1
|
Coxon J, Linder E, Sweet C, Magness S, Green L. Replicating Host-Microbiome Interactions: Harnessing Organ-on-a-Chip and Organoid Technologies to Model Vaginal and Lung Physiology. Annu Rev Biomed Eng 2025; 27:403-423. [PMID: 39971348 DOI: 10.1146/annurev-bioeng-110122-122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Organ-on-a-chip (OOC) and organoid technologies are at the forefront of developing sophisticated in vitro systems that replicate complex host-microbiome interactions, including those associated with vaginal health and lung infection. We explore how these technologies provide insights into host-microbiome and host-pathogen interactions and the associated immune responses. Integrating omics data and high-resolution imaging in analyzing these models enhances our understanding of host-microbiome interactions' temporal and spatial aspects, paving the way for new diagnostic and treatment strategies. This review underscores the potential of OOC and organoid technologies in elucidating the complexities of vaginal health and lung disease, which have received less attention than other organ systems in recent organoid and OCC studies. Yet, each system presents notable characteristics, rendering them ideal candidates for these designs. Additionally, this review describes the key factors associated with each organ system and how to choose the technology setup to replicate human physiology.
Collapse
Affiliation(s)
- Jade Coxon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Emily Linder
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Caden Sweet
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott Magness
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - Leopold Green
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Mihuta C, Socaci A, Hogea P, Tudorache E, Mihuta MS, Oancea C. Comparative Insights into COVID-19 and Tuberculosis: Clinical Manifestations, Inflammatory Markers, and Outcomes in Pulmonary Versus Extrapulmonary Tuberculosis and SARS-CoV-2 Co-Infection. J Clin Med 2025; 14:2782. [PMID: 40283612 PMCID: PMC12028324 DOI: 10.3390/jcm14082782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Tuberculosis and COVID-19 co-infection poses significant clinical challenges, with pulmonary TB (PTB) and extrapulmonary TB (extraPTB) potentially influencing disease progression and outcomes differently. This study aims to compare the clinical manifestations, inflammatory markers, and outcomes between PTB and extraPTB patients with SARS-CoV-2 co-infection. Methods: A retrospective, cross-sectional study was conducted on 55 hospitalized adults with TB-COVID-19 co-infection from March 2020 to March 2022. Patients were divided into PTB (n = 32) and extraPTB (n = 23) groups. Demographic, clinical, laboratory, and imaging data were collected and analyzed using statistical models, including ANCOVA, LASSO regression, and Random Forest classification, to identify key predictors of hospitalization duration and mortality. Results: PTB patients had significantly lower BMI, worse oxygenation status, and greater lung involvement on CT compared to extraPTB patients. CRP was elevated in PTB, while IL-6 levels were higher in extraPTB. Hospitalization duration was primarily influenced by inflammatory and coagulation markers (IL-6, D-dimer, neutrophil count, systemic inflammatory index), while higher BMI was associated with shorter stays. Mortality risk was strongly correlated with oxygenation impairment (worst SpO2, SpO2 at diagnosis), inflammatory burden (CRP, LDH), and CT severity score, rather than TB localization. Conclusions: TB localization did not independently affect hospitalization duration or mortality risk. Instead, severe lung involvement, systemic inflammation, and hypoxemia were the strongest predictors of poor outcomes. These findings emphasize the importance of early risk stratification based on respiratory and inflammatory markers to optimize patient management. Further research is needed to clarify the long-term impact of TB-COVID-19 co-infection, particularly in extraPTB cases.
Collapse
Affiliation(s)
- Camil Mihuta
- Department of Doctoral Studies, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adriana Socaci
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Department of Biology and Life Sciences, Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Patricia Hogea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Simina Mihuta
- Department of Pediatrics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristian Oancea
- Clinical Hospital for Infectious Diseases and Pneumology “Dr. Victor Babes”, 300041 Timisoara, Romania; (P.H.); (E.T.); (C.O.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Pulmonology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Jacob IB, Lawal AO, Mahmoud SS, Kopsack EM, Reynolds ES, Meng Q, Fan H, Massa PT, Thangamani S, Jia H, Wang G. Differential immunoregulation by human surfactant protein A variants determines severity of SARS-CoV-2-induced lung disease. Front Immunol 2025; 16:1462278. [PMID: 40242753 PMCID: PMC12000003 DOI: 10.3389/fimmu.2025.1462278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens. The human SP-A genes (SFTPA1 and SFTPA2) are highly polymorphic and comprise several common genetic variants, i.e., SP-A1 (variants 6A2, 6A4) and SP-A2 (variants 1A0, 1A3). Here, we elucidated the differential antiviral and immunoregulatory roles of SP-A variants in response to SARS-CoV-2 infection in vivo. Methods Six genetically-modified mouse lines, expressing both hACE2 (SARS-CoV-2 receptor) and individual SP-A variants: (hACE2/6A2 (6A2), hACE2/6A4 (6A4), hACE2/1A0 (1A0), and hACE2/1A3 (1A3), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were challenged intranasally with 103 PFU SARS-CoV-2 or MEM medium (Sham). Results Infected KO and 1A0 mice had more weight loss and mortality compared to other mouse lines. Relative to other infected mouse lines, a more severe ALI was observed in KO, 1A0, and 6A2 mice. Reduced viral titers were generally observed in the lungs of infected SP-A mice relative to KO mice. Transcriptomic analysis revealed an upregulation in genes that play central roles in immune responses such as MyD88, Stat3, IL-18, and Jak2 in the lungs of KO and 1A0 mice. However, Mapk1 was significantly downregulated in 6A2 versus 1A0 mice. Analysis of biological pathways identified those involved in lung host defense and innate immunity, including pathogen-induced cytokine, NOD1/2, and Trem1 signaling pathways. Consistent with the transcriptomic data, levels of cytokines and chemokines such as G-CSF, IL-6, and IL-1β were comparatively higher in the lungs and sera of KO and 1A0 mice with the highest mortality rate. Furthermore, we observed the complexity of COVID-19, such as the difference between lung and systemic immune response to viral infection and of viral load and mortality among SP-A variants in this model. Conclusion These findings demonstrate that human SP-A variants differentially modulate SARS-CoV-2-induced lung injury and disease severity by differentially inhibiting viral infectivity and regulating immune-related gene expressions.
Collapse
Affiliation(s)
- Ikechukwu B. Jacob
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Akinkunmi O. Lawal
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Salma S. Mahmoud
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Emerson M. Kopsack
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Erin S. Reynolds
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Qinghe Meng
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Paul T. Massa
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Neurology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Hongpeng Jia
- Department of Surgery, Johns-Hopkins University, Baltimore, MD, United States
| | - Guirong Wang
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Quinn AE, Zhao L, Bell SD, Huq MH, Fang Y. Exploring Asthma as a Protective Factor in COVID-19 Outcomes. Int J Mol Sci 2025; 26:1678. [PMID: 40004141 PMCID: PMC11855143 DOI: 10.3390/ijms26041678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Asthma has long been associated with increased susceptibility to viral respiratory infections, leading to significant exacerbations and poorer clinical outcomes. Contrarily and interestingly, emerging data and research surrounding the COVID-19 pandemic have shown that patients with asthma infected with SARS-CoV-2 experienced decreased severity of disease, lower hospitalization rates, as well as decreased morbidity and mortality. Research has shown that eosinophils could enhance immune defense against viral infections, while inhaled corticosteroids can assist in controlling systematic inflammation. Moreover, reduced ACE-2 expression in individuals with asthma may restrict viral entry, and the Th2 immune response may offset the Th1 response typically observed in severe COVID-19 patients. These factors may help explain the favorable outcomes seen in asthmatic patients during the COVID-19 pandemic. This review highlights potential protective mechanisms seen in asthmatic patients, including eosinophilia, the use of inhaled corticosteroids, reduced ACE-2 expression, and a dominate Th2 immune response. Such a study will be helpful to better manage patients with asthma who have contracted COVID-19.
Collapse
Affiliation(s)
- Anthony E. Quinn
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Lei Zhao
- The Department of Respiratory Medicine, the 2nd People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China;
| | - Scott D. Bell
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Muhammad H. Huq
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Mahmoud S, Sarkar A, AlMahmoud L, Alladaboina S, Syed LF, Yaghmour M, Elmoh S, AlShebani M, Aly K, Al-Ansari H, Al-Mohamedi M, Yagan L, Zakaria D. Solid Organ Transplants Caused by COVID-19 Infection and the Outcome of Transplantation Post-COVID-19: A Systematic Review. Biomedicines 2025; 13:428. [PMID: 40002841 PMCID: PMC11852956 DOI: 10.3390/biomedicines13020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has imposed several medical and economic challenges since its onset in 2019. This is due to its ability to target the respiratory system as well as other organs, resulting in significant impacts and necessitating organ transplants. Our goal is to compile information from the existing literature to investigate how COVID-19 affects outcomes following organ transplantation. A comprehensive literature search was conducted to target studies reporting post-COVID-19 complications. We included 45 studies reporting data related to solid organ transplants, where either the recipient, organ, or donor was affected by SARS-CoV-2. The majority of the included studies concluded that organ transplantation following COVID-19 infection could be performed safely and with similar outcomes to non-COVID-19 patients, regardless of whether the organ, donor, or recipient was affected by COVID-19. No deviation from standard immunosuppression regimens or surgical protocols was necessary either, further re-assuring the feasibility of these transplants as viable treatment options. This applies to organ transplants involving the lungs, kidneys, liver, or heart. However, there was a limited number of studies in some areas, which warrants the need for additional research in order to reach more concrete conclusions pertaining to COVID-19's effect on organ transplants.
Collapse
Affiliation(s)
- Shadi Mahmoud
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Latifa AlMahmoud
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Sushanth Alladaboina
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Leena F. Syed
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Mohammad Yaghmour
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Safaa Elmoh
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Meera AlShebani
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Kareem Aly
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Haya Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Mohammed Al-Mohamedi
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Lina Yagan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dalia Zakaria
- Department of Pre-Medical Education, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| |
Collapse
|
6
|
Morales AE, Dong Y, Brown T, Baid K, Kontopoulos DG, Gonzalez V, Huang Z, Ahmed AW, Bhuinya A, Hilgers L, Winkler S, Hughes G, Li X, Lu P, Yang Y, Kirilenko BM, Devanna P, Lama TM, Nissan Y, Pippel M, Dávalos LM, Vernes SC, Puechmaille SJ, Rossiter SJ, Yovel Y, Prescott JB, Kurth A, Ray DA, Lim BK, Myers E, Teeling EC, Banerjee A, Irving AT, Hiller M. Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature 2025; 638:449-458. [PMID: 39880942 PMCID: PMC11821529 DOI: 10.1038/s41586-024-08471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2024] [Indexed: 01/31/2025]
Abstract
Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.
Collapse
Affiliation(s)
- Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Yue Dong
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dimitrios -Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Arkadeb Bhuinya
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Xiaomeng Li
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ping Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yixin Yang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tanya M Lama
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sebastien J Puechmaille
- Institut Universitaire de France, Paris, France
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Joseph B Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron T Irving
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center for Infection, Immunity and Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China.
- Department of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
- Senckenberg Research Institute, Frankfurt, Germany.
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
7
|
Alicia LB, María Ángeles OG, Desirée MG, Maximino R, Marilina GA. Utility of Protein Markers in COVID-19 Patients. Int J Mol Sci 2025; 26:653. [PMID: 39859366 PMCID: PMC11766239 DOI: 10.3390/ijms26020653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
COVID-19 has been a challenge at the healthcare level not only in the early stages of the pandemic, but also in the subsequent appearance of long-term COVID-19. Several investigations have attempted to identify proteomic biomarkers in an attempt to improve clinical care, guide treatment and predict possible patient outcomes. Proteins such as C-reactive protein (CRP) or interleukin 6 (IL-6) are clear markers of severe disease, but many others have been proposed that could help in risk stratification and in the prediction of specific complications. This review aims to bring together the most relevant studies in this regard, providing information to identify the most notable biomarkers in relation to COVID-19 found to date.
