1
|
Mohamed ON, Mohamed MI, Kamel SF, Dardeer AM, Shehata S, Mohammed HM, Kamel AK, Ismail DE, Abbas NI, Abdelsamie MA, Ziady AFK, Sayed MM, Toni NDM, Hafez SM, Elsaghir SMM. Serum midkine level and its association with subclinical coronary artery calcification and carotid atherosclerosis in chronic kidney disease. BMC Nephrol 2025; 26:185. [PMID: 40211171 PMCID: PMC11987434 DOI: 10.1186/s12882-025-04066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/11/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND There are no studies investigating the role of midkine (MK) in vascular calcification (VC) or vascular disease associated with chronic kidney disease (CKD). This study assessed serum MK level and investigated its relationship with carotid atherosclerosis and coronary artery calcification (CAC) in non-dialysis CKD. METHODS The study comprised 80 controls and 185 adult patients with CKD at stages 3-5 who were free of cardiovascular diseases. Acute renal failure, chronic hemodialysis, severe liver disease, inflammatory states, anticoagulation therapy and cancer were excluded. The patients were classified based on presence of CAC score into severe and mild to moderate CAC groups. They were also divided into atherosclerotic and non-atherosclerotic groups based on carotid atherosclerosis. CBC, kidney function tests, lipid profile, intact parathyroid hormone (iPTH), and phosphorus were assessed. Serum levels of MK, tumor necrosis factor- α (TNF- α), interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hs-CRP) were quantitatively tested using ELISA. Cardiac CT scan was done to calculate CAC score. Carotid ultrasonography was used to evaluate carotid intima media thickness (CIMT) and identify plaques. RESULTS All CKD categories, including CKD-3, CKD-4, and CKD-5, showed higher rates of carotid plaques (p = 0.007, p < 0.001, and p < 0.001, respectively), higher levels of MK (p < 0.001 for each), and higher CAC scores (p < 0.001 for each) as CKD worsened. Compared to mild to moderate CAC patients, severe CAC patients showed increased CIMT (p < 0.001) and raised serum levels of MK (p < 0.001), TNF-α (p = 0.001), IL-6 (p = 0.002), hs-CRP (p = 0.003), iPTH (p = 0.02), phosphorus (p < 0.001), total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C). Multivariate linear regression revealed that CAC was reliably predicted by MK (p = 0.008) and serum creatinine (p = 0.001). Carotid atherosclerotic patients had higher serum levels of MK, TNF-α, IL-6, hs-CRP, iPTH, phosphorus, TC, total triglycerides and LDL-C (p < 0.001 for each). Multivariate logistic regression showed that serum MK (p = 0.001), serum creatinine (p = 0.005), age (p < 0.001), iPTH (p = 0.007), and IL-6 (p = 0.024) were significant predictors of carotid atherosclerosis. CONCLUSIONS As CKD worsened, MK levels, carotid atherosclerosis and CAC increased. Serum MK was a reliable biomarker for asymptomatic carotid atherosclerosis and CAC in non-dialysis CKD, allowing prompt early diagnosis to avert cardiovascular morbidity and death in the future. TRIAL REGISTRATION The trial number was 1138 and its registration was approved by the hospital's Research Ethics Committee in 4/2024.
Collapse
Affiliation(s)
- Osama Nady Mohamed
- Department of Internal Medicine, Faculty of Medicine, Minia University, Taha Hussein street, Minia, Egypt.
| | - Marwa Ibrahim Mohamed
- Department of Internal Medicine, Faculty of Medicine, Minia University, Taha Hussein street, Minia, Egypt
| | - Shaimaa F Kamel
- Department of Internal Medicine, Faculty of Medicine, Minia University, Taha Hussein street, Minia, Egypt
| | - Ahmed M Dardeer
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hassan Mh Mohammed
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Asmaa Khalf Kamel
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Doaa Elzaeem Ismail
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nehal I Abbas
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | | - Manar M Sayed
- Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Shaimaa Moustafa Hafez
- Department of Public and Preventive Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
2
|
Leleu D, Pilot T, Mangin L, Van Dongen K, Proukhnitzky L, Denimal D, Samson M, Laubriet A, Steinmetz E, Rialland M, Pierre L, Groetz E, Pais de Barros JP, Gautier T, Thomas C, Masson D. Inhibition of LXR Signaling in Human Foam Cells Impairs Macrophage-to-Endothelial Cell Cross Talk and Promotes Endothelial Cell Inflammation. Arterioscler Thromb Vasc Biol 2025. [PMID: 40207367 DOI: 10.1161/atvbaha.125.322448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND During atherogenesis, macrophages turn into foam cells by engulfing lipids present within the atheroma plaques. The shift of foam cells toward proinflammatory or anti-inflammatory phenotypes, a critical step in disease progression, is still poorly understood. LXRs (liver X receptors) play a pivotal role in the macrophage response to lipid, promoting the expression of key genes of cholesterol efflux, mitigating intracellular cholesterol accumulation. LXRs also exert balanced actions on inflammation in human macrophages, displaying both proinflammatory and anti-inflammatory effects. METHODS Our study explored the role of LXRs in the functional response of human macrophage to lipid-rich plaque environment. We used primary human macrophages treated with atheroma plaque extracts and assessed the impact of pharmacological LXR inhibition by GSK2033 on cholesterol homeostasis and inflammatory response. Ultimately, we evaluated macrophage and endothelial cell cross talk by assessing the impact of macrophage-conditioned supernatants on the human endothelial cell. RESULTS LXR inhibition by GSK2033 resulted in increased levels of cholesterol and oxysterols in human macrophages, alongside notable changes in the cholesterol ester profile. This was accompanied by heightened secretion of proinflammatory cytokines such as IL (interleukin)-6 and TNFα (tumor necrosis factor-α), despite a transcriptional repression of IL-1β. Conditioned media from GSK2033-treated macrophages more effectively activated ICAM-1 (intercellular adhesion molecule-1) and CCL2 (C-C motif ligand 2) expression in endothelial cells. CONCLUSIONS Our findings illustrate the intricate relationship between LXR function, cholesterol metabolism, and inflammation in human macrophages. While LXR is required for the proper handling of plaque lipids by macrophages, the differential regulation of IL-1β versus IL-6/TNFα secretion by LXRs could be challenging for potential pharmacological interventions.
Collapse
Affiliation(s)
- Damien Leleu
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- Laboratory of Clinical Chemistry, CHU Dijon Bourgogne, France. (D.L., D.D., D.M.)
| | - Thomas Pilot
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - Léa Mangin
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - Kevin Van Dongen
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | | | - Damien Denimal
- Laboratory of Clinical Chemistry, CHU Dijon Bourgogne, France. (D.L., D.D., D.M.)
| | - Maxime Samson
- Department of Internal Medicine, CHU Dijon Bourgogne, France. (M.S.)
| | - Aline Laubriet
- Department of Cardiovascular Surgery, CHU Dijon Bourgogne, France. (A.L., E.S.)
| | - Eric Steinmetz
- Department of Cardiovascular Surgery, CHU Dijon Bourgogne, France. (A.L., E.S.)
| | | | | | | | - Jean-Paul Pais de Barros
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- DiviOmics Platform, CHU Dijon Bourgogne, France. (J.-P.P.B.)
| | - Thomas Gautier
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - Charles Thomas
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - David Masson
- Université Bourgogne LNC UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- INSERM, UMR1231, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- Laboratory of Clinical Chemistry, CHU Dijon Bourgogne, France. (D.L., D.D., D.M.)
| |
Collapse
|
3
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Dawood RA, Albuhadily AK, Al-Gareeb AI, Klionsky DJ, Abomughaid MM. Insight into the Mechanistic role of Colchicine in Atherosclerosis. Curr Atheroscler Rep 2025; 27:40. [PMID: 40111634 DOI: 10.1007/s11883-025-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW Globally, the prevalence of atherosclerosis (AS) is rising. Currently, there is no specific drug for AS. Therefore, this review aims to discuss the protective mechanisms of colchicine against the development and progression of atherosclerosis (AS). RECENT FINDINGS Many studies highlighted that the anti-inflammatory drug colchicine reduces the severity of AS, although the underlying mechanism for the beneficial effect of colchicine was not fully clarified. AS is a chronic progressive vascular disorder characterized by the formation of atherosclerotic plaques. Endothelial dysfunction is an initial stage in the pathogenesis of AS that is induced by oxidized low-density lipoprotein (oxLDL). Engulfment of oxLDL by macrophages triggers the development of inflammation due to the release of pro-inflammatory cytokines and growth factors. Inflammatory and adhesion molecules are involved in the pathogenesis of AS. Infiltration and accumulation of leukocytes provoke erosion, rupture, and thrombosis of the atherosclerotic plaque. Therefore, targeting inflammation and leukocyte infiltration by anti-inflammatory agents may reduce AS progression and complications. The anti-inflammatory drug colchicine reduces the severity of AS, although the underlying mechanism for the beneficial effect of colchicine was not fully elucidated. IN CONCLUSION colchicine through inhibition of vascular inflammation, oxidative stress, platelet aggregation and the modulation of autophagy reduces the development and progression of AS.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia
| | - Retaj A Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla, 51001, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13 Kufa, Najaf, Iraq
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, 67714, Bisha, Saudi Arabia
| |
Collapse
|
4
|
Liu Y, Zhang X, Yu L, Cao L, Zhang J, Li Q, Wang X, Qi W, Cai L, Ren R, Wang W, Guo X, Su G, Xi B, Zhang Y, Gao C, Zhang M, Zhang C. E3 ubiquitin ligase RNF128 promotes Lys63-linked polyubiquitination on SRB1 in macrophages and aggravates atherosclerosis. Nat Commun 2025; 16:2185. [PMID: 40038329 DOI: 10.1038/s41467-025-57404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Macrophage-derived foam cell formation is the hallmark of atherosclerotic plaques prominently attributed to excessive lipid uptake and metabolic disorders. As a classic membrane-localized ubiquitin ligase, the role of RNF128 in atherosclerosis remains unknown. We discover that RNF128 is specifically expressed in macrophages of the lipid core based on single-cell RNA sequencing data and persistent hyperlipidemia induces the high expression of RNF128 in macrophages. RNF128 ablation in macrophages ameliorates atherosclerosis in both male and female mice under the background of ApoE and LDLR deficiency. Mechanistically, RNF128 directly binds to scavenger receptor B1 (SRB1), preventing its degradation through the lysosomal system and promoting oxidized low-density lipoprotein (oxLDL)-induced foam cell formation and inflammatory response in macrophages. In addition, RNF128 catalyzes Lys63-linked polyubiquitination on the cytoplasmic C-terminus of the SRB1 at lysine 478, which promotes the endosome SRB1 recycling to the cell membrane with the assistance of Rab11, instead of entering the lysosome for degradation.
