1
|
Rodríguez FM, Cattaneo Moreyra ML, Gareis NC, Hein GJ, Angeli E, Stassi AF, Ortega HH, Salvetti NR, Rey F. Involvement of cholesterol and ketone bodies in early stages of bovine cystic ovarian disease development. Domest Anim Endocrinol 2025; 92:106945. [PMID: 40286443 DOI: 10.1016/j.domaniend.2025.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Cystic ovarian disease (COD), characterized by the presence of persistent follicles, is a major cause of subfertility in dairy cows. This study aimed to evaluate the expression of receptors and enzymes involved in ketone body metabolism, cholesterol regulation, and steroidogenesis within ovarian follicular cells at different stages of persistence. The study was conducted in a model of follicular persistence induced by prolonged progesterone administration in dairy cows, and in cows diagnosed with spontaneous COD. The protein levels of key components, including HMG-CoA reductase, mitochondrial HMG-CoA (mHMG-CoA) synthase, SCOT, LDL-R, SRB-1, CYP17A1, CYP19A1, StAR, and 3βHSD, was assessed in follicles through immunohistochemistry. Additionally, total cholesterol, HDL cholesterol, LDL cholesterol concentrations in follicular fluid and plasma were measured using a biochemical autoanalyzer, while β-hydroxybutyrate (BHB) levels were evaluated with reactive strips. Results showed that protein levels of SRB-1 and LDL-R in granulosa cells was higher in cows in late stages of follicular persistence and COD cows than in the control group (P < 0.05). In contrast, mHMG-CoA synthase, HMG-CoA reductase and SCOT revealed an opposite pattern (P < 0.05). In granulosa cells, CYP19A1 levels were lower in follicles with 5 days of persistence than in control follicles and 3βHSD levels were higher in late stages of persistence than in controls. These alterations evidenced an imbalance in relevant components of lipid metabolism and steroidogenesis. Changes observed in late persistence or cyst would be a consequence of follicular persistence contributing to subfertility in cattle.
Collapse
Affiliation(s)
- F M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - M L Cattaneo Moreyra
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - N C Gareis
- Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez (CUG-UNL), Gálvez, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina.
| |
Collapse
|
2
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
3
|
de Oliveira MR. Pre-clinical evidence for mitochondria as a therapeutic target for luteolin: A mechanistic view. Chem Biol Interact 2025; 413:111492. [PMID: 40154935 DOI: 10.1016/j.cbi.2025.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pre-clinical evidence indicates that mitochondria may be a therapeutic target for luteolin (3',4',5,7-tetrahydroxyflavone; LUT) in different conditions. LUT modulates mitochondrial physiology in in vitro, ex vivo, and in vivo experimental models. This flavone exerted mitochondria-related antioxidant and anti-apoptotic effects, stimulated mitochondrial fusion and fission, induced mitophagy, and promoted mitochondrial biogenesis in human and animal cells and tissues. Moreover, LUT modulated the activity of components of the oxidative phosphorylation (OXPHOS) system, improving the ability of mitochondria to produce adenosine triphosphate (ATP) in certain circumstances. The mechanism of action by which LUT promoted mitochondrial benefits and protection are not completely clear yet. Nonetheless, LUT is a potential candidate to be utilized in mitochondrial therapy in the future. In this work, it is explored the mechanisms of action by which LUT modulates mitochondrial physiology in different pre-clinical experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), CEP 78060-900, Cuiaba, Mato Grosso, Brazil; Grupo de Estudos em Terapia Mitocondrial, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Creasy KT, Mehta MB, Schneider CV, Park J, Zhang D, Shewale SV, Millar JS, Vujkovic M, Hand NJ, Titchenell PM, Baur JA, Rader DJ. Ppp1r3b is a metabolic switch that shifts hepatic energy storage from lipid to glycogen. SCIENCE ADVANCES 2025; 11:eado3440. [PMID: 40378221 PMCID: PMC12083521 DOI: 10.1126/sciadv.ado3440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/10/2025] [Indexed: 05/18/2025]
Abstract
The PPP1R3B gene, encoding PPP1R3B protein, is critical for liver glycogen synthesis and maintaining blood glucose levels. Genetic variants affecting PPP1R3B expression are associated with several metabolic traits and liver disease, but the precise mechanisms are not fully understood. We studied the effects of both Ppp1r3b overexpression and deletion in mice and cell models and found that both changes in Ppp1r3b expression result in dysregulated metabolism and liver damage, with overexpression increasing liver glycogen stores, while deletion resulted in higher liver lipid accumulation. These patterns were confirmed in humans where variants increasing PPP1R3B expression had lower liver fat and decreased plasma lipids, whereas putative loss-of-function variants were associated with increased liver fat and elevated plasma lipids. These findings support that PPP1R3B is a crucial regulator of hepatic metabolism beyond glycogen synthesis and that genetic variants affecting PPP1R3B expression levels influence if hepatic energy is stored as glycogen or triglycerides.
Collapse
Affiliation(s)
- Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minal B. Mehta
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolin V. Schneider
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swapnil V. Shewale
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John S. Millar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas J. Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A. Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Suresh VV, Sivaprakasam S, Bhutia YD, Prasad PD, Thangaraju M, Ganapathy V. Not Just an Alternative Energy Source: Diverse Biological Functions of Ketone Bodies and Relevance of HMGCS2 to Health and Disease. Biomolecules 2025; 15:580. [PMID: 40305364 PMCID: PMC12024914 DOI: 10.3390/biom15040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Ketogenesis, a mitochondrial metabolic pathway, occurs primarily in liver, but kidney, colon and retina are also capable of this pathway. It is activated during fasting and exercise, by "keto" diets, and in diabetes as well as during therapy with SGLT2 inhibitors. The principal ketone body is β-hydroxybutyrate, a widely recognized alternative energy source for extrahepatic tissues (brain, heart, muscle, and kidney) when blood glucose is sparse or when glucose transport/metabolism is impaired. Recent studies have identified new functions for β-hydroxybutyrate: it serves as an agonist for the G-protein-coupled receptor GPR109A and also works as an epigenetic modifier. Ketone bodies protect against inflammation, cancer, and neurodegeneration. HMGCS2, as the rate-limiting enzyme, controls ketogenesis. Its expression and activity are regulated by transcriptional and post-translational mechanisms with glucagon, insulin, and glucocorticoids as the principal participants. Loss-of-function mutations occur in HMGCS2 in humans, resulting in a severe metabolic disease. These patients typically present within a year after birth with metabolic acidosis, hypoketotic hypoglycemia, hepatomegaly, steatotic liver damage, hyperammonemia, and neurological complications. Nothing is known about the long-term consequences of this disease. This review provides an up-to-date summary of the biological functions of ketone bodies with a special focus on HMGCS2 in health and disease.
Collapse
Affiliation(s)
- Varshini V. Suresh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.V.S.); (S.S.); (Y.D.B.)
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.V.S.); (S.S.); (Y.D.B.)
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.V.S.); (S.S.); (Y.D.B.)
| | - Puttur D. Prasad
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (P.D.P.); (M.T.)
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (P.D.P.); (M.T.)
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.V.S.); (S.S.); (Y.D.B.)
| |
Collapse
|
6
|
Provera A, Ramavath NN, Gadipudi LL, Vecchio C, Caputo M, Antonioli A, Tini S, Sheferaw AN, Reano S, Filigheddu N, Manfredi M, Barberis E, Cocolin L, Ferrocino I, Locatelli M, Caprio M, Tacke F, Albano E, Prodam F, Sutti S. Vegetal oil-based ketogenic diet improves inflammation and fibrosis in experimental metabolic dysfunction-associated steatohepatitis. Front Immunol 2025; 16:1518687. [PMID: 40236713 PMCID: PMC11996634 DOI: 10.3389/fimmu.2025.1518687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) represents a growing cause of liver cirrhosis and hepatocellular carcinoma (HCC). However, effective therapy for MASH is still lacking. Despite recent studies suggest that ketosis might improve MASH evolution, the mechanisms involved have not been explored since common ketogenic diets cause severe steatohepatitis in mice. In this study, we have investigated the capacity of a new-formulated ketogenic diet (KD) containing vegetal fat in improving liver alterations associated with experimental MASH. METHODS MASH was induced in C57BL/6 mice by feeding a cholesterol-enriched Western Diet (WD) for up to 16 weeks, followed by switching animals to KD for an additional eight weeks. RESULTS We observed that KD administration greatly increased ketone body production and significantly reduced liver and body weights. Moreover, liver proteomic analysis and functional tests evidenced an improved glucose and lipid metabolism along with insulin resistance in KD-fed mice. These metabolic effects were associated with an amelioration in MASH-associated gut dysbiosis and with an improvement of hepatic steatosis, parenchymal injury and liver fibrosis. From the mechanistic point of view mice receiving KD showed a significant reduction in liver TREM2-positive monocyte-derived macrophages forming crown-like aggregates along with a lowering in the hepatic expression of pro-inflammatory/pro-fibrogenic markers such as CCL2, IL-12, CD11b, α1-procollagen, TGF-β1, osteopontin, and galectin-3. Consistently, in vitro experiments showed that β-hydroxybutyrate supplementation reduced TREM2 and galectin-3 expression by cultured Raw 264.7 macrophages. CONCLUSIONS Altogether, these results indicate that ketogenic diet based on vegetal fat effectively improves MASH metabolic derangements and steatohepatitis, and it might represent a potential therapeutic strategy in this disease.
