostability assessment indicated that the PEVA-DCN nanocomposite can achieve much better retention in tensile strength after being subjected to the simulated physiological fluid for 3 months with less surface degradation effect. These findings signify the potential of the S-MMT(P)/Bent(pH-s) as a reinforcing DCN, with simultaneous function as biostabilizing agent to the PEVA copolymer for implant application.
Collapse
Affiliation(s)
- Tuty Fareyhynn Mohammed Fitri
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia; (T.F.M.F.); (R.O.)
- Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGtech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Azlin Fazlina Osman
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia; (T.F.M.F.); (R.O.)
- Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGtech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Correspondence:
| | - Eid M. Alosime
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Rahimah Othman
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia; (T.F.M.F.); (R.O.)
- Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGtech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Fatimah Hashim
- BioSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia;
| | | |
Collapse
|
28
|
Smirnova I, Drăghici G, Kazakova O, Vlaia L, Avram S, Mioc A, Mioc M, Macaşoi I, Dehelean C, Voicu A, Şoica C. Hollongdione arylidene derivatives induce antiproliferative activity against melanoma and breast cancer through pro-apoptotic and antiangiogenic mechanisms. Bioorg Chem 2021; 119:105535. [PMID: 34906859 DOI: 10.1016/j.bioorg.2021.105535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
The use of natural compounds as starting point for semisynthetic derivatives has already been proven as a valuable source of active anticancer agents. Hollongdione (4,4,8,14-tetramethyl-18-norpregnan-3,20-dion), obtained by few steps from dammarane type triterpenoid dipterocarpol, was chemically modified at C2 and C21 carbon atoms by the Claisen-Schmidt aldol condensation to give a series of arylidene derivatives. The anticancer activity of the obtained compounds was assessed on NCI-60 cancer cell panel, revealing strong antiproliferative effects against a large variety of cancer cells. 2,21-Bis-[3-pyridinyl]-methylidenohollongdione 9 emerged as the most active derivative as indicated by its GI50 values in the micromolar range which, combined with its high selectivity index values, indicated its suitability for deeper biological investigation. The mechanisms involved in compound 9 antiproliferative activity, were investigated through in vitro (DAPI staining) and ex vivo (CAM assay) tests, which exhibited its apoptotic and antiangiogenic activities. In addition, compound 9 showed an overall inhibition of mitochondrial respiration. rtPCR analysis identified the more intimate activity at pro-survival/pro-apoptotic gene level. Collectively, the hollongdione derivative stand as a promising therapeutic option against melanoma and breast cancer provided that future in vivo analysis will certify its clinical efficacy.
Collapse
Affiliation(s)
- Irina Smirnova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | - George Drăghici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation.
| | - Lavinia Vlaia
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Stefana Avram
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Marius Mioc
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Ioana Macaşoi
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Adrian Voicu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| | - Codruța Şoica
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania; Res. Ctr. Pharmacotoxicol Evaluat, Facculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., Timisoara 300041, Romania
| |
Collapse
|
29
|
Mohammed FZ, Rizzk YW, El Deen IM, Mourad AAE, El Behery M. Design, Synthesis, Cytotoxic Screening and Molecular Docking Studies of Novel Hybrid Thiosemicarbazone Derivatives as Anticancer Agents. Chem Biodivers 2021; 18:e2100580. [PMID: 34699127 DOI: 10.1002/cbdv.202100580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022]
Abstract
Thiosemicarbazones have been the focus of scientists owing to their broad clinical anticancer range. Herein, A Series of new thiosemicarbazone derivatives 5-9 were synthesized and confirmed through the use of different spectroscopic techniques along with elemental analysis. The in vitro cytotoxic activity of compounds 5-9 against MCF-7 and A549 cell lines and normal breast cells were assessed. Several compounds were found to be active. The most active compound 7 caused MCF-7 cell cycle arrest at G1/ S phases; and induced apoptosis at the pre-G1 phase. The apoptosis-inducing activity of compound 7 was proofed by the elevation of caspase 3/7 activity and also by up-regulation of the expression of Bax and p53 proteins together with the down-regulation of the expression of the Bcl-2 protein. It also had a strong inhibitory effect topoisomerase IIβ enzyme. Molecular Docking study revealed that the synthesized compounds had good docking scores compared to the standard drug Etoposide towards the topoisomerase IIβ protein (3QX3). Overall, these findings confirmed that the new thiosemicarbazone derivatives could aid in the development of promising cancer drug candidates.