Collapse
Affiliation(s)
- Yapeng Liu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Liwen Yu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Cao
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qian Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohong Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqian Qi
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Liangyu Cai
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruiqing Ren
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Weiwei Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaobin Guo
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guohai Su
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengjiang Gao
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Meng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
Qian T, Guo D, Sun L, Chi M, Ma X, Jin J. Crosstalk between lipid metabolism and macrophages in atherosclerosis: therapeutic potential of natural products. Front Cardiovasc Med 2025; 12:1529924. [PMID: 40099271 PMCID: PMC11911464 DOI: 10.3389/fcvm.2025.1529924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Atherosclerosis is a highly prevalent cardiovascular condition that affects individuals worldwide. Despite ongoing research into its treatment and prevention, atherosclerotic cardiovascular disease continues to exhibit high morbidity and mortality rates. The accumulation of low-density lipoprotein cholesterol is considered a major contributor to the development of atherosclerosis, with abnormalities in lipid metabolism playing a significant role in its pathogenesis. Lipid metabolism and macrophage function are intricately interconnected, with lipid metabolism being influenced by macrophage inflammatory responses, while macrophage activity is regulated by alterations in lipid metabolism. The interaction between these two processes plays a critical role in the progression of atherosclerosis. Natural products have shown considerable promise in treating a variety of diseases, including atherosclerosis. Moreover, the modulation of lipid metabolism and macrophage crosstalk represents a key mechanism through which natural products may exert their effects. This research aims to provide new insights into the current state of research on the role of natural products in regulating this pathway and the interplay between lipid metabolism and macrophages in the context of atherosclerosis, offering potential directions for the future.
Collapse
Affiliation(s)
- Taoming Qian
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghao Guo
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Sun
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Chi
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoshuang Ma
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juan Jin
- Department of Cardiovascular Disease 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Huang JXF, Yousaf A, Moon J, Ahmed R, Uppal K, Pemminati S. Recent Advances in the Management of Dyslipidemia: A Systematic Review. Cureus 2025; 17:e81034. [PMID: 40264627 PMCID: PMC12013775 DOI: 10.7759/cureus.81034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/24/2025] Open
Abstract
Dyslipidemia refers to abnormal levels of lipids in the bloodstream, typically exhibiting an increased pattern. Total cholesterol, high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and triglycerides (TGs) are all contributing factors to this disorder. This leads to an increased risk of atherosclerosis and cardiovascular diseases, such as coronary artery disease, which elevates the likelihood of morbidity. Dyslipidemia can be managed via the use of numerous classes of drugs and treatments. The conventional pharmacological agents comprising 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, selective cholesterol absorption inhibitors, proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), bile acid sequestrants, monoclonal antibodies, and nutritional supplementation, such as inhibitors of cholesterol synthesis and absorption, and promoters of LDL-C excretion, are also discussed. Furthermore, conventional pharmacological treatment of dyslipidemia may elicit a variety of adverse side effects that are detrimental to the quality of life of the user. These side effects include muscle pain, weakness, liver enzyme elevations, and hyperglycemia. This systematic review further analyzes the pharmacological actions of novel lipid-lowering agents such as adenosine triphosphate-citrate lyase inhibitors (ACLi), selective peroxisome proliferator-activated receptor alpha (PPARα) modulators, cholesteryl ester transfer protein inhibitors (CETPi), antisense oligonucleotides (ASO), and angiopoietin-like protein 3 inhibitors (ANGPTL3i) as well as their efficacy in treating dyslipidemia while sparing the user of potentially severe side effects. Compared to existing treatments, novel therapies have shown significantly greater effectiveness in managing dyslipidemia-related lipid profiles and exhibit fewer systemic adverse effects. Some of the recent therapies discussed are alternative treatments that offer patients promising efficacy and improved tolerability. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to ensure a robust and transparent search process, aiming to minimize bias and maximize the retrieval of pertinent studies for review. Thus, this systematic review provides an overview of current and novel treatments for dyslipidemia, describing their efficacy, mechanism of action, safety, and side effects. As experimental investigations and clinical research progress, there is a possibility that a combination of newly tested medications and traditional ones may emerge as a promising treatment option for dyslipidemia in the future.
Collapse
Affiliation(s)
- Jacky Xiao Feng Huang
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Adil Yousaf
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Julie Moon
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Ramiz Ahmed
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Krishma Uppal
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Sudhakar Pemminati
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| |
Collapse
|
7
|
Cai H, Zhang H, Xin G, Peng S, Xu F, Zhang N, Li Y, Zhang W, Li Y, Ren Y, Wang Y, Liu Z, Kong X, Wang L. Identification of Key Genes and Immune Characteristics of SASP in Acute Ischemic Stroke. J Mol Neurosci 2025; 75:22. [PMID: 39960563 DOI: 10.1007/s12031-025-02312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/18/2025] [Indexed: 04/02/2025]
Abstract
The senescence-associated secretory phenotype (SASP) is a key mechanism through which senescent cardiovascular cells contribute to plaque formation, instability, and vascular remodeling. However, the correlation between SASP and acute ischemic stroke (AIS), particularly its immune inflammation characteristics, remains underexplored and requires further elucidation. We downloaded the AIS database from the GEO database and obtained SASP genes from the SASP Atlas and related literature. Using two machine learning algorithms, we identified five hub genes. Unsupervised cluster analysis was performed on patients with AIS and DEGs separately to identify distinct gene clusters, which were then analyzed for immune characteristics. We then explored the related biological functions and immune properties of the hub genes by using various algorithms (GSEA, GSVA, and CIBERSORT). Principal component analysis (PCA) was used to generate SASP-related gene scores based on the expression of hub genes. A logistic regression algorithm was employed to establish an AIS classification diagnosis model based on the hub genes. Peripheral venous blood was collected for validation using real-time quantitative PCR (RT-qPCR). We identified five hub genes using two machine learning algorithms and validated them with RT-qPCR. Gene cluster analysis revealed two distinct clusters, SASP-related gene cluster B and differentially expressed gene cluster B, indicating that the acute AIS samples had more severe immune inflammatory response and a higher risk of disease deterioration. We constructed a gene-drug regulatory network for PIN1 and established an AIS diagnostic model and nomogram using a logistic regression algorithm. This study explored the gene expression, molecular patterns, and immunological characteristics of SASP in patients with AIS using bioinformatic methods. It provides a theoretical basis and research direction for identifying new diagnostic markers for AIS, understanding the molecular mechanism of thrombosis, and improving the classification, diagnosis, treatment, and prognosis of AIS.
Collapse
Affiliation(s)
- Hanlu Cai
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Huixue Zhang
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Guanghao Xin
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Shanshan Peng
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Fanfan Xu
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Nan Zhang
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yichen Li
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Wei Zhang
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Ying Li
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yingjie Ren
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yu Wang
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Zhaojun Liu
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Xiaotong Kong
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China.
| | - Lihua Wang
- The Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, Harbin, 150086, China.
| |
Collapse
|
8
|
Liu M, Chen R, Zheng Z, Xu S, Hou C, Ding Y, Zhang M, Bao M, He B, Li S. Mechanisms of inflammatory microenvironment formation in cardiometabolic diseases: molecular and cellular perspectives. Front Cardiovasc Med 2025; 11:1529903. [PMID: 39877020 PMCID: PMC11772298 DOI: 10.3389/fcvm.2024.1529903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening. Hypertension involves the activation of the renin-angiotensin system (RAS) alongside oxidative stress-induced endothelial dysfunction and local inflammation mediated by T cells. In diabetic cardiomyopathy, a high-glucose environment leads to the accumulation of advanced glycation end products (AGEs), activating the Receptor for Advanced Glycation Endproducts (RAGE) and triggering inflammatory responses that further damage cardiac and microvascular function. In summary, the inflammatory mechanisms in different types of metabolic cardiovascular diseases are complex and diverse; understanding these mechanisms deeply will aid in developing more effective individualized treatment strategies.
