1
|
Martínez-Nevárez LE, Sigala JA, Prieto-Ruíz JÁ, García-Rodríguez JL, Uscola M, Martínez-Reyes M, Carrillo-Parra A, Domínguez-Calleros PA. Improving ectomycorrhizal colonization and morpho-physiological traits of Pinus cooperi seedlings through organic nitrogen fertilization. MYCORRHIZA 2025; 35:28. [PMID: 40205276 DOI: 10.1007/s00572-025-01206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Mycorrhizal associations play a crucial role in afforestation efforts, as they enhance the acquisition of nutrients and water, thereby supporting seedling establishment. However, the influence of nitrogen (N) forms in the soil, particularly the organic N, on the formation of mycorrhizal associations and their subsequent effects on seedling morpho-physiology remains poorly understood. In this study, we examine the mycorrhizal colonization, along with morpho-physiological and functional traits, in Pinus cooperi seedlings following fertilization with organic N in controlled nursery conditions. A factorial experiment was performed with Pinus cooperi C. E. Blanco seedlings using two N sources: organic N (amino acids) and inorganic N (NH4NO3) and two N doses: low and high (60 vs 200 mg N seedling-1). Seedlings were inoculated with a mixture of native fungi, but the phylogenetic analysis showed that Suillus placidus (Bonord.) Singer was the only species colonizing roots. Organic N promoted similar morphology and nutritional status as inorganic N, though at a low N rate, it improved root growth and mycorrhizal colonization. High N fertilization improved seedling growth and nutritional status but reduced mycorrhizal colonization. Mycorrhizal colonization improved needle P concentration, delayed plant desiccation, and reduced root cellular damage when seedlings were subjected to desiccation, though it decreased plant growth and needle N concentration. We conclude that organic N fertilization improves mycorrhization of P. cooperi with S. placidus, but the fertilization dose should be adjusted to meet species-specific requirements in order to optimize plant quality and promote afforestation success.
Collapse
Affiliation(s)
- Laura Elena Martínez-Nevárez
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango (UJED), Avenida Veterinaria No. 501, 34120, Durango, Durango, México
| | - José A Sigala
- Campo Experimental del Valle del Guadiana, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Durango-El Mezquital, Km 4.5, 34170, Durango, Durango, México.
| | - José Ángel Prieto-Ruíz
- Facultad de Ciencias Forestales y Ambientales, UJED, Avenida Río Papaloapan, s/n, Valle del Sur, 34120, Durango, Durango, México
| | - José Leonardo García-Rodríguez
- Campo Experimental del Valle del Guadiana, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Durango-El Mezquital, Km 4.5, 34170, Durango, Durango, México
| | - Mercedes Uscola
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos (URJC), Tulipán s/n, 28933, Móstoles, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Tulipán s/n, 28933, Móstoles, Spain
| | - Magdalena Martínez-Reyes
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco, Km 36.5, Montecillo, 56230, Texcoco, Estado de México, México
| | - Artemio Carrillo-Parra
- Instituto de Silvicultura e Industria de la Madera, UJED, Avenida Veterinaria No. 501, 34120, Durango, Durango, México
| | - Pedro Antonio Domínguez-Calleros
- Facultad de Ciencias Forestales y Ambientales, UJED, Avenida Río Papaloapan, s/n, Valle del Sur, 34120, Durango, Durango, México
| |
Collapse
|
2
|
Brunn M, Mueller CW, Chari NR, Meier IC, Obersteiner S, Phillips RP, Taylor B, Tumber-Dávila SJ, Ullah S, Klein T. Tree carbon allocation to root exudates: implications for carbon budgets, soil sequestration and drought response. TREE PHYSIOLOGY 2025; 45:tpaf026. [PMID: 40037284 DOI: 10.1093/treephys/tpaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Root carbon (C) exudation plays a central role in nutrient acquisition, microbially mediated organic matter decomposition and many other critical ecosystem processes. While it is well known that roots respond strongly to belowground resources, we have a limited quantitative understanding about C allocation to exudates and its fate in soil under changing water availability. This review synthesizes the importance of exudate C fluxes, summarizes studies quantifying mass-specific exudation rate (SER), total exudation rate (TER) and root exudate fraction (REF; the proportion of TER in a plant's C allocation), examines drought effects and highlights key research priorities to advance the understanding of C allocation to exudates in forest ecosystems. On average, SER is often <1 mg C gdry root-1 day-1, TER is 3.8 Pg C year-1 and REF varies between 1 and 17% of net primary production. Spatiotemporal variations in exudation, including seasonal and daily patterns and subsoil exudation, remain critical knowledge gaps. We show that many studies report a 1.2- to 11-fold increase in SER and REF in response to drought. However, TER often remains unchanged, suggesting that absolute exudate C inputs to the soil may stay constant under drought conditions. Disentangling the individual impacts of soil and air drought as well as drought legacy impacts on ecosystem C dynamics are overlooked aspects. By estimating the differences in rhizosphere formation and exudation across various forest biomes, we find that exudate-affected soil volumes are highest in tropical forests and lowest in boreal forests. While current research emphasizes significant C allocation from the canopy to soil via exudates, understanding exudation dynamics and biome-specific responses to drought by using standardized protocols is essential. Expanding these insights is critical for comprehending the role of root exudates in soil organic matter formation, ecosystem resilience and adaptation to climate change.