Collapse
Affiliation(s)
- Faten Zahran Mohammed
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Youstina William Rizzk
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Ibrahim Mohey El Deen
- Chemistry Department (The Division of Organic chemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Ahmed A E Mourad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed El Behery
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
30
|
Fatima SW, Imtiyaz K, Alam Rizvi MM, Khare SK. Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC Adv 2021; 11:34613-34630. [PMID: 35494746 PMCID: PMC9042677 DOI: 10.1039/d1ra04513j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignancy among women. With the aim of decreasing the toxicity of conventional breast cancer treatments, an alternative that could provide appropriate and effective drug utilization was envisioned. Thus, we contemplated and compared the in vitro effects of microbial transglutaminase nanoflowers (MTGase NFs) on breast cancer cells (MCF-7). Transglutaminase is an important regulatory enzyme acting as a site-specific cross-linker for proteins. With the versatility of MTGase facilitating the nanoflower formation by acting as molecular glue, it was demonstrated to have anti-cancer properties. The rational drug design based on a transglutaminase enzyme-assisted approach led to the uniform shape of petals in these nanoflowers, which had the capacity to act directly as an anti-cancer drug. Herein, we report the anti-cancer characteristics portrayed by enzymatic MTGase NFs, which are biocompatible in nature. This study demonstrated the prognostic and therapeutic significance of MTGase NFs as a nano-drug in breast cancer treatment. The results on MCF-7 cells showed a significantly improved in vitro therapeutic efficacy. MTGase NFs were able to exhibit inhibitory effects on cell viability (IC50-8.23 μg ml−1) within 24 h of dosage. To further substantiate its superior anti-proliferative role, the clonogenic potential was measured to be 62.8%, along with migratory inhibition of cells (3.76-fold change). Drastic perturbations were induced (4.61-fold increase in G0/G1 phase arrest), pointed towards apoptotic induction with a 58.9% effect. These results validated the role of MTGase NFs possessing a cytotoxic nature in mitigating breast cancer. Thus, MTGase bestows distinct functionality towards therapeutic nano-modality, i.e., nanoflowers, which shows promise in cancer treatment. Development of a novel therapeutic nano-modality in the form of enzymatic transglutaminase nanoflowers; endowed with anti-cancerous action against breast cancers.![]()
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| | - Khalid Imtiyaz
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Mohammad M Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| |
Collapse
|
31
|
Feng F, Pan L, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int J Biol Sci 2021; 17:4340-4352. [PMID: 34803502 PMCID: PMC8579440 DOI: 10.7150/ijbs.64675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cepharanthine (CEP), a natural compound extracted from Stephania cepharantha Hayata, has been found to have the potential to treat a variety of tumors in recent years. This study aims to evaluate the anti-hepatocellular carcinoma (HCC) effect of CEP and determine its in-depth mechanism. In this study, Hep3B and HCCLM3 cells were selected to evaluate the antitumor effects of CEP in vitro, whereas tumor xenograft in nude mice was performed to make in vivo anti-tumor assessment. RNA-sequence (RNA-seq) was used to identify possible molecular targets and pathways. Further, gas chromatography mass spectrometry (GC-MS) was performed to assess the differential metabolites involved in mediating the effect of CEP on the HCC cell line. Our results showed that CEP treatment resulted in the dose-dependent inhibition of cell viability, migration, and proliferation and could also induce apoptosis in HCC cells. RNA-seq following CEP treatment identified 168 differentially expressed genes (DEGs), which were highly enriched in metabolism-associated pathways. In addition, CEP down-regulated many metabolites through the amino acid metabolism pathway. In vivo experiment showed that CEP significantly suppressed tumor growth. Our results indicate that CEP has significant antitumor effects and has the potential to be a candidate drug for HCC treatment.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lianhong Pan
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li Yang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chunli Wang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
32
|
Mourad AA, Rizzk YW, Zaki I, Mohammed FZ, El Behery M. Synthesis and cytotoxicity screening of some synthesized hybrid nitrogen molecules as anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Hybrid Anticancer Peptides DN1 and DN4 Exert Selective Cytotoxicity Against Hepatocellular Carcinoma Cells by Inducing Both Intrinsic and Extrinsic Apoptotic Pathways. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Enhanced oral permeability of Trans-Resveratrol using nanocochleates for boosting anticancer efficacy; in-vitro and ex-vivo appraisal. Eur J Pharm Biopharm 2021; 168:166-183. [PMID: 34481049 DOI: 10.1016/j.ejpb.2021.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent liver cancer representing the fourth most lethal cancer worldwide. Trans-Resveratrol (T-R) possesses a promising anticancer activity against HCC. However, it suffers from poor bioavailability because of the low solubility, chemical instability, and hepatic metabolism. Herein, we developed T-R-loaded nanocochleates using a simple trapping method. Nanocarriers were optimized using a comprehensive in-vitro characterization toolset and evaluated for the anticancer activity against HepG2 cell line. T-R-loaded nanocochleates demonstrated monodispersed cylinders (163.27 ± 2.68 nm and 0.25 ± 0.011 PDI) and -46.6 mV ζ-potential. They exhibited a controlled biphasic pattern with minimal burst followed by sustained release for 72 h. Significant enhancements of Caco-2 transport and ex-vivo intestinal permeation over liposomes, with 1.8 and 2.1-folds respectively, were observed. Nanocochleates showed significant reduction of 24 h IC50 values compared to liposomes and free T-R. Moreover, an efficient knockdown of anti-apoptotic (Bcl-2) and cancer stemness (NANOG) genes was demonstrated. To the best of our knowledge, we are the first to develop T-R loaded nanocochleates and scrutinize its potential in suppressing NANOG expression, 2-folds lower, compared to free T-R. According to these auspicious outcomes, nanocochleates represent a promising nanoplatform to enhance T-R oral permeability and augment its anticancer efficacy in the treatment of HCC.
