1
|
Yu S, Han Z, Li C, Lu X, Li Y, Yuan X, Guo D. Cross Talk Between Macrophages and Podocytes in Diabetic Nephropathy: Potential Mechanisms and Novel Therapeutics. Mediators Inflamm 2025; 2025:8140479. [PMID: 40352596 PMCID: PMC12064321 DOI: 10.1155/mi/8140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/11/2024] [Accepted: 04/12/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of chronic kidney disease and end-stage renal failure worldwide. Podocytes, essential components of the glomerular filtration barrier (GFB), are profoundly affected in the diabetic milieu, resulting in structural and functional alterations. Concurrently, macrophages, pivotal innate immune cells, infiltrate the diabetic kidney and exhibit diverse activation states influenced by the local environment, playing a crucial role in kidney physiology and pathology. This review synthesizes current insights into how the dynamic cross talk between these two cell types contributes to the progression of DN, exploring the molecular and cellular mechanisms underlying this interaction, with a particular focus on how macrophages influence podocyte survival through various forms of cell death, including apoptosis, pyroptosis, and autophagy. The review also discusses the potential of targeting macrophages to develop more effective treatments for DN.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Zehui Han
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xinxin Lu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China
| |
Collapse
|
2
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Zhao H, Gong H, Zhu P, Sun C, Sun W, Zhou Y, Wu X, Qiu A, Wen X, Zhang J, Luo D, Liu Q, Li Y. Deciphering the cellular and molecular landscapes of Wnt/β-catenin signaling in mouse embryonic kidney development. Comput Struct Biotechnol J 2024; 23:3368-3378. [PMID: 39310276 PMCID: PMC11416353 DOI: 10.1016/j.csbj.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background The Wnt/β-catenin signaling pathway is critical in kidney development, yet its specific effects on gene expression in different embryonic kidney cell types are not fully understood. Methods Wnt/β-catenin signaling was activated in mouse E12.5 kidneys in vitro using CHIR99021, with RNA sequencing performed afterward, and the results were compared to DMSO controls (dataset GSE131240). Differential gene expression in ureteric buds and cap mesenchyme following pathway activation (datasets GSE20325 and GSE39583) was analyzed. Single-cell RNA-seq data from the Mouse Cell Atlas was used to link differentially expressed genes (DEGs) with kidney cell types. β-catenin ChIP-seq data (GSE39837) identified direct transcriptional targets. Results Activation of Wnt/β-catenin signaling led to 917 significant DEGs, including the upregulation of Notum and Apcdd1 and the downregulation of Crym and Six2. These DEGs were involved in kidney development and immune response. Single-cell analysis identified 787 DEGs across nineteen cell subtypes, with Macrophage_Apoe high cells showing the most pronounced enrichment of Wnt/β-catenin-activated genes. Gene expression profiles in ureteric buds and cap mesenchyme differed significantly upon β-catenin manipulation, with cap mesenchyme showing a unique set of DEGs. Analysis of β-catenin ChIP-seq data revealed 221 potential direct targets, including Dpp6 and Fgf12. Conclusion This study maps the complex gene expression driven by Wnt/β-catenin signaling in embryonic kidney cell types. The identified DEGs and β-catenin targets elucidate the molecular details of kidney development and the pathway's role in immune processes, providing a foundation for further research into Wnt/β-catenin signaling in kidney development and disease.
Collapse
Affiliation(s)
- Hui Zhao
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangzhou 510005, Guangdong Province, China
| | - Hui Gong
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chang Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wuping Sun
- Department of Pain Medicine, Shenzhen Municipal Key Laboratory for Pain Medicine, The affiliated Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518060, China
| | - Yujin Zhou
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Xiaoxiao Wu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Ailin Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Jinde Zhang
- Guangdong Medical University, Zhanjiang 524023, Guangdong China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| |
Collapse
|
4
|
Li L, Zhang Y, Wang Z, Chen X, Fang M. Glycyrrhizin attenuates renal inflammation in a mouse Con A-hepatitis model via the IL-25/M2 axis. Ren Fail 2024; 46:2356023. [PMID: 38785317 PMCID: PMC11133957 DOI: 10.1080/0886022x.2024.2356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1β by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyue Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyan Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H, Guo ZY, Shao G. Roles of macrophages in lupus nephritis. Front Pharmacol 2024; 15:1477708. [PMID: 39611168 PMCID: PMC11602334 DOI: 10.3389/fphar.2024.1477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
LN is a serious complication of systemic lupus erythematosus (SLE), affecting up to 60% of patients with SLE and may lead to end-stage renal disease (ESRD). Macrophages play multifaceted roles in the pathogenesis of LN, including clearance of immune complexes, antigen presentation, regulation of inflammation, and tissue repair. Macrophages are abundant in the glomeruli and tubulointerstitium of LN patients and are positively correlated with serum creatinine levels and the severity of renal pathology. It has been shown that the infiltration of macrophages is closely associated with several clinical indicators, such as serum creatinine and complement C3 levels, anti-dsDNA antibody titers, Austin score, interstitial fibrosis and renal tubular atrophy. Moreover, cytokines expressed by macrophages were upregulated at LN onset and downregulated after remission, suggesting that macrophages may serve as markers of LN pathogenesis and remission. Therapies targeting macrophages have been shown to alleviate LN. There are two main types of macrophages in the kidney: kidney-resident macrophages (KRMs) and monocyte-derived macrophages (MDMs). KRMs and MDMs play different pathological roles in LN, with KRMs promoting leukocyte recruitment at sites of inflammation by expressing monocyte chemokines, while MDMs may exacerbate autoimmune responses by presenting immune complex antigens. Macrophages exhibit high plasticity and can differentiate into various phenotypes in response to distinct environmental stimuli. M1 (proinflammatory) macrophages are linked to the progression of active SLE, whereas the M2 (anti-inflammatory) phenotype is observed during the remission phase of LN. The polarization of macrophages in LN can be manipulated through multiple pathways, such as the modulation of signaling cascades including TLR 2/1, S1P, ERS, metabolic reprogramming, and HMGB1. This paper provides a comprehensive overview of the role of macrophages in the progression of lupus nephritis (LN), and elucidates how these cells and their secretory products function as indicators and therapeutic targets for the disease in the context of diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Yaqian Cheng
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Lulu Liu
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei Ye
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingxue He
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Wenwen Hu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Haiyan Ke
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhi-Yong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
6
|