Collapse
Affiliation(s)
- Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwei Zheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Binsheng He
- Hunan key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Dousdampanis P, Aggeletopoulou I, Mouzaki A. The role of M1/M2 macrophage polarization in the pathogenesis of obesity-related kidney disease and related pathologies. Front Immunol 2025; 15:1534823. [PMID: 39867890 PMCID: PMC11758166 DOI: 10.3389/fimmu.2024.1534823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function. Among the immune cells of the innate and adaptive immune response involved in the pathogenesis of obesity-related diseases, macrophages play a crucial role in the inflammation associated with CKD. In obese individuals, macrophages enter a pro-inflammatory state known as M1 polarization, which contributes to chronic inflammation. This polarization promotes tissue damage, inflammation and fibrosis, leading to progressive loss of kidney function. In addition, macrophage-induced oxidative stress is a key feature of CKD as it also promotes cell damage and inflammation. Macrophages also contribute to insulin resistance in type 2 diabetes by releasing inflammatory molecules that impair glucose metabolism, complicating the management of diabetes in obese patients. Hypertension and atherosclerosis, which are often associated with obesity, also contribute to the progression of CKD via immune and inflammatory pathways. Macrophages influence blood pressure regulation and contribute to vascular inflammation, particularly via the renin-angiotensin system. In atherosclerosis, macrophages accumulate in arterial plaques, leading to chronic inflammation and plaque instability, which may increase the risk of CVD in CKD patients. This review focuses on the involvement of macrophages in CKD and highlights their role as a critical link between CKD and other pathologies. Targeting macrophage polarization and the ensuing macrophage-induced inflammation could be an effective therapeutic strategy for CKD and related diseases and improve outcomes for patients with obesity-related kidney disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
10
|
Avagimyan A, Pogosova N, Fogacci F, Aghajanova E, Djndoyan Z, Patoulias D, Sasso LL, Bernardi M, Faggiano A, Mohammadifard N, Neglia D, Carugo S, Cicero A, Rizzo M, Biondi-Zoccai G, De Caterina R, Sarrafzadegan N. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int J Cardiol 2025; 418:132663. [PMID: 39426418 DOI: 10.1016/j.ijcard.2024.132663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
In the period of increasing prevalence of metabolic disorders such as obesity and diabetes, healthcare professionals are facing significant challenges. Therefore, an accurate global assessment of insulin resistance is of utmost importance. Current medical research is focused on identifying an easily accessible and reproducible gold-standard surrogate marker for insulin resistance. Ideally, such a marker would enable healthcare providers to predict the risk of type 2 diabetes and cardiovascular diseases. The triglyceride-glucose index (TyG) is a promising marker for preventive cardiology and cardiometabolic medicine. This narrative review article aims to provide a comprehensive evaluation of the credibility of TyG as a surrogate marker of insulin resistance among patients at different stages across the cardiometabolic continuum. This assessment fully complies with evidence-based medicine and offers valuable insight into the clinical utility of TyG.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nana Pogosova
- Deputy Director of Research and Preventive Cardiology, National Medical Research Centre of Cardiology named after E. Chazov, Moscow, Russia; Head of Evidence-Based Medicine Department, Institute of Medicine, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Research Unit, University of Bologna, Bologna, Italy
| | - Elena Aghajanova
- Head of Endocrinology Department, Head of Endocrinology Unit of Muratsan University Clinic, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zinaida Djndoyan
- Head of Internal Diseases Propaedeutics Department, Head of Internal Diseases Unit, Mikaelyan University Clinic, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Dimitrios Patoulias
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Marco Bernardi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Noushin Mohammadifard
- Head of Nutrition Department, Cardiovascular Research Institute the WHO Collaborative Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danilo Neglia
- Cardiovascular Department, CNR Research Area, Fondazione CNR/Regione Toscana Gabriele Monasterio, Pisa, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Arrigo Cicero
- Hypertension and Cardiovascular Risk Research Unit, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy; Cardiovascular Medicine Unit, IRCCS Policlinico S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Manfredi Rizzo
- Head of Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | - Nizal Sarrafzadegan
- Director of Cardiovascular Research Institute WHO Collaboration Centre, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Moon HR, Yun JM. p-Coumaric acid modulates cholesterol efflux and lipid accumulation and inflammation in foam cells. Nutr Res Pract 2024; 18:774-792. [PMID: 39651322 PMCID: PMC11621437 DOI: 10.4162/nrp.2024.18.6.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a primary cause of cardiovascular disease associated with inflammation and lipid metabolism disorders. The accumulation of cholesterol-containing macrophage foam cells characterizes the early stages. The p-coumaric acid (p-CA) contained in vegetables may have various physiological activities. The inhibitory effect of p-CA on foam cell creation in THP-1 macrophages needs clarification. In this study, we explored the impact of p-CA on foam cells by co-treatment with oxidized low-density lipoprotein (ox-LDL) and lipopolysaccharides (LPS), mimicking the development of atherosclerosis in vitro and studied the regulation of its underlying mechanisms. MATERIALS/METHODS THP-1 cells differentiated by phorbol 12-myristate 13-acetate (1 μM) for 48 h and treated in the absence or presence of p-CA for 48 h. THP-1 macrophages were treated with combined ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability. Oil red O staining allowed us to observe lipid accumulation. Western blotting and quantitative polymerase chain reactions quantified corresponding proteins and mRNA. RESULTS Ox-LDL and LPS for 24 h enhanced the lipid accumulation using Oil red O in treated foam cells. By contrast, p-CA treatment inhibited lipid accumulation. p-CA significantly upregulated cholesterol efflux-related genes such as ATP binding cassette transporter A1, liver-X-receptor α and peroxisome proliferator-activated receptor gamma expression. Moreover, p-CA decreased lipid accumulation-related gene such as lectin-like oxidized low-density lipoprotein receptor-1, cluster of differentiation 36 and scavenger receptor class A1 expression. Combined ox-LDL and LPS increased nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and pro-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin [IL]-6) activation and expression compared with untreated. p-CA suppressed this increased expression of NF-κB and COX-2, TNF-α and IL-6. CONCLUSION p-CA may play a vital role in atherosclerosis inhibition and protective effects by suppressing lipid accumulation and foam cell creation by increasing cholesterol efflux and can be potential agents for preventing atherosclerosis.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
12
|
Su J, Cheng F, Yuan W. Unraveling the cGAS/STING signaling mechanism: impact on glycerolipid metabolism and diseases. Front Med (Lausanne) 2024; 11:1512916. [PMID: 39669992 PMCID: PMC11634591 DOI: 10.3389/fmed.2024.1512916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) and its downstream effector, the stimulator of interferon genes (STING), are crucial components of the innate immune response, traditionally recognized for their role in detecting cytosolic DNA from pathogens and damaged host cells. However, recent research indicates that the cGAS-STING pathway also significantly impacts metabolic processes, particularly glycerolipid metabolism. Glycerolipids are essential for energy storage and cellular membrane integrity, and their dysregulation is linked to metabolic disorders such as obesity, insulin resistance, and non-alcoholic fatty liver disease (NAFLD). Both cGAS and STING are expressed in various metabolic tissues, suggesting a potential role in lipid homeostasis. Chronic activation of the cGAS-STING pathway may promote inflammatory states that exacerbate insulin resistance and lipid accumulation, forming a feedback loop of metabolic dysfunction. This review explores the emerging relationship between cGAS/STING signaling and glycerolipid metabolism, discussing the mechanisms through which this pathway influences lipid regulation and the potential for therapeutic interventions. By integrating insights from immunology and metabolism, we aim to provide a comprehensive understanding of how the cGAS-STING axis may serve as a novel target for addressing metabolic disorders and enhancing metabolic health outcomes.
Collapse
Affiliation(s)
- Jie Su
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- The British Heart Foundation Centre of Excellence, St Thomas’ Hospital, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, The Rayne Institute, London, United Kingdom
| | - Fuyu Cheng
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- School of Engineering and Material Sciences, Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
| | - Wei Yuan
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Lewitt MS, Boyd GW. Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease. Biomolecules 2024; 14:1475. [PMID: 39595651 PMCID: PMC11592324 DOI: 10.3390/biom14111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Insulin-like growth factor-binding protein-1 (IGFBP-1) contributes to the regulation of IGFs for metabolism and growth and has IGF-independent actions. IGFBP-1 in the circulation is derived from the liver, where it is inhibited by insulin and stimulated by multiple factors, including proinflammatory cytokines. IGFBP-1 levels are influenced by sex and age, which also determine cardiometabolic risk and patterns of disease presentation. While lower circulating IGFBP-1 concentrations are associated with an unfavorable cardiometabolic risk profile, higher IGFBP-1 predicts worse cardiovascular disease outcomes. This review explores these associations and the possible roles of IGFBP-1 in the pathophysiology of atherosclerosis. We recommend the evaluation of dynamic approaches, such as simultaneous measurements of fasting IGFBP-1 and proinsulin level in response to an oral glucose challenge, as well as multi-marker approaches incorporating markers of inflammation.