Collapse
|
35
|
Ahlam AA, Shaniba VS, Jayasree PR, Manish Kumar PR. Spondias pinnata (L.f.) Kurz Leaf Extract Derived Zinc Oxide Nanoparticles Induce Dual Modes of Apoptotic-Necrotic Death in HCT 116 and K562 Cells. Biol Trace Elem Res 2021; 199:1778-1801. [PMID: 32761516 DOI: 10.1007/s12011-020-02303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
This study evaluates the effects of phyto-derived zinc oxide nanoparticles (ZnONPs) on human cancer cells, colon carcinoma HCT 116, and chronic myelogenous leukemic K562, along with normal lymphocytes/erythrocytes. The commercial, chemically synthesized ZnONPs (cZnONPs) were also assessed in parallel. Using an eco-friendly approach devoid of harmful chemicals, biogenic nanoparticles were synthesized from aqueous leaf extract of Spondias pinnata (SpLZnONPs) by a sol-gel method. Optical, structural, and elemental characterization of both particle types were carried out deploying UV-Vis/photoluminescence spectroscopy, FTIR, XRD, FESEM, HRTEM, and EDX. Both SpLZnONPs and cZnONPs displayed hexagonal wurtzite structure with particle sizes averaging 30 and 48.5 nm, respectively. SpLZnONPs were found to be cytotoxic to both cancer cell types while cZnONPs exhibited toxicity only against HCT 116 cells. Interestingly, the cytomorphological changes and analysis of DNA laddering pattern observed in these treated cells were indicative of simultaneous induction of dual modes of death involving apoptosis and necrosis. Flow cytometric analysis of cell-cycle distribution, clonogenic, wound healing, and comet assays provided evidences of the antiproliferative potential of the tested nanoparticles. Apoptosis induction via oxidative stress-mediated Ca2+ release, ROS generation, loss of mitochondrial membrane potential, and externalization of phosphatidylserine was also determined biochemically. Relative expression of apoptotic genes was quantified using RT-qPCR and Western blot analysis. Mitotic index analysis, MTT, and hemolytic assays on lymphocytes and erythrocytes clearly revealed the absence of any deleterious effect(s) of SpLZnONPs in these cells compared with the toxicity of the chemically derived cZnONPs, thereby attesting to the biocompatibility and selective action of the biogenic nanoparticles.
Collapse
Affiliation(s)
- Abdul Aziz Ahlam
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - V S Shaniba
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Kerala, 673635, India
| | - P R Manish Kumar
- Recombinant DNA Laboratory, Department of Biotechnology, University of Calicut, Kerala, 673635, India.
| |
Collapse
|
36
|
Forma A, Chilimoniuk Z, Januszewski J, Sitarz R. The Potential Application of Allium Extracts in the Treatment of Gastrointestinal Cancers. GASTROENTEROLOGY INSIGHTS 2021; 12:136-146. [DOI: 10.3390/gastroent12020012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herbal medicine is currently widely practiced, since natural resources are reported to alleviate side effects during oncological treatment while modifying cancer cell responses at the same time. Allium vegetables and their constituents have recently been extensively investigated due to the numerous possible beneficial properties, establishing them as an additional treatment modality in different cancers. According to the epidemiological evidence, as well as many in vivo and in vitro studies, the abovementioned substances seem to be effective in the prevention and inhibition of the progression of carcinogenesis. Due to high concentrations of organosulfur compounds, which exhibit anticarcinogenic, antimicrobial, as well as anti-inflammatory properties, Allium constituents are believed to constitute a promising prevention and supportive therapy for oncological patients. Besides, it was demonstrated that a combination of Allium extracts with chemotherapy provided satisfactory clinical outcomes while at the same time being cost-effective. The aim of this review was to present and discuss currently investigated Allium extracts and their effects on several gastrointestinal cancers including gastric, colon, liver, esophageal, and pancreatic cancer.