Wojtacha P, Bogdańska-Chomczyk E, Majewski MK, Obremski K, Majewski MS, Kozłowska A. Renal Inflammation, Oxidative Stress, and Metabolic Abnormalities During the Initial Stages of Hypertension in Spontaneously Hypertensive Rats. Cells 2024; 13:1771. [PMID: 39513878 PMCID: PMC11545559 DOI: 10.3390/cells13211771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Hypertension is a major cause of mortality worldwide. The kidneys play a crucial role in regulating blood pressure and fluid volume. The relationship between the kidneys and hypertension is complex, involving factors such as the renin-angiotensin system, oxidative stress, and inflammation. This study aims to assess the levels of inflammatory markers, oxidative stress, and metabolic factors in the kidneys, focusing on their potential role in early renal damage and their association with the development of hypertension. Methods: This study was designed to compare the levels of selected inflammatory markers, e.g., interleukins, tumor necrosis factor-α (TNF-α), transforming growth factor, and serine/threonine-protein (mTOR); oxidative stress markers such as malondialdehyde, sulfhydryl group, and glucose (GLC); and metabolic markers among other enzymes, such as alanine transaminase (ALT), aspartate transaminase (AST), hexokinase II (HK-II), and hypoxia-inducible factor-1α (HIF-1α), as well as creatinine in the kidneys of spontaneously hypertensive rats (SHR/NCrl, n = 12) and Wistar Kyoto rats (WKY/NCrl, n = 12). Both juvenile (5 weeks old) and maturing (10 weeks old) specimens were examined using spectrophotometric methods, e.g., ELISA. Results: Juvenile SHRs exhibited reduced renal levels of all studied cytokines and chemokines, with lower oxidative stress and deficits in the mTOR and HK-II levels compared to the age-matched WKYs. Maturing SHRs showed increased renal levels of interleukin-1β (IL-1β), IL-6, IL-18, and TNF-α, alongside elevated carbonyl stress and increased HIF-1α as opposed to their control peers. The levels of all other studied markers were normalized in these animals, except for ALT (increased), ALP, and GLC (both reduced). Conclusions: This study underscores the significant impact of inflammatory, oxidative stress, and metabolic marker changes on renal function. Juvenile SHRs display lower marker levels, indicating an immature immune response and potential subclinical kidney damage that may contribute to hypertension development. In contrast, mature SHRs exhibit chronic inflammation, oxidative dysregulation, and metabolic disturbances, suggesting cellular damage. These changes create a feedback loop that worsens kidney function and accelerates hypertension progression, highlighting the kidneys' crucial role in both initiating and exacerbating this condition.
Collapse
Affiliation(s)
- Paweł Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Warszawska Av, 10-082 Olsztyn, Poland
| | - Ewelina Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13/29, 10-718 Olsztyn, Poland;
| | - Michał Stanisław Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland;
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, Collegium Medicum, University of Warmia and Mazury, Warszawska Av, 30, 10-082 Olsztyn, Poland; (E.B.-C.); (M.K.M.)
| |
Collapse
|
7
|
Sean G, Banes AJ, Gangaraju R. Organoids and tissue/organ chips. Stem Cell Res Ther 2024; 15:241. [PMID: 39098898 PMCID: PMC11299405 DOI: 10.1186/s13287-024-03859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Affiliation(s)
- Graham Sean
- Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite 768, Memphis, TN, 38163, USA
| | - Albert J Banes
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC, USA
- Flexcell International Corporation, Burlington, NC, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Anatomy & Neurobiology, University of Tennessee Health Science Center, 930 Madison Ave, Suite 768, Memphis, TN, 38163, USA.
| |
Collapse
|
8
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
10
|
Pecksen E, Tkachuk S, Schröder C, Vives Enrich M, Neog A, Johnson CP, Lachmann N, Haller H, Kiyan Y. Monocytes prevent apoptosis of iPSCs and promote differentiation of kidney organoids. Stem Cell Res Ther 2024; 15:132. [PMID: 38702808 PMCID: PMC11069262 DOI: 10.1186/s13287-024-03739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.
Collapse
Affiliation(s)
- Ekaterina Pecksen
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Sergey Tkachuk
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Cristoph Schröder
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
| | - Marc Vives Enrich
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Anindita Neog
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Cory P Johnson
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Niko Lachmann
- Department of Pediatric Pneumology Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Hermann Haller
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Yulia Kiyan
- Clinics for Kidney and Hypertension Disease, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Dai C, Zhang H, Zheng Z, Li CG, Ma M, Gao H, Zhang Q, Jiang F, Cui X. Identification of a distinct cluster of GDF15 high macrophages induced by in vitro differentiation exhibiting anti-inflammatory activities. Front Immunol 2024; 15:1309739. [PMID: 38655264 PMCID: PMC11036887 DOI: 10.3389/fimmu.2024.1309739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Macrophage-mediated inflammatory response may have crucial roles in the pathogenesis of a variety of human diseases. Growth differentiation factor 15 (GDF15) is a cytokine of the transforming growth factor-β superfamily, with potential anti-inflammatory activities. Previous studies observed in human lungs some macrophages which expressed a high level of GDF15. Methods In the present study, we employed multiple techniques, including immunofluorescence, flow cytometry, and single-cell RNA sequencing, in order to further clarify the identity of such GDF15high macrophages. Results We demonstrated that macrophages derived from human peripheral blood mononuclear cells and rat bone marrow mononuclear cells by in vitro differentiation with granulocyte-macrophage colony stimulating factor contained a minor population (~1%) of GDF15high cells. GDF15high macrophages did not exhibit a typical M1 or M2 phenotype, but had a unique molecular signature as revealed by single-cell RNA sequencing. Functionally, the in vitro derived GDF15high macrophages were associated with reduced responsiveness to pro-inflammatory activation; furthermore, these GDF15high macrophages could inhibit the pro-inflammatory functions of other macrophages via a paracrine mechanism. We further confirmed that GDF15 per se was a key mediator of the anti-inflammatory effects of GDF15high macrophage. Also, we provided evidence showing that GDF15high macrophages were present in other macrophage-residing human tissues in addition to the lungs. Further scRNA-seq analysis in rat lung macrophages confirmed the presence of a GDF15high sub-population. However, these data indicated that GDF15high macrophages in the body were not a uniform population based on their molecular signatures. More importantly, as compared to the in vitro derived GDF15high macrophage, whether the tissue resident GDF15high counterpart is also associated with anti-inflammatory functions remains to be determined. We cannot exclude the possibility that the in vitro priming/induction protocol used in our study has a determinant role in inducing the anti-inflammatory phenotype in the resulting GDF15high macrophage cells. Conclusion In summary, our results suggest that the GDF15high macrophage cells obtained by in vitro induction may represent a distinct cluster with intrinsic anti-inflammatory functions. The (patho)physiological importance of these cells in vivo warrants further investigation.