Collapse
Affiliation(s)
- Moira S. Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Gary W. Boyd
- School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK;
| |
Collapse
|
14
|
Song J, Cao C, Wang Z, Li H, Yang L, Kang J, Meng H, Li L, Liu J. Mechanistic insights into the regression of atherosclerotic plaques. Front Physiol 2024; 15:1473709. [PMID: 39628943 PMCID: PMC11611857 DOI: 10.3389/fphys.2024.1473709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Atherosclerosis is a major contributor to cardiovascular diseases and mortality globally. The progression of atherosclerotic disease results in the expansion of plaques and the development of necrotic cores. Subsequent plaque rupture can lead to thrombosis, occluding blood vessels, and end-organ ischemia with consequential ischemic injury. Atherosclerotic plaques are formed by the accumulation of lipid particles overloaded in the subendothelial layer of blood vessels. Abnormally elevated blood lipid levels and impaired endothelial function are the initial factors leading to atherosclerosis. The atherosclerosis research has never been interrupted, and the previous view was that the pathogenesis of atherosclerosis is an irreversible and chronic process. However, recent studies have found that the progression of atherosclerosis can be halted when patients' blood lipid levels are reversed to normal or lower. A large number of studies indicates that it can inhibit the progression of atherosclerosis lesions and promote the regression of atherosclerotic plaques and necrotic cores by lowering blood lipid levels, improving the repair ability of vascular endothelial cells, promoting the reverse cholesterol transport in plaque foam cells and enhancing the ability of macrophages to phagocytize and clear the necrotic core of plaque. This article reviews the progress of research on the mechanism of atherosclerotic plaque regression. Our goal is to provide guidance for developing better therapeutic approaches to atherosclerosis by reviewing and analyzing the latest scientific findings.
Collapse
Affiliation(s)
- Jianshu Song
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ce Cao
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Ziyan Wang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Haoran Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lili Yang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jing Kang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongxu Meng
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Lei Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jianxun Liu
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
16
|
Yao M, Li M, Peng D, Wang Y, Li S, Zhang D, Yang B, Qiu HJ, Li LF. Unraveling Macrophage Polarization: Functions, Mechanisms, and "Double-Edged Sword" Roles in Host Antiviral Immune Responses. Int J Mol Sci 2024; 25:12078. [PMID: 39596148 PMCID: PMC11593441 DOI: 10.3390/ijms252212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous viruses that propagate through the respiratory tract may be initially engulfed by macrophages (Mφs) within the alveoli, where they complete their first replication cycle and subsequently infect the adjacent epithelial cells. This process can lead to significant pathological damage to tissues and organs, leading to various diseases. As essential components in host antiviral immune systems, Mφs can be polarized into pro-inflammatory M1 Mφs or anti-inflammatory M2 Mφs, a process involving multiple signaling pathways and molecular mechanisms that yield diverse phenotypic and functional features in response to various stimuli. In general, when infected by a virus, M1 macrophages secrete pro-inflammatory cytokines to play an antiviral role, while M2 macrophages play an anti-inflammatory role to promote the replication of the virus. However, recent studies have shown that some viruses may exhibit the opposite trend. Viruses have evolved various strategies to disrupt Mφ polarization for efficient replication and transmission. Notably, various factors, such as mechanical softness, the altered pH value of the endolysosomal system, and the homeostasis between M1/M2 Mφs populations, contribute to crucial events in the viral replication cycle. Here, we summarize the regulation of Mφ polarization, virus-induced alterations in Mφ polarization, and the antiviral mechanisms associated with these changes. Collectively, this review provides insights into recent advances regarding Mφ polarization in host antiviral immune responses, which will contribute to the development of precise prevention strategies as well as management approaches to disease incidence and transmission.
Collapse
Affiliation(s)
- Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Yijing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| |
Collapse
|
17
|
Park SH, Kang MK, Kim DY, Lim SS, Kang YH. Dietary ellagic acid blocks inflammation-associated atherosclerotic plaque formation in cholesterol-fed apoE-deficient mice. Nutr Res Pract 2024; 18:617-632. [PMID: 39398881 PMCID: PMC11464280 DOI: 10.4162/nrp.2024.18.5.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis particularly due to high circulating level of low-density lipoprotein is a major cause of cardiovascular diseases. Ellagic acid is a natural polyphenolic compound rich in pomegranates and berries. Our previous study showed that ellagic acid improved functionality of reverse cholesterol transport in murine model of atherosclerosis. The aim of this study is to investigate whether ellagic acid inhibited inflammation-associated atherosclerotic plaque formation in cholesterol-fed apolipoprotein E (apoE)-knockout (KO) mice. MATERIALS/METHODS Wild type mice and apoE-KO mice were fed a cholesterol-rich Paigen diet for 10 weeks to induce severe atherosclerosis. Concurrently, 10 mg/kg ellagic acid was orally administered to the apoE-KO mice. Plaque lesion formation and lipid deposition were examined by staining with hematoxylin and eosin, Sudan IV and oil red O. RESULTS The plasma leukocyte profile of cholesterol-fed mice was not altered by apoE deficiency. Oral administration of ellagic acid attenuated plaque lesion formation and lipid deposition in the aorta tree of apoE-KO mice. Ellagic acid substantially reduced plasma levels of soluble vascular cell adhesion molecule and interferon-γ in Paigen diet-fed apoE-KO mice. When 10 mg/kg ellagic acid was administered to cholesterol-fed apoE-KO mice, the levels of CD68 and MCP-1 were strongly reduced in aorta vessels. The protein expression level of nitric oxide synthase-2 (NOS2) in the aorta was highly enhanced by supplementation of ellagic acid to apoE-KO mice, but the expression level of heme oxygenase-1 (HO-1) in the aorta was reduced. Furthermore, ellagic acid diminished the increased aorta expression of the inflammatory adhesion molecules in cholesterol-fed apoE-KO mice. The treatment of ellagic acid inhibited the scavenger receptor-B1 expression in the aorta of apoE-KO mice, while the cholesterol efflux-related transporters were not significantly changed. CONCLUSION These results suggest that ellagic acid may be an atheroprotective compound by attenuating apoE deficiency-induced vascular inflammation and reducing atherosclerotic plaque lesion formation.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Peng Q, Arulsamy K, Lu YW, Wu H, Zhu B, Singh B, Cui K, Wylie-Sears J, Li K, Wong S, Cowan DB, Aikawa M, Wang DZ, Bischoff J, Chen K, Chen H. Novel Role of Endothelial CD45 in Regulating Endothelial-to-Mesenchymal Transition in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610974. [PMID: 39282400 PMCID: PMC11398423 DOI: 10.1101/2024.09.03.610974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Protein-tyrosine-phosphatase CD45 is exclusively expressed in all nucleated cells of the hematopoietic system but is rarely expressed in endothelial cells. Interestingly, our recent study indicated that activation of the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) induced expression of multiple EndoMT marker genes. However, the detailed molecular mechanisms underlying CD45 that drive EndoMT and the therapeutic potential of manipulation of CD45 expression in atherosclerosis are entirely unknown. Method We generated a tamoxifen-inducible EC-specific CD45 deficient mouse strain (EC-iCD45KO) in an ApoE-deficient (ApoE-/-) background and fed with a Western diet (C57BL/6) for atherosclerosis and molecular analyses. We isolated and enriched mouse aortic endothelial cells with CD31 beads to perform single-cell RNA sequencing. Biomedical, cellular, and molecular approaches were utilized to investigate the role of endothelial CD45-specific deletion in the prevention of EndoMT in ApoE-/- model of atherosclerosis. Results Single-cell RNA sequencing revealed that loss of endothelial CD45 inhibits EndoMT marker expression and transforming growth factor-β signaling in atherosclerotic mice. which is associated with the reductions of lesions in the ApoE-/- mouse model. Mechanistically, the loss of endothelial cell CD45 results in increased KLF2 expression, which inhibits transforming growth factor-β signaling and EndoMT. Consistently, endothelial CD45 deficient mice showed reduced lesion development, plaque macrophages, and expression of cell adhesion molecules when compared to ApoE-/- controls. Conclusions These findings demonstrate that the loss of endothelial CD45 protects against EndoMT-driven atherosclerosis, promoting KLF2 expression while inhibiting TGFβ signaling and EndoMT markers. Thus, targeting endothelial CD45 may be a novel therapeutic strategy for EndoMT and atherosclerosis.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kulandaisamy Arulsamy
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bandana Singh
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Masanori Aikawa
- Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine and USF Health Heart Institute, Department of Internal Medicine, University of South Florida, Tampa
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
19
|
Ugusman A, Hisam NSN, Othman NS, Anuar NNM, Hamid AA, Kumar J, Razmi MM, Aminuddin A. Pharmacological interventions for intraplaque neovascularization in atherosclerosis. Pharmacol Ther 2024; 261:108685. [PMID: 38977083 DOI: 10.1016/j.pharmthera.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Advanced atherosclerosis is linked to plaque instability, which can result in rupture and the onset of a heart attack. Evidence gathered from human atheroma plaques indicates that intraplaque neovascularization poses a risk to plaque stability and may lead to plaque hemorrhage. Hence, targeting the neovascularization within the atheroma plaque has the potential to mitigate the plaque's vulnerability. While neovascularization has been extensively explored in the context of cancer, research on pharmacological inhibition of this phenomenon in atherosclerosis remains limited. This systematic review aimed to comprehensively assess current and emerging pharmacological interventions for inhibiting intraplaque neovascularization in preclinical settings. Electronic databases (Web of Science, PubMed, Scopus, and Ovid) were searched from January 2013 until February 1, 2024. Preclinical studies reporting the effect of any pharmacological interventions targeting intraplaque neovascularization were included. A total of 10 articles involving in vivo animal studies were eligible for inclusion, with five of them incorporating in vitro experiments to complement their in vivo findings. The pharmacological interventions studied were axitinib, ghrelin, K5, rosuvastatin, atorvastatin, 3PO, everolimus, melatonin, Si-Miao-Yong-A, and protocatechuic aldehyde. All the interventions showed a positive impact in inhibiting intraplaque neovascularization in various atherosclerotic animal models through various signaling pathways. This review provides valuable insights into pharmacological approaches to attenuate intraplaque neovascularization that could serve as a promising therapeutic avenue to enhance plaque stability.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Nur Syahidah Nor Hisam
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia; Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Maisarah Md Razmi
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Liu S, Zhang B, Zhou J, Lv J, Zhang J, Li X, Yang W, Guo Y. Inhibition of differentiation of monocyte-derived macrophages toward an M2-Like phenotype May Be a neglected mechanism of β-AR receptor blocker therapy for atherosclerosis. Front Pharmacol 2024; 15:1378787. [PMID: 38903990 PMCID: PMC11188457 DOI: 10.3389/fphar.2024.1378787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The clinical efficacy of adrenergic β-receptor (β-AR) blockers in significantly stabilizing atherosclerotic plaques has been extensively supported by evidence-based medical research; however, the underlying mechanism remains unclear. Recent findings have highlighted the impact of lipid-induced aberrant polarization of macrophages during normal inflammatory-repair and regenerative processes on atherosclerosis formation and progression. In this review, we explore the relationship between macrophage polarization and atherosclerosis, as well as the influence of β-AR blockers on macrophage polarization. Based on the robust evidence supporting the use of β-AR blockers for treating atherosclerosis, we propose that their main mechanism involves inhibiting monocyte-derived macrophage differentiation towards an M2-like phenotype.