Collapse
Affiliation(s)
- Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jacek Januszewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland
| |
Collapse
|
37
|
The Newly Synthetized Chalcone L1 Is Involved in the Cell Growth Inhibition, Induction of Apoptosis and Suppression of Epithelial-to-Mesenchymal Transition of HeLa Cells. Molecules 2021; 26:molecules26051356. [PMID: 33802621 PMCID: PMC7961543 DOI: 10.3390/molecules26051356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.
Collapse
|
38
|
Khan I, Mahfooz S, Saeed M, Ahmad I, Ansari IA. Andrographolide Inhibits Proliferation of Colon Cancer SW-480 Cells via Downregulating Notch Signaling Pathway. Anticancer Agents Med Chem 2021; 21:487-497. [PMID: 32679024 DOI: 10.2174/1871520620666200717143109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently, the Notch signaling pathway has gained attention as a potential therapeutic target for chemotherapeutic intervention. However, the efficacy of previously known Notch inhibitors in colon cancer is still unclear. The purpose of this study was to investigate the effect of andrographolide on aberrantly activated Notch signaling in SW-480 cells in vitro. METHODS The cytostatic potential of andrographolide on SW-480 cells was evaluated by 3-(4,5-dimethylthiazol- 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, morphology assessment, and colony formation assay. The apoptotic activity was evaluated by FITC Annexin V assay, 4',6-diamidino-2-phenylindole (DAPI), Hoechst, Rhodamine 123, and Mito Tracker CMXRos staining. Scratch assay was conducted for migratory potential assessment. 7'-Dichlorodihydrofluorescein Diacetate (DCFH-DA) staining was used to evaluate the Reactive Oxygen Species (ROS) generation. Relative mRNA expression of Bax, Bcl2, NOTCH 1, and JAGGED 1 was estimated by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Cell cycle phase distribution was evaluated by Annexin V-FITC/PI staining. RESULTS MTT assay demonstrated the dose and time-dependent cytotoxicity of andrographolide on SW-480 cells. It also inhibited the migratory and colony forming potential of SW-480 cells. Furthermore, andrographolide also showed disruption of mitochondrial membrane potential and induced apoptosis through nuclear condensation. Flow cytometric evaluation showed that andrographolide enhanced early and late apoptotic cells and induced upregulation of pro-apoptotic (Bax and Bad) and downregulation of anti-apoptotic Bcl2 in treated SW- 480 cells. Andrographolide augmented intracellular ROS generation and induced G0/G1 phase cell cycle arrest in colon cancer SW-480 cells. Furthermore, andrographolide repressed the Notch signaling by decreasing the expression of NOTCH 1 and JAGGED 1. CONCLUSION The findings suggested that andrographolide constraint the growth of SW-480 cells through the inhibition of the Notch signaling pathway.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, YalıköyMahallesi, Beykoz, Istanbul, Turkey
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, YalıköyMahallesi, Beykoz, Istanbul, Turkey
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan A Ansari
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| |
Collapse
|
39
|
Hur S, Jang E, Lee JH. Beneficial Actions of Orostachys japonica and Its Compounds against Tumors via MAPK Signaling Pathways. Nutrients 2021; 13:nu13020555. [PMID: 33567572 PMCID: PMC7915109 DOI: 10.3390/nu13020555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds-kaempferol and quercetin-against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.
Collapse
Affiliation(s)
- Soyoung Hur
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea
| | - Jang-Hoon Lee
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-958-9118; Fax: +82-2-958-9258
| |
Collapse
|
40
|
Țigu AB, Moldovan CS, Toma VA, Farcaș AD, Moț AC, Jurj A, Fischer-Fodor E, Mircea C, Pârvu M. Phytochemical Analysis and In Vitro Effects of Allium fistulosum L. and Allium sativum L. Extracts on Human Normal and Tumor Cell Lines: A Comparative Study. Molecules 2021; 26:574. [PMID: 33499159 PMCID: PMC7866094 DOI: 10.3390/molecules26030574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Allium sativum L. (garlic bulbs) and Allium fistulosum L. (Welsh onion leaves) showed quantitative differences of identified compounds: allicin and alliin (380 µg/mL and 1410 µg/mL in garlic; 20 µg/mL and 145 µg/mL in Welsh onion), and the phenolic compounds (chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, 4-hydroxybenzoic acid, kaempferol, isoquercitrin, quercitrin, quercetin, and rutin). The chemical composition determined the inhibitory activity of Allium extracts in a dose-dependent manner, on human normal cells (BJ-IC50 0.8841% garlic/0.2433% Welsh onion and HaCaT-IC50 1.086% garlic/0.6197% Welsh onion) and tumor cells (DLD-1-IC50 5.482%/2.124%; MDA-MB-231-IC50 6.375%/2.464%; MCF-7-IC50 6.131%/3.353%; and SK-MES-1-IC50 4.651%/5.819%). At high concentrations, the cytotoxic activity of each extract, on normal cells, was confirmed by: the 50% of the growth inhibition concentration (IC50) value, the cell death induced by necrosis, and biochemical determination of LDH, catalase, and Caspase-3. The four tumor cell lines treated with high concentrations (10%, 5%, 2.5%, and 1.25%) of garlic extract showed different sensibility, appreciated on the base of IC50 value for the most sensitive cell line (SK-MES-1), and the less sensitive (MDA-MB-231) cell line. The high concentrations of Welsh onion extract (5%, 2.5%, and 1.25%) induced pH changes in the culture medium and SK-MES-1 being the less sensitive cell line.