Collapse
Affiliation(s)
- Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongyu Zhang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhijian Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Mingyuan Ma
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Aiello S, Benigni A, Remuzzi G. Tissue-Resident Macrophages in Solid Organ Transplantation: Harmful or Protective? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1051-1061. [PMID: 38498808 DOI: 10.4049/jimmunol.2300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/27/2023] [Indexed: 03/20/2024]
Abstract
Transplanted organs carry donor immune cells into the recipient, the majority of which are tissue-resident macrophages (TRMs). The role they play in guiding the fate of the transplanted organ toward acceptance or rejection remains elusive. TRMs originate from both embryonic and bone marrow-derived precursors. Embryo-derived TRMs retain the embryonic capability to proliferate, so they are able to self-renew and, theoretically, persist for extended periods of time after transplantation. Bone marrow-derived TRMs do not proliferate and must constantly be replenished by adult circulating monocytes. Recent studies have aimed to clarify the different roles and interactions between donor TRMs, recipient monocytes, and monocyte-derived macrophages (MFs) after organ transplantation. This review aims to shed light on how MFs affect the fate of a transplanted organ by differentiating between the role of donor TRMs and that of MFs derived from graft infiltrating monocytes.
Collapse
Affiliation(s)
- Sistiana Aiello
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
13
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
14
|
Chen L, Lu S, Wu Z, Zhang E, Cai Q, Zhang X. Innate immunity in diabetic nephropathy: Pathogenic mechanisms and therapeutic targets. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 01/02/2025]
Abstract
AbstractDiabetic nephropathy (DN) represents a prevalent chronic microvascular complication of diabetes mellitus (DM) and is a major cause of end‐stage renal disease. The anfractuous surrounding of DN pathogenesis and the intricate nature of this metabolic disorder often pose challenges in both the diagnosis and treatment of DN compared to other kidney diseases. Hyperglycaemia in DM predispose vulnerable renal cells into microenvironmental disequilibrium and thereby results in innate immunocytes infiltration including neutrophils, macrophages, myeloid‐derived suppressor cells, dendritic cells, and so forth. These immune cells play dual roles in kidney injury and closely correlated with the degree of proteinuria in DN patients. Additionally, innate immune signaling cascades, initiated by altered metabolic and hemodynamic in diabetic context, are crucial in instigating and perpetuating renal inflammation, which detrimentally contribute to DN pathogenesis. As such, anti‐inflammatory therapies, particularly those targeting innate immunity, hold renoprotective promise in DN. In this article, we reviewed the origin and feature of the above four prominent kidney innate immune cells, analyze their pathogenic role in DN, and discuss potential targeted‐therapeutic strategies, aiming to enhance the current understanding of renal innate immunity and hence help to discover promising therapeutic approaches for DN.
Collapse
Affiliation(s)
- Le‐Xin Chen
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Shu‐Ru Lu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Zhi‐Hao Wu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - En‐Xin Zhang
- Shenzhen Bao'an Authentic TCM Therapy Hospital Shenzhen PR China
| | - Qing‐Qun Cai
- The First Affiliated Hospital Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Xiao‐Jun Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| |
Collapse
|
15
|
Manoharan J, Rana R, Kuenze G, Gupta D, Elwakiel A, Ambreen S, Wang H, Banerjee K, Zimmermann S, Singh K, Gupta A, Fatima S, Kretschmer S, Schaefer L, Zeng-Brouwers J, Schwab C, Al-Dabet MM, Gadi I, Altmann H, Koch T, Poitz DM, Baber R, Kohli S, Shahzad K, Geffers R, Lee-Kirsch MA, Kalinke U, Meiler J, Mackman N, Isermann B. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024; 57:68-85.e11. [PMID: 38141610 DOI: 10.1016/j.immuni.2023.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Collapse
Affiliation(s)
- Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuheli Banerjee
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Heidi Altmann
- Dresden Integrated Liquid Biobank, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany; Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany.
| |
Collapse
|
16
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Miller SJ, Yashchenko A, Zimmerman KA. Isolation and Flow Cytometry Analysis of Macrophages from the Kidney. Methods Mol Biol 2024; 2713:171-181. [PMID: 37639123 DOI: 10.1007/978-1-0716-3437-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Renal macrophages help maintain homeostasis, participate in tissue injury and repair, and play a vital role in immune surveillance [1-3]. Kidney macrophages can be broken down into two subsets, infiltrating macrophages, which can be further broken down into Ly6Chi and Ly6Clo cells, and kidney resident macrophages. While recent studies have shed light on the differing origins and niches of these cells, a more thorough understanding of kidney macrophage populations and how they may respond to various conditions is needed. This protocol describes how to efficiently isolate murine kidney macrophage populations for flow cytometry analysis.
Collapse
Affiliation(s)
- Sarah J Miller
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alex Yashchenko
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
18
|
Ahuja HK, Azim S, Maluf D, Mas VR. Immune landscape of the kidney allograft in response to rejection. Clin Sci (Lond) 2023; 137:1823-1838. [PMID: 38126208 DOI: 10.1042/cs20230493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Preventing kidney graft dysfunction and rejection is a critical step in addressing the nationwide organ shortage and improving patient outcomes. While kidney transplants (KT) are performed more frequently, the overall number of patients on the waitlist consistently exceeds organ availability. Despite improved short-term outcomes in KT, comparable progress in long-term allograft survival has not been achieved. Major cause of graft loss at 5 years post-KT is chronic allograft dysfunction (CAD) characterized by interstitial fibrosis and tubular atrophy (IFTA). Accordingly, proactive prevention of CAD requires a comprehensive understanding of the immune mechanisms associated with either further dysfunction or impaired repair. Allograft rejection is primed by innate immune cells and carried out by adaptive immune cells. The rejection process is primarily facilitated by antibody-mediated rejection (ABMR) and T cell-mediated rejection (TCMR). It is essential to better elucidate the actions of individual immune cell subclasses (e.g. B memory, Tregs, Macrophage type 1 and 2) throughout the rejection process, rather than limiting our understanding to broad classes of immune cells. Embracing multi-omic approaches may be the solution in acknowledging these intricacies and decoding these enigmatic pathways. A transition alongside advancing technology will better allow organ biology to find its place in this era of precision and personalized medicine.