Collapse
Affiliation(s)
| | | | - Jingqun Zhou
- Affiliated Renhe Hospital, China Three Gorges University, Yichang, China
| | | | | | | | | | | |
Collapse
|
21
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
22
|
Du L, Ma C, Liu B, Liu W, Zhu Y, Wang Z, Chen T, Huang L, Pang Y. Green Synthesis of Blumea balsamifera Oil Nanoemulsions Stabilized by Natural Emulsifiers and Its Effect on Wound Healing. Molecules 2024; 29:1994. [PMID: 38731484 PMCID: PMC11085480 DOI: 10.3390/molecules29091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.
Collapse
Affiliation(s)
- Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
23
|
Park JY, Kim HJ, Chae JR, Cho YL, Kang WJ. Preclinical evaluation of an 18F-labeled Tenascin-C aptamer for PET imaging of atherosclerotic plaque in mouse models of atherosclerosis. Biochem Biophys Res Commun 2024; 703:149650. [PMID: 38377941 DOI: 10.1016/j.bbrc.2024.149650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Tenascin-C is an extracellular matrix glycoprotein strongly expressed in coronary atherosclerotic plaque. Aptamers are single-stranded oligonucleotides that bind to specific target molecules with high affinity. This study hypothesized that tenascin-C expression at atherosclerotic plaque in vivo could be detected by tenascin-C specific aptamers using positron emission tomography (PET). This paper reports the radiosynthesis of a fluorine-18 (18F)-labeled tenascin-C aptamer for the biodistribution and PET imaging of the tenascin-C expression in apolipoprotein E-deficient (ApoE-/-) mice. The aortas ApoE-/- mice showed significantly increased positive areas of Oil red O staining than control C57BL/6 mice, and tenascin-C expression was detected in foam cells accumulated in the subendothelial lesions of ApoE-/- mice. The ex vivo biodistribution of the 18F-labeled tenascin-C aptamer showed significantly increased uptake at the aorta of ApoE-/- mice, and ex vivo autoradiography of aorta revealed the high accumulation of the 18F-labeled tenascin-C aptamer in the atherosclerotic lesions of ApoE-/- mice, which was consistent with the location of the atherosclerotic plaques detected by Oil red O staining. PET imaging of the 18F-labeled tenascin-C aptamer revealed a significantly higher mean standardized uptake in the aorta of the ApoE-/- mice than the control C57BL/6 mice. These data highlight the potential use of tenascin-C aptamer to diagnose atherosclerotic lesions in vivo.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Jeong Kim
- Department of Nuclear Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin, 16995, Republic of Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
24
|
Guo Y, Che Y, Zhang X, Ren Z, Chen Y, Guo L, Mao L, Wei R, Gao X, Zhang T, Wang L, Guo W. Cannabidiol protects against acute aortic dissection by inhibiting macrophage infiltration and PMAIP1-induced vascular smooth muscle cell apoptosis. J Mol Cell Cardiol 2024; 189:38-51. [PMID: 38387723 DOI: 10.1016/j.yjmcc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a β-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.
Collapse
Affiliation(s)
- Yilong Guo
- Medical School of Chinese PLA, Beijing 100853, China; Department of Vascular and Endovascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Che
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zongna Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yinan Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Liliang Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ren Wei
- Department of Vascular and Endovascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Tao Zhang
- Vascular Surgery Department, Peking University People's Hospital, Beijing 100044, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Wei Guo
- Medical School of Chinese PLA, Beijing 100853, China; Department of Vascular and Endovascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
25
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A, Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis 2023; 14:691. [PMID: 37863894 PMCID: PMC10589261 DOI: 10.1038/s41419-023-06206-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.
Collapse
Affiliation(s)
- Pengbo Hou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Qiang Sun
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
26
|
He Z, Luo J, Lv M, Li Q, Ke W, Niu X, Zhang Z. Characteristics and evaluation of atherosclerotic plaques: an overview of state-of-the-art techniques. Front Neurol 2023; 14:1159288. [PMID: 37900593 PMCID: PMC10603250 DOI: 10.3389/fneur.2023.1159288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Atherosclerosis is an important cause of cerebrovascular and cardiovascular disease (CVD). Lipid infiltration, inflammation, and altered vascular stress are the critical mechanisms that cause atherosclerotic plaque formation. The hallmarks of the progression of atherosclerosis include plaque ulceration, rupture, neovascularization, and intraplaque hemorrhage, all of which are closely associated with the occurrence of CVD. Assessing the severity of atherosclerosis and plaque vulnerability is crucial for the prevention and treatment of CVD. Integrating imaging techniques for evaluating the characteristics of atherosclerotic plaques with computer simulations yields insights into plaque inflammation levels, spatial morphology, and intravascular stress distribution, resulting in a more realistic and accurate estimation of plaque state. Here, we review the characteristics and advancing techniques used to analyze intracranial and extracranial atherosclerotic plaques to provide a comprehensive understanding of atheroma.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Francis GA. The Greatly Under-Represented Role of Smooth Muscle Cells in Atherosclerosis. Curr Atheroscler Rep 2023; 25:741-749. [PMID: 37665492 PMCID: PMC10564813 DOI: 10.1007/s11883-023-01145-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW This article summarizes previous and recent research on the fundamental role of arterial smooth muscle cells (SMCs) as drivers of initial and, along with macrophages, later stages of human atherosclerosis. RECENT FINDINGS Studies using human tissues and SMC lineage-tracing mice have reinforced earlier observations that SMCs drive initial atherogenesis in humans and contribute a multitude of phenotypes including foam cell formation hitherto attributed primarily to macrophages in atherosclerosis. Arterial smooth muscle cells (SMCs) are the primary cell type in human pre-atherosclerotic intima and are responsible for the retention of lipoproteins that drive the development of atherosclerosis. Despite this, images of atherogenesis still depict the process as initially devoid of SMCs, primarily macrophage driven, and indicate only relatively minor roles such as fibrous cap formation to intimal SMCs. This review summarizes historical and recent observations regarding the importance of SMCs in the formation of a pre-atherosclerotic intima, initial and later foam cell formation, and the phenotypic changes that give rise to multiple different roles for SMCs in human and mouse lesions. Potential SMC-specific therapies in atherosclerosis are presented.