Collapse
Affiliation(s)
- Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Naresh Naik Ramavath
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Laila Lavanya Gadipudi
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Cristina Vecchio
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Marina Caputo
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
- Unit of Endocrinology, University of Piemonte Orientale, Novara, Italy
| | - Alessandro Antonioli
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Sabrina Tini
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Anteneh Nigussie Sheferaw
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Luca Cocolin
- Department of Agricultural, Forestry and Food Science, University of Torino, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Science, University of Torino, Grugliasco, Italy
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
- Unit of Endocrinology, University of Piemonte Orientale, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Krejčová G, Novotná D, Bajgar A. Ketogenesis nutritionally supports brain during bacterial infection in Drosophila. Brain Behav Immun 2025; 125:280-291. [PMID: 39824470 DOI: 10.1016/j.bbi.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Mounting an immune response is a nutritionally demanding process that requires the systemic redistribution of energy stores towards the immune system. This is facilitated by cytokine-induced insulin resistance, which simultaneously promotes the mobilization of lipids and carbohydrates while limiting their consumption in immune-unrelated processes, such as development, growth, and reproduction. However, this adaptation also restricts the availability of nutrients to vital organs, which must then be sustained by alternative fuels. Here, we employed an experimental model of severe bacterial infection in Drosophila melanogaster to investigate whether ketogenesis may represent a metabolic adaptation for overcoming periods of nutritional scarcity during the immune response. We found that the immune response to severe bacterial infection is accompained by increased ketogenesis in the fat body and macrophages, leading to elevated levels of β-hydroxybutyrate in circulation. Although this metabolic adaptation is essential for survival during infection, it is not required for the elimination of the pathogen itself. Instead, ketone bodies predominately serve as an energy source for the brain neurons during this period of nutrient scarcity.
Collapse
Affiliation(s)
- Gabriela Krejčová
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic
| | - Diana Novotná
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic.
| |
Collapse
|
8
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d’Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. SCIENCE ADVANCES 2025; 11:eads0535. [PMID: 39879309 PMCID: PMC11777252 DOI: 10.1126/sciadv.ads0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based 13C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism. Unexpectedly, mouse liver and primary hepatocytes consumed ketone bodies to support fatty acid biosynthesis via both de novo lipogenesis (DNL) and polyunsaturated fatty acid (PUFA) elongation. While an acetoacetate intermediate was not absolutely required for ketone bodies to source DNL, PUFA elongation required activation of acetoacetate by cytosolic acetoacetyl-coenzyme A synthetase (AACS). Moreover, AACS deficiency diminished free and esterified PUFAs in hepatocytes, while ketogenic insufficiency depleted PUFAs and increased liver triacylglycerols. These findings suggest that hepatic ketogenesis influences PUFA metabolism, representing a molecular mechanism through which ketone bodies could influence systemic physiology and chronic diseases.
Collapse
Affiliation(s)
- Eric D. Queathem
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zahra Moazzami
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David B. Stagg
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alisa B. Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyle Fulghum
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Abdirahman Hayir
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alisha Seay
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jacob R. Gillingham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D. André d’Avignon
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xianlin Han
- Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter A. Crawford
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
10
|
Pokhrel B, Tan Z, Jiang H. Identification of transcriptional regulators and signaling pathways mediating postnatal rumen growth and functional maturation in cattle. J Anim Sci 2025; 103:skae367. [PMID: 39656757 PMCID: PMC11781194 DOI: 10.1093/jas/skae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The rumen plays an essential role in the physiology and health of ruminants. The rumen undergoes substantial changes in size and function from birth to adulthood. The cellular and molecular mechanisms underlying these changes are not clear. This study aimed to identify the transcription factors (TFs) and signaling pathways mediating these changes in cattle. We found that the ratios of the emptied rumen, reticulum, omasum, and abomasum to body weight in adult steers were 4.8 (P < 0.01), 3.1 (P < 0.01), 6.0 (P < 0.01), and 0.8 (P = 0.9) times those in neonatal calves, respectively. The length of rumen papillae and the thickness of rumen epithelium, tunica mucosa and submucosa, tunica muscularis, and tunica serosa increased 7.4-, 2.0-, 3.0-, 2.9-, and 4.6-fold (P < 0.01 for all), respectively, from neonatal calves to adult steers. However, the density of rumen papillae was lower in adult steers than in neonatal calves (P < 0.05). The size of rumen epithelial cells was not different between neonatal calves and adult steers (P = 0.57). RNA sequencing identified 2,922 genes differentially expressed in the rumen between neonatal calves and adult steers. Functional enrichment analyses revealed that organ development, blood vessel development, Ras signaling, and Wnt signaling were among the functional terms enriched in genes downregulated in adult steers vs. neonatal calves and that fatty acid metabolism, immune responses, PPAR signaling, and Rap1 signaling were among those enriched in genes upregulated in adult steers vs. neonatal calves. Serum response factor (SRF), interferon regulatory factor 4, and purine-rich single-stranded DNA-binding protein alpha were among the major candidate TFs controlling the expression of genes upregulated, while TCF4, inhibitor of DNA binding 4, and snail family transcriptional repressor 2 were among those controlling the expression of genes downregulated in adult steers vs. neonatal calves. Taken together, these results suggest that the rumen grows by increasing the number, not the size, of cells from birth to adulthood, that the absorptive, metabolic, immune, and motility functions of the rumen are acquired or significantly enhanced during the postnatal life, and that the changes in rumen size and function from birth to adulthood are mediated by many candidate TFs, including SRF and TCF4, and many candidate signaling pathways, including the PPAR and Wnt signaling pathways.
Collapse
Affiliation(s)
- Binod Pokhrel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Chirivi M, Cortes-Beltran D, Gandy J, Contreras GA. Oxylipin dynamics in dairy cows during clinical ketosis and after treatment with niacin and flunixin meglumine. JDS COMMUNICATIONS 2025; 6:117-121. [PMID: 39877162 PMCID: PMC11770302 DOI: 10.3168/jdsc.2024-0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 01/31/2025]
Abstract
Dairy cows with clinical ketosis (CK) exhibit metabolic changes, including intense adipose tissue (AT) lipolysis and systemic insulin resistance, that increase plasma BHB and free fatty acids (FFA). Cows with CK also have systemic inflammation, predisposing them to inflammatory and infectious diseases. This inflammatory process is modulated in part by oxidized fatty acids (oxylipins) that regulate all aspects of inflammation. Oxylipin profiles have been characterized in healthy periparturient cows, but their dynamics during CK are unknown. Clinical ketosis is an acute metabolic disease requiring clinical therapy, commonly including propylene glycol (PG) as a gluconeogenic agent. Recently, we showed that including lipolysis inhibitors such as niacin (NIA) and flunixin meglumine (FM) improved CK recovery. These drugs may modulate oxylipin biosynthesis by regulating the release of PUFA (oxylipin substrates) and cyclooxygenase activity. However, their impact on oxylipin profiles in cows with CK is unknown. The objective of this study was to determine the dynamics of specific linoleic and arachidonic acid-derived oxylipins during CK and following therapy with PG, NIA, and FM. Multiparous Jersey cows (n = 72; 7.1 DIM) with CK from a commercial dairy were sampled. Inclusion criteria were CK symptoms (lethargy, depressed appetite, and reduced rumen fill) and blood BHB ≥ 1.2 mmol/L. The CK cows (n = 24/treatment) were randomly assigned to one of the 3 treatments: (1) PG: 310 g orally once daily for 5 d, (2) PG + NIA (PGNIA): 24 g orally once daily for 3 d, (3) PG + NIA + FM (PGNIAFM): 1.1 mg/kg i.v. once daily for 3 d. Healthy control cows (HC; n = 24) matched by lactation and DIM (±2 d) were also included. Plasma oxylipins were quantified at enrollment and 7 d later using HPLC-MS/MS. At enrollment, CK had higher concentrations of arachidonic acid (ARA)-derived 5- and 20-HETE, 8,9-, 11,12-, and 14-15-DHET, and lower concentrations of linoleic acid (LA)-derived 12,13-EpOME, 13-oxoODE, 9,10- and 12,13-DiHOME. Integrated analysis of biological pathways and oxylipin profiles using Ingenuity Pathway Analysis revealed ARA metabolism as the top pathway activated during CK. By d 7, treatment with PGNIAFM restored plasma PUFA and oxylipins to profiles similar to HC. Ingenuity Pathway Analysis showed that PGNIAFM activated the zinc transporter SLC30A7, associated with reduced activation of the ARA pathway. Results indicate that higher FA availability during CK, driven in part by dysregulated lipolysis, increases the pool of substrates for oxylipin biosynthesis. These oxylipins may play a role in both metabolic dysregulation and restoring homeostasis during CK. Inhibiting lipolysis and cyclooxygenase activity with NIA and FM can alter ARA- and LA-derived oxylipin biosynthesis. These findings underscore the potential use of lipolysis inhibitors NIA and FM in CK therapeutics and highlight the importance of understanding oxylipin pathways in the pathogenesis of CK.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Daniela Cortes-Beltran
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
12
|
Reed JN, Hasan F, Karkar A, Banka D, Hinkle J, Shastri P, Srivastava N, Scherping SC, Newkirk SE, Ferris HA, Kundu BK, Kranz S, Civelek M, Keller SR. Combined effects of genetic background and diet on mouse metabolism and gene expression. iScience 2024; 27:111323. [PMID: 39640571 PMCID: PMC11617257 DOI: 10.1016/j.isci.2024.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/17/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, dietary patterns impact weight and metabolism differentially across individuals. To uncover genetic determinants for differential dietary effects, we subjected four genetically diverse mouse strains to humanized diets (American, Mediterranean, vegetarian, and vegan) with similar macronutrient composition, and performed body weight, metabolic parameter, and RNA-seq analysis. We observed pronounced diet- and strain-dependent effects on weight, and triglyceride and insulin levels. Differences in fat mass, adipose tissue, and skeletal muscle glucose uptake, and gene expression changes in most tissues were strain-dependent. In visceral adipose tissue, ∼400 genes responded to diet in a strain-dependent manner, many of them in metabolite transport and lipid metabolism pathways and several previously identified to modify diet effects in humans. Thus, genetic background profoundly impacts metabolism, though chosen dietary patterns modify the strong genetic effects. This study paves the way for future mechanistic investigations into strain-diet interactions in mice and translation to precision nutrition in humans.