Collapse
Affiliation(s)
- Harsimar Kaur Ahuja
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Shafquat Azim
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Daniel Maluf
- Program of Transplantation, School of Medicine, 29S Greene St, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| |
Collapse
|
19
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
20
|
Sung CYW, Hayase N, Yuen PS, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage Depletion Protects Against Cisplatin-Induced Ototoxicity and Nephrotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567274. [PMID: 38014097 PMCID: PMC10680818 DOI: 10.1101/2023.11.16.567274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Mark E. Warchol
- Washington University, Department of Otolaryngology, School of Medicine, Saint Louis, MO
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Videla LA, Valenzuela R, Del Campo A, Zúñiga-Hernández J. Omega-3 Lipid Mediators: Modulation of the M1/M2 Macrophage Phenotype and Its Protective Role in Chronic Liver Diseases. Int J Mol Sci 2023; 24:15528. [PMID: 37958514 PMCID: PMC10647594 DOI: 10.3390/ijms242115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Jessica Zúñiga-Hernández
- Biomedical Sciences Department, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
22
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
23
|
Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 2023; 23:563-579. [PMID: 36922638 PMCID: PMC10017071 DOI: 10.1038/s41577-023-00848-y] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Yan J, Li X, Liu N, He JC, Zhong Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023; 11:1889. [PMID: 37509528 PMCID: PMC10377233 DOI: 10.3390/biomedicines11071889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Increasing evidence has suggested that inflammation is a key microenvironment involved in the development and progression of DN. Studies have confirmed that macrophage accumulation is closely related to the progression to human DN. Macrophage phenotype is highly regulated by the surrounding microenvironment in the diabetic kidneys. M1 and M2 macrophages represent distinct and sometimes coexisting functional phenotypes of the same population, with their roles implicated in pathological changes, such as in inflammation and fibrosis associated with the stage of DN. Recent findings from single-cell RNA sequencing of macrophages in DN further confirmed the heterogeneity and plasticity of the macrophages. In addition, intrinsic renal cells interact with macrophages directly or through changes in the tissue microenvironment. Macrophage depletion, modification of its polarization, and autophagy could be potential new therapies for DN.
Collapse
Affiliation(s)
- Jiayi Yan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xueling Li
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ni Liu
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
25
|
Tsai CY, Li KJ, Shen CY, Lu CH, Lee HT, Wu TH, Ng YY, Tsao YP, Hsieh SC, Yu CL. Decipher the Immunopathological Mechanisms and Set Up Potential Therapeutic Strategies for Patients with Lupus Nephritis. Int J Mol Sci 2023; 24:10066. [PMID: 37373215 PMCID: PMC10298725 DOI: 10.3390/ijms241210066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Lupus nephritis (LN) is one of the most severe complications in patients with systemic lupus erythematosus (SLE). Traditionally, LN is regarded as an immune complex (IC) deposition disease led by dsDNA-anti-dsDNA-complement interactions in the subendothelial and/or subepithelial basement membrane of glomeruli to cause inflammation. The activated complements in the IC act as chemoattractants to chemically attract both innate and adaptive immune cells to the kidney tissues, causing inflammatory reactions. However, recent investigations have unveiled that not only the infiltrating immune-related cells, but resident kidney cells, including glomerular mesangial cells, podocytes, macrophage-like cells, tubular epithelial cells and endothelial cells, may also actively participate in the inflammatory and immunological reactions in the kidney. Furthermore, the adaptive immune cells that are infiltrated are genetically restricted to autoimmune predilection. The autoantibodies commonly found in SLE, including anti-dsDNA, are cross-reacting with not only a broad spectrum of chromatin substances, but also extracellular matrix components, including α-actinin, annexin II, laminin, collagen III and IV, and heparan sulfate proteoglycan. Besides, the glycosylation on the Fab portion of IgG anti-dsDNA antibodies can also affect the pathogenic properties of the autoantibodies in that α-2,6-sialylation alleviates, whereas fucosylation aggravates their nephritogenic activity. Some of the coexisting autoantibodies, including anti-cardiolipin, anti-C1q, anti-ribosomal P autoantibodies, may also enhance the pathogenic role of anti-dsDNA antibodies. In clinical practice, the identification of useful biomarkers for diagnosing, monitoring, and following up on LN is quite important for its treatments. The development of a more specific therapeutic strategy to target the pathogenic factors of LN is also critical. We will discuss these issues in detail in the present article.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Immunology & Rheumatology, Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Hui-Ting Lee
- MacKay Memorial Hospital & MacKay Medical College, New Taipei City 25245, Taiwan;
| | - Tsai-Hung Wu
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Yee-Yung Ng
- Department of Medicine, Fu Jen Catholic University Hospital & College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan;
| | - Yen-Po Tsao
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan;
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 106319, Taiwan; (K.-J.L.); (C.-Y.S.); (C.-H.L.); (S.-C.H.)
| |
Collapse
|
26
|
Yashchenko A, Bland SJ, Song CJ, Ahmed UKB, Sharp R, Darby IG, Cordova AM, Smith ME, Lever JM, Li Z, Aloria EJ, Khan S, Maryam B, Liu S, Crowley MR, Jones KL, Zenewicz LA, George JF, Mrug M, Crossman DK, Hopp K, Stavrakis S, Humphrey MB, Ginhoux F, Zimmerman KA. Cx3cr1 controls kidney resident macrophage heterogeneity. Front Immunol 2023; 14:1082078. [PMID: 37256130 PMCID: PMC10225589 DOI: 10.3389/fimmu.2023.1082078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.