Collapse
Affiliation(s)
- López-Biedma Alicia
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
| | - Onieva-García María Ángeles
- Preventive Medicine and Public Health Unit, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain;
- Preventive Medicine and Public Health Research Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, 14004 Cordoba, Spain
| | - Martín-García Desirée
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain
| | - Redondo Maximino
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain
| | - García-Aranda Marilina
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
8
|
Liu Z, Wang S. A novel biomarker of COVI-19: MMP8 emerged by integrated bulk RNAseq and single-cell sequencing. Sci Rep 2024; 14:31086. [PMID: 39730651 PMCID: PMC11680813 DOI: 10.1038/s41598-024-82227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
COVID-19 has been emerging as the most influential illness which has caused great costs to the heath of population and social economy. Sivelestat sodium (SS) is indicated as an effective cure for lung dysfunction, a characteristic symptom of COVID-19 infection, but its pharmacological target is still unclear. Therefore, a deep understanding of the pathological progression and molecular alteration is an urgent issue for settling the diagnosis and therapy problems of COVID-19. In this study, the bulk ribonucleic acid sequencing (RNA-seq) data of healthy donors and non-severe and severe COVID-19 patients were collected. Then, target differentially expressed genes (DEGs) were screened through integrating sequencing data and the pharmacological database. Besides, with the help of functional and molecular interaction analyses, the potential effect of target gene alteration on COVID-19 progression was investigated. Single-cell sequencing was performed to evaluate the cell distribution of target genes, and the possible interaction of gene-positive cells with other cells was explored by intercellular ligand-receptor pattern analysis. The results showed that matrix metalloproteinase 8 (MMP8) was upregulated in severe COVID-19 patients, which was also identified as a targeting site to SS. Additionally, MMP8 took a core part in the regulatory interaction network of the screened DEGs in COVID-19 and was dramatically correlated with the inflammatory signaling pathway. The further investigations indicated that MMP8 was mainly expressed in myelocytes with a high degree of heterogeneity. MMP8-positive myelocytes interacted with other cell types through RETN-TLR4 and RETN-CAP1 ligand-receptor patterns. These findings emphasize the important role of MMP8 in COVID-19 progression and provide a potential therapeutic target for COVID-19 patients.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Shunda Wang
- Department of Rehabilitative medicine, Shaanxi Provincial People's Hospital, No.256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
9
|
Zhao A, Liu Y, Xia J, Huang L, Lu Q, Tang Q, Gan W. Establishment and validation of a prognostic model based on common laboratory indicators for SARS-CoV-2 infection in Chinese population. Ann Med 2024; 56:2400312. [PMID: 39239874 PMCID: PMC11382706 DOI: 10.1080/07853890.2024.2400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND At the beginning of December 2022, the Chinese government made major adjustments to the epidemic prevention and control measures. The epidemic infection data and laboratory makers for infected patients based on this period may help with the management and prognostication of COVID-19 patients. METHODS The COVID-19 patients hospitalized during December 2022 were enrolled. Logistic regression analysis was used to screen significant factors associated with mortality in patients with COVID-19. Candidate variables were screened by LASSO and stepwise logistic regression methods and were used to construct logistic regression as the prognostic model. The performance of the models was evaluated by discrimination, calibration, and net benefit. RESULTS 888 patients were eligible, consisting of 715 survivors and 173 all-cause deaths. Factors significantly associated with mortality in COVID-19 patients were: lactate dehydrogenase (LDH), albumin (ALB), procalcitonin (PCT), age, smoking history, malignancy history, high density lipoprotein cholesterol (HDL-C), lactate, vaccine status and urea. 335 of the 888 eligible patients were defined as ICU cases. Seven predictors, including neutrophil to lymphocyte ratio, D-dimer, PCT, C-reactive protein, ALB, bicarbonate, and LDH, were finally selected to establish the prognostic model and generate a nomogram. The area under the curve of the receiver operating curve in the training and validation cohorts were respectively 0.842 and 0.853. In terms of calibration, predicted probabilities and observed proportions displayed high agreements. Decision curve analysis showed high clinical net benefit in the risk threshold of 0.10-0.85. A cutoff value of 81.220 was determined to predict the outcome of COVID-19 patients via this nomogram. CONCLUSIONS The laboratory model established in this study showed high discrimination, calibration, and net benefit. It may be used for early identification of severe patients with COVID-19.
Collapse
Affiliation(s)
- Anjiang Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiang Xia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Sichuan Province Orthopedic Hospital, Chengdu, China
| | - Lan Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical Laboratory, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Qing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical Laboratory, Guangnan County People's Hospital, Wenshan, China
| | - Qin Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical Laboratory, Yuechi County Hospital of Traditional Chinese Medicine, Guangan, Sichuan, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| |
Collapse
|
10
|
Mayamba Nlandu Y, Tannor EK, Bamikefa TA, Rissassi Makulo JR. Kidney damage associated with COVID-19: from the acute to the chronic phase. Ren Fail 2024; 46:2316885. [PMID: 38561236 PMCID: PMC10986440 DOI: 10.1080/0886022x.2024.2316885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) infection is well established as a systemic disease including kidney damage. The entry point into the renal cell remains the angiotensin-converting enzyme 2 (ACE-2) receptor and the spectrum of renal lesions is broad, with a clear predominance of structural and functional tubular lesions. The most common form of glomerular injury is collapsing glomerulopathy (CG), which is strongly associated with apolipoprotein L1(APOL-1) risk variants. These acute lesions, which are secondary to the direct or indirect effects of SARS-CoV-2, can progress to chronicity and are specific to long COVID-19 in the absence of any other cause. Residual inflammation associated with SARS-CoV-2 infection, in addition to acute kidney injury (AKI) as a transitional state with or without severe histological lesions, may be responsible for greater kidney function decline in mild-to-moderate COVID-19. This review discusses the evidence for renal histological markers of chronicity in COVID-19 patients and triggers of low-grade inflammation that may explain the decline in kidney function in the post-COVID-19 period.
Collapse
Affiliation(s)
- Yannick Mayamba Nlandu
- Nephrology Unit, Kinshasa University Hospital, Kinshasa, Democratic Republic of the Congo
| | - Elliot Koranteng Tannor
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Directorate of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | | |
Collapse
|
11
|
Lin WT, Zhang YJ, Yan MK, Cai XT, Cai XE, Xu J. The Role of the Tissue Perfusion Index in Predicting Disease Severity and Prognosis in Patients with Severe and Critical COVID-19. J Intensive Care Med 2024; 39:1212-1220. [PMID: 38748540 DOI: 10.1177/08850666241253162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
OBJECTIVES The study investigated whether percutaneous partial pressure of oxygen (PtcO2), percutaneous partial pressure of carbon dioxide (PtcCO2), and the derived tissue perfusion index (TPI) can predict the severity and short-term outcomes of severe and critical COVID-19. DESIGN Prospective observational study conducted from January 1, 2023 to February 10, 2023. SETTING A teaching hospital specializing in tertiary care in Nanjing City, Jiangsu Province, China. PARTICIPANTS Adults (≥18 years) with severe and critical COVID-19. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The general information and vital signs of the patients were collected. The PtcO2 and PtcCO2 were monitored in the left dorsal volar. The ratio of TPI was defined as the ratio of PtcO2/fraction of inspired oxygen (FiO2) to PtcCO2. Mortality at 28 was recorded. The ability of the TPI to assess disease severity and predict prognosis was determined. ENDPOINT Severity of the disease on the enrollment and mortality at 28. RESULTS A total of 71 patients with severe and critical COVID-19, including 40 severe and 31 critical cases, according to the COVID-19 treatment guidelines published by WHO, were recruited. Their median age was 70 years, with 56 (79%) males. The median SpO2/FiO2, PtcO2, PtcCO2, PtcO2/ FiO2, and TPI values were 237, 61, 42, 143, and 3.6 mm Hg, respectively. Compared with those for severe COVID-19, the TPI, PtcO2/ FiO2, SpO2/FiO2, and PtcO2 were significantly lower in critical COVID-19, while the PtcCO2 was significantly higher. After 28 days, 26 (37%) patients had died. TPI values < 3.5 were correlated with more severe disease status (AUC 0.914; 95% CI: 0.847-0.981, P < 0.001), and TPI < 3.3 was associated with poor outcomes (AUC 0.937; 95% CI 0.880-0.994, P < 0.001). CONCLUSIONS The tissue perfusion index (TPI), PtcCO2, and PtcO2/ FiO2 can predict the severity and outcome of severe and critical COVID-19.
Collapse
Affiliation(s)
- Wan-Ting Lin
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, P.R. China
| | - Yan-Jie Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, P.R. China
| | - Ming-Kun Yan
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, P.R. China
| | - Xiao-Tian Cai
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, P.R. China
| | - Xin-Er Cai
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, P.R. China
| | - Jingyuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, P.R. China
| |
Collapse
|
12
|
Lee JH, Yoo ES, Kim NW, Shim WY, Jeong HB, Kim DH, Park YJ, Seo SM, Yun JW, Park JW, Choi KS, Lee HY, Seo JY, Nam KT, Seong JK, Choi YK. Elimination of olfactory sensory neurons by zinc sulfate inoculation prevents SARS-CoV-2 infection of the brain in K18-hACE2 transgenic mice. Sci Rep 2024; 14:27863. [PMID: 39537718 PMCID: PMC11561319 DOI: 10.1038/s41598-024-78538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Coronavirus disease-2019 (COVID-19), attributed to the severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2), has posed global health challenges since it first emerged in 2019, and its impact continues to persist. The neurotropic nature of SARS-CoV-2 remains undisclosed, though researchers are proposing hypotheses on how the virus is transmitted to the central nervous system. One of the prevailing hypotheses is that SARS-CoV-2 travels through the olfactory nerve system via the olfactory epithelium (OE). Using a K18-human angiotensin converting-enzyme 2 (hACE2) transgenic mouse model with impaired olfactory sensory neurons (OSNs) induced by zinc sulfate, we examined the role of the olfactory nerve in the brain invasion by SARS-CoV-2. Mice lacking OSNs exhibited reduced levels of viral transmission to the brain, leading to significantly improved outcomes following SARS-CoV-2 infection. Moreover, a positive correlation was observed between viral persistence in the OE and brain infection. These results indicate that early inhibition of the olfactory nerve pathway effectively prevents viral invasion of the brain in K18-hACE2 mice. Our study underscores the significance of the olfactory nerve pathway in the transmission of SARS-CoV-2 to the brain.
Collapse
Affiliation(s)
- Ji-Hun Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Eun-Seon Yoo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Na-Won Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Won-Yong Shim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Han-Bi Jeong
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Dong-Hyun Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Young-Jun Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Jun Won Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, 13488, South Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Je Kyung Seong
- Korea Model Animal Priority Center, Seoul National University, Seoul, 08826, South Korea.