Collapse
Affiliation(s)
- Melanie Brunn
- IES, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, 76829 Landau, Germany
- IfIN, Institute for Integrated Natural Sciences, Universität Koblenz, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Carsten W Mueller
- Institute of Ecology, Chair of Soil Science, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Copenhagen, Denmark
| | - Nikhil R Chari
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Ina C Meier
- Functional Forest Ecology, Universität Hamburg, Ohnhorststraße 18, 22609 Hamburg, Hamburg, Germany
| | - Sophie Obersteiner
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Richard P Phillips
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405, USA
| | - Benton Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, 38 College St, Hanover, NH 03755, USA
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366-9504, USA
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences & Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Shedd EL, Cavaleri MA, Külheim C, Burton AJ. Fine root respiration in Quercus rubra (L.) aligns with the economics trade-offs in bi-dimensional root trait space. TREE PHYSIOLOGY 2025; 45:tpaf024. [PMID: 39969889 DOI: 10.1093/treephys/tpaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 02/20/2025]
Abstract
Plant economic theory argues that growth strategies maximize either the rate or longevity of return per resource investment in a unidimensional trade-off. Belowground trade-offs may not mimic those aboveground due to soil resource heterogeneity, different physical constraints imposed by the shape of roots compared with leaves and fungal symbioses, and often multiple dimensions of variation are found. Root respiration represents a substantial carbon flux out of forest ecosystems, but its placement in these trade-offs is unclear, and its incorporation into carbon cycle models is limited by available data. Most research on root traits has focused on interspecific variability, but here, we investigated whether trade-offs among one species' populations align with those between species by sampling Quercus rubra (L.) populations along a Midwest, USA latitudinal gradient. Across populations, we assessed whether fine root traits follow uni- or multidimensional trade-offs and how these axes relate to root respiration. Respiration rates, morphological traits and root nitrogen were measured on excised fine roots at 14 sites, spanning a wide variety of environmental conditions, and then analyzed for trade-off axes. We uncovered substantial root trait variation among Q. rubra populations that aligned with two distinct trade-offs, one between branching intensity (BI) and average diameter and a second with root tissue density on one end and specific root length, root nitrogen concentration and root specific respiration (RSR) on the other. Reliance on ectomycorrhizal fungi, which colonize root tips, may be a possible explanation for the first axis, with higher BI representing more collaboration. Along the latter axis, RSR increased with root nitrogen concentration and decreased with root tissue density. These results support a similar bidimensional trait space between Q. rubra populations to that between species, with an economics trade-off that might be a useful predictor of the fine root respiration carbon flux.
Collapse
Affiliation(s)
- E L Shedd
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - M A Cavaleri
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - C Külheim
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - A J Burton
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| |
Collapse
|
4
|
Henkel S, Richter R, Andraczek K, Mundry R, Dontschev M, Engelmann RA, Hartmann T, Hecht C, Kasperidus HD, Rieland G, Scholz M, Seele-Dilbat C, Vieweg M, Wirth C. Ash dieback and hydrology affect tree growth patterns under climate change in European floodplain forests. Sci Rep 2025; 15:10117. [PMID: 40128345 PMCID: PMC11933702 DOI: 10.1038/s41598-025-92079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Floodplain forests are currently undergoing substantial reorganization processes due to the combined effects of management-induced altered hydrological conditions, climate change and novel invasive pathogens. Nowadays, the ash dieback is one of the most concerning diseases affecting European floodplain forests, causing substantial tree mortality and threatening the loss of the dominant key tree species of the hardwood floodplain forest, Fraxinus excelsior. Understanding how the increased light availability caused by pathogen-driven mortality in combination with altered hydrological conditions and climate change affects growth responses in a diverse forest community is of crucial importance for conservation efforts. Thus, we examined growth of the main tree species in response to ash dieback and how it depended on altered hydrological conditions under novel climatic conditions for the lower and upper canopy in the floodplain forest of Leipzig, Germany. Our study period encompassed the consecutive drought years from 2018 to 2020. We found that tree growth responded mostly positively to increased light availability, but only on moist sites, while tree growth largely declined on dry sites, suggesting that water availability is a critical factor for tree species to be able to benefit from increased light availability due to canopy disturbances caused by ash dieback. This hydrological effect was species-specific in the lower canopy but not in the upper canopy. While, in the lower canopy, some species such as the competitive shade-tolerant but flood-intolerant Acer pseudoplatanus and Acer platanoides benefited from ash dieback on moist sites, others were less affected or suffered disproportionally, indicating that floodplain forests might turn into a novel ecosystem dominated by competitive Acer species, which may have detrimental effects on ecosystem functioning. Our results give hints on floodplain forests of the future and have important implications for conservation measures, suggesting that a substantial revitalization of natural hydrological dynamics is important to maintain a tree composition that resembles the existing one and thus sustain their conservation status.