Collapse
Affiliation(s)
- Alex Yashchenko
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sarah J. Bland
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ummey Khalecha Bintha Ahmed
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel Sharp
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Isabella G. Darby
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Audrey M. Cordova
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Morgan E. Smith
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jeremie M. Lever
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shuja Khan
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Bibi Maryam
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth L. Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. George
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michal Mrug
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs Medical Center, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stavros Stavrakis
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mary B. Humphrey
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, Singapore
| | - Kurt A. Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
27
|
Mason WJ, Vasilopoulou E. The Pathophysiological Role of Thymosin β4 in the Kidney Glomerulus. Int J Mol Sci 2023; 24:ijms24097684. [PMID: 37175390 PMCID: PMC10177875 DOI: 10.3390/ijms24097684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diseases affecting the glomerulus, the filtration unit of the kidney, are a major cause of chronic kidney disease. Glomerular disease is characterised by injury of glomerular cells and is often accompanied by an inflammatory response that drives disease progression. New strategies are needed to slow the progression to end-stage kidney disease, which requires dialysis or transplantation. Thymosin β4 (Tβ4), an endogenous peptide that sequesters G-actin, has shown potent anti-inflammatory function in experimental models of heart, kidney, liver, lung, and eye injury. In this review, we discuss the role of endogenous and exogenous Tβ4 in glomerular disease progression and the current understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- William J Mason
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | |
Collapse
|
28
|
Bhargava R, Li H, Tsokos GC. Pathogenesis of lupus nephritis: the contribution of immune and kidney resident cells. Curr Opin Rheumatol 2023; 35:107-116. [PMID: 35797522 DOI: 10.1097/bor.0000000000000887] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Lupus nephritis is associated with significant mortality and morbidity. We lack effective therapeutics and biomarkers mostly because of our limited understanding of its complex pathogenesis. We aim to present an overview of the recent advances in the field to gain a deeper understanding of the underlying cellular and molecular mechanisms involved in lupus nephritis pathogenesis. RECENT FINDINGS Recent studies have identified distinct roles for each resident kidney cell in the pathogenesis of lupus nephritis. Podocytes share many elements of innate and adaptive immune cells and they can present antigens and participate in the formation of crescents in coordination with parietal epithelial cells. Mesangial cells produce pro-inflammatory cytokines and secrete extracellular matrix contributing to glomerular fibrosis. Tubular epithelial cells modulate the milieu of the interstitium to promote T cell infiltration and formation of tertiary lymphoid organs. Modulation of specific genes in kidney resident cells can ward off the effectors of the autoimmune response including autoantibodies, cytokines and immune cells. SUMMARY The development of lupus nephritis is multifactorial involving genetic susceptibility, environmental triggers and systemic inflammation. However, the role of resident kidney cells in the development of lupus nephritis is becoming more defined and distinct. More recent studies point to the restoration of kidney resident cell function using cell targeted approaches to prevent and treat lupus nephritis.
Collapse
Affiliation(s)
- Rhea Bhargava
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard, Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
29
|
Ji X, Cai J, Liang L, Shi T, Liu J. Gene expression variability across cells and species shapes the relationship between renal resident macrophages and infiltrated macrophages. BMC Bioinformatics 2023; 24:72. [PMID: 36858955 PMCID: PMC9976410 DOI: 10.1186/s12859-023-05198-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Two main subclasses of macrophages are found in almost all solid tissues: embryo-derived resident tissue macrophages and bone marrow-derived infiltrated macrophages. These macrophage subtypes show transcriptional and functional divergence, and the programs that have shaped the evolution of renal macrophages and related signaling pathways remain poorly understood. To clarify these processes, we performed data analysis based on single-cell transcriptional profiling of renal tissue-resident and infiltrated macrophages in human, mouse and rat. RESULTS In this study, we (i) characterized the transcriptional divergence among species and (ii) illustrated variability in expression among cells of each subtype and (iii) compared the gene regulation network and (iv) ligand-receptor pairs in human and mouse. Using single-cell transcriptomics, we mapped the promoter architecture during homeostasis. CONCLUSIONS Transcriptionally divergent genes, such as the differentially TF-encoding genes expressed in resident and infiltrated macrophages across the three species, vary among cells and include distinct promoter structures. The gene regulatory network in infiltrated macrophages shows comparatively better species-wide consistency than resident macrophages. The conserved transcriptional gene regulatory network in infiltrated macrophages among species is uniquely enriched in pathways related to kinases, and TFs associated with largely conserved regulons among species are uniquely enriched in kinase-related pathways.
Collapse
Affiliation(s)
- Xiangjun Ji
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Junwei Cai
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Lixin Liang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China. .,Beijing Advanced Innovation Center, for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing, 100083, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Honokiol suppresses the aberrant interactions between renal resident macrophages and tubular epithelial cells in lupus nephritis through the NLRP3/IL-33/ST2 axis. Cell Death Dis 2023; 14:174. [PMID: 36859530 PMCID: PMC9977833 DOI: 10.1038/s41419-023-05680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Lupus nephritis (LN) is a type of immune-complex nephritis caused by systemic lupus erythematosus and is a major contributor to mortality and morbidity. Honokiol (HNK) has been found to have a therapeutic effect on LN, but its action mechanism remains unclear. In this study, we first demonstrated that HNK attenuates kidney injury in MRL/lpr mice. Results from RNA sequencing combined with ingenuity pathway analysis suggested that HNK plays an anti-LN role through inhibition of the NLRP3 inflammasome and IL33. GEO chip data, single-cell data, and clinical samples from LN patients demonstrated that the pyroptosis and IL-33/ST2 pathways are abnormally activated during the stage of LN. In vivo, similar to the results of the AAV-mediated NLRP3 shRNA MRL/lpr model, HNK downregulated serum and renal IL-33 levels, and suppressed NLRP3 inflammasome and the IL-33/ST2 axis in the kidney. In vitro, co-culturing NLRP3-overexpressing or IL-33 knocked-down rat renal macrophages with NRK-52E cells confirmed that NLRP3 activation in resident macrophages directly upregulates IL-33, which in turn mediates the IL-33/ST2/NF-κB pathway to promote the inflammatory response of renal tubular epithelial cells. Furthermore, a molecular docking model and surface plasmon resonance analysis were utilized to demonstrate a direct interaction between HNK and NLRP3. In conclusion, this study provides a novel anti-LN treatment strategy in which HNK plays a preventive and therapeutic role against LN by suppressing the abnormal crosstalk between renal resident macrophages and renal tubular epithelial cells by inhibiting the activation of the NLRP3/IL-33/ST2 axis.
Collapse
|
31
|
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023; 194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The objective of this manuscript is to provide quantitative insights into the tissue distribution of nanoparticles. Published pharmacokinetics of nanoparticles in plasma, tumor and 13 different tissues of mice were collected from literature. A total of 2018 datasets were analyzed and biodistribution of graphene oxide, lipid, polymeric, silica, iron oxide and gold nanoparticles in different tissues was quantitatively characterized using Nanoparticle Biodistribution Coefficients (NBC). It was observed that typically after intravenous administration most of the nanoparticles are accumulated in the liver (NBC = 17.56 %ID/g) and spleen (NBC = 12.1 %ID/g), while other tissues received less than 5 %ID/g. NBC values for kidney, lungs, heart, bones, brain, stomach, intestine, pancreas, skin, muscle and tumor were found to be 3.1 %ID/g, 2.8 %ID/g, 1.8 %ID/g, 0.9 %ID/g, 0.3 %ID/g, 1.2 %ID/g, 1.8 %ID/g, 1.2 %ID/g, 1.0 %ID/g, 0.6 %ID/g and 3.4 %ID/g, respectively. Significant variability in nanoparticle distribution was observed in certain organs such as liver, spleen and lungs. A large fraction of this variability could be explained by accounting for the differences in nanoparticle physicochemical properties such as size and material. A critical overview of published nanoparticle physiologically-based pharmacokinetic (PBPK) models is provided, and limitations in our current knowledge about in vitro and in vivo pharmacokinetics of nanoparticles that restrict the development of robust PBPK models is also discussed. It is hypothesized that robust quantitative assessment of whole-body pharmacokinetics of nanoparticles and development of mathematical models that can predict their disposition can improve the probability of successful clinical translation of these modalities.