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and Brain Korea 21 FOUR Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- KU Center for Animal Blood Medical Science, Konkuk University, Seoul, South Korea.
| |
Collapse
|
13
|
Wan EYF, Zhang R, Mathur S, Yan VKC, Lai FTT, Chui CSL, Li X, Wong CKH, Chan EWY, Lau CS, Wong ICK. Association of COVID-19 with acute and post-acute risk of multiple different complications and mortality in patients infected with omicron variant stratified by initial disease severity: a cohort study in Hong Kong. BMC Med 2024; 22:461. [PMID: 39402606 PMCID: PMC11476291 DOI: 10.1186/s12916-024-03630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Few studies have attempted to use clinical and laboratory parameters to stratify COVID-19 patients with severe versus non-severe initial disease and evaluate age-specific differences in developing multiple different COVID-19-associated disease outcomes. METHODS A retrospective cohort included patients from the electronic health database of Hong Kong Hospital Authority between 1 January 2022 and 15 August 2022 until 15 November 2022. The cohort was divided into three cohorts by age (≤ 40, 41-64, and ≥ 65 years old). Each age cohort was stratified into four groups: (1) COVID-19 critically exposed group (ICU admission, mechanical ventilation support, CRP > 80 mg/L, or D-dimer > 2 g/mL), (2) severely exposed group (CRP 30-80 mg/L, D-dimer 0.5-2 g/mL, or CT value < 20), (3) mildly-moderately exposed group (COVID-19 positive-tested but not fulfilling the criteria for the aforementioned critically and severely exposed groups), and (4) unexposed group (without COVID-19). The characteristics between groups were adjusted with propensity score-based marginal mean weighting through stratification. Cox regression was conducted to determine the association of COVID-19 disease severity with disease outcomes and mortality in the acute and post-acute phase (< 30 and ≥ 30 days from COVID-19 infection) in each age group. RESULTS A total of 286,114, 320,304 and 194,227 patients with mild-moderate COVID-19 infection; 18,419, 23,678 and 31,505 patients with severe COVID-19 infection; 1,168, 2,261 and 10,178 patients with critical COVID-19 infection, and 1,143,510, 1,369,365 and 1,012,177 uninfected people were identified in aged ≤ 40, 40-64, and ≥ 65 groups, respectively. Compared to the unexposed group, a general trend tending towards an increase in risks of multiple different disease outcomes as COVID-19 disease severity increases, with advancing age, was identified in both the acute and post-acute phases. Notably, the mildly-moderately exposed group were associated with either insignificant risks (aged ≤ 40) or the lowest risks (aged > 40) for the disease outcomes in the acute phase of infection (e.g., mortality risk HR (aged ≤ 40): 1.0 (95%CI: 0.5,2.0), HR (aged 41-64): 2.1 (95%CI: 1.8, 2.6), HR (aged > 65): 4.8 (95%CI: 4.6, 5.1)); while in the post-acute phase, these risks were largely insignificant in those aged < 65, remaining significant only in the elderly (age ≥ 65) (e.g., mortality risk HR (aged ≤ 40): 0.8 (95%CI: (0.5, 1.0)), HR (aged 41-64): 1.1 (95%CI: 1.0,1.2), HR (aged > 65): 1.5 (95%CI: 1.5,1.6)). Fully vaccinated patients were associated with lower risks of disease outcomes than those receiving less than two doses of vaccination. CONCLUSIONS The risk of multiple different disease outcomes in both acute and post-acute phases increased significantly with the increasing severity of acute COVID-19 illness, specifically among the elderly. Moreover, future studies could improve by risk-stratifying patients based on universally accepted thresholds for clinical parameters, particularly biomarkers, using biological evidence from immunological studies.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ran Zhang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sukriti Mathur
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Ka Chun Yan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Francisco Tsz Tsun Lai
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong`, Hong Kong, China
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong`, Hong Kong, China
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L02-57 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China.
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK.
- Aston Pharmacy School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
14
|
Obeagu EI, Tukur M, Akaba K. Impacts of COVID-19 on hemostasis: coagulation abnormalities and management perspectives. Ann Med Surg (Lond) 2024; 86:5844-5850. [PMID: 39359765 PMCID: PMC11444586 DOI: 10.1097/ms9.0000000000002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/22/2024] [Indexed: 10/04/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has transcended its initial characterization as a respiratory illness, revealing substantial implications for hemostasis and coagulation pathways. COVID-19-associated coagulopathies have emerged as critical determinants of disease severity and prognosis, presenting a multifaceted challenge in clinical management. This paper aims to elucidate the intricate interplay between COVID-19 and hemostasis, delving into the underlying mechanisms of coagulation abnormalities, exploring the spectrum of thrombotic complications, and discussing evolving management strategies. Therapeutic interventions and anticoagulation strategies tailored for managing COVID-19-related coagulopathies form a significant focus, encompassing prophylactic and therapeutic approaches, heparin-based therapies, and individualized treatment paradigms. This paper underscores the imperative for ongoing research endeavors to refine diagnostic modalities, identify novel therapeutic targets, and ascertain long-term sequelae of COVID-19-induced coagulation abnormalities. Ultimately, a comprehensive understanding of the intricate relationship between COVID-19 and hemostasis is pivotal in devising effective management strategies to mitigate thrombotic risks, improve clinical outcomes, and pave the way for tailored interventions in affected individuals.
Collapse
Affiliation(s)
| | - Muhammad Tukur
- Department of Science Education, Faculty of Education, Kampala International University, Kampala, Uganda
| | - Kingsley Akaba
- Department of Haematology, University of Calabar, Calabar, Cross-River State, Nigeria
| |
Collapse
|
15
|
Mendes RDS, Silva PL, Robba C, Battaglini D, Lopes-Pacheco M, Caruso-Neves C, Rocco PRM. Advancements in understanding the mechanisms of lung-kidney crosstalk. Intensive Care Med Exp 2024; 12:81. [PMID: 39298036 DOI: 10.1186/s40635-024-00672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
This narrative review delves into the intricate interplay between the lungs and the kidneys, with a focus on elucidating the pathogenesis of diseases influenced by immunological factors, acid-base regulation, and blood gas disturbances, as well as assessing the effects of various therapeutic modalities on these interactions. Key disorders, such as anti-glomerular basement membrane (anti-GBM) disease, the syndrome of inappropriate antidiuretic hormone secretion (SIADH), and Anti-neutrophil Cytoplasmic Antibodies (ANCA) associated vasculitis (AAV), are also examined to shed light on their underlying mechanisms. This review also explores the relationship between acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI), emphasizing how inflammatory mediators can lead to systemic damage and impact multiple organs. In ARDS, fluid overload exacerbates pulmonary edema, while imbalances in blood volume, such as hypovolemia or hypervolemia, can precipitate renal dysfunction. The review highlights how mechanical ventilation strategies can compromise renal blood flow, trigger systemic inflammation, and induce hemodynamic and neurohormonal alterations, all contributing to lung and kidney damage. The impact of extracorporeal membrane oxygenation (ECMO) on lung-kidney interactions is evaluated, highlighting its role in severe respiratory failure and its renal implications. Emerging therapies, such as mesenchymal stem cells and extracellular vesicles, are discussed as promising avenues to mitigate organ damage and enhance outcomes in critically ill patients. Overall, this review offers a nuanced exploration of lung-kidney dynamics, bridging historical insights with contemporary perspectives. It underscores the clinical significance of these interactions in critically ill patients and advocates for integrated management approaches to optimize patient outcomes.
Collapse
Affiliation(s)
- Renata de Souza Mendes
- Department of Nephrology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Nephrology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Chiara Robba
- IRCCS Policlinico San Martino, Genoa, Italy
- Dipertimento di Scienze Chirurgiche Diagnostiche e Integrate, Policlinico San Martino, IRCCS Per l'Oncologia e Neuroscienze, Università degli Studi di Genova, Genoa, Italy
| | - Denise Battaglini
- IRCCS Policlinico San Martino, Genoa, Italy
- Dipertimento di Scienze Chirurgiche Diagnostiche e Integrate, Policlinico San Martino, IRCCS Per l'Oncologia e Neuroscienze, Università degli Studi di Genova, Genoa, Italy
| | - Miquéias Lopes-Pacheco
- Department of Pediatrics, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Celso Caruso-Neves
- Laboratory of Biochemistry and Cellular Biology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
16
|
Jacob IB, Lawal AO, Mahmoud SS, Kopsack EM, Reynolds ES, Meng Q, Fan H, Massa PT, Thangamani S, Jia H, Wang G. Differential Immunoregulation by Human Surfactant Protein A Variants Determines Severity of SARS-CoV-2-induced Lung Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612497. [PMID: 39314485 PMCID: PMC11418998 DOI: 10.1101/2024.09.11.612497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens. The human SP-A genes ( SFTPA1 and SFTPA2 ) are highly polymorphic and comprise several common genetic variants, i.e., SP-A1 (variants 6A 2 , 6A 4 ) and SP-A2 (variants 1A 0 , 1A 3 ). Here, we elucidated the differential antiviral and immunoregulatory roles of SP-A variants in response to SARS-CoV-2 infection in vivo . Six genetically-modified mouse lines, expressing both hACE2 (SARS-CoV-2 receptor) and individual SP-A variants: (hACE2/6A 2 (6A 2 ), hACE2/6A 4 (6A 4 ), hACE2/1A 0 (1A 0 ), and hACE2/1A 3 (1A 3 ), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were challenged intranasally with 10 3 PFU SARS-CoV-2 or saline (Sham). Infected KO and 1A 0 mice had more weight loss and mortality compared to other mouse lines. Relative to other infected mouse lines, a more severe ALI was observed in KO, 1A 0 , and 6A 2 mice. Reduced viral titers were generally observed in the lungs of infected SP-A mice relative to KO mice. Transcriptomic analysis revealed an upregulation in genes that play central roles in immune responses such as MyD88 , Stat3 , IL-18 , and Jak2 in the lungs of KO and 1A 0 mice. However, Mapk1 was significantly downregulated in 6A 2 versus 1A 0 mice. Analysis of biological pathways identified those involved in lung host defense and innate immunity, including pathogen-induced cytokine, NOD1/2, and Trem1 signaling pathways. Consistent with the transcriptomic data, levels of cytokines and chemokines such as G-CSF, IL-6 and IL-1β were comparatively higher in the lungs and sera of KO and 1A 0 mice with the highest mortality rate. These findings demonstrate that human SP-A variants differentially modulate SARS-CoV-2-induced lung injury and disease severity by differentially inhibiting viral infectivity and regulating immune-related gene expressions.
Collapse
|
17
|
Sumi T, Harada K. Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment. Front Immunol 2024; 15:1329162. [PMID: 39185419 PMCID: PMC11341427 DOI: 10.3389/fimmu.2024.1329162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
18
|
Silva-Aguiar RP, Teixeira DE, Peruchetti DB, Peres RAS, Alves SAS, Calil PT, Arruda LB, Costa LJ, Silva PL, Schmaier AH, Rocco PRM, Pinheiro AAS, Caruso-Neves C. Toll like receptor 4 mediates the inhibitory effect of SARS-CoV-2 spike protein on proximal tubule albumin endocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167155. [PMID: 38579939 DOI: 10.1016/j.bbadis.2024.167155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.
Collapse
Affiliation(s)
- Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A S Peres
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro T Calil
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B Arruda
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana J Costa
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Patricia R M Rocco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Saito S, Bozorgmehr N, Sligl W, Osman M, Elahi S. The Role of Coinhibitory Receptors in B Cell Dysregulation in SARS-CoV-2-Infected Individuals with Severe Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1540-1552. [PMID: 38517295 DOI: 10.4049/jimmunol.2300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Women and Children Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Paes Leme AF, Yokoo S, Normando AGC, Ormonde JVS, Domingues RR, Cruz FF, Silva PL, Souza BSF, Dos Santos CC, Castro-Faria-Neto H, Martins CM, Lopes-Pacheco M, Rocco PRM. Proteomics of serum-derived extracellular vesicles are associated with the severity and different clinical profiles of patients with COVID-19: An exploratory secondary analysis. Cytotherapy 2024; 26:444-455. [PMID: 38363248 DOI: 10.1016/j.jcyt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AIMS Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen β-chain were the most differentially expressed proteins between severity groups. CONCLUSION Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.