Collapse
Affiliation(s)
- Stefanie Henkel
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany.
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
- Department Biodiversity and People, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany.
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Karl Andraczek
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Roger Mundry
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department for Primate Cognition, Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach Institute, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Madeleine Dontschev
- Department of Plant Ecology, Institute for Ecology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Rolf A Engelmann
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Timo Hartmann
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Christian Hecht
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
- Department Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Theodor-Lieser- Str. 4, 06120, Halle, Germany
- Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
| | - Hans Dieter Kasperidus
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Georg Rieland
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
- Anhalt University of Applied Sciences, Nature Conservation and Landscape Planning, 06406, Bernburg, Germany
| | - Mathias Scholz
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Carolin Seele-Dilbat
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
- Agency for Environmental Protection, Nature Conservation Authority, Prager Str. 118-136, 04317, Leipzig, Germany
| | - Michael Vieweg
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Christian Wirth
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Alonso-Forn D, Buesa I, Flor L, Sabater A, Medrano H, Escalona JM. Implications of root morphology and anatomy for water deficit tolerance and recovery of grapevine rootstocks. FRONTIERS IN PLANT SCIENCE 2025; 16:1541523. [PMID: 40182539 PMCID: PMC11966617 DOI: 10.3389/fpls.2025.1541523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The intensification of drought conditions due to climate change poses a major challenge to sustainable grape production. Rootstocks are essential in supporting grapevine water uptake and drought resilience; however, their physiological responses to water stress are not fully understood. Under the hypothesis that root morphology and anatomy may be key traits in grapevine tolerance to water deficit, this study aimed to investigate these traits across diverse rootstocks under progressive water deficit and recovery phases. Thirteen genotypes, including commercial rootstocks and recently bred RG-series and RM2, were evaluated over two seasons in controlled pot-based conditions. Plants were subjected to five distinct watering stages, from well-watered to severe drought. Root traits, such as length, density, and xylem anatomical features, were analyzed alongside stem water potential (Ψstem) to gauge plant water status. Results showed significant genotype-specific differences in root morphology and anatomy, impacting drought tolerance and recovery. Rootstocks with higher root length density (RLD) and a larger proportion of fine roots maintained Ψstem more effectively under severe drought. Additionally, smaller xylem vessel diameters and reduced xylem area relative to root cross-sectional area correlated with improved water transport efficiency and faster recovery post-drought. A trade-off emerged wherein increased root density enhanced water uptake capacity but came at the cost of reduced transport efficiency. Notably, rootstocks 420A, 41B, RM2, and Fercal displayed superior drought resilience, while the RG-series did not outperform established genotypes like 13-5 Evex, 110 Richter, and 140 Ruggeri. These results underscore the role of root morphology and anatomy in grapevine drought tolerance, suggesting that these traits could be incorporated as criteria for future rootstocks breeding programs. Nevertheless, field-testing under non-limiting soil conditions is essential to validate these findings.
Collapse
Affiliation(s)
- David Alonso-Forn
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - Ignacio Buesa
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
- Dept. of Ecology and Global Change, Desertification Research Center (CIDE; CSIC-UV-GVA), Valencia, Spain
| | - Luis Flor
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Antoni Sabater
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Hipólito Medrano
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - José M. Escalona
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| |
Collapse
|
6
|
Knüver T, Bär A, Hamann E, Zuber M, Mayr S, Beikircher B, Ruehr NK. Stress dose explains drought recovery in Norway spruce. FRONTIERS IN PLANT SCIENCE 2025; 16:1542301. [PMID: 40115942 PMCID: PMC11922940 DOI: 10.3389/fpls.2025.1542301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/30/2025] [Indexed: 03/23/2025]
Abstract
Introduction Understanding the stress recovery of trees, particularly with respect to increasing droughts due to climate change, is crucial. An often-overlooked aspect is how short versus long drought events of high intensity (i.e., low and high stress dose) result in stress damage and affect post-stress recovery. Methods This study examines the stress and recovery dynamics of 3-year-old Picea abies following a short drought (n = 5) of 18 days or a long drought (n = 9) of 51 days during late summer. We particularly assessed how the recovery of canopy conductance and tree transpiration is linked to i) stress intensity in terms of minimum water potential, ii) stress duration inferred by days below a water potential related to 12% hydraulic conductance loss (dP12), iii) stress dose inferred by the cumulative tree water deficit on days below P12 (TWDP12) as well as the cumulative water potential (Ψcum), and iv) the percent loss of conductive xylem area (PLA). Results Both drought treatments resulted in stem and root embolism with a higher PLA of 49% ± 10% in the long drought treatment compared to 18% ± 6% in the short drought treatment consistent across the measured plant parts. Suffering from embolism and leaf shedding (long drought, 32%; short drought, 12%), canopy conductance in the long drought treatment recovered to 41% ± 3% of the control and in the short drought treatment to 66% ± 4% at 12 days after drought release. These recovery rates were well explained by the observed PLA (R2 = 0.66) and the dP12 (R2 = 0.62) but best explained by stress dose metrics, particularly the cumulative TWDP12 (R2 = 0.88). Discussion Our study highlights that stress duration and intensity should be integrated to assess post-stress recovery rates. Here, the tree water deficit derived from point dendrometers appears promising, as it provides a non-destructive and high temporal resolution of the stress dose.