Collapse
Affiliation(s)
- Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Nagendra Chemuturi
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
32
|
Li Z, Zimmerman KA, Cherakara S, Chumley PH, Collawn JF, Wang J, Haycraft CJ, Song CJ, Chacana T, Andersen RS, Croyle MJ, Aloria EJ, Hombal RP, Thomas IN, Chweih H, Simanyi KL, George JF, Parant JM, Mrug M, Yoder BK. A kidney resident macrophage subset is a candidate biomarker for renal cystic disease in preclinical models. Dis Model Mech 2023; 16:dmm049810. [PMID: 36457161 PMCID: PMC9884121 DOI: 10.1242/dmm.049810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 732104, USA
| | - Sreelakshmi Cherakara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip H. Chumley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Courtney J. Haycraft
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Teresa Chacana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Reagan S. Andersen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mandy J. Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raksha P. Hombal
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isis N. Thomas
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanan Chweih
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin L. Simanyi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James F. George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Bajgar A, Krejčová G. On the origin of the functional versatility of macrophages. Front Physiol 2023; 14:1128984. [PMID: 36909237 PMCID: PMC9998073 DOI: 10.3389/fphys.2023.1128984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
34
|
Macrophages in Lupus Nephritis: Exploring a potential new therapeutic avenue. Clin Exp Rheumatol 2022; 21:103211. [PMID: 36252930 DOI: 10.1016/j.autrev.2022.103211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) that occurs in about half of patients. LN is characterized by glomerular deposition of immune complexes, leading to subendothelial, mesangial and subepithelial electron dense deposits, triggering immune cell infiltration and glomerular as well as tubulointerstitial injury. Monocytes and macrophages are abundantly present in inflammatory lesions, both in glomeruli and the tubulointerstitium. Here we discuss how monocytes and macrophages are involved in this process and how monocytes and macrophages may represent specific therapeutic targets to control LN.
Collapse
|
35
|
Li HD, You YK, Shao BY, Wu WF, Wang YF, Guo JB, Meng XM, Chen H. Roles and crosstalks of macrophages in diabetic nephropathy. Front Immunol 2022; 13:1015142. [PMID: 36405700 PMCID: PMC9666695 DOI: 10.3389/fimmu.2022.1015142] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy (DN) is the most common chronic kidney disease. Accumulation of glucose and metabolites activates resident macrophages in kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by releasing cytokines/chemokines, recruiting peripheral monocytes/macrophages, enhancing renal cell injuries (podocytes, mesangial cells, endothelial cells and tubular epithelial cells), and macrophage-myofibroblast transition. The differentiation and cross-talks of macrophages ultimately result renal inflammation and fibrosis in DN. Emerging evidence shows that targeting macrophages by suppressing macrophage activation/transition, and macrophages-cell interactions may be a promising approach to attenuate DN. In the review, we summarized the diverse roles of macrophages and the cross-talks to other cells in DN, and highlighted the therapeutic potentials by targeting macrophages.
Collapse
Affiliation(s)
- Hai-Di Li
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Bao-Yi Shao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wei-Feng Wu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi-Fan Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jian-Bo Guo
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| | - Haiyong Chen
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| |
Collapse
|
36
|
Wei W, Zhao Y, Zhang Y, Jin H, Shou S. The role of IL-10 in kidney disease. Int Immunopharmacol 2022; 108:108917. [DOI: 10.1016/j.intimp.2022.108917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023]
|
37
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Sears SM, Vega AA, Kurlawala Z, Oropilla GB, Krueger A, Shah PP, Doll MA, Miller R, Beverly LJ, Siskind LJ. F4/80 hi Resident Macrophages Contribute to Cisplatin-Induced Renal Fibrosis. KIDNEY360 2022; 3:818-833. [PMID: 36128491 PMCID: PMC9438415 DOI: 10.34067/kid.0006442021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023]
Abstract
Background Cisplatin-induced kidney injury remains a major obstacle in utilizing cisplatin as a chemotherapeutic for solid-organ cancers. Thirty percent of patients treated with cisplatin develop acute kidney injury (AKI), and even patients who do not develop AKI are at risk for long-term declines in kidney function and development of chronic kidney disease (CKD). Modeling cisplatin-induced kidney injury in mice has revealed that repeated low doses of cisplatin lead to development of kidney fibrosis. This model can be used to examine AKI-to-CKD transition processes. Macrophages play a role in some of these processes, including immune response, wound healing, and tissue remodeling. Depleting macrophage populations in the kidney reduced fibrosis development in other models of renal fibrosis. Methods We used either C57BL/6 mice with a Ccr2 genetic knockout or liposome encapsulated clodronate (Clodrosome) to deplete macrophage populations during repeated 9 mg/kg cisplatin treatments. We assessed how immune cell populations were altered in the blood and kidney of these mice and how these alterations affected development of renal fibrosis and kidney injury. Results We found that Clodrosome treatment decreased collagen deposition, myofibroblast accumulation, and inflammatory cytokine production, whereas Ccr2 genetic knockout had no effect on these markers after cisplatin treatment. Additionally, Ccr2-/- mice had decreased levels of F4/80lo infiltrating macrophages in the kidney after cisplatin treatments, but Clodrosome treatment depleted F4/80hi resident and CD206+ M2 macrophages. Conclusions These data suggest that Clodrosome depletion of F4/80hi and M2 macrophages in the kidney attenuates development of renal fibrosis after repeated low doses of cisplatin.