Collapse
Affiliation(s)
- Jordan N. Reed
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Faten Hasan
- Department of Kinesiology, University of Virginia School of Education and Human Development, Charlottesville, VA 22903, USA
| | - Abhishek Karkar
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Dhanush Banka
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jameson Hinkle
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Preeti Shastri
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Navya Srivastava
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Steven C. Scherping
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sarah E. Newkirk
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Heather A. Ferris
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Bijoy K. Kundu
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sibylle Kranz
- Department of Kinesiology, University of Virginia School of Education and Human Development, Charlottesville, VA 22903, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Susanna R. Keller
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
13
|
Soubeyrand S, Lau P, Nikpay M, Ma L, Bjorkegren JLM, McPherson R. Long Noncoding RNA TRIBAL Links the 8q24.13 Locus to Hepatic Lipid Metabolism and Coronary Artery Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004674. [PMID: 39624902 DOI: 10.1161/circgen.124.004674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Genome-wide association studies identified a 20-Kb region of chromosome 8 (8q24.13) associated with plasma lipids, hepatic steatosis, and risk for coronary artery disease. The region is proximal to TRIB1, and given its well-established role in lipid regulation in animal models, TRIB1 has been proposed to mediate the contribution of the 8q24.13 locus to these traits. This region overlaps a gene encoding the primate-specific long noncoding RNA transcript TRIBAL/TRIB1AL (TRIB1-associated locus), but the contribution of TRIBAL to coronary artery disease risk remains untested. METHODS Using recently available expression quantitative trait loci data and hepatocyte models, we further investigated this locus by Mendelian randomization analysis. Following antisense oligonucleotide targeting of TRIBAL, transcription array, quantitative reverse transcription polymerase chain reaction, and enrichment analyses were performed and effects on apoB and triglyceride secretion were determined. RESULTS Mendelian randomization analysis supports a causal relationship between genetically determined hepatic TRIBAL expression and markers of hepatic steatosis and coronary artery disease risk. By contrast, expression data sets did not support expression quantitative trait loci relationships between coronary artery disease-associated variants and TRIB1. TRIBAL suppression reduced the expression of key regulators of triglyceride metabolism and bile acid synthesis. Enrichment analyses identified patterns consistent with impaired metabolic functions, including reduced triglyceride and cholesterol handling ability. Furthermore, TRIBAL suppression was associated with reduced hepatocyte secretion of triglycerides. CONCLUSIONS This work identifies TRIBAL as a gene bridging the genotype-phenotype relationship at the 8q24.13 locus with effects on genes regulating hepatocyte lipid metabolism and triglyceride secretion.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Paulina Lau
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Majid Nikpay
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.)
| | - Ruth McPherson
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
- Division of Cardiology, Ruddy Canadian Cardiovascular Genetics Centre (R.M.), University of Ottawa Heart Institute, Canada
| |
Collapse
|
14
|
Liu M, Qiao G, Wang Y, Liu S, Wang X, Yue Y, Peng S. Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics. Int J Mol Sci 2024; 25:10924. [PMID: 39456707 PMCID: PMC11507341 DOI: 10.3390/ijms252010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The large yellow croaker (Larimichthys crocea) is an important economic fish in China. However, intensive farming practices, such as high stocking densities, suboptimal water quality, and imbalanced nutrition, have led to a decline in muscle quality. Muscle elasticity is a key texture property influencing muscle quality. Herein, transcriptomic and metabolomic analyses were performed on four groups: male high muscle elasticity (MEHM), female high muscle elasticity (MEHF), male low muscle elasticity (MELM), and female low muscle elasticity (MELF), to explore the molecular regulation underlying muscle elasticity in the large yellow croaker. Transcriptomics identified 2594 differentially expressed genes (DEGs) across the four groups, while metabolomics revealed 969 differentially expressed metabolites (DEMs). Association analysis indicated that the valine, leucine, and isoleucine biosynthesis pathways were significantly enriched between the MELF and MEHF groups; 2-Oxoisovalerate and L-Valine were DEMs; and the gene encoding L-threonine ammonia-lyase was a DEG. In the MELM and MEHM groups, pathways such as arginine biosynthesis; arginine and proline metabolism; and valine, leucine, and isoleucine degradation were significantly enriched. 4-guanidinobutanoate, L-aspartate, N-acetylornithine, and L-leucine were among the DEMs, while the DEGs included glul, gls, srm, hmgcs, and aacs. These findings provide insights into the molecular mechanisms controlling muscle elasticity, representing a theoretical foundation to breed high-quality large yellow croakers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiming Peng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
15
|
Arconzo M, Piccinin E, Pasculli E, Cariello M, Loiseau N, Bertrand-Michel J, Guillou H, Matrella ML, Villani G, Moschetta A. Hepatic-specific Pgc-1α ablation drives fibrosis in a MASH model. Liver Int 2024; 44:2738-2752. [PMID: 39046166 DOI: 10.1111/liv.16052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of chronic liver disease, characterized by fat accumulation, inflammation and fibrosis, which development depends on mitochondrial dysfunction and oxidative stress. Highly expressed in the liver during fasting, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates mitochondrial and oxidative metabolism. Given the relevant role of mitochondrial function in MASH, we investigated the relationship between PGC-1α and steatohepatitis. METHODS We measured the hepatic expression of Pgc-1α in both MASH patients and wild-type mice fed a western diet (WD) inducing steatosis and fibrosis. We then generated a pure C57BL6/J strain loss of function mouse model in which Pgc-1α is selectively deleted in the liver and we fed these mice with a WD supplemented with sugar water that accurately mimics human MASH. RESULTS We observed that the hepatic expression of Pgc-1α is strongly reduced in MASH, in both humans and mice. Moreover, the hepatic ablation of Pgc-1α promotes a considerable reduction of the hepatic mitochondrial respiratory capacity, setting up a bioenergetic harmful environment for liver diseases. Indeed, the lack of Pgc-1α decreases mitochondrial function and increases inflammation, fibrosis and oxidative stress in the scenario of MASH. Intriguingly, this profibrotic phenotype is not linked with obesity, insulin resistance and lipid disbalance. CONCLUSIONS In a MASH model the hepatic ablation of Pgc-1α drives fibrosis independently from lipid and glucose metabolism. These results add a novel mechanistic piece to the puzzle of the specific and crucial role of mitochondrial function in MASH development.
Collapse
Affiliation(s)
- Maria Arconzo
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | | | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Maria L Matrella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
16
|
Ahmad R, Haque M. Metformin: Beyond Type 2 Diabetes Mellitus. Cureus 2024; 16:e71730. [PMID: 39421288 PMCID: PMC11486535 DOI: 10.7759/cureus.71730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Metformin was developed from an offshoot of Guanidine. It is known to be the first-line medication for type 2 diabetes mellitus, polycystic ovarian syndrome, and weight reduction. Metformin has also been shown to have effectiveness in the management of non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and various carcinomas like hepatocellular, colorectal, prostate, breast, urinary bladder, blood, melanoma, bone, skin, lung and so on. This narrative review focuses on the effect of metformin on non-alcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma. The search platforms for the topic were PubMed, Scopus, and Google search engine. Critical words for searching included 'Metformin,' AND 'Indications of Metformin,' AND 'Non-Alcoholic Fatty Liver Disease,' AND 'Metformin mechanism of action,' AND 'NAFLD management,' AND 'NAFLD and inflammation,' AND 'Metformin and insulin,' AND 'Metformin and inflammation,' AND 'Liver cirrhosis,' AND 'Hepatocellular carcinoma.' Lifestyle modification and the use of hypoglycemic agents can help improve liver conditions. Metformin has several mechanisms that enhance liver health, including reducing reactive oxygen species, nuclear factor kappa beta (NF-κB), liver enzymes, improving insulin sensitivity, and improving hepatic cell lipophagy. Long-term use of metformin may cause some adverse effects like lactic acidosis and gastrointestinal disturbance. Metformin long-term overdose may lead to a rise in hydrogen sulfide in liver cells, which calls for pharmacovigilance. Drug regulating authorities should provide approval for further research, and national and international guidelines need to be developed for liver diseases, perhaps with the inclusion of metformin as part of the management regime.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
17
|
Martínez-Urbistondo D, Perez-Diaz-Del-Campo N, Landecho MF, Martínez JA. Alcohol Drinking Impacts on Adiposity and Steatotic Liver Disease: Concurrent Effects on Metabolic Pathways and Cardiovascular Risks. Curr Obes Rep 2024; 13:461-474. [PMID: 38520634 PMCID: PMC11306502 DOI: 10.1007/s13679-024-00560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE OF REVIEW This integrative search aimed to provide a scoping overview of the relationships between the benefits and harms of alcohol drinking with cardiovascular events as associated to body fat mass and fatty liver diseases, as well as offering critical insights for precision nutrition research and personalized medicine implementation concerning cardiovascular risk management associated to ethanol consumption. RECENT FINDINGS Frequent alcohol intake could contribute to a sustained rise in adiposity over time. Body fat distribution patterns (abdominal/gluteus-femoral) and intrahepatic accumulation of lipids have been linked to adverse cardiovascular clinical outcomes depending on ethanol intake. Therefore, there is a need to understand the complex interplay between alcohol consumption, adipose store distribution, metabolic dysfunction-associated steatotic liver disease (MASLD), and cardiovascular events in adult individuals. The current narrative review deals with underconsidered and apparently conflicting benefits concerning the amount of alcohol intake, ranging from abstention to moderation, and highlights the requirements for additional robust methodological studies and trials to interpret undertrained and existing controversies. The conclusion of this review emphasizes the need of newer multifaceted clinical approaches for precision medicine implementation, considering epidemiological strategies and pathophysiological mechanistic. Newer investigations and trials should be derived and performed particularly focusing both on alcohol's objective consequences as putatively mediated by fat deposition, including associated roles in fatty liver disease as well as to differentiate the impact of different levels of alcohol consumption (absence or moderation) concerning cardiovascular risks and accompanying clinical manifestations. Indeed, the threshold for the safe consumption of alcoholic drinks remains to be fully elucidated.