Collapse
Affiliation(s)
- Timo Knüver
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Nadine K Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| |
Collapse
|
7
|
Bolin LG. Soil microbes influence the ecology and evolution of plant plasticity. THE NEW PHYTOLOGIST 2025; 245:2224-2236. [PMID: 39775550 DOI: 10.1111/nph.20383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities. To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant. Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution. Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.
Collapse
Affiliation(s)
- Lana G Bolin
- Department of Biology, The University of New Mexico, Castetter Hall, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
8
|
Franzisky BL, Mueller HM, Du B, Lux T, White PJ, Carpentier SC, Winkler JB, Schnitzler JP, Kudla J, Kangasjärvi J, Reichelt M, Mithöfer A, Mayer KFX, Rennenberg H, Ache P, Hedrich R, Messerer M, Geilfus CM. Date palm diverts organic solutes for root osmotic adjustment and protects leaves from oxidative damage in early drought acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1244-1265. [PMID: 39521950 PMCID: PMC11850976 DOI: 10.1093/jxb/erae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Date palm (Phoenix dactylifera L.) is an important crop in arid regions and it is well adapted to desert ecosystems. To understand its remarkable ability to grow and yield in water-limited environments, we conducted experiments in which water was withheld for up to 4 weeks. In response to drought, root, rather than leaf, osmotic strength increased, with organic solutes such as sugars and amino acids contributing more to the osmolyte increase than minerals. Consistently, carbon and amino acid metabolism was acclimated toward biosynthesis at both the transcriptional and translational levels. In leaves, a remodeling of membrane systems was observed, suggesting changes in thylakoid lipid composition which, together with the restructuring of the photosynthetic apparatus, indicated an acclimation preventing oxidative damage. Thus, xerophilic date palm avoids oxidative damage under drought by combined prevention and rapid detoxification of oxygen radicals. Although minerals were expected to serve as cheap key osmotics, date palm also relies on organic osmolytes for osmotic adjustment in the roots during early drought acclimation. The diversion of these resources away from growth is consistent with the date palm strategy of generally slow growth in harsh environments and clearly indicates a trade-off between growth and stress-related physiological responses.
Collapse
Affiliation(s)
- Bastian L Franzisky
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, D-65366 Geisenheim, Germany
| | - Heike M Mueller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, D-97082 Würzburg, Germany
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
| | - Thomas Lux
- Research Unit Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | | | - Sebastien Christian Carpentier
- Facility for SYstems BIOlogy based MAss spectrometry, SYBIOMA, Proteomics Core Facility, KU Leuven, 3001 Leuven, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, KU Leuven, 3001 Leuven, Belgium
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Joerg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Klaus F X Mayer
- Research Unit Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, D-97082 Würzburg, Germany
| | - Maxim Messerer
- Research Unit Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, D-65366 Geisenheim, Germany
| |
Collapse
|
9
|
Wang J, Lv G, Yang J, He X, Wang H, Li W. Impacts of plant root traits and microbial functional attributes on soil respiration components in the desert-oasis ecotone. FRONTIERS IN PLANT SCIENCE 2025; 16:1511277. [PMID: 40007957 PMCID: PMC11850576 DOI: 10.3389/fpls.2025.1511277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Dividing soil respiration (Rs) into autotrophic respiration (Ra) and heterotrophic respiration (Rh) represents a pivotal step in deciphering how Rs responds to environmental perturbations. Nevertheless, in arid ecosystems beset by environmental stress, the partitioning of Rs and the underlying mechanisms through which microbial and root traits govern the distinct components remain poorly understood. This study was strategically designed to investigate Rs and its components (Ra and Rh), soil properties, and root traits within the desert-oasis ecotone (encompassing the river bank, transitional zone, and desert margin) of northwest China. Employing metagenomics, we quantitatively characterized microbial taxonomic attributes (i.e., taxonomic composition) and functional attributes (specifically, functional genes implicated in microbial carbon metabolism). Field measurements during the growing season of 2019 unveiled a pronounced decline in soil respiration rates along the environmental gradient from the river bank to the desert margin. The mean soil respiration rate was recorded as 1.82 ± 0.41 μmol m-2 s-1 at the river bank, 0.49 ± 0.15 μmol m-2 s-1 in the transitional zone, and a meager 0.45 ± 0.12 μmol m-2 s-1 in the desert margin. Concomitantly, the Ra and Rh components exhibited a similar trend throughout the study period, with Rh emerging as the dominant driver of Rs. Utilizing random forest modeling, we unearthed significant associations between microbial taxonomic and functional features and Rs components. Notably, both Ra and Rh displayed robust positive correlations with the abundance of phosphatidylinositol glycan A, a key player in microbial carbon metabolism. Partial least squares path modeling further elucidated that soil properties and microbial functions exerted direct and positive influences on both Ra and Rh, whereas taxonomic features failed to register a significant impact. When considering the combined effects of biotic and abiotic factors, microbial functional attributes emerged as the linchpin in dictating Rs composition. Collectively, these findings suggest that a trait-based approach holds great promise in more effectively revealing the response mechanisms of Rs composition to environmental changes, thereby offering novel vistas for future investigations into carbon cycling in terrestrial soils.