Collapse
Affiliation(s)
- Gordon A Francis
- Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
28
|
Gindri dos Santos B, Goedeke L. Macrophage immunometabolism in diabetes-associated atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00032. [PMID: 37849988 PMCID: PMC10578522 DOI: 10.1097/in9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Interplay between efferocytosis and atherosclerosis. Arch Cardiovasc Dis 2023; 116:474-484. [PMID: 37659915 DOI: 10.1016/j.acvd.2023.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
In an adult human, billions of cells die and turn over daily. During this process, many apoptotic cells are produced and subsequently cleared by phagocytes - a process termed efferocytosis, which plays a critical role in tissue homeostasis. Efferocytosis is an important mechanism in the control of inflammatory processes. Efficient efferocytosis inhibits accumulation of apoptotic cells/debris and maintains homeostasis before the onset of necrosis (secondary necrosis), which promotes inflammation or injury. During efferocytosis, mitochondrial fission and the oxidative stress process are linked through reactive oxygen species production and oxidative stress control. Autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis by activated inflammatory cells, particularly neutrophils and macrophages. Autophagy in neutrophils is activated by phagocytosis of pathogens or activation of pattern recognition receptors. Autophagy is essential for major neutrophil functions, including degranulation, reactive oxygen species production, oxidative stress and release of neutrophil extracellular cytokines. Failed efferocytosis is a key mechanism driving the development and progression of chronic inflammatory diseases, including atherosclerosis, cardiometabolic pathology, neurodegenerative disease and cancer. Impairment of efferocytosis in apoptotic macrophages is a determinant of atherosclerosis severity and the vulnerability of plaques to rupture. Recent results suggest that inhibition of efferocytosis in the protection of the myocardium results in reduced infiltration of reparatory macrophages into the tissue, in association with oxidative stress reduction. Activated macrophages play a central role in the development and resolution of inflammation. The resolution of inflammation through efferocytosis is an endogenous process that protects host tissues from prolonged or excessive inflammation. Accordingly, therapeutic strategies that ameliorate efferocytosis control would be predicted to dampen inflammation and improve resolution. Thus, therapies targeting efferocytosis will provide a new means of treating and preventing cardiovascular and metabolic diseases involving the chronic inflammatory state.
Collapse
Affiliation(s)
- Luc Rochette
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France.
| | - Geoffrey Dogon
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Eve Rigal
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Marianne Zeller
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Yves Cottin
- Service de cardiologie, CHU de Dijon, 21000 Dijon, France
| | - Catherine Vergely
- Équipe d'accueil (EA 7460) : physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche-Comté, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| |
Collapse
|
30
|
Bi L, Wacker BK, Komandur K, Sanford N, Dichek DA. Apolipoprotein A-I vascular gene therapy reduces vein-graft atherosclerosis. Mol Ther Methods Clin Dev 2023; 30:558-572. [PMID: 37693942 PMCID: PMC10482902 DOI: 10.1016/j.omtm.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Coronary artery venous bypass grafts typically fail because of atherosclerosis driven by lipid and macrophage accumulation. Therapy for vein-graft atherosclerosis is limited to statin drugs, which are only modestly effective. We hypothesized that transduction of vein-graft endothelium of fat-fed rabbits with a helper-dependent adenovirus expressing apolipoprotein AI (HDAdApoAI) would reduce lipid and macrophage accumulation. Fat-fed rabbits received bilateral external jugular vein-to-carotid artery interposition grafts. Four weeks later, one graft per rabbit (n = 23 rabbits) was infused with HDAdApoAI and the contralateral graft with HDAdNull. Grafts were harvested 12 weeks later. Paired analyses of grafts were performed, with vein graft cholesterol, intimal lipid, and macrophage content as the primary endpoints. HDAd genomes were detected in all grafts. APOAI mRNA was median 63-fold higher in HDAdApoAI grafts versus HDAdNull grafts (p < 0.001). HDAdApoAI grafts had a mean 15% lower total cholesterol (by mass spectrometry; p = 0.003); mean 19% lower intimal lipid (by oil red O staining; p = 0.02); and mean 13% lower expression of the macrophage marker CD68 (by reverse transcriptase-mediated quantitative PCR; p = 0.008). In vivo transduction of vein-graft endothelium achieves persistent APOAI expression and reduces vein-graft cholesterol, intimal lipid, and CD68 expression. Vascular gene therapy with APOAI has promise for preventing vein-graft failure caused by atherosclerosis.
Collapse
Affiliation(s)
- Lianxiang Bi
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Bradley K. Wacker
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kaushik Komandur
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Nicole Sanford
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - David A. Dichek
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
31
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
32
|
Wu X, Singla S, Liu JJ, Hong L. The role of macrophage ion channels in the progression of atherosclerosis. Front Immunol 2023; 14:1225178. [PMID: 37588590 PMCID: PMC10425548 DOI: 10.3389/fimmu.2023.1225178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis is a complex inflammatory disease that affects the arteries and can lead to severe complications such as heart attack and stroke. Macrophages, a type of immune cell, play a crucial role in atherosclerosis initiation and progression. Emerging studies revealed that ion channels regulate macrophage activation, polarization, phagocytosis, and cytokine secretion. Moreover, macrophage ion channel dysfunction is implicated in macrophage-derived foam cell formation and atherogenesis. In this context, exploring the regulatory role of ion channels in macrophage function and their impacts on the progression of atherosclerosis emerges as a promising avenue for research. Studies in the field will provide insights into novel therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sidhant Singla
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jianhua J. Liu
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Galindo CL, Khan S, Zhang X, Yeh YS, Liu Z, Razani B. Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets. Expert Opin Ther Targets 2023; 27:1231-1245. [PMID: 38009300 PMCID: PMC10843715 DOI: 10.1080/14728222.2023.2288272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Saifur Khan
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yu-Sheng Yeh
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ziyang Liu
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
| |
Collapse
|
34
|
He Y, Liu T. Oxidized low-density lipoprotein regulates macrophage polarization in atherosclerosis. Int Immunopharmacol 2023; 120:110338. [PMID: 37210916 DOI: 10.1016/j.intimp.2023.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Atherosclerosis is the pathological basis of acute cardiovascular and cerebrovascular diseases. Oxidized LDL has been recognized as a major atherogenic factor in the vessel wall for decades. A growing body of evidence suggests that oxidized LDL modulates macrophage phenotypes in atherosclerosis. This article reviews the research progress on the regulation of macrophage polarization by oxidized LDL. Mechanistically, oxidized LDL induces macrophage polarization via cell signaling, metabolic reprogramming, epigenetic regulation, and intercellular regulation. This review is expected to provide new targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yonghang He
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China
| | - Tingting Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan City, Guangdong Province 523710, China; The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
35
|
Becker PH, Thérond P, Gaignard P. Targeting mitochondrial function in macrophages: A novel treatment strategy for atherosclerotic cardiovascular disease? Pharmacol Ther 2023; 247:108441. [PMID: 37201736 DOI: 10.1016/j.pharmthera.2023.108441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Atherosclerotic cardiovascular disease is a major cause of morbidity and mortality due to chronic arterial injury caused by hyperlipidemia, hypertension, inflammation and oxidative stress. Recent studies have shown that the progression of this disease is associated with mitochondrial dysfunction and with the accumulation of mitochondrial alterations within macrophages of atherosclerotic plaques. These alterations contribute to processes of inflammation and oxidative stress. Among the many players involved, macrophages play a pivotal role in atherogenesis as they can exert both beneficial and deleterious effects due to their anti- and pro-inflammatory properties. Their atheroprotective functions, such as cholesterol efflux and efferocytosis, as well as the maintenance of their polarization towards an anti-inflammatory state, are particularly dependent on mitochondrial metabolism. Moreover, in vitro studies have demonstrated deleterious effects of oxidized LDL on macrophage mitochondrial function, resulting in a switch to a pro-inflammatory state and to a potential loss of atheroprotective capacity. Therefore, preservation of mitochondrial function is now considered a legitimate therapeutic strategy. This review focuses on the potential therapeutic strategies that could improve the mitochondrial function of macrophages, enabling them to maintain their atheroprotective capacity. These emerging therapies could play a valuable role in counteracting the progression of atherosclerotic lesions and possibly inducing their regression.
Collapse
Affiliation(s)
- Pierre-Hadrien Becker
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France.