Collapse
Affiliation(s)
- Diego Martínez-Urbistondo
- Departamento de Medicina Interna, Area de Medicina Vascular-Madrid, Clinica Universidad de Navarra, Madrid, Spain
| | | | - Manuel F Landecho
- Obesity and General Health Check-Up Area, Internal Medicine Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, Madrid, Spain.
- Centre of Medicine and Endocrinology, University of Valladolid, Valladolid, Spain.
| |
Collapse
|
18
|
Baek S, Seo DS, Kang J, Ahmad Y, Park S, Joo S, Kim K, Jang Y. ChREBP plays a pivotal role in the nutrient-mediated regulation of metabolic gene expression in brown adipose tissue. Life Sci 2024; 351:122843. [PMID: 38880168 DOI: 10.1016/j.lfs.2024.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
AIMS Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that regulates several metabolic genes, including the lipogenic enzymes necessary for the metabolic conversion of carbohydrates into lipids. Although the crucial role of ChREBP in the liver, the primary site of de novo lipogenesis, has been studied, its functional role in adipose tissues, particularly brown adipose tissue (BAT), remains unclear. In this study, we investigated the role of ChREBP in BAT under conditions of a high-carbohydrate diet (HCD) and ketogenic diet (KD), represented by extremely low carbohydrate intake. MAIN METHODS Using an adeno-associated virus and Cas9 knock-in mice, we rapidly generated Chrebp brown adipocyte-specific knock-out (B-KO) mice, bypassing the necessity for prolonged breeding by using the Cre-Lox system. KEY FINDINGS We demonstrated that ChREBP is essential for glucose metabolism and lipogenic gene expression in BAT under HCD conditions in Chrebp B-KO mice. After nutrient intake, Chrebp B-KO attenuated the KD-induced expression of several inflammatory genes in BAT. SIGNIFICANCE Our results indicated that ChREBP, a nutrient-sensing regulator, is indispensable for expressing a diverse range of metabolic genes in BAT.
Collapse
Affiliation(s)
- Seungwoo Baek
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Jaehyeon Kang
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Sungjun Park
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Sungmin Joo
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea.
| |
Collapse
|
19
|
He H, Liu K, Liu M, Yang AJ, Cheng KW, Lu LW, Liu B, Chen JH. The impact of medium-chain triglycerides on weight loss and metabolic health in individuals with overweight or obesity: A systematic review and meta-analysis. Clin Nutr 2024; 43:1755-1768. [PMID: 38936302 DOI: 10.1016/j.clnu.2024.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUNDS The efficacy of medium-chain triglycerides (MCTs) for weight management and mitigating metabolic disorders among individuals with overweight and obesity remains a topic of ongoing discussion. Notably, there is a gap in the distinction between pure MCTs and medium-long-chain triglycerides (MLCTs). METHODS This meta-analysis investigates the efficacy of MCTs on weight loss and glucolipid metabolism in these populations, explicitly evaluating the differential effects of pure MCTs and MLCTs. We performed a random-effects meta-analysis on relevant studies examining weight loss and glucolipid parameters, incorporating a subgroup analysis conducted based on intervention types, pure MCTs versus MLCTs. RESULTS Our findings revealed diets enriched with MCTs are more effective in achieving weight reduction (WMD: -1.53%; 95% CI: -2.44, -0.63; p < 0.01), particularly those containing pure MCTs (WMD: -1.62%; 95% CI: -2.78, -0.46; p < 0.01), compared to long-chain fatty acids (LCTs) enriched diets. However, our subgroup analysis indicates that an MLCTs-enriched diet did not significantly reduce weight loss. Additionally, MCTs-enriched diets were associated with significant reductions in blood triglyceride levels and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) scores, compared to LCTs-enriched diets. CONCLUSIONS Hence, the authors recommend incorporating pure MCTs in dietary interventions for individuals with overweight and obesity, particularly those with comorbidities such as dyslipidemia and impaired glucose metabolism.
Collapse
Affiliation(s)
- Hui He
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Kang Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ai-Jia Yang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Louise Weiwei Lu
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand. louise.%
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China.
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
20
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d'Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602593. [PMID: 39026753 PMCID: PMC11257565 DOI: 10.1101/2024.07.09.602593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation. Analysis of 13 C-labeled FAs in hepatocytes lacking mitochondrial D-β-hydroxybutyrate dehydrogenase (BDH1) revealed a partial reliance on mitochondrial conversion of D-βOHB to acetoacetate (AcAc) for cytoplasmic DNL contribution, whereas FA elongation from ketone bodies was fully dependent on cytosolic acetoacetyl-CoA synthetase (AACS). Ketone bodies were essential for polyunsaturated FA (PUFA) homeostasis in hepatocytes, as loss of AACS diminished both free and esterified PUFAs. Ketogenic insufficiency depleted liver PUFAs and increased triacylglycerols, mimicking human MASLD, suggesting that ketogenesis supports PUFA homeostasis, and may mitigate MASLD-MASH progression in humans.
Collapse
|
21
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
22
|
Siqueira JS, Garcia JL, Ferron AJT, Moreto F, Sormani LE, Costa MR, Palacio TLN, Nai GA, Aldini G, Francisqueti-Ferron FV, Correa CR, D'Amato A. Proteomic study of gamma-oryzanol preventive effect on a diet-induced non-alcoholic fatty liver disease model. J Nutr Biochem 2024; 127:109607. [PMID: 38432453 DOI: 10.1016/j.jnutbio.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with obesity and diabetes prevalence. The use of natural compounds has become an attractive approach to prevent NAFLD and its progression. Gamma-oryzanol (Orz) is a natural compound whose beneficial effects on chronic metabolic diseases have been reported. Therefore, we aimed to investigate the preventive effect of Orz on the hepatic proteome in a diet induced NAFLD model. Wistar rats were randomly distributed into three experimental groups (n=6/group) according to the diet received for 30 weeks: Control group, high sugar-fat (HSF) group, and HSF+Orz group. The isolated Orz was added to the chow at the dose of 0.5% (w/w). We evaluated the nutritional profile, characterized the presence of steatosis through histological analysis, triglyceride content in liver tissue and hepatic inflammation. Next, we performed label-free quantitative proteomics of hepatic tissue. Network analysis was performed to describe involved protein pathways. NAFLD induction was characterized by the presence of hepatic steatosis. Orz prevented lipid accumulation. The compound prevented alterations of the hepatic proteome, highlighted by the modulation of lipid metabolism, inflammation, oxidative stress, xenobiotic metabolism, and the sirtuin signaling pathway. It was possible to identify key altered pathways of NAFLD pathophysiology modulated by Orz which may provide insights into NAFLD treatment targets.
Collapse
Affiliation(s)
| | | | | | - Fernando Moreto
- Botucatu Medical School, São Paulo State University (Unesp), Botucatu, Brazil.
| | | | | | | | - Gisele Alborghetti Nai
- Department of Pathology, Medical School, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, Brazil.
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | | | | | - Alfonsina D'Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
23
|
Dafre AL, Zahid S, Probst JJ, Currais A, Yu J, Schubert D, Maher P. CMS121: a novel approach to mitigate aging-related obesity and metabolic dysfunction. Aging (Albany NY) 2024; 16:4980-4999. [PMID: 38517358 PMCID: PMC11006478 DOI: 10.18632/aging.205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Modulated by differences in genetic and environmental factors, laboratory mice often show progressive weight gain, eventually leading to obesity and metabolic dyshomeostasis. Since the geroneuroprotector CMS121 has a positive effect on energy metabolism in a mouse model of type 2 diabetes, we investigated the potential of CMS121 to counteract the metabolic changes observed during the ageing process of wild type mice. METHODS Control or CMS121-containing diets were supplied ad libitum for 6 months, and mice were sacrificed at the age of 7 months. Blood, adipose tissue, and liver were analyzed for glucose, lipids, and protein markers of energy metabolism. RESULTS The CMS121 diet induced a 40% decrease in body weight gain and improved both glucose and lipid indexes. Lower levels of hepatic caspase 1, caspase 3, and NOX4 were observed with CMS121 indicating a lower liver inflammatory status. Adipose tissue from CMS121-treated mice showed increased levels of the transcription factors Nrf1 and TFAM, as well as markers of mitochondrial electron transport complexes, levels of GLUT4 and a higher resting metabolic rate. Metabolomic analysis revealed elevated plasma concentrations of short chain acylcarnitines and butyrate metabolites in mice treated with CMS121. CONCLUSIONS The diminished de novo lipogenesis, which is associated with increased acetyl-CoA, acylcarnitine, and butyrate metabolite levels, could contribute to safeguarding not only the peripheral system but also the aging brain. By mimicking the effects of ketogenic diets, CMS121 holds promise for metabolic diseases such as obesity and diabetes, since these diets are hard to follow over the long term.