Collapse
Affiliation(s)
- Adrian Bogdan Țigu
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
| | - Cristian Silviu Moldovan
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresurces “3B”, Babeș-Bolyai University, 400000 Cluj-Napoca, Romania
| | - Anca Daniela Farcaș
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
| | - Augustin Cătălin Moț
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Ancuța Jurj
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Eva Fischer-Fodor
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
- Department of Radiobiology and Tumor Biology, The Oncology Institute “Prof Dr Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Cristina Mircea
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
| |
Collapse
|
41
|
Petropoulos SA, Di Gioia F, Polyzos N, Tzortzakis N. Natural Antioxidants, Health Effects and Bioactive Properties of Wild Allium Species. Curr Pharm Des 2020; 26:1816-1837. [PMID: 32013820 DOI: 10.2174/1381612826666200203145851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is an increasing interest from the pharmaceutical and food industry in natural antioxidant and bioactive compounds derived from plants as substitutes for synthetic compounds. The genus Allium is one of the largest genera, with more than 900 species, including important cultivated and wild species, having beneficial health effects. OBJECTIVE The present review aims to unravel the chemical composition of wild Allium species and their healthrelated effects, focusing on the main antioxidant compounds. For this purpose, a thorough study of the literature was carried out to compile reports related to health effects and the principal bioactive compounds. Considering the vast number of species, this review is divided into subsections where the most studied species are presented, namely Allium ampeloprasum, A. flavum, A. hookeri, A. jesdianum, A. neapolitanum, A. roseum, A. stipitatum, A. tricoccum, and A. ursinum, with an additional composite section for less studied species. METHODS The information presented in this review was obtained from worldwide accepted databases such as Scopus, ScienceDirect, PubMed, Google Scholar and Researchgate, using as keywords the respective names of the studied species (both common and Latin names) and the additional terms of"antioxidants" "health effects" and "bioactive properties". CONCLUSION The genus Allium includes several wild species, many of which are commonly used in traditional and folklore medicine while others are lesser known or are of regional interest. These species can be used as sources of natural bioactive compounds with remarkable health benefits. Several studies have reported these effects and confirmed the mechanisms of action in several cases, although more research is needed in this field. Moreover, considering that most of the studies refer to the results obtained from species collected in the wild under uncontrolled conditions, further research is needed to elucidate the effects of growing conditions on bioactive compounds and to promote the exploitation of this invaluable genetic material.
Collapse
Affiliation(s)
- Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, Pennsylvania, United States
| | - Nikos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
42
|
Izol E, Temel H, Yilmaz MA, Yener I, Olmez OT, Kaplaner E, Fırat M, Hasimi N, Ozturk M, Ertas A. A Detailed Chemical and Biological Investigation of Twelve
Allium
Species from Eastern Anatolia with Chemometric Studies. Chem Biodivers 2020; 18:e2000560. [DOI: 10.1002/cbdv.202000560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ebubekir Izol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Dicle University 21280 Diyarbakır Turkey
- Central Laboratory Application and Research Center Bingol University 12000 Bingol Turkey
| | - Hamdi Temel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Dicle University 21280 Diyarbakır Turkey
| | - Mustafa Abdullah Yilmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Dicle University 21280 Diyarbakır Turkey
| | - Ismail Yener
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Dicle University 21280 Diyarbakır Turkey
| | - Ozge Tokul Olmez
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University 48121 Mugla Turkey
| | - Erhan Kaplaner
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University 48121 Mugla Turkey
| | - Mehmet Fırat
- Department of Biology, Faculty of Education Van Yüzüncü Yıl University 65080 Van Turkey
| | - Nesrin Hasimi
- Department of Nutrient and Dietetics, Faculty of Sch Hlth Batman University 72060 Batman Turkey
| | - Mehmet Ozturk
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University 48121 Mugla Turkey
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy Dicle University 21280 Diyarbakir Turkey
| |
Collapse
|
43
|