Collapse
Affiliation(s)
- Adriana F Paes Leme
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Sami Yokoo
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Ana Gabriela C Normando
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - João Vitor S Ormonde
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Romenia Ramos Domingues
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno S F Souza
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Bahia, Brazil; Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Bahia, Brazil
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Bermejo-Jambrina M, van der Donk LE, van Hamme JL, Wilflingseder D, de Bree G, Prins M, de Jong M, Nieuwkerk P, van Gils MJ, Kootstra NA, Geijtenbeek TB. Control of complement-induced inflammatory responses to SARS-CoV-2 infection by anti-SARS-CoV-2 antibodies. EMBO J 2024; 43:1135-1163. [PMID: 38418557 PMCID: PMC10987522 DOI: 10.1038/s44318-024-00061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here, we uncover the role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lieve Eh van der Donk
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Godelieve de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
| | - Menno de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Pythia Nieuwkerk
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
- Department of Medical Psychology (J3-2019-1), Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Teunis Bh Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Passi R, Cholewa-Waclaw J, Wereski R, Bennett M, Veizades S, Berkeley B, Caporali A, Li Z, Rodor J, Dewerchin M, Mills NL, Beqqali A, Brittan M, Baker AH. COVID-19 plasma induces subcellular remodelling within the pulmonary microvascular endothelium. Vascul Pharmacol 2024; 154:107277. [PMID: 38266794 DOI: 10.1016/j.vph.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organ systems, including the pulmonary vasculature. Endothelial cells (ECs) are thought to play a key role in the propagation of COVID-19, however, our understanding of the exact scale of dysregulation sustained by the pulmonary microvasculature (pMV) remains incomplete. Here we aim to identify transcriptional, phenotypic, and functional changes within the pMV induced by COVID-19. METHODS AND RESULTS Human pulmonary microvascular endothelial cells (HPMVEC) treated with plasma acquired from patients hospitalised with severe COVID-19 were compared to HPMVEC treated with plasma from patients hospitalised without COVID-19 but with other severe illnesses. Exposure to COVID-19 plasma caused a significant functional decline in HPMVECs as seen by a decrease in both cell viability via the WST-1 cell-proliferation assay and cell-to-cell barrier function as measured by electric cell-substrate impedance sensing. High-content imaging using a Cell Painting image-based assay further quantified morphological variations within sub-cellular organelles to show phenotypic changes in the whole endothelial cell, nucleus, mitochondria, plasma membrane and nucleolus morphology. RNA-sequencing of HPMVECs treated with COVID-19 plasma suggests the observed phenotype may, in part, be regulated by genes such as SMAD7, BCOR, SFMBT1, IFIT5 and ZNF566 which are involved in transcriptional regulation, protein monoubiquitination and TGF-β signalling. CONCLUSION AND IMPACT During COVID-19, the pMV undergoes significant remodelling, which is evident based on the functional, phenotypic, and transcriptional changes seen following exposure to COVID-19 plasma. The observed morphological variation may be responsible for downstream complications, such as a decline in overall cellular function and cell-to-cell barrier integrity. Moreover, genes identified through bulk RNA sequencing may contribute to our understanding of the observed phenotype and assist in developing strategies that can inform the rescue of the dysregulated endothelium.
Collapse
Affiliation(s)
- Rainha Passi
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Ryan Wereski
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Stefan Veizades
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Stanford Cardiovascular Institute, Stanford University, Stanford 94305, CA, USA
| | - Bronwyn Berkeley
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ziwen Li
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
23
|
Jangnin R, Ritruangroj W, Kittisupkajorn S, Sukeiam P, Inchai J, Maneeton B, Maneetorn N, Chaiard J, Theerakittikul T. Long-COVID Prevalence and Its Association with Health Outcomes in the Post-Vaccine and Antiviral-Availability Era. J Clin Med 2024; 13:1208. [PMID: 38592016 PMCID: PMC10931928 DOI: 10.3390/jcm13051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 04/10/2024] Open
Abstract
Background and Objectives: After recovering from COVID-19, patients may experience persistent symptoms, known as post-COVID-19 syndrome or long COVID, which include a range of continuing health problems. This research explores the prevalence, associated factors, and overall health outcomes of long COVID during a period of extensive vaccination and antiviral treatment availability in Thailand. Materials and Methods: This observational study involved 390 adult patients with COVID-19 between January and March 2022. Beginning three months after their diagnosis, these patients were interviewed via telephone every three months for a period of one year. The data collection process included gathering demographic information and administering a standardized questionnaire that addressed the patients' physical condition following COVID-19, their mental health, sleep disturbances, and overall quality of life. Results: The cohort consisted of 390 participants, with an average age of 31.8 ± 13.6. Among them, 96.7% (n = 377) were vaccinated, and 98.2% (n = 383) underwent antiviral treatment. Long-COVID prevalence was observed at 77.7%, with the most frequently reported symptoms being fatigue (64.1%) and cough (43.9%). Regarding mental health, depression was reported by 8.2% of the participants, anxiety by 4.1%, and poor sleep quality by 33.3%. Advanced statistical analysis using multivariable logistic regression showed significant links between long-COVID symptoms and patients aged below 60 (p = 0.042), as well as the initial symptom of cough (p = 0.045). In the subset of long-COVID sufferers, there was a notable correlation in females with symptoms such as headaches (p = 0.001), dizziness (p = 0.007), and brain fog (p = 0.013). Conclusions: Despite the extensive distribution of vaccines and antiviral therapies, the prevalence of long COVID remains high, being associated particularly with individuals under 60 and those exhibiting a cough as an early symptom. The study further reveals that mental health issues related to long COVID are profound, going beyond the scope of physical symptomatology.
Collapse
Affiliation(s)
- Ramida Jangnin
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.J.); (W.R.); (S.K.); (P.S.)
| | - Worraya Ritruangroj
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.J.); (W.R.); (S.K.); (P.S.)
| | - Sirada Kittisupkajorn
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.J.); (W.R.); (S.K.); (P.S.)
| | - Pattarapa Sukeiam
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.J.); (W.R.); (S.K.); (P.S.)
| | - Juthamas Inchai
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Benchalak Maneeton
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.M.); (N.M.)
| | - Narong Maneetorn
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.M.); (N.M.)
| | - Jindarat Chaiard
- Faculty of Nursing, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Theerakorn Theerakittikul
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Sleep Disorder Center, Center for Medical Excellence, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Manfrini N, Notarbartolo S, Grifantini R, Pesce E. SARS-CoV-2: A Glance at the Innate Immune Response Elicited by Infection and Vaccination. Antibodies (Basel) 2024; 13:13. [PMID: 38390874 PMCID: PMC10885122 DOI: 10.3390/antib13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to almost seven million deaths worldwide. SARS-CoV-2 causes infection through respiratory transmission and can occur either without any symptoms or with clinical manifestations which can be mild, severe or, in some cases, even fatal. Innate immunity provides the initial defense against the virus by sensing pathogen-associated molecular patterns and triggering signaling pathways that activate the antiviral and inflammatory responses, which limit viral replication and help the identification and removal of infected cells. However, temporally dysregulated and excessive activation of the innate immune response is deleterious for the host and associates with severe COVID-19. In addition to its defensive role, innate immunity is pivotal in priming the adaptive immune response and polarizing its effector function. This capacity is relevant in the context of both SARS-CoV-2 natural infection and COVID-19 vaccination. Here, we provide an overview of the current knowledge of the innate immune responses to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Samuele Notarbartolo
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- CheckmAb Srl, 20122 Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
25
|
Daba TM, Mokonon M, Niguse E, Getahun M. The Potential Mechanisms Behind Adverse Effect of Coronavirus Disease-19 on Heart and Liver Damage: A Review. Ethiop J Health Sci 2024; 34:85-100. [PMID: 38957334 PMCID: PMC11217793 DOI: 10.4314/ejhs.v34i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/02/2023] [Indexed: 07/04/2024] Open
Abstract
Background Coronaviruses (CoVs) belong to the RNA viruses family. The viruses in this family are known to cause mild respiratory disease in humans. The origin of the novel SARS-COV2 virus that caused the coronavirus-19 disease (COVID-19) is the Wuhan city in China from where it disseminated to cause a global pandemic. Although lungs are the predominant target organ for Coronavirus Disease-19 (COVID-19), since its outbreak, the disease is known to affect heart, blood vessels, kidney, intestine, liver and brain. This review aimed to summarize the catastrophic impacts of Coronavirus disease-19 on heart and liver along with its mechanisms of pathogenesis. Methods The information used in this review was obtained from relevant articles published on PubMed, Google Scholar, Google, WHO website, CDC and other sources. Key searching statements and phrases related to COVID-19 were used to retrieve information. Original research articles, review papers, research letters and case reports were used as a source of information. Results Besides causing severe lung injury, COVID-19 has also been reported to affect and cause dysfunction of many other organs. COVID-19 infection can affect people by downregulating membrane-bound active angiotensin-converting enzyme (ACE). People who have deficient ACE2 expression are more vulnerable to COVID-19 infection. The patients' pre-existing co-morbidities are major risk factors that predispose individuals to severe COVID-19. Conclusion The disease severity and its broad spectrum phenotype is a result of combined direct and indirect pathogenic factors. Therefore, protocols that harmonize many therapeutic preferences should be the best alternatives to de-escalate the disease and obviate deaths caused as a result of multiple organ damage and dysfunction induced by the disease.
Collapse
Affiliation(s)
- Tolessa Muleta Daba
- Deparment of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Rwanda
- Institute of Pharmaceutical Science, Adama Science and Technology University, Adama, Ethiopia
| | - Mulatu Mokonon
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Elsa Niguse
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Meron Getahun
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
26
|
Von Rekowski CP, Fonseca TAH, Araújo R, Brás-Geraldes C, Calado CRC, Bento L, Pinto I. The Characteristics and Laboratory Findings of SARS-CoV-2 Infected Patients during the First Three COVID-19 Waves in Portugal-A Retrospective Single-Center Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:59. [PMID: 38256320 PMCID: PMC10817678 DOI: 10.3390/medicina60010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Given the wide spectrum of clinical and laboratory manifestations of the coronavirus disease 2019 (COVID-19), it is imperative to identify potential contributing factors to patients' outcomes. However, a limited number of studies have assessed how the different waves affected the progression of the disease, more so in Portugal. Therefore, our main purpose was to study the clinical and laboratory patterns of COVID-19 in an unvaccinated population admitted to the intensive care unit, identifying characteristics associated with death, in each of the first three waves of the pandemic. Materials and Methods: This study included 337 COVID-19 patients admitted to the intensive care unit of a single-center hospital in Lisbon, Portugal, between March 2020 and March 2021. Comparisons were made between three COVID-19 waves, in the second (n = 325) and seventh (n = 216) days after admission, and between discharged and deceased patients. Results: Deceased patients were considerably older (p = 0.021) and needed greater ventilatory assistance (p = 0.023), especially in the first wave. Differences between discharged and deceased patients' biomarkers were minimal in the first wave, on both analyzed days. In the second wave significant differences emerged in troponins, lactate dehydrogenase, procalcitonin, C-reactive protein, and white blood cell subpopulations, as well as platelet-to-lymphocyte and neutrophil-to-lymphocyte ratios (all p < 0.05). Furthermore, in the third wave, platelets and D-dimers were also significantly different between patients' groups (all p < 0.05). From the second to the seventh days, troponins and lactate dehydrogenase showed significant decreases, mainly for discharged patients, while platelet counts increased (all p < 0.01). Lymphocytes significantly increased in discharged patients (all p < 0.05), while white blood cells rose in the second (all p < 0.001) and third (all p < 0.05) waves among deceased patients. Conclusions: This study yields insights into COVID-19 patients' characteristics and mortality-associated biomarkers during Portugal's first three COVID-19 waves, highlighting the importance of considering wave variations in future research due to potential significant outcome differences.
Collapse
Affiliation(s)
- Cristiana P. Von Rekowski
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal; (T.A.H.F.); (R.A.); (C.R.C.C.)
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal;
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Tiago A. H. Fonseca
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal; (T.A.H.F.); (R.A.); (C.R.C.C.)
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal;
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Rúben Araújo
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal; (T.A.H.F.); (R.A.); (C.R.C.C.)
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal;
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Carlos Brás-Geraldes
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal; (T.A.H.F.); (R.A.); (C.R.C.C.)
- CEAUL—Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Cecília R. C. Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal; (T.A.H.F.); (R.A.); (C.R.C.C.)
- CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal
| | - Luís Bento
- NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal;
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- Intensive Care Department, CHULC—Centro Hospitalar Universitário de Lisboa Central, 1150-199 Lisbon, Portugal
- Integrated Pathophysiological Mechanisms, CHRC—Comprehensive Health Research Centre, NMS—NOVA Medical School, FCM—Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Iola Pinto
- Department of Mathematics, ISEL—Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal;
- NOVA Math—Center for Mathematics and Applications, NOVA SST—Nova School of Sciences and Tecnology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
27
|
Cao X, Xie YL, Zhou CL, Mu H. The value of age IgG and IL6 in estimating time of viral clearance in asymptomatic or mild patients with COVID-19. Front Microbiol 2023; 14:1256759. [PMID: 38125571 PMCID: PMC10731291 DOI: 10.3389/fmicb.2023.1256759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Background The aim of this study was to investigate the relationship between Age, immunoglobin G (IgG), immunoglobin M (IgM), procalcitonin (PCT), and interleukin-6 (IL6), and the time to clear viral nucleic acids in asymptomatic and mild coronavirus disease 2019 (COVID-19) patients, as well as evaluated the predictive value of these biochemical indicators. Methods We performed a retrospective analysis on 1,570 individuals who were admitted to Tianjin First Central Hospital and diagnosed with asymptomatic or mild cases. Laboratory data were collected, including age, gender, levels of IgG, IgM, PCT and IL6, as well as results of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleic acid test. These data were statistically analyzed using SPSS software, version 24.0. Results The results indicated that among mild patients, Age, IgG, and the time to clear viral nucleic acids were higher than asymptomatic patients (p < 0.05). And the time to clear viral nucleic acids was significantly correlated with Age, IgG, IgM, PCT, and IL6 (p < 0.05), IgG (r = -0.445, p < 0.001) showed moderate correlations. Using logistic regression analysis, we identified older age, high IL6 levels, and low IgG levels were risk factors for nucleic acid clearance exceeding 14 days (p < 0.05). When combining these three indicators to predict the probability of nucleic acid clearance exceeding 14 days in the 1,570 patients, the AUROC was found to be 0.727. Conclusion Age, IgG, and IL6 could potentially serve as useful predictors for nucleic acid clearance exceeding 14 days in asymptomatic and mild COVID-19 patients.
Collapse
Affiliation(s)
- Xi Cao
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Yong-Li Xie
- Department of Clinical Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Chun-lei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
28
|
Undi RB, Ahsan N, Larabee JL, Darlene-Reuter N, Papin J, Dogra S, Hannafon BN, Bronze MS, Houchen CW, Huycke MM, Ali N. Blocking of doublecortin-like kinase 1-regulated SARS-CoV-2 replication cycle restores cell signaling network. J Virol 2023; 97:e0119423. [PMID: 37861336 PMCID: PMC10688311 DOI: 10.1128/jvi.01194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Severe COVID-19 and post-acute sequelae often afflict patients with underlying co-morbidities. There is a pressing need for highly effective treatment, particularly in light of the emergence of SARS-CoV-2 variants. In a previous study, we demonstrated that DCLK1, a protein associated with cancer stem cells, is highly expressed in the lungs of COVID-19 patients and enhances viral production and hyperinflammatory responses. In this study, we report the pivotal role of DCLK1-regulated mechanisms in driving SARS-CoV-2 replication-transcription processes and pathogenic signaling. Notably, pharmacological inhibition of DCLK1 kinase during SARS-CoV-2 effectively impedes these processes and counteracts virus-induced alternations in global cell signaling. These findings hold significant potential for immediate application in treating COVID-19.
Collapse
Affiliation(s)
- Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicole Darlene-Reuter
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James Papin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Samrita Dogra
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bethany N. Hannafon
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael S. Bronze
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Courtney W. Houchen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Naushad Ali
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
29
|
Kumar M. Hydrogen sulfide: From a toxic gas to a potential therapy for COVID-19 and inflammatory disorders. Nitric Oxide 2023; 140-141:8-15. [PMID: 37648016 DOI: 10.1016/j.niox.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
COVID-19 has been shown to induce inflammatory disorders and CNS manifestations. Swift and efficient treatment strategies are urgently warranted for the management of COVID, inflammatory and neurological disorders. Hydrogen sulfide (H2S) has been associated with several clinical disorders due to its potential to influence a broad range of biological signalling pathways. According to recent clinical studies, COVID patients with lower physiological H2S had higher fatality rates. These findings clearly demonstrate an inverse correlation between H2S levels and the severity of COVID-19. H2S has been proposed as a protective molecule because of its antioxidant, anti-inflammatory, and antiviral properties. Various H2S-releasing prodrugs, hybrids and natural compounds have been tested for their therapeutic efficacy in viral infections and inflammatory disorders. In this review, I am highlighting the rationale for using H2S-based interventions for the management of COVID-19 and post-infection inflammatory disorders including neuroinflammation. I am also proposing therepurposing of existing H2S-releasing prodrugs, developing new NO-H2S-hybrids, targeting H2S metabolic pathways, and using H2S-producing dietary supplements as viable defensive strategies against SARS-CoV-2 infection and COVID-19 pathologies.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Punjab, 140306, India.
| |
Collapse
|
30
|
Mosavat A, Mirhosseini A, Shariati A, Mohareri M, Valizadeh N, Mohammadi FS, Shamsian SAA, Jafari Rad M, Rezaee SA. SARS-CoV-2 infection and increasing autoimmune disorders among ICU-hospitalized COVID-19 patients. Int J Rheum Dis 2023; 26:2151-2156. [PMID: 37578135 DOI: 10.1111/1756-185x.14875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION In acute conditions, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes multi-organ damage due to the induction of inappropriate immune responses, particularly lung tissue fibrosis. To evaluate the consequence of the deterioration of the immune system, autoimmune markers were assessed. METHODS In a case-control study, 108 patients with coronavirus disease 2019 (COVID-19) were admitted to the intensive care unit (ICU), and 158 outpatients with mild clinical symptoms, with SARS-CoV-2 reverse transcription quantitative polymerase chain reaction (RT-qPCR) positive tests, were included for comparison. The demographic and hematologic variables and presence of the main autoantibodies in sera of 40 eligible ICU-hospitalized COVID-19 patients and 40 COVID-19 outpatients were assessed. Out of 108 COVID-19 ICU-hospitalized patients, 40 were selected as the control group (40/158) who had no underlying diseases before hospitalization, according to their self-declaration and clinical records at the time of admission. RESULTS The results demonstrated that the main complete blood count indices, such as red blood cells and platelets, decreased dramatically in ICU-hospitalized patients. Furthermore, the autoantibody profiles were positive in 45% and 15% of ICU-admitted patients for antinuclear antibodies and antineutrophilic cytoplasmic autoantibodies, respectively. In ICU patients, anti-PM/Scl 100 or AMA-M2 was 33%. Anti SS-A, anti-SS-B, anti-Ro-52, and anti-Jo-1 in 11.5% for each one were reactive. Other autoantibodies of the ICU group were as follows: CENP (5.6%), Rib-protein (5.6%), and nucleosome (5.6%). However, only two individuals in the control group had positive results for SS-A and SS-B (5%). CONCLUSION Induction of such particular autoantibodies by the virus can justify the multi-organ involvement and severity of the disease in ICU patients, which may also cause other organ involvement in the long term.
Collapse
Affiliation(s)
- Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Razavi Khorasan, Iran
| | - Ali Mirhosseini
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shariati
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mohareri
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Valizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Akbar Shamsian
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Jafari Rad
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Keur N, Saridaki M, Ricaño-Ponce I, Netea MG, Giamarellos-Bourboulis EJ, Kumar V. Analysis of inflammatory protein profiles in the circulation of COVID-19 patients identifies patients with severe disease phenotypes. Respir Med 2023; 217:107331. [PMID: 37364721 PMCID: PMC10290733 DOI: 10.1016/j.rmed.2023.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) can present with a broad range of clinical manifestations, ranging from asymptomatic to severe multiple organ failure. The severity of the disease can vary depending on factors such as age, sex, ethnicity, and pre-existing medical conditions. Despite multiple efforts to identify reliable prognostic factors and biomarkers, the predictive capacity of these markers for clinical outcomes remains poor. Circulating proteins, which reflect the active mechanisms in an individual, can be easily measured in clinical practice and therefore may be useful as biomarkers for COVID-19 disease severity. In this study, we sought to identify protein biomarkers and endotypes for COVID-19 severity and evaluate their reproducibility in an independent cohort. METHODS We investigated a cohort of 153 Greek patients with confirmed SARS-CoV-2 infection in which plasma protein levels were measured using the Olink Explore 1536 panel, which consists of 1472 proteins. We compared the protein profiles from severe and moderate COVID-19 patients to identify proteins associated with disease severity. To evaluate the reproducibility of our findings, we compared the protein profiles of 174 patients with comparable COVID-19 severities in a US COVID-19 cohort to identify proteins consistently correlated with COVID-19 severity in both groups. RESULTS We identified 218 differentially regulated proteins associated with severity, 20 proteins were also replicated in an external cohort which we used for validation. Moreover, we performed unsupervised clustering of patients based on 97 proteins with the highest log2 fold changes in order to identify COVID-19 endotypes. Clustering of patients based on differentially regulated proteins revealed the presence of three clinical endotypes. While endotypes 2 and 3 were enriched for severe COVID-19 patients, endotypes 3 represented the most severe form of the disease. CONCLUSIONS These results suggest that identified circulating proteins may be useful for identifying COVID-19 patients with worse outcomes, and this potential utility may extend to other populations. TRIAL REGISTRATION NCT04357366.
Collapse
Affiliation(s)
- Nick Keur
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Maria Saridaki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania.
| | | | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, the Netherlands; Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangalore, India.
| |
Collapse
|
32
|
Lisman D, Zielińska G, Drath J, Łaszczewska A, Savochka I, Parafiniuk M, Ossowski A. Molecular Diagnosis of COVID-19 Sudden and Unexplained Deaths: The Insidious Face of the Pandemic. Diagnostics (Basel) 2023; 13:2980. [PMID: 37761347 PMCID: PMC10529476 DOI: 10.3390/diagnostics13182980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 epidemic has led to a significant increase in the number of deaths. This has resulted in forensic autopsies focusing on additional diagnostic possibilities. The following article is a summary of 23 autopsies of sudden and unexplained deaths. Particularly noteworthy are the described cases of children whose deaths were originally classified as SIDS (sudden infant death syndrome). All tests were performed at the Department of Forensic Medicine and Forensic Genetics, Pomeranian Medical University in Szczecin. Autopsy analyses were extended to include diagnostics of the SARS-CoV-2 virus using molecular methods and a detailed histopathological analysis of lung tissue. The material for molecular tests consisted of a nasopharyngeal swab taken postmortem and a lung tissue homogenate. In both cases, the RT-PCR method with CT cut-off point analysis was used for diagnosis. In all analyzed cases, the lungs showed massive congestion and increased fragility and cohesion. The tested material showed the presence of the SARS-CoV-2 virus, which indicated various stages of infection. It was observed that the higher the virus expression in the lungs, the lower or undetectable it was in the nasopharyngeal swab. This may explain false negative results during life in swabs. An interesting finding is that child deaths classified as SIDS also showed the presence of the virus. This may constitute a new direction of research.