Collapse
Affiliation(s)
- Alcir L. Dafre
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Saadia Zahid
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurobiology Research Laboratory, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jessica Jorge Probst
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- The Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Tufarelli V, Puvača N, Glamočić D, Pugliese G, Colonna MA. The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period. Animals (Basel) 2024; 14:816. [PMID: 38473200 DOI: 10.3390/ani14050816] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
This review paper provides an in-depth analysis of three critical metabolic diseases affecting dairy cattle such as subacute ruminal acidosis (SARA), ketosis, and hypocalcemia. SARA represents a disorder of ruminal fermentation that is characterized by extended periods of depressed ruminal pH below 5.5-5.6. In the long term, dairy herds experiencing SARA usually exhibit secondary signs of the disease, such as episodes of laminitis, weight loss and poor body condition despite adequate energy intake, and unexplained abscesses usually 3-6 months after an episode of SARA. Depressed milk-fat content is commonly used as a diagnostic tool for SARA. A normal milk-fat test in Holstein dairy cows is >4%, so a milk-fat test of <3% can indicate SARA. However, bulk tank testing of milk fat is inappropriate to diagnose SARA at the herd level, so when >4 cows out of 12 and <60 days in milk are suspected to have SARA it can be considered that the herd has a problem. The rapid or abrupt introduction of fresh cows to high-concentrate diets is the most common cause of SARA. Changes in ruminal bacterial populations when exposed to higher concentrate rations require at least about 3 weeks, and it is recommended that concentrate levels increase by no more than 400 g/day during this period to avoid SARA. Ketosis, a prevalent metabolic disorder in dairy cattle, is scrutinized with a focus on its etiological factors and the physiological changes leading to elevated ketone bodies. In total mix ration-fed herds, an increased risk of mastitis and reduced fertility are usually the first clinical signs of ketosis. All dairy cows in early lactation are at risk of ketosis, with most cases occurring in the first 2-4 weeks of lactation. Cows with a body condition score ≥3.75 on a 5-point scale at calving are at a greater risk of ketosis than those with lower body condition scores. The determination of serum or whole blood acetone, acetoacetate, beta-hydroxybutyrate (BHB) concentration, non-esterified fatty acids (NEFA), and liver biopsies is considered the best way to detect and monitor subclinical ketosis, while urine or milk cowside tests can also be used in on-farm monitoring programs. Concentrations >1.0 mmol/L or 1.4 mmol/L blood or serum BHB are considered diagnostic of subclinical ketosis. The standard threshold used for blood is 1.2 mmol/L, which corresponds to thresholds of 100 mcmol/L for milk and 15 mg/dL for urine. Oral administration of propylene glycol (250-400 g, every 24 h for 3-5 days) is the standard and most efficacious treatment, as well as additional therapy with bolus glucose treatment. Hypocalcemia is a disease of adult dairy cows in which acute hypocalcemia causes acute to peracute, afebrile, flaccid paralysis that occurs most commonly at or soon after parturition. Dairy cows are at considerable risk for hypocalcemia at the onset of lactation, when daily calcium excretion suddenly increases from about 10 g to 30 g per day. Cows with hypocalcemia have a more profound decrease in blood calcium concentration-typically below 5.5 mg/dL. The prevention of parturient paresis has been historically approached by feeding cows low-calcium diets during the dry period. Negative calcium balance triggers calcium mobilization before calving and better equips the cow to respond to the massive calcium needs at the onset of lactation. Calcium intake must be limited to <20 g per day for calcium restriction to be effective. The most practical and proven method for monitoring hypocalcemia is by feeding cows an acidogenic diet for ~3 weeks before calving. Throughout the review, emphasis is placed on the importance of early diagnosis and proactive management strategies to mitigate the impact of these metabolic diseases on dairy cattle health and productivity. The comprehensive nature of this paper aims to serve as a valuable resource for veterinarians, researchers, and dairy farmers seeking a deeper understanding of these prevalent metabolic disorders in dairy cattle.
Collapse
Affiliation(s)
- Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nikola Puvača
- Laboratory for Food Quality and Toxicology, Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management, University of Business Academy in Novi Sad, 21107 Novi Sad, Serbia
| | - Dragan Glamočić
- Department of Animal Science, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Gianluca Pugliese
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | | |
Collapse
|
25
|
Arora N, Shastri DH, Patel UP, Bhatia K. Modulation of beta-hydroxybutyrate in traumatic brain injury. Curr Opin Clin Nutr Metab Care 2024; 27:168-177. [PMID: 38170686 DOI: 10.1097/mco.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a significant public health concern with substantial morbidity and mortality rates in the United States. Current management strategies primarily focus on symptomatic approaches and prevention of secondary complications. However, recent research highlights the potential role of ketone bodies, particularly beta-hydroxybutyrate (BHB), in modulating cellular processes involved in TBI. This article reviews the metabolism of BHB, its effect in TBI, and its potential therapeutic impact in TBI. RECENT FINDINGS BHB can be produced endogenously through fasting or administered exogenously through ketogenic diets, and oral or intravenous supplements. Studies suggest that BHB may offer several benefits in TBI, including reducing oxidative stress, inflammation, controlling excitotoxicity, promoting mitochondrial respiration, and supporting brain regeneration. Various strategies to modulate BHB levels are discussed, with exogenous ketone preparations emerging as a rapid and effective option. SUMMARY BHB offers potential therapeutic advantages in the comprehensive approach to improve outcomes for TBI patients. However, careful consideration of safety and efficacy is essential when incorporating it into TBI treatment protocols. The timing, dosage, and long-term effects of ketone use in TBI patients require further investigation to fully understand its potential benefits and limitations.
Collapse
Affiliation(s)
- Niraj Arora
- Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
26
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
27
|
Liu Y, Fan L, Yang H, Wang D, Liu R, Shan T, Xia X. Ketogenic therapy towards precision medicine for brain diseases. Front Nutr 2024; 11:1266690. [PMID: 38450235 PMCID: PMC10915067 DOI: 10.3389/fnut.2024.1266690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Precision nutrition and nutrigenomics are emerging in the development of therapies for multiple diseases. The ketogenic diet (KD) is the most widely used clinical diet, providing high fat, low carbohydrate, and adequate protein. KD produces ketones and alters the metabolism of patients. Growing evidence suggests that KD has therapeutic effects in a wide range of neuronal diseases including epilepsy, neurodegeneration, cancer, and metabolic disorders. Although KD is considered to be a low-side-effect diet treatment, its therapeutic mechanism has not yet been fully elucidated. Also, its induced keto-response among different populations has not been elucidated. Understanding the ketone metabolism in health and disease is critical for the development of KD-associated therapeutics and synergistic therapy under any physiological background. Here, we review the current advances and known heterogeneity of the KD response and discuss the prospects for KD therapy from a precision nutrition perspective.
Collapse
Affiliation(s)
- Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Danli Wang
- Zhoushan People’s Hospital, Zhoushan, China
| | - Runhan Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Tikun Shan
- Neurosurgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xue Xia
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
28
|
Mosca A, Manco M, Braghini MR, Cianfarani S, Maggiore G, Alisi A, Vania A. Environment, Endocrine Disruptors, and Fatty Liver Disease Associated with Metabolic Dysfunction (MASLD). Metabolites 2024; 14:71. [PMID: 38276306 PMCID: PMC10819942 DOI: 10.3390/metabo14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Ecological theories suggest that environmental factors significantly influence obesity risk and related syndemic morbidities, including metabolically abnormal obesity associated with nonalcoholic fatty liver disease (MASLD). These factors encompass anthropogenic influences and endocrine-disrupting chemicals (EDCs), synergistically interacting to induce metabolic discrepancies, notably in early life, and disrupt metabolic processes in adulthood. This review focuses on endocrine disruptors affecting a child's MASLD risk, independent of their role as obesogens and thus regardless of their impact on adipogenesis. The liver plays a pivotal role in metabolic and detoxification processes, where various lipophilic endocrine-disrupting molecules accumulate in fatty liver parenchyma, exacerbating inflammation and functioning as new anthropogenics that perpetuate chronic low-grade inflammation, especially insulin resistance, crucial in the pathogenesis of MASLD.
Collapse
Affiliation(s)
- Antonella Mosca
- Hepatology and Liver Transplant Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Melania Manco
- Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Maria Rita Braghini
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.B.); (A.A.)
| | - Stefano Cianfarani
- Endocrinology and Diabetes Unit, Bambino Gesù Pediatric Hospital, 00165 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet, University Hospital, Solnavägen 1, Solna, 171 77 Stockholm, Sweden
| | - Giuseppe Maggiore
- Hepatology and Liver Transplant Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.B.); (A.A.)
| | | |
Collapse
|
29
|
Pansa CC, Molica LR, de Oliveira Júnior FC, Santello LC, Moraes KCM. Cellular and molecular effects of fipronil in lipid metabolism of HepG2 and its possible connection to non-alcoholic fatty liver disease. J Biochem Mol Toxicol 2024; 38:e23595. [PMID: 38050659 DOI: 10.1002/jbt.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global public health problem that affects more than a quarter of the population. The development of this disease is correlated with metabolic dysfunctions that lead to lipid accumulation in the liver. Pesticides are one of etiologies that support NAFLD establishment. Therefore, the effects of the insecticide fipronil on the lipid metabolism of the human hepatic cell line, HepG2, was investigated, considering its widespread use in field crops and even to control domestic pests. To address the goals of the study, biochemical, cellular, and molecular analyses of different concentrations of fipronil in cell cultures were investigated, after 24 h of incubation. Relevant metabolites such as triglycerides, glucose levels, β-oxidation processes, and gene expression of relevant elements correlated with lipid and metabolism of xenobiotics were investigated. The results suggested that at 20 μM, the pesticide increased the accumulation of triglycerides and neutral lipids by reducing fatty acid oxidation and increasing de novo lipogenesis. In addition, changes were observed in genes that control oxidative stress and the xenobiotic metabolism. Together, the results suggest that the metabolic changes caused by the insecticide fipronil may be deleterious if persistent, favoring the establishment of hepatic steatosis.