Collapse
Affiliation(s)
- Jinlong Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Jianjun Yang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Hengfang Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Wenjing Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
10
|
Hankin LE, Barrios-Masias FH, Urza AK, Bisbing SM. Lethal combination for seedlings: extreme heat drives mortality of drought-exposed high-elevation pine seedlings. ANNALS OF BOTANY 2025; 135:293-304. [PMID: 38687134 PMCID: PMC11805925 DOI: 10.1093/aob/mcae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Hotter drought- and biotically driven tree mortality are expected to increase with climate change in much of the western USA, and species persistence will depend upon ongoing establishment in novel conditions or migration to track ecological niche requirements. High-elevation tree species might be particularly vulnerable to increasing water stress as snowpack declines, increasing the potential for adult mortality and simultaneous regeneration failures. Seedling survival will be determined by ecophysiological limitations in response to changing water availability and temperature. METHODS We exposed seedlings from populations of Pinus longaeva, Pinus flexilis and Pinus albicaulis to severe drought and concurrent temperature stress in common gardens, testing the timing of drought onset under two different temperature regimes. We monitored seedling functional traits, physiological function and survival. KEY RESULTS The combined stressors of water limitation and extreme heat led to conservative water-use strategies and declines in physiological function, with these joint stressors ultimately exceeding species tolerances and leading to complete episodic mortality across all species. Growing conditions were the primary determinant of seedling trait expression, with seedlings exhibiting more drought-resistant traits, such as lower specific leaf area, in the hottest, driest treatment conditions. Water stress-induced stomatal closure was also widely apparent. In the presence of adequate soil moisture, seedlings endured prolonged exposure to high air and surface temperatures, suggesting broad margins for survival. CONCLUSIONS The critical interaction between soil moisture and temperature suggests that rising temperatures will exacerbate moisture stress during the growing season. Our results highlight the importance of local conditions over population- and species-level influences in shaping strategies for stress tolerance and resistance to desiccation at this early life stage. By quantifying some of the physiological consequences of drought and heat that lead to seedling mortality, we can gain a better understanding of the future effects of global change on the composition and distribution of high-elevation conifer forests.
Collapse
Affiliation(s)
- Lacey E Hankin
- Department of Natural Resources & Environmental Science, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
- Graduate Program in Ecology, Evolution, & Conservation Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Alexandra K Urza
- Rocky Mountain Research Station, USDA Forest Service, 920 Valley Road, Reno, NV 89512, USA
| | - Sarah M Bisbing
- Department of Natural Resources & Environmental Science, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
- Graduate Program in Ecology, Evolution, & Conservation Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
11
|
Calderón-Ureña F, Álvarez-Maldini C, Acevedo M, Sánchez-Olate ME, Dumroese RK, Sierra-Olea A, Ovalle JF, Esquivel-Segura E. Phosphorus Fertilization and Chemical Root Pruning: Effects on Root Traits During the Nursery Stage in Two Mediterranean Species from Central Chile. PLANTS (BASEL, SWITZERLAND) 2025; 14:195. [PMID: 39861548 PMCID: PMC11768390 DOI: 10.3390/plants14020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
The role of a plant root system in resource acquisition is relevant to confront drought events caused by climate change. Accordingly, nursery practices like phosphorous (P) fertilization and root pruning have been shown to modify root architecture; however, their combined benefits require further investigation in Mediterranean species. We evaluated the effect of applied P concentrations (0, 15, 60, and 120 mg L-1 P) with or without chemical (copper) root pruning (WCu, WoCu, respectively) in Aristotelia chilensis and Quillaja saponaria on morpho-physiological and root architecture traits. Higher P concentration increased nutrient content in both species concurrent with higher growth. In A. chilensis, higher P concentrations only increased the length and volume of medium roots. In Q. saponaria, P additions increased root length and diameter and the length and volume of fine and medium roots. The root-to-shoot ratio declined with WCu in A. chilensis (23.1%) and Q. saponaria (15.7%). Unlike our hypothesis, fine root architecture remained unaffected with root pruning in A. chilensis, while fine root length and volume decreased with increasing P concentrations in Q. saponaria. Thus, P fertilization enhances root development more consistently than root pruning, highlighting the need for further testing under water deficit conditions to optimize nursery practices.