Collapse
Affiliation(s)
- Dagmara Lisman
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Grażyna Zielińska
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Joanna Drath
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Aleksandra Łaszczewska
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| | - Ilona Savochka
- Forensic Medicine Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (I.S.); (M.P.)
| | - Mirosław Parafiniuk
- Forensic Medicine Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (I.S.); (M.P.)
| | - Andrzej Ossowski
- Forensic Genetic Department, Pomeranian Medical University, 70-204 Szczecin, Poland; (G.Z.); (J.D.); (A.Ł.); (A.O.)
| |
Collapse
|
33
|
Tomalka JA, Owings A, Galeas-Pena M, Ziegler CG, Robinson TO, Wichman TG, Laird H, Williams HB, Dhaliwal NS, Everman S, Zafar Y, Shalek AK, Horwitz BH, Ordovas-Montanes J, Glover SC, Gibert Y. Enhanced production of eicosanoids in plasma and activation of DNA damage pathways in PBMCs are correlated with the severity of ancestral COVID-19 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.14.23295549. [PMID: 37745424 PMCID: PMC10516085 DOI: 10.1101/2023.09.14.23295549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Many questions remain unanswered regarding the implication of lipid metabolites in severe SARS-CoV-2 infections. By re-analyzed sequencing data from the nasopharynx of a previously published cohort, we found that alox genes, involved in eicosanoid synthesis, were up-regulated in high WHO score patients, especially in goblet cells. Herein, we aimed to further understand the roles played by eicosanoids during severe SARS-CoV-2 infection. Methods and findings We performed a total fatty acid panel on plasma and bulk RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites revealed that lipid metabolites were increased in SARS-CoV-2 patients including the lipid mediators Arachidonic Acid (AA) and Eicosapentaenoic Acid (EPA). AA, EPA and the fatty acids Docosahexaenoic acid (DHA) and Docosapentaenoic acid (DPA), were positively correlated to WHO disease severity score. Transcriptomic analysis demonstrated that COVID-19 patients can be segregated based on WHO scores. Ontology, KEGG and Reactome analysis identified pathways enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling and, cell cycling pathways. Conclusions Our study offers an association between nasopharynx mucosa eicosanoid genes expression, specific serum inflammatory lipids and, subsequent DNA damage pathways activation in PBMCs to severity of COVID-19 infection.
Collapse
Affiliation(s)
- Jeffrey A. Tomalka
- Dept. of Pathology and Laboratory Medicine. Emory University School of Medicine. Atlanta, GA, USA
| | - Anna Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michelle Galeas-Pena
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine. New Orleans, LA, USA
| | - Carly G.K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanya O. Robinson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Thomas G. Wichman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah Laird
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Haley B. Williams
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Neha S. Dhaliwal
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven Everman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yousaf Zafar
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Bruce H. Horwitz
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Sarah C. Glover
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine. New Orleans, LA, USA
- Dept. of Cell and Molecular Biology; Cancer Center and Research Institute. University of Mississippi Medical Center. Jackson, MS, USA
| | - Yann Gibert
- Dept. of Cell and Molecular Biology; Cancer Center and Research Institute. University of Mississippi Medical Center. Jackson, MS, USA
| |
Collapse
|
34
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
35
|
Lodge S, Lawler NG, Gray N, Masuda R, Nitschke P, Whiley L, Bong SH, Yeap BB, Dwivedi G, Spraul M, Schaefer H, Gil-Redondo R, Embade N, Millet O, Holmes E, Wist J, Nicholson JK. Integrative Plasma Metabolic and Lipidomic Modelling of SARS-CoV-2 Infection in Relation to Clinical Severity and Early Mortality Prediction. Int J Mol Sci 2023; 24:11614. [PMID: 37511373 PMCID: PMC10380980 DOI: 10.3390/ijms241411614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
An integrative multi-modal metabolic phenotyping model was developed to assess the systemic plasma sequelae of SARS-CoV-2 (rRT-PCR positive) induced COVID-19 disease in patients with different respiratory severity levels. Plasma samples from 306 unvaccinated COVID-19 patients were collected in 2020 and classified into four levels of severity ranging from mild symptoms to severe ventilated cases. These samples were investigated using a combination of quantitative Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) platforms to give broad lipoprotein, lipidomic and amino acid, tryptophan-kynurenine pathway, and biogenic amine pathway coverage. All platforms revealed highly significant differences in metabolite patterns between patients and controls (n = 89) that had been collected prior to the COVID-19 pandemic. The total number of significant metabolites increased with severity with 344 out of the 1034 quantitative variables being common to all severity classes. Metabolic signatures showed a continuum of changes across the respiratory severity levels with the most significant and extensive changes being in the most severely affected patients. Even mildly affected respiratory patients showed multiple highly significant abnormal biochemical signatures reflecting serious metabolic deficiencies of the type observed in Post-acute COVID-19 syndrome patients. The most severe respiratory patients had a high mortality (56.1%) and we found that we could predict mortality in this patient sub-group with high accuracy in some cases up to 61 days prior to death, based on a separate metabolic model, which highlighted a different set of metabolites to those defining the basic disease. Specifically, hexosylceramides (HCER 16:0, HCER 20:0, HCER 24:1, HCER 26:0, HCER 26:1) were markedly elevated in the non-surviving patient group (Cliff's delta 0.91-0.95) and two phosphoethanolamines (PE.O 18:0/18:1, Cliff's delta = -0.98 and PE.P 16:0/18:1, Cliff's delta = -0.93) were markedly lower in the non-survivors. These results indicate that patient morbidity to mortality trajectories is determined relatively soon after infection, opening the opportunity to select more intensive therapeutic interventions to these "high risk" patients in the early disease stages.
Collapse
Affiliation(s)
- Samantha Lodge
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nicola Gray
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Reika Masuda
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Philipp Nitschke
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Sze-How Bong
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Bu B. Yeap
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Girish Dwivedi
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | | | | | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Elaine Holmes
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Julien Wist
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Jeremy K. Nicholson
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Faculty Building, South Kensington Campus, London SW7 2NA, UK
| |
Collapse
|
36
|
Mangoni AA, Zinellu A. An Updated Systematic Review and Meta-Analysis of the Association between the De Ritis Ratio and Disease Severity and Mortality in Patients with COVID-19. Life (Basel) 2023; 13:1324. [PMID: 37374107 DOI: 10.3390/life13061324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Patients with Coronavirus disease 2019 (COVID-19) often have elevations in markers of liver injury, particularly serum aspartate transaminase (AST) and alanine transaminase (ALT). Such alterations may affect the AST/ALT ratio (De Ritis ratio) and, potentially, clinical outcomes. We conducted an updated systematic review and meta-analysis of the association between the De Ritis ratio and COVID-19 severity and mortality in hospitalized patients. PubMed, Web of Science, and Scopus were searched between 1 December 2019 and 15 February 2023. The Joanna Briggs Institute Critical Appraisal Checklist and the Grading of Recommendations, Assessment, Development, and Evaluation were used to assess the risk of bias and the certainty of the evidence, respectively. Twenty-four studies were identified. The De Ritis ratio on admission was significantly higher in patients with severe disease and non-survivors vs. patients with non-severe disease and survivors (15 studies, weighted mean difference = 0.36, 95% CI 0.24 to 0.49, p < 0.001). The De Ritis ratio was also associated with severe disease and/or mortality using odds ratios (1.83, 95% CI 1.40 to 2.39, p ˂ 0.001; nine studies). Similar results were observed using hazard ratios (2.36, 95% CI 1.17 to 4.79, p = 0.017; five studies). In six studies, the pooled area under the receiver operating characteristic curve was 0.677 (95% CI 0.612 to 0.743). In our systematic review and meta-analysis, higher De Ritis ratios were significantly associated with severe disease and mortality in COVID-19 patients. Therefore, the De Ritis ratio can be useful for early risk stratification and management in this patient group (PROSPERO registration number: CRD42023406916).
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
37
|
Liu L, Du J, Yang S, Zheng B, Shen J, Huang J, Cao L, Huang S, Liu X, Guo L, Li C, Ke C, Peng X, Guo D, Peng H. SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. Redox Biol 2023; 63:102752. [PMID: 37245288 DOI: 10.1016/j.redox.2023.102752] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023] Open
Abstract
Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.
Collapse
Affiliation(s)
- Lihong Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Jie Du
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Sidi Yang
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Birong Zheng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Jian Shen
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, PR China
| | - Jiacheng Huang
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Liu Cao
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Siyao Huang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xue Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Liping Guo
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, PR China
| | - Xiaofang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, PR China
| | - Deyin Guo
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China.
| | - Hong Peng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
38
|
Vélez-Páez JL, Aguayo-Moscoso SX, Castro-Bustamante C, Montalvo-Villagómez M, Jara-González F, Baldeón-Rojas L, Zubieta-DeUrioste N, Battaglini D, Zubieta-Calleja GR. Biomarkers as predictors of mortality in critically ill obese patients with COVID-19 at high altitude. BMC Pulm Med 2023; 23:112. [PMID: 37024861 PMCID: PMC10078096 DOI: 10.1186/s12890-023-02399-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Obesity is a common chronic comorbidity of patients with COVID-19, that has been associated with disease severity and mortality. COVID-19 at high altitude seems to be associated with increased rate of ICU discharge and hospital survival than at sea-level, despite higher immune levels and inflammation. The primary aim of this study was to investigate the survival rate of critically ill obese patients with COVID-19 at altitude in comparison with overweight and normal patients. Secondary aims were to assess the predictive factors for mortality, characteristics of mechanical ventilation setting, extubation rates, and analytical parameters. METHODS This is a retrospective cohort study in critically ill patients with COVID-19 admitted to a hospital in Quito-Ecuador (2,850 m) from Apr 1, 2020, to Nov 1, 2021. Patients were cathegorized as normal weight, overweight, and obese, according to body mass index [BMI]). RESULTS In the final analysis 340 patients were included, of whom 154 (45%) were obese, of these 35 (22.7%) were hypertensive and 25 (16.2%) were diabetic. Mortality in obese patients (31%) was lower than in the normal weight (48%) and overweight (40%) groups, but not statistically significant (p = 0.076). At multivariable analysis, in the overall population, older age (> 50 years) was independent risk factor for mortality (B = 0.93, Wald = 14.94, OR = 2.54 95%CI = 1.58-4.07, p < 0.001). Ferritin and the neutrophil/lymphocyte ratio were independent predictors of mortality in obese patients. Overweight and obese patients required more positive and-expiratory pressure compared to normal-weight patients. In obese patients, plateau pressure and mechanical power were significantly higher, whereas extubation failure was lower as compared to overweight and normal weight. CONCLUSIONS This preliminary study suggests that BMI was not associated with mortality in critically ill patients at high altitude. Age was associated with an increase in mortality independent of the BMI. Biomarkers such as ferritin and neutrophils/lymphocytes ratio were independent predictors of mortality in obese patients with COVID-19 at high altitude.
Collapse
Affiliation(s)
- Jorge Luis Vélez-Páez
- Centro de Investigación Clínica, Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva, Quito, Ecuador.