Collapse
Affiliation(s)
- Camila C Pansa
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Letícia R Molica
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Fabiano C de Oliveira Júnior
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Lara C Santello
- Laboratório de Microbiologia Ambiental, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Karen C M Moraes
- Laboratório Sinalização Celular e Expressão Gênica, DBGA, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| |
Collapse
|
30
|
Castillo MF, Salgado-Canales D, Arrese M, Barrera F, Mikhailidis DP. Effect of Intermittent Fasting on Lipid Profile, Anthropometric and Hepatic Markers in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review. Curr Vasc Pharmacol 2024; 22:187-202. [PMID: 38321893 DOI: 10.2174/0115701611285401240110074530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The first-line treatment for non-alcoholic fatty liver disease (NAFLD) is lifestyle modification; this should accompany any pharmacological intervention. Intermittent fasting (IF) has shown benefits over metabolic and cardiovascular parameters. Non-religious IF includes Time-Restricted Feeding (TRF), Alternate-Day Fasting (ADF), and 5:2 IF interventions. OBJECTIVE To evaluate the effects of IF on anthropometric, liver damage, and lipid profile markers in subjects with NAFLD. METHODS A bibliographic search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using PubMed and Scopus databases. RESULTS Five studies involving 470 patients with NAFLD were included. In relation to anthropometric markers, all the articles reported body weight reduction (2.48-7.63%), but only ADF and 5:2 IF reported a body weight reduction >5%; also, all the articles reported fat mass reduction. Concerning hepatic markers, all the articles reported a reduction in hepatic steatosis and alanine aminotransferase activity, but no changes in fat-free mass and high-density lipoprotein cholesterol levels. There were variable results on fibrosis, other liver enzymes, waist circumference and body mass index, as well as the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol. CONCLUSION Any form of IF could be potentially beneficial for NAFLD treatment and some associated cardiometabolic parameters. However, it is necessary to evaluate the effects and safety of IF in long-term studies involving a higher number of participants with different stages of NAFLD. The effect of IF on NAFLD-associated vascular risk also needs evaluation.
Collapse
Affiliation(s)
- María Fernanda Castillo
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Daniela Salgado-Canales
- Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul Santiago, Chile
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Francisco Barrera
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
31
|
Koutentakis M, Kuciński J, Świeczkowski D, Surma S, Filipiak KJ, Gąsecka A. The Ketogenic Effect of SGLT-2 Inhibitors-Beneficial or Harmful? J Cardiovasc Dev Dis 2023; 10:465. [PMID: 37998523 PMCID: PMC10672595 DOI: 10.3390/jcdd10110465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors, also called gliflozins or flozins, are a class of drugs that have been increasingly used in the management of type 2 diabetes mellitus (T2DM) due to their glucose-lowering, cardiovascular (CV), and renal positive effects. However, recent studies suggest that SGLT-2 inhibitors might also have a ketogenic effect, increasing ketone body production. While this can be beneficial for some patients, it may also result in several potential unfavorable effects, such as decreased bone mineral density, infections, and ketoacidosis, among others. Due to the intricate and multifaceted impact caused by SGLT-2 inhibitors, this initially anti-diabetic class of medications has been effectively used to treat both patients with chronic kidney disease (CKD) and those with heart failure (HF). Additionally, their therapeutic potential appears to extend beyond the currently investigated conditions. The objective of this review article is to present a thorough summary of the latest research on the mechanism of action of SGLT-2 inhibitors, their ketogenesis, and their potential synergy with the ketogenic diet for managing diabetes. The article particularly discusses the benefits and risks of combining SGLT-2 inhibitors with the ketogenic diet and their clinical applications and compares them with other anti-diabetic agents in terms of ketogenic effects. It also explores future directions regarding the ketogenic effects of SGLT-2 inhibitors.
Collapse
Affiliation(s)
- Michail Koutentakis
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jakub Kuciński
- Central Clinical Hospital, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Damian Świeczkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland;
| | - Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland;
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznań, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| |
Collapse
|
32
|
Bae J, Lee BW. Association between Impaired Ketogenesis and Metabolic-Associated Fatty Liver Disease. Biomolecules 2023; 13:1506. [PMID: 37892188 PMCID: PMC10604525 DOI: 10.3390/biom13101506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is generally developed with excessive accumulation of lipids in the liver. Ketogenesis is an efficient pathway for the disposal of fatty acids in the liver and its metabolic benefits have been reported. In this review, we examined previous studies on the association between ketogenesis and MAFLD and reviewed the candidate mechanisms that can explain this association.
Collapse
Affiliation(s)
- Jaehyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
33
|
Arumugam MK, Gopal T, Kalari Kandy RR, Boopathy LK, Perumal SK, Ganesan M, Rasineni K, Donohue TM, Osna NA, Kharbanda KK. Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases. BIOLOGY 2023; 12:1311. [PMID: 37887021 PMCID: PMC10604291 DOI: 10.3390/biology12101311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The liver is a major metabolic organ that performs many essential biological functions such as detoxification and the synthesis of proteins and biochemicals necessary for digestion and growth. Any disruption in normal liver function can lead to the development of more severe liver disorders. Overall, about 3 million Americans have some type of liver disease and 5.5 million people have progressive liver disease or cirrhosis, in which scar tissue replaces the healthy liver tissue. An estimated 20% to 30% of adults have excess fat in their livers, a condition called steatosis. The most common etiologies for steatosis development are (1) high caloric intake that causes non-alcoholic fatty liver disease (NAFLD) and (2) excessive alcohol consumption, which results in alcohol-associated liver disease (ALD). NAFLD is now termed "metabolic-dysfunction-associated steatotic liver disease" (MASLD), which reflects its association with the metabolic syndrome and conditions including diabetes, high blood pressure, high cholesterol and obesity. ALD represents a spectrum of liver injury that ranges from hepatic steatosis to more advanced liver pathologies, including alcoholic hepatitis (AH), alcohol-associated cirrhosis (AC) and acute AH, presenting as acute-on-chronic liver failure. The predominant liver cells, hepatocytes, comprise more than 70% of the total liver mass in human adults and are the basic metabolic cells. Mitochondria are intracellular organelles that are the principal sources of energy in hepatocytes and play a major role in oxidative metabolism and sustaining liver cell energy needs. In addition to regulating cellular energy homeostasis, mitochondria perform other key physiologic and metabolic activities, including ion homeostasis, reactive oxygen species (ROS) generation, redox signaling and participation in cell injury/death. Here, we discuss the main mechanism of mitochondrial dysfunction in chronic liver disease and some treatment strategies available for targeting mitochondria.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | | | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
34
|
Fotakis C, Kalafati IP, Amanatidou AI, Andreou V, Matzapetakis M, Kafyra M, Varlamis I, Zervou M, Dedoussis GV. Serum metabolomic profiling unveils distinct sex-related metabolic patterns in NAFLD. Front Endocrinol (Lausanne) 2023; 14:1230457. [PMID: 37854184 PMCID: PMC10579908 DOI: 10.3389/fendo.2023.1230457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/31/2023] [Indexed: 10/20/2023] Open
Abstract
Objective Obesity poses an increased risk for the onset of Nonalcoholic fatty liver disease (NAFLD). The influence of other factors, such as sex in the incidence and severity of this liver disease has not yet been fully elucidated. Thus, we aimed to identify the NAFLD serum metabolic signatures associated with sex in normal, overweight and obese patients and to associate the metabolite fluctuations across the increasing liver steatosis stages. Methods and results Using nuclear magnetic resonance (NMR) serum samples of 210 NAFLD cases and control individuals diagnosed with liver U/S, our untargeted metabolomics enquiry provided a sex distinct metabolic bouquet. Increased levels of alanine, histidine and tyrosine are associated with severity of NAFLD in both men and women. Moreover, higher serum concentrations of valine, aspartic acid and mannose were positively associated with the progression of NAFLD among the male subjects, while a negative association was observed with the levels of creatine, phosphorylcholine and acetic acid. On the other hand, glucose was positively associated with the progression of NAFLD among the female subjects, while levels of threonine were negatively related. Fluctuations in ketone bodies acetoacetate and acetone were also observed among the female subjects probing a significant reduction in the circulatory levels of the former in NAFLD cases. A complex glycine response to hepatic steatosis of the female subjects deserves further investigation. Conclusion Results of this study aspire to address the paucity of data on sex differences regarding NAFLD pathogenesis. Targeted circulatory metabolome measurements could be used as diagnostic markers for the distinct stages of NAFLD in each sex and eventually aid in the development of novel sex-related therapeutic options.