Bich Ngoc TT, Hoai Nga NT, My Trinh NT, Thuoc TL, Phuong Thao DT. Elephantopus mollis Kunth extracts induce antiproliferation and apoptosis in human lung cancer and myeloid leukemia cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113222. [PMID: 32763415 DOI: 10.1016/j.jep.2020.113222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Elephantopus mollis Kunth (EM), which belongs to Asteraceae family, has been used as a folk medicine with diverse therapeutic properties. Previous studies reported that crude extracts of this plant could inhibit several cancer cell lines, including breast carcinoma MCF-7, liver carcinoma HepG2, colorectal carcinoma DLD-1, lung carcinoma NCI-H23, etc. AIM: In this study, the anticancer activity and associated molecular mechanism of EM which is distributed in Vietnam were investigated. MATERIALS AND METHODS The cytotoxicity of various EM extracts was evaluated on different cell lines by MTT assay. In addition, the effects of EM extracts on cell growth, cell morphology, nuclear morphology, caspase-3 activation, and mRNA expression levels of apoptosis-related genes were also examined. RESULTS Our results demonstrated that ethyl acetate extract (EM-EA) caused proliferative inhibition and apoptotic induction towards A549 lung cancer cells (IC50 = 18.66 μg/ml, SI = 5.8) and HL60 leukemia cells (IC50 = 7.45 μg/ml, SI = 14.5) while petroleum ether extract (EM-PE) showed high toxicity to HL60 cell line (IC50 = 11.14 μg/ml, SI = 6.7). Notably, Raji lymphoma cells were also affected by these extracts (IC50 < 20 μg/ml, SI > 4), which has not been reported yet. Furthermore, mechanisms of EM extracts were elucidated. The significant downregulation of PCNA mRNA level induced by EM-EA/PE extracts contributed to the cell-growth restraint. EM-EA extract might activate apoptosis in A549 cells through both extrinsic and intrinsic signaling pathways by causing a 1.55-fold increase in BID, 3.65-fold increase in BAK and 3.11-fold decrease in BCL-2 expression level. Meanwhile, with EM-EA-extract treatment, HL60 cells might encounter P53-dependent apoptotic deaths. CONCLUSIONS The combination of antiproliferation and apoptosis activation contributed to the high efficacy of EM extracts. These findings not only proved the anticancer potential of EM but also provided further insights into the mechanisms of EM extracts.
Collapse
Affiliation(s)
- Truong Thi Bich Ngoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Hoai Nga
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Cancer Research, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam
| | - Nguyen Thi My Trinh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam
| | - Tran Linh Thuoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Molecular Biotechnology, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Laboratory of Cancer Research, VNU-HCM, University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
44
|
Mandlik DS, Mandlik SK. Herbal and Natural Dietary Products: Upcoming Therapeutic Approach for Prevention and Treatment of Hepatocellular Carcinoma. Nutr Cancer 2020; 73:2130-2154. [PMID: 33073617 DOI: 10.1080/01635581.2020.1834591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most common tumor linked with elevated death rates is considered the hepatocellular carcinoma (HCC), sometimes called the malignant hepatoma. The initiation and progression of HCC are triggered by multiple factors like long term alcohol consumption, metabolic disorders, fatty liver disease, hepatitis B and C infection, age, and oxidative stress. Sorafenib is the merely US Food and Drug Administration (FDA)-approved drug used to treat HCC. Several treatment methods are available for HCC therapy such as chemotherapy, immunotherapy and adjuvant therapy but they often lead to several side effects. Yet these treatment methods are not entirely adequate due to the increasing resistance to the drug and their toxicity. Many natural products help to prevent and treat HCC. A variety of pathways are associated with the prevention and treatment of HCC with herbal products and their active components. Accumulating research shows that certain natural dietary compounds are possible source of hepatic cancer prevention and treatments, such as black currant, strawberries, plum, grapes, pomegranate, cruciferous crops, tomatoes, French beans, turmeric, garlic, ginger, asparagus, and many more. Such a dietary natural products and their active constituents may prevent the production and advancement of liver cancer in many ways such as guarding against liver carcinogens, improving the effectiveness of chemotherapeutic medications, inhibiting the growth, metastasis of tumor cells, reducing oxidative stress, and chronic inflammation. The present review article represents hepatic carcinoma etiology, role of herbal products, their active constituents, and dietary natural products for the prevention and treatment of HCC along with their possible mechanisms of action.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
45
|