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador.
| | | | | | - Mario Montalvo-Villagómez
- Centro de Investigación Clínica, Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva, Quito, Ecuador
| | - Fernando Jara-González
- Centro de Investigación Clínica, Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva, Quito, Ecuador
| | - Lucy Baldeón-Rojas
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
- Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Quito, Ecuador
| | | | | | | |
Collapse
|
39
|
Campos MF, Mendonça SC, Peñaloza EMC, de Oliveira BAC, Rosa AS, Leitão GG, Tucci AR, Ferreira VNS, Oliveira TKF, Miranda MD, Allonso D, Leitão SG. Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS. Molecules 2023; 28:molecules28073159. [PMID: 37049921 PMCID: PMC10095690 DOI: 10.3390/molecules28073159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Traditional medicine shows several treatment protocols for COVID-19 based on natural products, revealing its potential as a possible source of anti-SARS-CoV-2 agents. Ampelozizyphus amazonicus is popularly used in the Brazilian Amazon as a fortifier and tonic, and recently, it has been reported to relieve COVID-19 symptoms. This work aimed to investigate the antiviral potential of A. amazonicus, focusing on the inhibition of spike and ACE2 receptor interaction, a key step in successful infection. Although saponins are the major compounds of this plant and often reported as its active principles, a polyphenol-rich extract was the best inhibitor of the spike and ACE2 interaction. Chemical characterization of A. amazonicus bark extracts by LC-DAD-APCI-MS/MS before and after clean-up steps for polyphenol removal showed that the latter play an essential role in maintaining this activity. The effects of the extracts on viral replication were also assessed, and all samples (aqueous and ethanol extracts) demonstrated in vitro activity, inhibiting viral titers in the supernatant of Calu-3 cells after 24 hpi. By acting both in the SARS-CoV-2 cell entry process and its replication, A. amazonicus bark extracts stand out as a multitarget agent, highlighting the species as a promising candidate in the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Mariana Freire Campos
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, RJ, Brazil
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Simony Carvalho Mendonça
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Evelyn Maribel Condori Peñaloza
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Beatriz A. C. de Oliveira
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Alice S. Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Amanda R. Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Vivian Neuza S. Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Thamara Kelcya F. Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| |
Collapse
|
40
|
Yang X, Lin C, Liu J, Zhang Y, Deng T, Wei M, Pan S, Lu L, Li X, Tian G, Mi J, Xu F, Yang C. Identification of the regulatory mechanism of ACE2 in COVID-19-induced kidney damage with systems genetics approach. J Mol Med (Berl) 2023; 101:449-460. [PMID: 36951969 PMCID: PMC10034233 DOI: 10.1007/s00109-023-02304-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
Studies showed that SARS-CoV-2 can directly target the kidney and induce renal damage. As the cell surface receptor for SARS-CoV-2 infection, the angiotensin-converting enzyme 2 (ACE2) plays a pivotal role for renal physiology and function. Thus, it is important to understand ACE2 through which pathway influences the pathogenesis of renal damage induced by COVID-19. In this study, we first performed an eQTL mapping for Ace2 in kidney tissues in 53 BXD mice strains. Results demonstrated that Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney, with six genes (Dnase1, Vasn, Usp7, Abat, Mgrn1, and Rbfox1) dominated as the upstream modulator, as they are highly correlated with Ace2 expression. Gene co-expression analysis showed that Ace2 co-variates are significantly involved in the renin-angiotensin system (RAS) pathway which acts as a reno-protector. Importantly, we also found that Ace2 is positively correlated with Pdgf family members, particularly Pdgfc, which showed the most association among the 76 investigated growth factors. Mammalian Phenotype Ontology enrichment indicated that the cognate transcripts for both Ace2 and Pdgfc were mainly involved in regulating renal physiology and morphology. Among which, Cd44, Egfr, Met, Smad3, and Stat3 were identified as hub genes through protein-protein interaction analysis. Finally, in aligning with our systems genetics findings, we found ACE2, pdgf family members, and RAS genes decreased significantly in the CAKI-1 kidney cancer cells treated with S protein and receptor binding domain structural protein. Collectively, our data suggested that ACE2 work with RAS, PDGFC, as well as their cognate hub genes to regulate renal function, which could guide for future clinical prevention and targeted treatment for COVID-19-induced renal damage outcomes. KEY MESSAGES: • Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney. • Ace2 co-variates are enriched in the RAS pathway. • Ace2 is strongly correlated with the growth factor Pdgfc. • Ace2 and Pdgfc co-expressed genes involved in the regulation of renal physiology and morphology. • SARS-CoV-2 spike glycoprotein induces down-regulation of Ace2, RAS, and Pdgfc.
Collapse
Affiliation(s)
- Xueling Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264008, China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | - Ya Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Tingzhi Deng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Shuijing Pan
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
| |
Collapse
|
41
|
Wilson AD, Forse LB. Potential for Early Noninvasive COVID-19 Detection Using Electronic-Nose Technologies and Disease-Specific VOC Metabolic Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:2887. [PMID: 36991597 PMCID: PMC10054641 DOI: 10.3390/s23062887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/12/2023]
Abstract
The established efficacy of electronic volatile organic compound (VOC) detection technologies as diagnostic tools for noninvasive early detection of COVID-19 and related coronaviruses has been demonstrated from multiple studies using a variety of experimental and commercial electronic devices capable of detecting precise mixtures of VOC emissions in human breath. The activities of numerous global research teams, developing novel electronic-nose (e-nose) devices and diagnostic methods, have generated empirical laboratory and clinical trial test results based on the detection of different types of host VOC-biomarker metabolites from specific chemical classes. COVID-19-specific volatile biomarkers are derived from disease-induced changes in host metabolic pathways by SARS-CoV-2 viral pathogenesis. The unique mechanisms proposed from recent researchers to explain how COVID-19 causes damage to multiple organ systems throughout the body are associated with unique symptom combinations, cytokine storms and physiological cascades that disrupt normal biochemical processes through gene dysregulation to generate disease-specific VOC metabolites targeted for e-nose detection. This paper reviewed recent methods and applications of e-nose and related VOC-detection devices for early, noninvasive diagnosis of SARS-CoV-2 infections. In addition, metabolomic (quantitative) COVID-19 disease-specific chemical biomarkers, consisting of host-derived VOCs identified from exhaled breath of patients, were summarized as possible sources of volatile metabolic biomarkers useful for confirming and supporting e-nose diagnoses.
Collapse
Affiliation(s)
- Alphus Dan Wilson
- Pathology Department, Center for Forest Health & Disturbance, Forest Genetics and Ecosystems Biology, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA
| | - Lisa Beth Forse
- Southern Hardwoods Laboratory, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA
| |
Collapse
|
42
|
Zubieta-Calleja GR, Zubieta-DeUrioste N, de Jesús Montelongo F, Sanchez MGR, Campoverdi AF, Rocco PRM, Battaglini D, Ball L, Pelosi P. Morphological and functional findings in COVID-19 lung disease as compared to Pneumonia, ARDS, and High-Altitude Pulmonary Edema. Respir Physiol Neurobiol 2023; 309:104000. [PMID: 36460252 PMCID: PMC9707029 DOI: 10.1016/j.resp.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Coronavirus disease-2019 (COVID-19) may severely affect respiratory function and evolve to life-threatening hypoxia. The clinical experience led to the implementation of standardized protocols assuming similarity to severe acute respiratory syndrome (SARS-CoV-2). Understanding the histopathological and functional patterns is essential to better understand the pathophysiology of COVID-19 and then develop new therapeutic strategies. Epithelial and endothelial cell damage can result from the virus attack, thus leading to immune-mediated response. Pulmonary histopathological findings show the presence of Mallory bodies, alveolar coating cells with nuclear atypia, reactive pneumocytes, reparative fibrosis, intra-alveolar hemorrhage, moderate inflammatory infiltrates, micro-abscesses, microthrombus, hyaline membrane fragments, and emphysema-like lung areas. COVID-19 patients may present different respiratory stages from silent to critical hypoxemia, are associated with the degree of pulmonary parenchymal involvement, thus yielding alteration of ventilation and perfusion relationships. This review aims to: discuss the morphological (histopathological and radiological) and functional findings of COVID-19 compared to acute interstitial pneumonia, acute respiratory distress syndrome (ARDS), and high-altitude pulmonary edema (HAPE), four entities that share common clinical traits, but have peculiar pathophysiological features with potential implications to their clinical management.
Collapse
Affiliation(s)
| | | | - Felipe de Jesús Montelongo
- Critical and Neurointensive Care Unit and Pathology Department, Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México, México
| | - Manuel Gabriel Romo Sanchez
- Critical and Neurointensive Care Unit and Pathology Department, Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México, México
| | | | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Corresponding author
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
43
|
Schumm B, Heiber M, Grätz F, Stabile L, Buonanno G, Schönfelder M, Hain R, Kähler CJ, Wackerhage H. Respiratory aerosol particle emission and simulated infection risk is greater during indoor endurance than resistance exercise. Proc Natl Acad Sci U S A 2023; 120:e2220882120. [PMID: 36802418 PMCID: PMC9992860 DOI: 10.1073/pnas.2220882120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 02/23/2023] Open
Abstract
Pathogens such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), influenza, and rhinoviruses are transmitted by airborne aerosol respiratory particles that are exhaled by infectious subjects. We have previously reported that the emission of aerosol particles increases on average 132-fold from rest to maximal endurance exercise. The aims of this study are to first measure aerosol particle emission during an isokinetic resistance exercise at 80% of the maximal voluntary contraction until exhaustion, second to compare aerosol particle emission during a typical spinning class session versus a three-set resistance training session. Finally, we then used this data to calculate the risk of infection during endurance and resistance exercise sessions with different mitigation strategies. During a set of isokinetic resistance exercise, aerosol particle emission increased 10-fold from 5,400 ± 1,200 particles/min at rest to 59,000 ± 69,900 particles/min during a set of resistance exercise. We found that aerosol particle emission per minute is on average 4.9-times lower during a resistance training session than during a spinning class. Using this data, we determined that the simulated infection risk increase during an endurance exercise session was sixfold higher than during a resistance exercise session when assuming one infected participant in the class. Collectively, this data helps to select mitigation measures for indoor resistance and endurance exercise classes at times where the risk of aerosol-transmitted infectious disease with severe outcomes is high.
Collapse
Affiliation(s)
- Benedikt Schumm
- Institute of Fluid Mechanics and Aerodynamics, Universität der Bundeswehr München, 85577Neubiberg, Germany
| | - Marie Heiber
- Institute of Sport Science, Universität der Bundeswehr München, 85577Neubiberg, Germany
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| | - Felix Grätz
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| | - Luca Stabile
- University of Cassino and Southern Lazio, Department of Civil and Mechanical Engineering, 03043Cassino, Italy
| | - Giorgio Buonanno
- University of Cassino and Southern Lazio, Department of Civil and Mechanical Engineering, 03043Cassino, Italy
- Queensland University of Technology, 4000QLD, Australia
| | - Martin Schönfelder
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| | - Rainer Hain
- Institute of Fluid Mechanics and Aerodynamics, Universität der Bundeswehr München, 85577Neubiberg, Germany
| | - Christian J. Kähler
- Institute of Fluid Mechanics and Aerodynamics, Universität der Bundeswehr München, 85577Neubiberg, Germany
| | - Henning Wackerhage
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| |
Collapse
|
44
|
Chen X, Bakal J, Whitten T, Waldie B, Ho C, Wright P, Hassam S, Norris C. Assessing the impact of COVID-19 pandemic on the health of residents and the healthcare system in Alberta, Canada: an observational study-The Alberta POST-COVID Follow-up Study. BMJ Open 2023; 13:e067449. [PMID: 36806075 PMCID: PMC9943694 DOI: 10.1136/bmjopen-2022-067449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
INTRODUCTION Very little is known about how the COVID-19 pandemic has affected the health of residents and the healthcare system in Alberta, Canada. The purpose of this study is to establish an observational study to characterise the health of residents in Alberta, Canada, over time, covering a population that tested negative or positive for COVID-19 during the pandemic. The primary outcome is to characterise 'long COVID-19' and the health status of residents during the COVID-19 pandemic. Secondary outcomes include the estimation of the risk of and risk factors associated with adverse health outcomes and healthcare utilisation and burdens. METHODS AND ANALYSIS This is a population-level provincial observational study which will follow-up with Alberta residents who underwent testing for COVID-19 and completed surveys adapted from the ISARIC COVID-19 long-term follow-up survey. The survey data will be linked with medical records. Statistical analyses will be carried out to characterise 'long COVID-19' and the health status of residents during the pandemic. The outcomes of this study will inform strategies for primary care and rehabilitation services to prevent chronic consequences; contribute to healthcare management, interventional studies, rehabilitation and health management to reduce overall morbidity and improve long-term outcomes of COVID-19 and the COVID-19 pandemic and potentially guide a self-evaluation of a remote monitoring system to manage individuals' health. ETHICS AND DISSEMINATION This study was reviewed and approved by the University of Alberta ethics committee (Study ID: Pro00112053 & Pro00113039) on 13 August 2021 and adheres to the Alberta Health Services research information management policy. Study results will be used to manage clinical care, published in peer-reviewed journals and presented at local, national and international conferences. PROTOCOL VERSION 6 June 2022 EUROQOL ID: 161 015.