Collapse
Affiliation(s)
- Sophia M. Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Alexis A. Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Zimple Kurlawala
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Gabrielle B. Oropilla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Austin Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Parag P. Shah
- Department of Medicine, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Robert Miller
- University of Louisville Brown Cancer Center, Louisville, Kentucky
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Levi J. Beverly
- Department of Medicine, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| | - Leah J. Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| |
Collapse
|
39
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Akhmanova M, Emtenani S, Krueger D, Gyoergy A, Guarda M, Vlasov M, Vlasov F, Akopian A, Ratheesh A, De Renzis S, Siekhaus DE. Cell division in tissues enables macrophage infiltration. Science 2022; 376:394-396. [PMID: 35446632 DOI: 10.1101/2021.04.19.438995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
Collapse
Affiliation(s)
- Maria Akhmanova
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Daniel Krueger
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Attila Gyoergy
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mariana Guarda
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Fedor Vlasov
- Bundesgymnasium Klosterneuburg, Klosterneuburg, Austria
| | | | - Aparna Ratheesh
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daria E Siekhaus
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
41
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
42
|
Spontaneous Polycystic Kidneys with Chronic Renal Failure in an Aged House Musk Shrew (Suncus murinus). Vet Sci 2022; 9:vetsci9030123. [PMID: 35324851 PMCID: PMC8953240 DOI: 10.3390/vetsci9030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic kidney disease is one of the most common inheritable renal diseases, characterized by the formation of multiple fluid-filled renal cysts. This disease is a progressive and unfortunately incurable condition. A case of polycystic kidney with chronic renal failure in house musk shrew (Suncus murinus) is described. At clinical presentation, a 16-month-old Suncus murinus showed weight loss and coarse fur. Regarding the biochemical profile, total protein concentrations increased, resulting in a declined albumin: globulin ratio. Blood urea nitrogen and creatinine concentrations were markedly elevated, indicating the end stage of chronic renal failure. Serum amyloid A levels increased and revealed inflammatory reaction during the cyst formation. Histopathologically, multiple cysts were lined by a single layer of epithelial cells or low cuboidal epithelium. The contents were homogenous eosinophilic materials (mucopolysaccharides or mucoproteins) and these cysts contained abundant macrophages. There were also regeneration and dilatation of renal tubes and interstitial fibrosis. The atrophic glomeruli and glomerular capsules were thickened and hyalinized by dense amorphous mucopolysaccharides. These histopathological findings suggested that the pathogenesis of polycystic kidney disease shared a common mechanistic feature across species.
Collapse
|
43
|
Bell RMB, Conway BR. Macrophages in the kidney in health, injury and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:101-147. [PMID: 35461656 DOI: 10.1016/bs.ircmb.2022.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel M B Bell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
44
|
Weissenbacher A, Stone JP, Lo Faro ML, Hunter JP, Ploeg RJ, Coussios CC, Fildes JE, Friend PJ. Hemodynamics and Metabolic Parameters in Normothermic Kidney Preservation Are Linked With Donor Factors, Perfusate Cells, and Cytokines. Front Med (Lausanne) 2022; 8:801098. [PMID: 35083252 PMCID: PMC8784871 DOI: 10.3389/fmed.2021.801098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
Kidney transplantation is the best renal-replacement option for most patients with end-stage renal disease. Normothermic machine preservation (NMP) of the kidney has been studied extensively during the last two decades and implemented in clinical trials. Biomarker research led to success in identifying molecules with diagnostic, predictive and therapeutic properties in chronic kidney disease. However, perfusate biomarkers and potential predictive mechanisms in NMP have not been identified yet. Twelve discarded human kidneys (n = 7 DBD, n = 5 DCD) underwent NMP for up to 24 h. Eight were perfused applying urine recirculation (URC), four with replacement of urine (UR) using Ringer's lactate. The aim of our study was to investigate biomarkers (NGAL, KIM-1, and L-FABP), cells and cytokines in the perfusate in context with donor characteristics, perfusate hemodynamics and metabolic parameters. Cold ischemia time did not correlate with any of the markers. Perfusates of DBD kidneys had a significantly lower number of leukocytes after 6 h of NMP compared to DCD. Arterial flow, pH, NGAL and L-FABP correlated with donor creatinine and eGFR. Arterial flow was higher in kidneys with lower perfusate lactate. Perfusate TNF-α was higher in kidneys with lower arterial flow. The cytokines IL-1β and GM-CSF decreased during 6 h of NMP. Kidneys with more urine output had lower perfusate KIM-1 levels. Median and 6-h values of lactate, arterial flow, pH, NGAL, KIM-1, and L-FABP correlated with each other indicating a 6-h period being applicable for kidney viability assessment. The study results demonstrate a comparable cytokine and cell profile in perfusates with URC and UR. In conclusion, clinically available perfusate and hemodynamic parameters correlate well with donor characteristics and measured biomarkers in a discarded human NMP model.
Collapse
Affiliation(s)
- Annemarie Weissenbacher
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - John P Stone
- The ex-vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,The ex-vivo Research Centre Community Interest Company (CIC), Macclesfield, United Kingdom
| | - Maria Letizia Lo Faro
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - James P Hunter
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Rutger J Ploeg
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - James E Fildes
- The ex-vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,The ex-vivo Research Centre Community Interest Company (CIC), Macclesfield, United Kingdom
| | - Peter J Friend
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, Fan Z, Wang W, Chen W, Yuan S, Xu M, Xu Q, Luan Z, Xia Z, Zhou P, Huang Y, Chen L. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med 2022; 14:e14502. [PMID: 34898004 PMCID: PMC8749493 DOI: 10.15252/emmm.202114502] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Jinxia Liang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Tong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Jin Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Bo Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
- MOE Key Laboratory of Glucolipid Metabolic DiseasesGuangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineCollege of Chinese Medicine ResearchGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yingchang Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Zhenzhen Fan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Weida Wang
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wensheng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular BiologyInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhouChina
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Sujing Yuan
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Meng Xu
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Qigui Xu
- Translational medicine laboratoryPeople’s Hospital of Yangjiang CityGuangdongChina
| | - Zhidong Luan
- Translational medicine laboratoryPeople’s Hospital of Yangjiang CityGuangdongChina
| | - Zhongjun Xia
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yadong Huang
- Guangdong Province Key Laboratory of Bioengineering MedicineJinan UniversityGuangzhouChina
| | - Liang Chen
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Bioengineering MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
46
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
47
|
Bijarchian F, Taghiyar L, Azhdari Z, Baghaban Eslaminejad M. M2c Macrophages enhance phalange regeneration of amputated mice digits in an organ co-culture system. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1602-1612. [PMID: 35317116 PMCID: PMC8917845 DOI: 10.22038/ijbms.2021.57887.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Objectives Delayed anti-inflammatory responses and scar-formation are the main causes for inability of injured body parts such as phalanges to regrow in mammals. Salamanders can regenerate fully scar-free body structures, followed by the appearance of anti-inflammatory responses at the injured site immediately after amputation. This study aimed to evaluate the local regenerative effects of direct amplified anti-inflammatory signals on regeneration of amputated mice digit tips using M2c-macrophages in a co-cultured organ system for the first time. Materials and Methods We used the amputated digits from the paws of 18.5E day old C57BL/6J mice. Monocytes were obtained from peripheral blood and co-cultured with amputated digits, which subsequently enhanced the M2c macrophage phenotype induced by IL-10. We also examined the regenerative effects of IL-10 and transcription growth factor-beta 1 (TGF-β1). Results The regrowth of new tissue occurred 10 days post-amputation in all groups. This regrowth was related to enhanced Msh homeobox-1 (Msx1), Msh homeobox-2 (Msx2), and bone morphogenic protein-4 (Bmp4) genes. Increased expression of fibroblast growth factor-8 (Fgf-8) also increased the proliferation rate. Histological analyses indicated that epidermal-closure occurred at 3-dpa in all groups. We observed full digit tip regeneration in the co-cultured group. Particularly, there was new tissue regrowth observed with 40 µg/ml of IL-10 and 120 µg/ml of TGF-β. In contrast, the control group had no remarkable digit elongation. Conclusion We propose that a direct amplified anti-inflammatory response at the digit injury site can regenerate epithelial and mesenchymal tissues, and might be useful for limb regeneration without scar formation in adult mammals.