Collapse
Affiliation(s)
- Charalambos Fotakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Ioanna-Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Vasiliki Andreou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Manolis Matzapetakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Iraklis Varlamis
- Department of Informatics and Telematics, Harokopio University of Athens, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
35
|
Yang X, Weber AA, Mennillo E, Secrest P, Chang M, Wong S, Le S, Liu J, Benner CW, Karin M, Gordts PL, Tukey RH, Chen S. Effects of Early Life Oral Arsenic Exposure on Intestinal Tract Development and Lipid Homeostasis in Neonatal Mice: Implications for NAFLD Development. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97001. [PMID: 37668303 PMCID: PMC10478510 DOI: 10.1289/ehp12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/01/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Newborns can be exposed to inorganic arsenic (iAs) through contaminated drinking water, formula, and other infant foods. Epidemiological studies have demonstrated a positive association between urinary iAs levels and the risk of developing nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults. OBJECTIVES The present study examined how oral iAs administration to neonatal mice impacts the intestinal tract, which acts as an early mediator for NAFLD. METHODS Neonatal mice were treated with a single dose of iAs via oral gavage. Effects on the small intestine were determined by histological examination, RNA sequencing, and biochemical analysis. Serum lipid profiling was analyzed by fast protein liquid chromatography (FPLC), and hepatosteatosis was characterized histologically and biochemically. Liver X receptor-alpha (LXR α ) knockout (L x r α - / - ) mice and liver-specific activating transcription factor 4 (ATF4)-deficient (A t f 4 Δ H e p ) mice were used to define their roles in iAs-induced effects during the neonatal stage. RESULTS Neonatal mice exposed to iAs via oral gavage exhibited accumulation of dietary fat in enterocytes, with higher levels of enterocyte triglycerides and free fatty acids. These mice also showed accelerated enterocyte maturation and a longer small intestine. This was accompanied by higher levels of liver-derived very low-density lipoprotein and low-density lipoprotein triglycerides, and a lower level of high-density lipoprotein cholesterol in the serum. Mice exposed during the neonatal period to oral iAs also developed hepatosteatosis. Compared with the control group, iAs-induced fat accumulation in enterocytes became more significant in neonatal L x r α - / - mice, accompanied by accelerated intestinal growth, hypertriglyceridemia, and hepatosteatosis. In contrast, regardless of enterocyte fat accumulation, hepatosteatosis was largely reduced in iAs-treated neonatal A t f 4 Δ H e p mice. CONCLUSION Exposure to iAs in neonatal mice resulted in excessive accumulation of fat in enterocytes, disrupting lipid homeostasis in the serum and liver, revealing the importance of the gut-liver axis and endoplasmic reticulum stress in mediating iAs-induced NAFLD at an early age. https://doi.org/10.1289/EHP12381.
Collapse
Affiliation(s)
- Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - André A. Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Patrick Secrest
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, California, USA
| | - Max Chang
- Department of Medicine, School of Medicine, UC San Diego, La Jolla, California, USA
| | - Samantha Wong
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Sabrina Le
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, UC San Diego, La Jolla, California, USA
| | | | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, UC San Diego, La Jolla, California, USA
| | - Philip L.S.M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, California, USA
| | - Robert H. Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| |
Collapse
|
36
|
Li K, Wang WH, Wu JB, Xiao WH. β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases. Biomed Pharmacother 2023; 165:115191. [PMID: 37487440 DOI: 10.1016/j.biopha.2023.115191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
β-hydroxybutyrate (β-HB), the most abundant ketone body, is produced primarily in the liver and acts as a substitute energy fuel to provide energy to extrahepatic tissues in the event of hypoglycemia or glycogen depletion. We now have an improved understanding of β-HB as a signal molecule and epigenetic regulatory factor as a result of intensive research over the last ten years. Because β-HB regulates various physiological and pathological processes, it may have a potential role in the treatment of metabolic diseases. The liver is the most significant metabolic organ, and the part that β-HB plays in liver disorders is receiving increasing attention. In this review, we summarize the therapeutic effects of β-HB on liver diseases and its underlying mechanisms of action. Moreover, we explore the prospects of exogenous supplements and endogenous ketosis including fasting, caloric restriction (CR), ketogenic diet (KD), and exercise as adjuvant nutritional therapies to protect the liver from damage and provide insights and strategies for exploring the treatment of various liver diseases.
Collapse
Affiliation(s)
- Ke Li
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wen-Hong Wang
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Jia-Bin Wu
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei-Hua Xiao
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
37
|
Renaud D, Scholl-Bürgi S, Karall D, Michel M. Comparative Metabolomics in Single Ventricle Patients after Fontan Palliation: A Strong Case for a Targeted Metabolic Therapy. Metabolites 2023; 13:932. [PMID: 37623876 PMCID: PMC10456471 DOI: 10.3390/metabo13080932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Most studies on single ventricle (SV) circulation take a physiological or anatomical approach. Although there is a tight coupling between cardiac contractility and metabolism, the metabolic perspective on this patient population is very recent. Early findings point to major metabolic disturbances, with both impaired glucose and fatty acid oxidation in the cardiomyocytes. Additionally, Fontan patients have systemic metabolic derangements such as abnormal glucose metabolism and hypocholesterolemia. Our literature review compares the metabolism of patients with a SV circulation after Fontan palliation with that of patients with a healthy biventricular (BV) heart, or different subtypes of a failing BV heart, by Pubmed review of the literature on cardiac metabolism, Fontan failure, heart failure (HF), ketosis, metabolism published in English from 1939 to 2023. Early evidence demonstrates that SV circulation is not only a hemodynamic burden requiring staged palliation, but also a metabolic issue with alterations similar to what is known for HF in a BV circulation. Alterations of fatty acid and glucose oxidation were found, resulting in metabolic instability and impaired energy production. As reported for patients with BV HF, stimulating ketone oxidation may be an effective treatment strategy for HF in these patients. Few but promising clinical trials have been conducted thus far to evaluate therapeutic ketosis with HF using a variety of instruments, including ketogenic diet, ketone esters, and sodium-glucose co-transporter-2 (SGLT2) inhibitors. An initial trial on a small cohort demonstrated favorable outcomes for Fontan patients treated with SGLT2 inhibitors. Therapeutic ketosis is worth considering in the treatment of Fontan patients, as ketones positively affect not only the myocardial energy metabolism, but also the global Fontan physiopathology. Induced ketosis seems promising as a concerted therapeutic strategy.
Collapse
Affiliation(s)
- David Renaud
- Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniela Karall
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
Ha SK, Lee JA, Kim D, Yoo G, Choi I. A herb mixture to ameliorate non-alcoholic fatty liver in rats fed a high-fat diet. Heliyon 2023; 9:e18889. [PMID: 37576314 PMCID: PMC10415919 DOI: 10.1016/j.heliyon.2023.e18889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
This study was performed to investigate the effects of an herb extract mixture (HM) in ameliorating non-alcoholic fatty liver disease (NAFLD). The HM contained equal amounts of 70% ethanol extracts from Zingiber officinale, Centella asiatica, and Boehmeria nivea. In vitro, the HM significantly inhibited lipid accumulation in oleic acid-stimulated HepG2 cells. We further evaluated the anti-NAFLD activities of the HM in vivo in an animal model. Rats were fed two different amounts of the HM (50 and 200 mg/kg body weight) along with a high-fat diet for 6 weeks. HM supplementation reduced liver weight; epididymal, peri-renal, and intra-abdominal fat content; and serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels as well as increased high-density lipoprotein cholesterol levels in a dose-dependent manner. Histological evaluation of liver specimens further demonstrated that administration of HM significantly prevented hepatic lipid accumulation and subsequent development of hepatic steatosis. These findings suggest that HM can be used as an alternative nutraceutical for ameliorating NAFLD.
Collapse
Affiliation(s)
- Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jin-Ah Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Guijae Yoo
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Inwook Choi
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
39
|
Gama-Almeida MC, Pinto GDA, Teixeira L, Hottz ED, Ivens P, Ribeiro H, Garrett R, Torres AG, Carneiro TIA, Barbalho BDO, Ludwig C, Struchiner CJ, Assunção-Miranda I, Valente APC, Bozza FA, Bozza PT, Dos Santos GC, El-Bacha T. Integrated NMR and MS Analysis of the Plasma Metabolome Reveals Major Changes in One-Carbon, Lipid, and Amino Acid Metabolism in Severe and Fatal Cases of COVID-19. Metabolites 2023; 13:879. [PMID: 37512587 PMCID: PMC10384698 DOI: 10.3390/metabo13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Brazil has the second-highest COVID-19 death rate worldwide, and Rio de Janeiro is among the states with the highest rate in the country. Although vaccine coverage has been achieved, it is anticipated that COVID-19 will transition into an endemic disease. It is concerning that the molecular mechanisms underlying clinical evolution from mild to severe disease, as well as the mechanisms leading to long COVID-19, are not yet fully understood. NMR and MS-based metabolomics were used to identify metabolites associated with COVID-19 pathophysiology and disease outcome. Severe COVID-19 cases (n = 35) were enrolled in two reference centers in Rio de Janeiro within 72 h of ICU admission, alongside 12 non-infected control subjects. COVID-19 patients were grouped into survivors (n = 18) and non-survivors (n = 17). Choline-related metabolites, serine, glycine, and betaine, were reduced in severe COVID-19, indicating dysregulation in methyl donors. Non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid, and N-acetylserine, indicating liver and kidney dysfunction. Several changes were greater in women; thus, patients' sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. These metabolic alterations may be useful to monitor organ (dys) function and to understand the pathophysiology of acute and possibly post-acute COVID-19 syndromes.