Collapse
Affiliation(s)
- Fiorella Calderón-Ureña
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.Á.-M.); (M.E.S.-O.)
- Centro Tecnológico de la Planta Forestal, Instituto Forestal, Sede Biobío, San Pedro de la Paz 4130946, Chile; (M.A.); (A.S.-O.)
| | - Carolina Álvarez-Maldini
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.Á.-M.); (M.E.S.-O.)
| | - Manuel Acevedo
- Centro Tecnológico de la Planta Forestal, Instituto Forestal, Sede Biobío, San Pedro de la Paz 4130946, Chile; (M.A.); (A.S.-O.)
| | - Manuel E. Sánchez-Olate
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.Á.-M.); (M.E.S.-O.)
- Laboratorio de Cultivo de Tejidos Vegetales, Centro de Biotecnología, Universidad de Concepción, Concepción 4070374, Chile
| | - R. Kasten Dumroese
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA;
| | - Antay Sierra-Olea
- Centro Tecnológico de la Planta Forestal, Instituto Forestal, Sede Biobío, San Pedro de la Paz 4130946, Chile; (M.A.); (A.S.-O.)
| | - Juan F. Ovalle
- Laboratorio de Restauración de Bosques, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago 8820808, Chile;
- Center of Applied Ecology & Sustainability (CAPES), Santiago 8820808, Chile
| | - Edwin Esquivel-Segura
- Escuela de Ingeniería en Agronomía, Campus Tecnológico Local San Carlos, Tecnológico de Costa Rica, Alajuela 22321001, Costa Rica;
| |
Collapse
|
12
|
Williamson J, Lu M, Camus MF, Gregory RD, Maclean IMD, Rocha JC, Saastamoinen M, Wilson RJ, Bridle J, Pigot AL. Clustered warming tolerances and the nonlinear risks of biodiversity loss on a warming planet. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230321. [PMID: 39780588 PMCID: PMC11720646 DOI: 10.1098/rstb.2023.0321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Anthropogenic climate change is projected to become a major driver of biodiversity loss, destabilizing the ecosystems on which human society depends. As the planet rapidly warms, the disruption of ecological interactions among populations, species and their environment, will likely drive positive feedback loops, accelerating the pace and magnitude of biodiversity losses. We propose that, even without invoking such amplifying feedback, biodiversity loss should increase nonlinearly with warming because of the non-uniform distribution of biodiversity. Whether these non-uniformities are the uneven distribution of populations across a species' thermal niche, or the uneven distribution of thermal niche limits among species within an ecological community, we show that in both cases, the resulting clustering in population warming tolerances drives nonlinear increases in the risk to biodiversity. We discuss how fundamental constraints on species' physiologies and geographical distributions give rise to clustered warming tolerances, and how population responses to changing climates could variously temper, delay or intensify nonlinear dynamics. We argue that nonlinear increases in risks to biodiversity should be the null expectation under warming, and highlight the empirical research needed to understand the causes, commonness and consequences of clustered warming tolerances to better predict where, when and why nonlinear biodiversity losses will occur.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
- Joseph Williamson
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Muyang Lu
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
- College of Life Science, Sichuan University, Chengdu610065, China
| | - M. Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Richard D. Gregory
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
- RSPB Centre for Conservation Science, Sandy, BedfordshireSG19 2DL, UK
| | - Ilya M. D. Maclean
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, ExeterTR10 9FE, UK
| | - Juan C. Rocha
- The Anthropocene Laboratory, Royal Swedish Academy of Sciences, Stockholm114 18, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm106 91, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| | - Robert J. Wilson
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Alex L. Pigot
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
13
|
Ribeyre Z, Depardieu C, Prunier J, Pelletier G, Parent GJ, Mackay J, Droit A, Bousquet J, Nolet P, Messier C. De novo transcriptome assembly and discovery of drought-responsive genes in white spruce (Picea glauca). PLoS One 2025; 20:e0316661. [PMID: 39752431 PMCID: PMC11698436 DOI: 10.1371/journal.pone.0316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress. We assembled a de novo transcriptome, performed differential gene expression analyses at four time points over 22 days during a controlled drought stress experiment involving 2-year-old plants and three genetically distinct clones, and conducted gene enrichment analyses. The transcriptome assembly and gene expression analysis identified a total of 33,287 transcripts corresponding to 18,934 annotated unique genes, including 4,425 genes that are uniquely responsive to drought. Many transcripts that had predicted functions associated with photosynthesis, cell wall organization, and water transport were down-regulated under drought conditions, while transcripts linked to abscisic acid response and defense response were up-regulated. Our study highlights a previously uncharacterized effect of drought stress on lipid metabolism genes in conifers and significant changes in the expression of several transcription factors, suggesting a regulatory response potentially linked to drought response or acclimation. Our research represents a fundamental step in unraveling the molecular mechanisms underlying short-term drought responses in white spruce seedlings. In addition, it provides a valuable source of new genetic data that could contribute to genetic selection strategies aimed at enhancing the drought resistance and resilience of white spruce to changing climates.