Collapse
Affiliation(s)
- Fatemeh Bijarchian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Zahra Azhdari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran,Corresponding author: Mohamadreza Baghaban Eslaminejad. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Street, Tehran, Iran. Tel: +98-21-23562524; Fax: +98-21-23562507;
| |
Collapse
|
48
|
Selective depletion of a CD64-expressing phagocyte subset mediates protection against toxic kidney injury and failure. Proc Natl Acad Sci U S A 2021; 118:2022311118. [PMID: 34518373 PMCID: PMC8488624 DOI: 10.1073/pnas.2022311118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells (DC), macrophages, and monocytes, collectively known as mononuclear phagocytes (MPs), critically control tissue homeostasis and immune defense. However, there is a paucity of models allowing to selectively manipulate subsets of these cells in specific tissues. The steady-state adult kidney contains four MP subsets with Clec9a-expression history that include the main conventional DC1 (cDC1) and cDC2 subtypes as well as two subsets marked by CD64 but varying levels of F4/80. How each of these MP subsets contributes to the different phases of acute kidney injury and repair is unknown. We created a mouse model with a Cre-inducible lox-STOP-lox-diphtheria toxin receptor cassette under control of the endogenous CD64 locus that allows for diphtheria toxin-mediated depletion of CD64-expressing MPs without affecting cDC1, cDC2, or other leukocytes in the kidney. Combined with specific depletion of cDC1 and cDC2, we revisited the role of MPs in cisplatin-induced kidney injury. We found that the intrinsic potency reported for CD11c+ cells to limit cisplatin toxicity is specifically attributed to CD64+ MPs, while cDC1 and cDC2 were dispensable. Thus, we report a mouse model allowing for selective depletion of a specific subset of renal MPs. Our findings in cisplatin-induced injury underscore the value of dissecting the functions of individual MP subsets in kidney disease, which may enable therapeutic targeting of specific immune components in the absence of general immunosuppression.
Collapse
|
49
|
Role of macrophages in fetal development and perinatal disorders. Pediatr Res 2021; 90:513-523. [PMID: 33070164 DOI: 10.1038/s41390-020-01209-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
In the fetus and the neonate, altered macrophage function has been implicated not only in inflammatory disorders but also in developmental abnormalities marked by altered onset, interruption, or imbalance of key structural changes. The developmental role of macrophages were first noted nearly a century ago, at about the same time when these cells were being identified as central effectors in phagocytosis and elimination of microbes. Since that time, we have made considerable progress in understanding the diverse roles that these cells play in both physiology and disease. Here, we review the role of fetal and neonatal macrophages in immune surveillance, innate immunity, homeostasis, tissue remodeling, angiogenesis, and repair of damaged tissues. We also discuss the possibility of therapeutic manipulation of the relative abundance and activation status of macrophage subsets in various diseases. This article combines peer-reviewed evidence from our own studies with results of an extensive literature search in the databases PubMed, EMBASE, and Scopus. IMPACT: We have reviewed the structure, differentiation, and classification of macrophages in the neonatal period. Neonatal macrophages are derived from embryonic, hepatic, and bone marrow precursors. Macrophages play major roles in tissue homeostasis, innate immunity, inflammation, tissue repair, angiogenesis, and apoptosis of various cellular lineages in various infectious and inflammatory disorders. Macrophages and related inflammatory mediators could be important therapeutic targets in several neonatal diseases.
Collapse
|
50
|
Zimmerman KA, Yang Z, Lever JM, Li Z, Croyle MJ, Agarwal A, Yoder BK, George JF. Kidney resident macrophages in the rat have minimal turnover and replacement by blood monocytes. Am J Physiol Renal Physiol 2021; 321:F162-F169. [PMID: 34180717 PMCID: PMC8424665 DOI: 10.1152/ajprenal.00129.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/12/2023] Open
Abstract
Kidney resident macrophages (KRMs) are involved in maintaining renal homeostasis and in controlling the pathological outcome of acute kidney injury and cystic kidney disease in mice. In adult mice, KRMs maintain their population through self-renewal with little or no input from the peripheral blood. Despite recent data suggesting that a transcriptionally similar population of KRM-like cells is present across species, the idea that they are self-renewing and minimally dependent on peripheral blood input in other species has yet to be proven due to the lack of an appropriate model and cross-species expression markers. In this study, we used our recently identified cross-species KRM cell surface markers and parabiosis surgery in inbred Lewis rats to determine if rat KRMs are maintained independent of peripheral blood input, similar to their mouse counterparts. Flow cytometry analysis indicated that parabiosis surgery in the rat results in the establishment of chimerism of T/B cells, neutrophils, and monocyte-derived infiltrating macrophages in the blood, spleen, and kidney 3 wk after parabiosis surgery. Analysis of KRMs using the cell surface markers CD81 and C1q indicated that these cells have minimal chimerism and, therefore, receive little input from the peripheral blood. These data indicate that KRM properties are conserved in at least two different species.NEW & NOTEWORTHY In this report, we performed parabiosis surgery on inbred Lewis rats and showed that rat kidney resident macrophages (KRMs), identified using our novel cross-species markers, are minimally dependent on peripheral blood input. Thus, for the first time, to our knowledge, we confirm that a hallmark of mouse KRMs is also present in KRMs isolated from another species.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhengqin Yang
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremie M Lever
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|