Collapse
Affiliation(s)
- Marcos C Gama-Almeida
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela D A Pinto
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora 36936-900, Brazil
| | - Paula Ivens
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Hygor Ribeiro
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Garrett
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Alexandre G Torres
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Talita I A Carneiro
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bianca de O Barbalho
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2SQ, UK
| | - Claudio J Struchiner
- School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro 22231-080, Brazil
- Institute of Social Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Iranaia Assunção-Miranda
- LaRIV, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Paula C Valente
- National Center for Nuclear Magnetic Resonance-Jiri Jonas, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Gilson C Dos Santos
- LabMet-Laboratory of Metabolomics, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
40
|
Ramakrishnan S, Mooli RGR, Han Y, Fiorenza E, Kumar S, Bello F, Nallanagulagari A, Karra S, Teng L, Jurczak M. Hepatic ketogenesis regulates lipid homeostasis via ACSL1-mediated fatty acid partitioning. RESEARCH SQUARE 2023:rs.3.rs-3147009. [PMID: 37503004 PMCID: PMC10371136 DOI: 10.21203/rs.3.rs-3147009/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Liver-derived ketone bodies play a crucial role in fasting energy homeostasis by fueling the brain and peripheral tissues. Ketogenesis also acts as a conduit to remove excess acetyl-CoA generated from fatty acid oxidation and protects against diet-induced hepatic steatosis. Surprisingly, no study has examined the role of ketogenesis in fasting-associated hepatocellular lipid metabolism. Ketogenesis is driven by the rate-limiting mitochondrial enzyme 3-hydroxymethylglutaryl CoA synthase (HMGCS2) abundantly expressed in the liver. Here, we show that ketogenic insufficiency via disruption of hepatic HMGCS2 exacerbates liver steatosis in fasted chow and high-fat-fed mice. We found that the hepatic steatosis is driven by increased fatty acid partitioning to the endoplasmic reticulum (ER) for re-esterification via acyl-CoA synthetase long-chain family member 1 (ACSL1). Mechanistically, acetyl-CoA accumulation from impaired hepatic ketogenesis is responsible for the elevated translocation of ACSL1 to the ER. Moreover, we show increased ER-localized ACSL1 and re-esterification of lipids in human NASH displaying impaired hepatic ketogenesis. Finally, we show that L-carnitine, which buffers excess acetyl-CoA, decreases the ER-associated ACSL1 and alleviates hepatic steatosis. Thus, ketogenesis via controlling hepatocellular acetyl-CoA homeostasis regulates lipid partitioning and protects against hepatic steatosis.
Collapse
|
41
|
Paoli A, Bianco A, Moro T, Mota JF, Coelho-Ravagnani CF. The Effects of Ketogenic Diet on Insulin Sensitivity and Weight Loss, Which Came First: The Chicken or the Egg? Nutrients 2023; 15:3120. [PMID: 37513538 PMCID: PMC10385501 DOI: 10.3390/nu15143120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The ketogenic diet (KD) is, nowadays, considered an interesting nutritional approach for weight loss and improvement in insulin resistance. Nevertheless, most of the studies available in the literature do not allow a clear distinction between its effects on insulin sensitivity per se, and the effects of weight loss induced by KDs on insulin sensitivity. In this review, we discuss the scientific evidence on the direct and weight loss mediated effects of KDs on glycemic status in humans, describing the KD's biochemical background and the underlying mechanisms.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
- Research Center for High Performance Sport, UCAM, Catholic University of Murcia, 30107 Murcia, Spain
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, 90144 Palermo, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
| | - Joao Felipe Mota
- School of Nutrition, Federal University of Goiás, Goiânia 74605-080, Brazil
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Christianne F Coelho-Ravagnani
- Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Post-Graduate Program in Movement Sciences, Institute of Health (INISA), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
42
|
Shi X, Zeng D, Zhao G, Zhang C, Feng X, Zheng C, Li D, Zhang M, Jie H. Correlation Analysis between Muskrat ( Ondatra zibethicus) Musk and Traditional Musk. Animals (Basel) 2023; 13:ani13101678. [PMID: 37238107 DOI: 10.3390/ani13101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Muskrat musk is considered to be a potential substitute for traditional musk. However, little is known about the similarity between muskrat musk and musk, and whether it is related to muskrat age. In this study, muskrat musk (MR1, MR2, and MR3) were from 1, 2, and 3-year-old muskrats, respectively, and white musk (WM) and brown musk (BM) were picked from male forest musk deer. The results indicated that muskrat musk had higher similarity to WM than BM. Further research showed that RM3 had the highest matched degree with WM. By significantly different metabolite analysis, we found that 52 metabolites continue to increase from 1- to 3-year-old muskrats. In total, 7 and 15 metabolites were significantly decreased in RM1 vs. RM2 and RM2 vs. RM3, respectively. Meanwhile, 30 and 17 signaling pathways were observed from increased and decreased metabolites, respectively. The increased metabolites mainly entailed enrichment in amino acid biosynthesis and metabolism, steroid hormone biosynthesis, and fatty acid biosynthesis. In conclusion, muskrat musk from three-year-old muskrat is a relatively good substitute for white musk, and the result also implies that these biological processes of amino acid biosynthesis and metabolism, steroid hormone biosynthesis, and fatty acid biosynthesis are beneficial to the secretion of muskrat musk.
Collapse
Affiliation(s)
- Xin Shi
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dejun Zeng
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing 408435, China
| | - Guijun Zhao
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing 408435, China
| | - Chenglu Zhang
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing 408435, China
| | - Xiaolan Feng
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing 408435, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 611845, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ming Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Jie
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing 408435, China
| |
Collapse
|
43
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
44
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
45
|
Song C, Long X, He J, Huang Y. Recent evaluation about inflammatory mechanisms in nonalcoholic fatty liver disease. Front Pharmacol 2023; 14:1081334. [PMID: 37007030 PMCID: PMC10061077 DOI: 10.3389/fphar.2023.1081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is common chronic metabolic liver disorder which is associated with fat accumulation in the liver. It causes a wide range of pathological effects such as insulin resistance, obesity, hypertension, diabetes, non-alcoholic steatohepatitis (NASH) and cirrhosis, cardiovascular diseases. The molecular mechanisms that cause the initiation and progression of NAFLD remain fully unclear. Inflammation is regarded as a significant mechanism which could result in cell death and tissue injury. Accumulation of leukocytes and hepatic inflammation are important contributors in NAFLD. Excessive inflammatory response can deteriorate the tissue injury in NAFLD. Thus, inhibition of inflammation improves NAFLD by reducing intrahepatic fat content, increasing β-oxidation of fatty acids, inducing hepato-protective autophagy, overexpressing peroxisome proliferator-activated receptor- γ (PPAR-γ), as well as attenuating hepatocyte apoptosis and increasing insulin sensitivity. Therefore, understanding the molecules and signaling pathways suggests us valuable information about NAFLD progression. This review aimed to evaluate the inflammation in NAFLD and the molecular mechanism on NAFLD.
Collapse
Affiliation(s)
- Chong Song
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| | - Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| |
Collapse
|
46
|
Semmler G, Datz C, Trauner M. Eating, diet, and nutrition for the treatment of non-alcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S244-S260. [PMID: 36517001 PMCID: PMC10029946 DOI: 10.3350/cmh.2022.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nutrition and dietary interventions are a central component in the pathophysiology, but also a cornerstone in the management of patients with non-alcoholic fatty liver disease (NAFLD). Summarizing our rapidly advancing understanding of how our diet influences our metabolism and focusing on specific effects on the liver, we provide a comprehensive overview of dietary concepts to counteract the increasing burden of NAFLD. Specifically, we emphasize the importance of dietary calorie restriction independently of the macronutrient composition together with adherence to a Mediterranean diet low in added fructose and processed meat that seems to exert favorable effects beyond calorie restriction. Also, we discuss intermittent fasting as a type of diet specifically tailored to decrease liver fat content and increase ketogenesis, awaiting future study results in NAFLD. Finally, personalized dietary recommendations could be powerful tools to increase the effectiveness of dietary interventions in patients with NAFLD considering the genetic background and the microbiome, among others.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Bai M, Wu M, Jiang M, He J, Deng X, Xu S, Fan J, Miao M, Wang T, Li Y, Yu X, Wang L, Zhang Y, Huang S, Yang L, Jia Z, Zhang A. LONP1 targets HMGCS2 to protect mitochondrial function and attenuate chronic kidney disease. EMBO Mol Med 2023; 15:e16581. [PMID: 36629048 PMCID: PMC9906428 DOI: 10.15252/emmm.202216581] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondria comprise the central metabolic hub of cells and their imbalance plays a pathogenic role in chronic kidney disease (CKD). Here, we studied Lon protease 1 (LONP1), a major mitochondrial protease, as its role in CKD pathogenesis is unclear. LONP1 expression was decreased in human patients and mice with CKD, and tubular-specific Lonp1 overexpression mitigated renal injury and mitochondrial dysfunction in two different models of CKD, but these outcomes were aggravated by Lonp1 deletion. These results were confirmed in renal tubular epithelial cells in vitro. Mechanistically, LONP1 downregulation caused mitochondrial accumulation of the LONP1 substrate, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), which disrupted mitochondrial function and further accelerated CKD progression. Finally, computer-aided virtual screening was performed, which identified a novel LONP1 activator. Pharmacologically, the LONP1 activator attenuated renal fibrosis and mitochondrial dysfunction. Collectively, these results imply that LONP1 is a promising therapeutic target for treating CKD.
Collapse
Affiliation(s)
- Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengqiu Wu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingzhu Jiang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Jia He
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Xu Deng
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Shuang Xu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Jiaojiao Fan
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Mengqiu Miao
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Ting Wang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Yuting Li
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Xiaowen Yu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Lin Wang
- Key Laboratory of Molecular Pharmacology and Drug EvaluationYantai UniversityYantaiChina
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Li Yang
- Renal DivisionPeking University First HospitalBeijingChina
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|