Collapse
Affiliation(s)
- Xueyi Chen
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Jeffrey Bakal
- Alberta Health Services, Edmonton, Alberta, Canada
- University of Alberta Faculty of Medicine & Dentistry, Edmonton, Alberta, Canada
| | - Tara Whitten
- Alberta Health Services, Edmonton, Alberta, Canada
- University of Alberta Faculty of Medicine & Dentistry, Edmonton, Alberta, Canada
| | | | - Chester Ho
- Alberta Health Services, Edmonton, Alberta, Canada
- University of Alberta Faculty of Medicine & Dentistry, Edmonton, Alberta, Canada
| | - Paul Wright
- Alberta Health Services, Edmonton, Alberta, Canada
| | | | - Colleen Norris
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
- Alberta Health Services, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Lu Y, Zhang M, Yang QQ, Li WJ, Yang K, Hu W, Gao SY, Jiang QL, Lin LK, Cheng H, Sun F. Effectiveness and Safety of Lianhua Qingwen Capsules for COVID-19: A Propensity-Score Matched Cohort Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6028554. [PMID: 36846053 PMCID: PMC9957644 DOI: 10.1155/2023/6028554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 02/19/2023]
Abstract
As a traditional Chinese medicine, Lianhua Qingwen capsules have been widely used to treat Coronavirus Disease 2019 (COVID-19). This study was aimed to demonstrate the association between treatment with Lianhua Qingwen capsules and the clinical outcomes of hospitalized patients with COVID-19. This retrospective study was conducted at four hospitals in Central China. Data of hospitalized COVID-19 patients were collected between December 19, 2019 and April 26, 2020. Based on whether Lianhua Qingwen capsules were used, patients were classified into Lianhua Qingwen and non-Lianhua Qingwen (control) groups. To control for confounding factors, we used conditional logistic regression in a propensity-score matched (PSM) cohort (1 : 1 balanced), as well as logistic regression without matching as sensitivity analysis. A total of 4918 patients were included, 2760 of whom received Lianhua Qingwen capsules and 2158 of whom did not. In the PSM model, after adjusting for confounders, the in-hospital mortality was similar between the Lianhua Qingwen group and the control group (6.8% vs. 3.3%, adjusted OR, 0.66 [95% CI, 0.38-1.15], p = 0.138). The negative conversion rate of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection was higher in the Lianhua Qingwen group (88.3% vs. 96.1%, adjusted OR, 4.02 [95% CI, 2.58-6.25], p < 0.001). The incidence of acute liver injury was comparable between the two groups (14.0% vs. 11.5%, adjusted OR: 0.85 [95% CI, 0.71-1.02], p = 0.083), and the incidence of acute kidney injury was lower in the Lianhua Qingwen group (5.3% vs. 3.0%, adjusted OR: 0.71 [95% CI, 0.50-1.00], p = 0.048). Treatment with Lianhua Qingwen capsules was not significantly associated with in-hospital mortality in COVID-19 patients. In the Lianhua Qingwen group, the negative conversion rate of SARS-CoV-2 infection was higher and the incidence of acute kidney injury was lower than in the control group.
Collapse
Affiliation(s)
- Yun Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Qing-qing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Wen-jing Li
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kun Yang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Su-yu Gao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiao-li Jiang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li-kai Lin
- Institute of Hospital Management, Wuhan University, Wuhan 430071, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
46
|
Abstract
Studies in animal models tracing organogenesis of the mesoderm-derived heart have emphasized the importance of signals coming from adjacent endodermal tissues in coordinating proper cardiac morphogenesis. Although in vitro models such as cardiac organoids have shown great potential to recapitulate the physiology of the human heart, they are unable to capture the complex crosstalk that takes place between the co-developing heart and endodermal organs, partly due to their distinct germ layer origins. In an effort to address this long-sought challenge, recent reports of multilineage organoids comprising both cardiac and endodermal derivatives have energized the efforts to understand how inter-organ, cross-lineage communications influence their respective morphogenesis. These co-differentiation systems have produced intriguing findings of shared signaling requirements for inducing cardiac specification together with primitive foregut, pulmonary, or intestinal lineages. Overall, these multilineage cardiac organoids offer an unprecedented window into human development that can reveal how the endoderm and heart cooperate to direct morphogenesis, patterning, and maturation. Further, through spatiotemporal reorganization, the co-emerged multilineage cells self-assemble into distinct compartments as seen in the cardiac-foregut, cardiac-intestine, and cardiopulmonary organoids and undergo cell migration and tissue reorganization to establish tissue boundaries. Looking into the future, these cardiac incorporated, multilineage organoids will inspire future strategies for improved cell sourcing for regenerative interventions and provide more effective models for disease investigation and drug testing. In this review, we will introduce the developmental context of coordinated heart and endoderm morphogenesis, discuss strategies for in vitro co-induction of cardiac and endodermal derivatives, and finally comment on the challenges and exciting new research directions enabled by this breakthrough.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
47
|
Leone GM, Mangano K, Petralia MC, Nicoletti F, Fagone P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. J Clin Med 2023; 12:jcm12041630. [PMID: 36836166 PMCID: PMC9963154 DOI: 10.3390/jcm12041630] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Due to the key role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of immunoinflammatory diseases, TNF-α inhibitors have been successfully developed and used in the clinical treatment of autoimmune disorders. Currently, five anti-TNF-α drugs have been approved: infliximab, adalimumab, golimumab, certolizumab pegol and etanercept. Anti-TNF-α biosimilars are also available for clinical use. Here, we will review the historical development as well as the present and potential future applications of anti-TNF-α therapies, which have led to major improvements for patients with several autoimmune diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PS) and chronic endogenous uveitis. Other therapeutic areas are under evaluation, including viral infections, e.g., COVID-19, as well as chronic neuropsychiatric disorders and certain forms of cancer. The search for biomarkers able to predict responsiveness to anti-TNF-α drugs is also discussed.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
48
|
Conti V, Corbi G, Sabbatino F, De Pascale D, Sellitto C, Stefanelli B, Bertini N, De Simone M, Liguori L, Di Paola I, De Bernardo M, Tesse A, Rosa N, Pagliano P, Filippelli A. Long COVID: Clinical Framing, Biomarkers, and Therapeutic Approaches. J Pers Med 2023; 13:334. [PMID: 36836568 PMCID: PMC9959656 DOI: 10.3390/jpm13020334] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
More than two years after the onset of the COVID-19 pandemic, healthcare providers are facing an emergency within an emergency, the so-called long COVID or post-COVID-19 syndrome (PCS). Patients diagnosed with PCS develop an extended range of persistent symptoms and/or complications from COVID-19. The risk factors and clinical manifestations are many and various. Advanced age, sex/gender, and pre-existing conditions certainly influence the pathogenesis and course of this syndrome. However, the absence of precise diagnostic and prognostic biomarkers may further complicate the clinical management of patients. This review aimed to summarize recent evidence on the factors influencing PCS, possible biomarkers, and therapeutic approaches. Older patients recovered approximately one month earlier than younger patients, with higher rates of symptoms. Fatigue during the acute phase of COVID-19 appears to be an important risk factor for symptom persistence. Female sex, older age, and active smoking are associated with a higher risk of developing PCS. The incidence of cognitive decline and the risk of death are higher in PCS patients than in controls. Complementary and alternative medicine appears to be associated with improvement in symptoms, particularly fatigue. The heterogeneous nature of post-COVID symptoms and the complexity of patients with PCS, who are often polytreated due to concomitant clinical conditions, suggest a holistic and integrated approach to provide useful guidance for the treatment and overall management of long COVID.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Domenico De Pascale
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Berenice Stefanelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Nicola Bertini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Matteo De Simone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Ilenia Di Paola
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Maddalena De Bernardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Angela Tesse
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, F-44000 Nantes, France
| | - Nicola Rosa
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| |
Collapse
|
49
|
Fernandes S, Sosa-Napolskij M, Lobo G, Silva I. Relation of COVID-19 with liver diseases and their impact on healthcare systems: The Portuguese case. World J Gastroenterol 2023; 29:1109-1122. [PMID: 36844137 PMCID: PMC9950868 DOI: 10.3748/wjg.v29.i6.1109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The impact caused by the coronavirus disease 2019 (COVID-19) on the Portuguese population has been addressed in areas such as clinical manifestations, frequent comorbidities, and alterations in consumption habits. However, comorbidities like liver conditions and changes concerning the Portuguese population's access to healthcare-related services have received less attention. AIM To (1) Review the impact of COVID-19 on the healthcare system; (2) examine the relationship between liver diseases and COVID-19 in infected individuals; and (3) investigate the situation in the Portuguese population concerning these topics. METHODS For our purposes, we conducted a literature review using specific keywords. RESULTS COVID-19 is frequently associated with liver damage. However, liver injury in COVID-19 individuals is a multifactor-mediated effect. Therefore, it remains unclear whether changes in liver laboratory tests are associated with a worse prognosis in Portuguese individuals with COVID-19. CONCLUSION COVID-19 has impacted healthcare systems in Portugal and other countries; the combination of COVID-19 with liver injury is common. Previous liver damage may represent a risk factor that worsens the prognosis in individuals with COVID-19.
Collapse
Affiliation(s)
- Sara Fernandes
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
| | - Milaydis Sosa-Napolskij
- CINTESIS@RISE, Center for Health Technology and Services Research at The Associate Laboratory RISE–Health Research Network, Faculty of Medicine of The University of Porto, Porto 4200-219, Portugal
| | - Graça Lobo
- Laboratory of Pharmacology and Neurobiology–Department of Immuno-physiology and Pharmacology, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
| | - Isabel Silva
- Laboratory of Pharmacology and Neurobiology–Department of Immuno-physiology and Pharmacology, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto 4050-313, Portugal
| |
Collapse
|
50
|
Cheohen CFDAR, Esteves MEA, da Fonseca TS, Leal CM, Assis FDLF, Campos MF, Rebelo RS, Allonso D, Leitão GG, da Silva ML, Leitão SG. In silico screening of phenylethanoid glycosides, a class of pharmacologically active compounds as natural inhibitors of SARS-CoV-2 proteases. Comput Struct Biotechnol J 2023; 21:1461-1472. [PMID: 36817956 PMCID: PMC9920770 DOI: 10.1016/j.csbj.2023.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023] Open
Abstract
Since the advent of Covid-19, several natural products have been investigated regarding their in silico interactions with SARS-CoV-2 proteases - 3CLpro and PLpro, two of the most important pharmacological targets for antiviral development. Phenylethanoid glycosides (PG) are a class of natural products present in important medicinal plants and a drug containing this group of active ingredients has been successfully used in the treatment of Covid-19 in China. Thus, a dataset with 567 derivatives of this class was built from reviews published between 1994 and 2020, and their interaction against both SARS-CoV-2 proteases was investigated. The virtual screening was performed by filtering the PGs through the evaluation of scores based on the AutoDock Vina, GOLD/ChemPLP, and GOLD/GoldScore evaluation functions. The bRO5 pharmacokinetic parameters of the PGs ranked in the previous step were analyzed and their interaction with key amino acid residues of the 3CLpro and PLpro enzymes was evaluated. Ninety-eight compounds were identified by computational approaches against PLpro and 80 PGs against 3CLpro. Of these, four interacted with key catalytic residues of PLpro, which is an indicative of inhibitory activity, and three compounds interacted with catalytic key residues of 3CLpro. Of these, five PGs occur in plants of the Traditional Chinese Medicine (TCM), while two are components of plants/formulations currently used in the Covid-19 protocols in China. The data presented here show the potential of PGs as selective inhibitors of SARS-CoV-2 3CLpro and PLpro.
Collapse
Affiliation(s)
- Caio Felipe de Araujo Ribas Cheohen
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965045, Brazil
| | - Maria Eduarda Alves Esteves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ 21041361, Brazil
| | - Thamirys Silva da Fonseca
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Carla Monteiro Leal
- Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Fernanda de Lemos Fernandes Assis
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Mariana Freire Campos
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Raianne Soares Rebelo
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Diego Allonso
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Manuela Leal da Silva
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965045, Brazil,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ 21041361, Brazil,Corresponding author at: Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965045, Brazil.
| | - Suzana Guimarães Leitão
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Corresponding author at: Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil.
| |
Collapse
|