Khan I, Mahfooz S, Faisal M, Alatar AA, Ansari IA. Andrographolide Induces Apoptosis and Cell Cycle Arrest through Inhibition of Aberrant Hedgehog Signaling Pathway in Colon Cancer Cells. Nutr Cancer 2020; 73:2428-2446. [PMID: 33030050 DOI: 10.1080/01635581.2020.1828942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hedgehog signaling pathway (Hh) is abnormally stimulated in colon cancer. Evidence suggests the therapeutic effectiveness of andrographolide against several cancers. This study attempts to delineate the effect of andrographolide on Hh signaling pathway in colon cancer HCT-116 cells. Methods: Effects of andrographolide were studied on HCT-116 cells by evaluating cytotoxicity by MTT assay, morphology assessment, trypan blue exclusion, and colony formation assay; migratory potential by scratch assay; apoptosis by DAPI, Hoechst staining, FITC-Annexin V assay, and caspases activation; mitochondrial membrane potential (ΔΨm) by Mito Tracker and Rhodamine 123. Intracellular ROS by DCFH-DA staining. Cell cycle regulation by flow cytometry. Expression of BAX, BAD, BCL2, Cyclin B1, CDK1, Smo, and Gli1 by qRT-PCR. Interaction between andrographolide and Smo protein by in-silico molecular docking. Results: Andrographolide induced antiproliferative effect on HCT-116 cells in a dose-dependent and time-dependent manner. It also induced apoptosis and anti-migratory effect in HCT-116 cells. In combination with 5FU, andrographolide exhibited synergistic effect. It Induced G2/M phase arrest through downregulating CDK1 and Cyclin B1. Andrographolide also inhibited Hh signaling by downregulating Smo and Gli1 in HCT-116 cells. It showed high affinity toward Smo protein in-silico. Conclusion: Andrographolide repressed the colon cancer cell growth via inhibiting Hh signaling pathway.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey.,Department of Biosciences, Integral University, Lucknow, India
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey.,Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Faisal
- Departmentof Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman A Alatar
- Departmentof Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Irfan A Ansari
- Department of Biosciences, Integral University, Lucknow, India
| |
Collapse
|
46
|
Anwar MM, Shalaby M, Embaby AM, Saeed H, Agwa MM, Hussein A. Prodigiosin/PU-H71 as a novel potential combined therapy for triple negative breast cancer (TNBC): preclinical insights. Sci Rep 2020; 10:14706. [PMID: 32895397 PMCID: PMC7477571 DOI: 10.1038/s41598-020-71157-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Prodigiosin, a secondary metabolite red pigment produced by Serratia marcescens, has an interesting apoptotic efficacy against cancer cell lines with low or no toxicity on normal cells. HSP90α is known as a crucial and multimodal target in the treatment of TNBC. Our research attempts to assess the therapeutic potential of prodigiosin/PU-H71 combination on MDA-MB-231 cell line. The transcription and protein expression levels of different signalling pathways were assessed. Treatment of TNBC cells with both drugs resulted in a decrease of the number of adherent cells with apoptotic effects. Prodigiosin/PU-H71 combination increased the levels of caspases 3,8 and 9 and decreased the levels of mTOR expression. Additionally, there was a remarkable decrease of HSP90α transcription and expression levels upon treatment with combined therapy. Also, EGFR and VEGF expression levels decreased. This is the first study to show that prodigiosin/PU-H71 combination had potent cytotoxicity on MDA-MB-231 cells; proving to play a paramount role in interfering with key signalling pathways in TNBC. Interestingly, prodigiosin might be a potential anticancer agent to increase the sensitivity of TNBC cells to apoptosis. This study provides a new basis for upcoming studies to overcome drug resistance in TNBC cells.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Manal Shalaby
- Medical Biotechnology Department, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Behooth St, Dokki, Giza 12311, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
47
|
Miller M, Mellul A, Braun M, Sherill-Rofe D, Cohen E, Shpilt Z, Unterman I, Braitbard O, Hochman J, Tshuva EY, Tabach Y. Titanium Tackles the Endoplasmic Reticulum: A First Genomic Study on a Titanium Anticancer Metallodrug. iScience 2020; 23:101262. [PMID: 32585595 PMCID: PMC7322074 DOI: 10.1016/j.isci.2020.101262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
PhenolaTi is an advanced non-toxic anticancer chemotherapy; this inert bis(phenolato)bis(alkoxo) Ti(IV) complex demonstrates the intriguing combination of high and wide efficacy with no detected toxicity in animals. Here we unravel the cellular pathways involved in its mechanism of action by a first genome study on Ti(IV)-treated cells, using an attuned RNA sequencing-based available technology. First, phenolaTi induced apoptosis and cell-cycle arrest at the G2/M phase in MCF7 cells. Second, the transcriptome of the treated cells was analyzed, identifying alterations in pathways relating to protein translation, DNA damage, and mitochondrial eruption. Unlike for common metallodrugs, electrophoresis assay showed no inhibition of DNA polymerase activity. Reduced in vitro cytotoxicity with added endoplasmic reticulum (ER) stress inhibitor supported the ER as a putative cellular target. Altogether, this paper reveals a distinct ER-related mechanism by the Ti(IV) anticancer coordination complex, paving the way for wider applicability of related techniques in mechanistic analyses of metallodrugs.