| | - Patrice Thérond
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| | - Pauline Gaignard
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| |
Collapse
|
36
|
De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, García-Puente L, Rios-Parra A, Garrido-Gil MJ, Casanova-Martín C, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Ortega MA. AIF1: Function and Connection with Inflammatory Diseases. BIOLOGY 2023; 12:biology12050694. [PMID: 37237507 DOI: 10.3390/biology12050694] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Macrophages are a type of immune cell distributed throughout all tissues of an organism. Allograft inflammatory factor 1 (AIF1) is a calcium-binding protein linked to the activation of macrophages. AIF1 is a key intracellular signaling molecule that participates in phagocytosis, membrane ruffling and F-actin polymerization. Moreover, it has several cell type-specific functions. AIF1 plays important roles in the development of several diseases: kidney disease, rheumatoid arthritis, cancer, cardiovascular diseases, metabolic diseases and neurological disorders, and in transplants. In this review, we present a comprehensive review of the known structure, functions and role of AIF1 in inflammatory diseases.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
37
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
38
|
Atre R, Sharma R, Vadim G, Solanki K, Wadhonkar K, Singh N, Patidar P, Khabiya R, Samaur H, Banerjee S, Baig MS. The indispensability of macrophage adaptor proteins in chronic inflammatory diseases. Int Immunopharmacol 2023; 119:110176. [PMID: 37104916 DOI: 10.1016/j.intimp.2023.110176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Gaponenko Vadim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Neha Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India; School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
39
|
Rehman M, Chaudhary R, Rajput S, Agarwal V, Kaushik AS, Srivastava S, Srivastava S, Singh R, Aziz I, Singh S, Mishra V. Butein Ameliorates Chronic Stress Induced Atherosclerosis via Targeting Anti-inflammatory, Anti-fibrotic and BDNF Pathways. Physiol Behav 2023; 267:114207. [PMID: 37100219 DOI: 10.1016/j.physbeh.2023.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Chronic stress is a major risk factor for various diseases, including cardiovascular diseases (CVDs). Chronic stress enhances the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, making individuals susceptible to atherosclerosis which is dominant cause for CVDs. In present study, we validated a mouse model of chronic unpredictable stress (CUS), and assessed the characteristic features of atherosclerosis in thoracic aortas of CUS mice. The CUS procedure consisted of exposing groups of mice to random stressors daily for 10-weeks. The stress response was verified by presence of depressive-like behaviors and increased serum corticosterone in mice which was determined by battery of behavioural tests (SPT, EPMT, NSFT) and ELISA, respectively. Atherosclerosis parameters in CUS mice were evaluated by lipid indices estimation followed by histological assessment of plaque deposition and fibrosis in thoracic aorta. Further, we assessed the efficacy of a polyphenol, i.e. Butein in conferring protection against chronic stress-induced atherosclerosis and the possible mechanism of action. Butein (20mg/kg x 28 days, alternatively, i.p.) was administered to CUS mice after 6-weeks of CUS exposure till the end of the protocol. Butein treatment decreased peripheral IL-1β and enhanced peripheral as well as central BDNF levels. Histological assessment revealed decreased macrophage expression and reduced fibrosis in thoracic aorta of Butein treated mice. Further, treatment with Butein lowered lipid indices in CUS mice. Our findings thus, suggest that 10-weeks of CUS induce characteristic features of atherosclerosis in mice and Butein can offer protection in CUS-induced atherosclerosis through multiple mechanisms including anti-inflammatory, antifibrotic and anti-adipogenic actions.
Collapse
Affiliation(s)
- Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Sonu Rajput
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Rohit Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Irfan Aziz
- Integral University, Kursi road, Lucknow, Uttar Pradesh 226026, India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India.
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India.
| |
Collapse
|
40
|
Wiśniewska A, Czepiel K, Stachowicz A, Pomierny B, Kuś K, Kiepura A, Stachyra K, Surmiak M, Madej J, Olszanecki R, Suski M. The antiatherosclerotic action of 1G244 - An inhibitor of dipeptidyl peptidases 8/9 - is mediated by the induction of macrophage death. Eur J Pharmacol 2023; 944:175566. [PMID: 36739078 DOI: 10.1016/j.ejphar.2023.175566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. METHODS The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. CONCLUSIONS In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna str., 30-688, Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 8 Skawinska str., 31-066, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland.
| |
Collapse
|
41
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
42
|
Wu J, He S, Song Z, Chen S, Lin X, Sun H, Zhou P, Peng Q, Du S, Zheng S, Liu X. Macrophage polarization states in atherosclerosis. Front Immunol 2023; 14:1185587. [PMID: 37207214 PMCID: PMC10189114 DOI: 10.3389/fimmu.2023.1185587] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiu Liu
- *Correspondence: Xiu Liu, ; Shaoyi Zheng,
| |
Collapse
|
43
|
Han JL, Song YX, Yao WJ, Zhou J, Du Y, Xu T. Follicle-Stimulating Hormone Provokes Macrophages to Secrete IL-1β Contributing to Atherosclerosis Progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:25-32. [PMID: 36368721 DOI: 10.4049/jimmunol.2200475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 02/17/2024]
Abstract
Abnormally high follicle-stimulating hormone (FSH) has been reported to associate with cardiovascular diseases in prostate cancer patients with specific androgen deprivation therapy and in menopausal women. All of the cardiovascular diseases were involved in atherosclerosis. However, the pathogenic mechanism of FSH-associated atherosclerosis remains uncertain. Apolipoprotein E-deficient mice were chosen to develop atherosclerosis, of which the plaques were analyzed with administration of short- and long-term FSH imitating androgen deprivation therapy-induced and menopausal FSH elevation. The study showed that short- and long-term exposure of FSH significantly accelerated atherosclerosis progression in apolipoprotein E-deficient mice, manifested as strikingly increased plaques in the aorta and its roots, increased macrophage content, reduced fibrin, and an enlarged necrotic core, suggesting a decrease in plaque stability. Furthermore, expression profiles from the Gene Expression Omnibus GSE21545 dataset revealed that macrophage inflammation was tightly associated with FSH-induced atherosclerotic progression. The human monocyte cell line THP-1 was induced by PMA and worked as a macrophage model to detect inflammatory factors and cellular functions. FSH remarkably promoted the expression of IL-1β in macrophages and strikingly increased the chemotactic migratory capacity of macrophages toward MCP-1, but the promigratory capacity of FSH was attenuated in foam cells. Overall, we revealed that FSH significantly promoted the inflammatory response and migration of macrophages, thereby provoking atherosclerosis development.
Collapse
Affiliation(s)
- Jing-Li Han
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yu-Xuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Wei-Juan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China; and
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China; and
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China;
| |
Collapse
|
44
|
Neuromodulation Applied to Diseases: The Case of HRV Biofeedback. J Clin Med 2022; 11:jcm11195927. [PMID: 36233794 PMCID: PMC9571900 DOI: 10.3390/jcm11195927] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
The vagus or “wandering” nerve is the main branch of the parasympathetic nervous system (PNS), innervating most internal organs crucial for health. Activity of the vagus nerve can be non-invasively indexed by heart-rate variability parameters (HRV). Specific HRV parameters predict less all-cause mortality, lower risk of and better prognosis after myocardial infarctions, and better survival in cancer. A non-invasive manner for self-activating the vagus is achieved by performing a slow-paced breathing technique while receiving visual feedback of one’s HRV, called HRV-biofeedback (HRV-B). This article narratively reviews the biological mechanisms underlying the role of vagal activity and vagally mediated HRV in hypertension, diabetes, coronary heart disease (CHD), cancer, pain, and dementia. After searching the literature for HRV-B intervention studies in each condition, we report the effects of HRV-B on clinical outcomes in these health conditions, while evaluating the methodological quality of these studies. Generally, the levels of evidence for the benefits of HRV-B is high in CHD, pain, and hypertension, moderate in cancer, and poor in diabetes and dementia. Limitations and future research directions are discussed.
Collapse
|
45
|
Li B, Wang C, Lu P, Ji Y, Wang X, Liu C, Lu X, Xu X, Wang X. IDH1 Promotes Foam Cell Formation by Aggravating Macrophage Ferroptosis. BIOLOGY 2022; 11:biology11101392. [PMID: 36290297 PMCID: PMC9598283 DOI: 10.3390/biology11101392] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In our study, the involvement of IDH1 in atherosclerotic foam cells was explored. Inhibiting macrophage ferroptosis and foam cell formation by knocking down IDH1 is a promising study direction for better understanding the occurrence and progression of atherosclerosis, as well as the treatment targets for atherosclerosis. Abstract A distinctive feature of ferroptosis is intracellular iron accumulation and the impairment of antioxidant capacity, resulting in a lethal accumulation of lipid peroxides leading to cell death. This study was conducted to determine whether inhibiting isocitrate dehydrogenase 1 (IDH1) may help to prevent foam cell formation by reducing oxidized low-density lipoprotein (ox-LDL)-induced ferroptosis in macrophages and activating nuclear factor erythroid 2-related factor 2 (NRF2). Gene expression profiling (GSE70126 and GSE70619) revealed 21 significantly different genes, and subsequent bioinformatics research revealed that ferroptosis and IDH1 play essential roles in foam cell production. We also confirmed that ox-LDL elevates macrophage ferroptosis and IDH1 protein levels considerably as compared with controls. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, reduced ox-LDL-induced elevated Fe2+ levels, lipid peroxidation (LPO) buildup, lactate dehydrogenase (LDH) buildup, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4), ferritin heavy polypeptide 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11) protein downregulation. More crucially, inhibiting IDH1 reduced Fe2+ overload, lipid peroxidation, LDH, and glutathione depletion, and elevated GPX4, FTH1, and SLC7A11 protein expression, resulting in a reduction in ox-LDL-induced macrophage ferroptosis. IDH1 inhibition suppressed ox-LDL-induced macrophage damage and apoptosis while raising NRF2 protein levels. We have demonstrated that inhibiting IDH1 reduces ox-LDL-induced ferroptosis and foam cell formation in macrophages, implying that IDH1 may be an important molecule regulating foam cell formation and may be a promising molecular target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Chufan Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Peng Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Yumeng Ji
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Chaoyang Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiaohu Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiaohan Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili, Jiangsu Joint Institute of Health, Yining 835000, China
- Correspondence: (X.X.); (X.W.)