Collapse
Affiliation(s)
- Zoé Ribeyre
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada
- Centre d’étude de la Forêt (CEF), Québec, QC, Canada
| | - Claire Depardieu
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Centre for Forest Research, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Center, Québec, QC, Canada
| | - Julien Prunier
- Plateforme de Bioinformatique du Centre Hospitalier Universitaire de Québec Associé à l’Université Laval, Québec, QC, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Center, Québec, QC, Canada
| | - Geneviève J. Parent
- Laboratory of Genomics, Maurice- Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, QC, Canada
| | - John Mackay
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Arnaud Droit
- Plateforme de Bioinformatique du Centre Hospitalier Universitaire de Québec Associé à l’Université Laval, Québec, QC, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Centre for Forest Research, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC, Canada
| | - Philippe Nolet
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada
- Centre d’étude de la Forêt (CEF), Québec, QC, Canada
| | - Christian Messier
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada
- Centre d’étude de la Forêt (CEF), Québec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
14
|
Peng S, Zhang Y, Chen X, Chen C, Guo Y, Chen HYH. Species mixtures enhance fine root biomass but inhibit root decay under throughfall manipulation in young natural boreal forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176952. [PMID: 39426541 DOI: 10.1016/j.scitotenv.2024.176952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Fine roots play crucial roles in terrestrial biogeochemical cycles. Although biodiversity loss and changes in precipitation are two major drivers of global change, our understanding of their effects on fine root biomass (FRB), root functional traits, and fine root decay (FRD) remains incomplete. We manipulated precipitation in young boreal forests dominated by Populus tremuloides, Pinus banksiana, and their relatively even mixtures using 25 % addition, ambient, and 25 % reduction in throughfall during the growing season. We collected root samples using soil core and trunk-traced methods to quantify FRB and root traits, and we simulated fine root decay using an in-situ experiment over 531 days. We found that compared to the average of single-species-dominated stands, species mixtures increased FRB by 41 % under ambient throughfall, by 89 % under throughfall reduction and by 71 % under throughfall addition. Root surface area, fine root volume, and root length density responded to species mixtures similarly to FRB. Meanwhile, species mixtures reduced FRD across all water treatments. There was a positive relationship between the effect of species mixtures on the FRD of absorptive roots and those on the FRB. Our results highlight that species mixtures could modify carbon cycling by enhancing fine root biomass accumulation and reducing its decomposition of young boreal forests under changing precipitation.
Collapse
Affiliation(s)
- Sai Peng
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China.
| | - Yakun Zhang
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Chen Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Yili Guo
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region, Chinese Academy of Sciences, Guilin 541006, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
15
|
Huo J, Li C, Zhao Y, Han G, Li X, Zhang Z. Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats. PLANT PHYSIOLOGY 2024; 196:2450-2462. [PMID: 39268873 DOI: 10.1093/plphys/kiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/15/2024]
Abstract
The growth and survival of woody plant species is mainly driven by evolutionary and environmental factors. However, little is known about the hydraulic mechanisms that respond to growth limitation and enable desert shrub survival in arid habitats. To shed light on these hydraulic mechanisms, 9-, 31-, and 56-yr-old Caragana korshinskii plants that had been grown under different soil water conditions at the southeast edge of the Tengger Desert, Ningxia, China, were used in this study. The growth of C. korshinskii was mainly limited by soil water rather than shrub age in nonwatered habitats, which indicated the importance of maintaining shrub survival prior to growth under drought. Meanwhile, higher vessel density, narrower vessels, and lower xylem hydraulic conductivity indicated that shrubs enhanced hydraulic safety and reduced their hydraulic efficiency in arid conditions. Importantly, xylem hydraulic conductivity is mediated by variation in xylem hydraulic architecture-regulated photosynthetic carbon assimilation and growth of C. korshinskii. Our study highlights that the synergistic variation in xylem hydraulic safety and hydraulic efficiency is the hydraulic mechanism of limiting growth and maintaining survival in C. korshinskii under drought, providing insights into the strategies for growth and survival of desert shrubs in arid habitats.