Collapse
Affiliation(s)
- Maya Miller
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anna Mellul
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Braun
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zohar Shpilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
48
|
Martínez-Torres AC, Reyes-Ruiz A, Calvillo-Rodriguez KM, Alvarez-Valadez KM, Uscanga-Palomeque AC, Tamez-Guerra RS, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces DAMPS release and ROS-dependent autophagosome formation in HeLa and MCF-7 cells. BMC Cancer 2020; 20:647. [PMID: 32660440 PMCID: PMC7359018 DOI: 10.1186/s12885-020-07124-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background IMMUNEPOTENT CRP (ICRP) can be cytotoxic to cancer cell lines. However, its widespread use in cancer patients has been limited by the absence of conclusive data on the molecular mechanism of its action. Here, we evaluated the mechanism of cell death induced by ICRP in HeLa and MCF-7 cells. Methods Cell death, cell cycle, mitochondrial membrane potential and ROS production were evaluated in HeLa and MCF-7 cell lines after ICRP treatment. Caspase-dependence and ROS-dependence were evaluated using QVD.oph and NAC pre-treatment in cell death analysis. DAMPs release, ER stress (eIF2-α phosphorylation) and autophagosome formation were analyzed as well. Additionally, the role of autophagosomes in cell death induced by ICRP was evaluated using SP-1 pre-treatment in cell death in HeLa and MCF-7 cells. Results ICRP induces cell death, reaching CC50 at 1.25 U/mL and 1.5 U/mL in HeLa and MCF-7 cells, respectively. Loss of mitochondrial membrane potential, ROS production and cell cycle arrest were observed after ICRP CC50 treatment in both cell lines, inducing the same mechanism, a type of cell death independent of caspases, relying on ROS production. Additionally, ICRP-induced cell death involves features of immunogenic cell death such as P-eIF2α and CRT exposure, as well as, ATP and HMGB1 release. Furthermore, ICRP induces ROS-dependent autophagosome formation that acts as a pro-survival mechanism. Conclusions ICRP induces a non-apoptotic cell death that requires an oxidative stress to take place, involving mitochondrial damage, ROS-dependent autophagosome formation, ER stress and DAMPs’ release. These data indicate that ICRP could work together with classic apoptotic inductors to attack cancer cells from different mechanisms, and that ICRP-induced cell death might activate an immune response against cancer cells.
Collapse
Affiliation(s)
- Ana Carolina Martínez-Torres
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico.
| | - Alejandra Reyes-Ruiz
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Kenny Misael Calvillo-Rodriguez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Karla Maria Alvarez-Valadez
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Ashanti C Uscanga-Palomeque
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Reyes S Tamez-Guerra
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Laboratorio de Inmunologia y Virologia, San Nicolás de los Garza, Mexico.,Longeveden, SA de CV, Monterrey, Mexico
| |
Collapse
|
49
|
Khan F, Pandey P, Ahmad V, Upadhyay TK. Moringa oleifera methanolic leaves extract induces apoptosis and G0/G1 cell cycle arrest via downregulation of Hedgehog Signaling Pathway in human prostate PC-3 cancer cells. J Food Biochem 2020; 44:e13338. [PMID: 32588472 DOI: 10.1111/jfbc.13338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
The inadequacy of effective treatment approaches for prostate cancer enlightens the crucial necessity for the search and emergence of novel and multitasking anticancer substances. Several experimental studies suggested the role of natural compounds in prostate cancer growth inhibition by Hedgehog signaling modulation. In the current study, we suggested the anticancer and apoptosis inducing effects of Moringa oleifera (M. oleifera) were linked to downregulation of Hedgehog pathway in PC-3 prostate cancer cells. We found that M. oleifera leaves methanolic extract exhibited significant anticancerous potential by inducing ROS-mediated apoptosis and activation of caspase-3 activity in prostate cancer. We also observed a dose-dependent G0/G1 cell cycle arrest as well as significant alteration in mRNA expression of apoptosis related and Hedgehog signaling pathway genes by M. oleifera extract treatment. Altogether, these experimental findings demonstrated that M. oleifera may exert antiproliferative apoptosis inducing effects by Hedgehog signaling pathway downregulation. PRACTICAL APPLICATIONS: Moringa oleifera plant, a rich nutrional source, has extensive range of pharmacological applications including antioxidant, anti-inflammatory, and anticancer activity. To best of our knowledge, this could be the first intensive report which presented the inhibitory potential of M. oleifera leaves extract against PC-3 prostate cancer cells via targeting key molecules of Hedgehog signaling. Decreased mRNA expression of GLI1 transcription factor and SMO protein of Hedgehog signaling pathway may be involved in antiproliferative effects of M. oleifera leaves extract against prostate cancer cells. Our study suggested that M. oleifera supplementation might be beneficial for the development and improvement of targeted therapeutic strategies in prostate cancer cells.
Collapse
Affiliation(s)
- Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Varish Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarun Kumar Upadhyay
- School of Applied Sciences and Agriculture Research, Suresh Gyan Vihar University, Jaipur, India
| |
Collapse
|
50
|
|