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
- Correspondence: (X.X.); (X.W.)
| |
Collapse
|
46
|
Ma M, Liu Y, Wang L, Yang R, Li Z, Gao S, Li L, Yu C. Relationship Between Monocyte-to-Lymphocyte Ratio as Well as Other Leukocyte-Derived Ratios and Carotid Plaques in Patients with Coronary Heart Disease: A RCSCD-TCM Study. J Inflamm Res 2022; 15:5141-5156. [PMID: 36105384 PMCID: PMC9464636 DOI: 10.2147/jir.s375759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study explored the relationship between monocyte-to-lymphocyte ratio (MLR) as well as other leukocyte-derived ratios and carotid plaques in patients with coronary heart disease (CHD). Patients and Methods A total of 12,093 patients with CHD were selected as research participants. Leukocyte-derived ratios assessed in this study included neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), MLR, platelet-to-lymphocyte ratio (PLR), white blood cell-to-mean platelet volume ratio (WMR), lymphocyte×neutrophil/104 ratio (MNM), systemic immune inflammation index (SII), and systemic inflammation response index (SIRI). Leukocyte-derived ratios were divided into four groups according to quarters. Logistic regression analysis was performed to evaluate the relationship between leukocyte-derived ratios and the incidence, number, and echo characteristics of carotid plaques in patients with CHD. Further analysis was performed after adjusting for confounding factors. Results Among the 12,093 participants, 71.7% had carotid plaques. After adjusting for confounding factors, MLR, NLR, dNLR, PLR, SII, SIRI, and WMR were found to be associated with carotid plaque formation. Among them, MLR had the strongest association with the incidence of carotid plaques (odd ratio[OR]:1.889; 95% confidence interval[CI]:1.406–2.539) and hyperechoic plaques (OR:2.024; 95% CI:1.481–2.767). When MLR was viewed as a categorical variable, the risk of carotid plaque formation in Q4 was 1.4 times higher than that in Q1. The relationship between MLR and carotid plaques in females (OR:2.250; 95% CI:1.458–3.473) was stronger than that in males (OR: 1.638; 95% CI:1.102–-2.436). The relationship between MLR and carotid plaques in patients younger than 65 years (OR:3.597; 95% CI:2.379–5.439) was stronger than that in those older than 65 years (OR:1.577; 95% CI:1.046–2.378). Conclusion Leukocyte-derived ratios were related to the incidence, number, and echo characteristics of carotid plaques. In particular, MLR, an inflammatory biomarker that encompasses innate and adaptive immunity, may be of great value in revealing the incidence and echo characteristics of plaques.
Collapse
Affiliation(s)
- Mei Ma
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yijia Liu
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lichun Wang
- Department of Information Center, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rongrong Yang
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhu Li
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sheng Gao
- Department of Endocrine Metabolic Diseases, Nankai Hospital, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, People's Republic of China
| | - Lin Li
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chunquan Yu
- Department of Graduate Schools, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
47
|
Jin Z, Chen T, Zhu Z, Xu B, Yan D. The role of TRIM59 in immunity and immune-related diseases. Int Rev Immunol 2022; 43:33-40. [PMID: 35975813 DOI: 10.1080/08830185.2022.2102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 10/15/2022]
Abstract
TRIM59 is a member of the tripartite motif containing (TRIM) protein family. It functions as an E3 ubiquitin ligase through its RING domain and is expressed by multiple types of cells. Physiogically, TRIM59 is involved in development, immune response, and the invasion and metastasis of tumors. In this review, we first describe the structure, expression, and subcellular location of TRIM59. Then, we summarize emerging evidence for TRIM59 in immunological diseases including infection, vascular diseases, autoimmunity, and tumor immunity. Additionally, we discuss important molecular signaling pathways that mediate TRIM59 activity. Altogether, the accumulating evidence suggests that manipulating TRIM59 levels and activity may open an avenue for innovative therapies for immune diseases and tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiffany Chen
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Baohui Xu
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
48
|
miR-99a-5p: A Potential New Therapy for Atherosclerosis by Targeting mTOR and Then Inhibiting NLRP3 Inflammasome Activation and Promoting Macrophage Autophagy. DISEASE MARKERS 2022; 2022:7172583. [PMID: 35968506 PMCID: PMC9374553 DOI: 10.1155/2022/7172583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Objective MicroRNAs have been revealed to be involved in the development of atherosclerosis. The present study is aimed at exploring the potential of miR-99a-5p as a therapy for atherosclerosis. We suspected that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy via constraining mTOR, therefore, alleviating atherosclerosis. Methods The cell viability in ox-LDL-induced THP-1 macrophages was assessed by CCK-8 assay. Bioinformatic analysis was used to predict the target genes of miR-99a-5p. The binding between miR-99a-5p and mTOR was confirmed by luciferase reporter assay. In vivo, a high-fat-diet-induced atherosclerosis model was established in apolipoprotein E knockout mice. Hematoxylin-eosin, oil red O, and Sirius red staining were performed for the determination of atherosclerotic lesions. MTOR and associated protein levels were detected by Western blot analysis. Results miR-99a-5p inhibited NLRP3 inflammasome activation and promoted macrophage autophagy by targeting mTOR. Enforced miR-99a-5p significantly reduced the levels of inflammasome complex and inflammatory cytokines. Furthermore, miR-99a-5p overexpression inhibited the expression of mTOR, whereas mTOR overexpression reversed the trend of the above behaviors. In vivo, the specific overexpression of miR-99a-5p significantly reduced atherosclerotic lesions, accompanied by a significant downregulation of autophagy marker CD68 protein expression. Conclusion We demonstrated for the first time that miR-99a-5p may be considered a therapy for atherosclerosis. The present study has revealed that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy by targeting mTOR, therefore, alleviating atherosclerosis.
Collapse
|
49
|
Zou J, Xu C, Zhao ZW, Yin SH, Wang G. Asprosin inhibits macrophage lipid accumulation and reduces atherosclerotic burden by up-regulating ABCA1 and ABCG1 expression via the p38/Elk-1 pathway. Lab Invest 2022; 20:337. [PMID: 35902881 PMCID: PMC9331044 DOI: 10.1186/s12967-022-03542-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/17/2022] [Indexed: 12/27/2022]
Abstract
Background Asprosin, a newly discovered adipokine, is a C-terminal cleavage product of profibrillin. Asprosin has been reported to participate in lipid metabolism and cardiovascular disease, but its role in atherogenesis remains elusive. Methods Asprosin was overexpressed in THP-1 macrophage-derived foam cells and apoE−/− mice using the lentiviral vector. The expression of relevant molecules was determined by qRT-PCR and/or western blot. The intracellular lipid accumulation was evaluated by high-performance liquid chromatography and Oil red O staining. HE and Oil red O staining was employed to assess plaque burden in vivo. Reverse cholesterol transport (RCT) efficiency was measured using [3H]-labeled cholesterol. Results Exposure of THP-1 macrophages to oxidized low-density lipoprotein down-regulated asprosin expression. Lentivirus-mediated overexpression of asprosin promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that asprosin overexpression activated p38 and stimulated the phosphorylation of ETS-like transcription factor (Elk-1) at Ser383, leading to Elk-1 nuclear translocation and the transcriptional activation of ATP binding cassette transporters A1 (ABCA1) and ABCG1. Injection of lentiviral vector expressing asprosin diminished atherosclerotic lesion area, increased plaque stability, improved plasma lipid profiles and facilitated RCT in apoE−/− mice. Asprosin overexpression also increased the phosphorylation of p38 and Elk-1 as well as up-regulated the expression of ABCA1 and ABCG1 in the aortas. Conclusion Asprosin inhibits lipid accumulation in macrophages and decreases atherosclerotic burden in apoE−/− mice by up-regulating ABCA1 and ABCG1 expression via activation of the p38/Elk-1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03542-0.
Collapse
Affiliation(s)
- Jin Zou
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Can Xu
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shan-Hui Yin
- The First Affiliated Hospital, Department of Neonatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Gang Wang
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
50
|
Song L, Zhang J, Ma D, Fan Y, Lai R, Tian W, Zhang Z, Ju J, Xu H. A Bibliometric and Knowledge-Map Analysis of Macrophage Polarization in Atherosclerosis From 2001 to 2021. Front Immunol 2022; 13:910444. [PMID: 35795675 PMCID: PMC9250973 DOI: 10.3389/fimmu.2022.910444] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, studies of macrophage polarization in atherosclerosis have become an intense area of research. However, there are few bibliometric analyses regarding this area. In this review, we used CiteSpace 5.8.R3 and VOSviewer 1.6.16 software to perform text mining and knowledge-map analysis. We explored the development process, knowledge structure, research hotspots, and potential trends using a bibliometric and knowledge-map analysis to provide researchers with a macroscopic view of this field. The studies concerning macrophage polarization in atherosclerosis were downloaded from the Web of Science Core Collection. A total of 781 studies were identified and published by 954 institutions from 51 countries/regions. The number of studies of macrophage polarization in atherosclerosis increased over time. Arteriosclerosis Thrombosis and Vascular Biology published the highest number of articles and was the top co-cited journal. De Winther was the most prolific researcher, and Moore had the most co-citations. The author co-occurrence map illustrated that there was active cooperation among researchers. The most productive countries were the United States and China. Amsterdam University, Harvard University, and Maastricht University were the top three productive institutions in the research field. Keyword Co-occurrence, Clusters, and Burst analysis showed that “inflammation,” “monocyte,” “NF kappa B,” “mechanism,” and “foam cell” appeared with the highest frequency in studies. “Oxidative stress,” “coronary heart disease,” and “prevention” were the strongest citation burst keywords from 2019 to 2021.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Xu,
| |
Collapse
|