Collapse
Affiliation(s)
- Jianqiang Huo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengyi Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environmental of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoling Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhishan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
16
|
Xie L, Yang Y, Ma J, Lin G, Deng J, Robson TM, Peng H, Zhou L, Yu D, Wang QW. Variations in ectomycorrhizal exploration types parallel seedling fine root traits of two temperate tree species under extreme drought and contrasting solar radiation treatments. PLANT, CELL & ENVIRONMENT 2024; 47:5053-5066. [PMID: 39139140 DOI: 10.1111/pce.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Summary statementHigh solar radiation exacerbated the negative effects of extreme drought on plant growth and fine root traits. Ectomycorrhizae did not compensate for fine roots under drought stress. Fine roots biomass determined the role of ectomycorrhizal fungi, supporting the energy limitation hypothesis.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Yanmeng Yang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingran Ma
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guigang Lin
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, China
- Northeast Asia Ecosystem Carbon Sink Research Center, School of Ecology, Northeast Forestry University, Harbin, China
| | - Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Thomas M Robson
- Programme Lead for Woodland Ecology & Conservation, UK National School of Forestry, University of Cumbria, Ambleside, UK
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Huan Peng
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| | - Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Changbaishan Xipo National Field Observation and Research Station for Forest Ecosystem, Baishan, China
| |
Collapse
|
17
|
Spangenberg G, Zimmermann R, Küppers M, Hein S. High-resolution dendrometer measurements reveal different responses of Douglas-fir to extreme drought in 2018 depending on soil and rooting characteristics. FRONTIERS IN PLANT SCIENCE 2024; 15:1485440. [PMID: 39659421 PMCID: PMC11628273 DOI: 10.3389/fpls.2024.1485440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Introduction Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is considered an important non-native substitute tree species in Europe, especially for Norway spruce (Picea abies (L.) Karst.), mainly due to its higher drought tolerance. However, Douglas-fir has also shown increasing mortality in certain regions of the world. One of the main reasons is the increase in drought and heat periods due to climate change. There is still a need for research on the influence of important soil properties and rooting characteristics on the drought tolerance of Douglas-fir. Therefore, we analyzed the influence of soil texture, plant-available water capacity (PAWC), fine root density, and effective rooting depth on water status and thus drought stress in Douglas-fir during the extreme drought of 2018. Methods We selected seven closely spaced sites along a soil texture gradient from sand to clay at an elevation of ca. 500 m a.s.l. in southern Germany and determined soil physical and rooting characteristics. Water status parameters and growth duration were derived from dendrometer data at five Douglas-firs per site. The influence of soil and rooting characteristics on these drought stress-related parameters was analyzed using mixed-effects models. The focus was on two summer drought periods in 2018. Results and discussion In the initial stage of the extreme summer drought of 2018 (in June), a higher PAWC and a higher fine root density reduced drought stress. However, these influences were no longer noticeable in the later stage of drought (in August), probably due to deeper soil desiccation. In August, a higher effective rooting depth reduced drought stress. Soil texture had a significant influence, particularly on growth duration. This study provides information on site selection for Douglas-fir cultivation under the predicted increase in severe drought, showing the importance of deep and intensive rooting, and points to the need for combined above- and belowground investigations for a better understanding of the drought response patterns of tree species.
Collapse
Affiliation(s)
- Göran Spangenberg
- Department of Silviculture, University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Germany
| | - Reiner Zimmermann
- Forest Ecology and Remote Sensing Group, Department 190a, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Manfred Küppers
- Department 190a, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sebastian Hein
- Department of Silviculture, University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Germany
| |
Collapse
|
18
|
Hesse BD, Hikino K, Gebhardt T, Buchhart C, Dervishi V, Goisser M, Pretzsch H, Häberle KH, Grams TEE. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175805. [PMID: 39197757 DOI: 10.1016/j.scitotenv.2024.175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor-Mendel-Straße 33, 1180 Vienna, Austria.
| | - Kyohsuke Hikino
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeå, Sweden
| | - Timo Gebhardt
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Forest and Agroforest Systems, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Claudia Buchhart
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Vjosa Dervishi
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Michael Goisser
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Thorsten E E Grams
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| |
Collapse
|
19
|
Lee SJ, Lee AR, Byeon JG, Oh SH. Pre-drought effects on northern temperate trees and vine invasion in forest gaps hindering regeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175707. [PMID: 39179041 DOI: 10.1016/j.scitotenv.2024.175707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Northern temperate coniferous forests serve as crucial connectors between boreal and temperate forests, yet they are vulnerable to various stressors such as climate change and human activities. Severe drought poses a significant threat to plant species within these forests, prompting recent research into its impacts. However, many studies lack explicit definitions of post-disturbance vegetation processes and fail to identify potential interactions with disturbance factors, necessitating comprehensive discussions. This study examines the effects of drought on tree growth patterns of the main dominant species in northern temperate regions: Abies nephrolepis and Picea jezoensis, along with two commonly associated Betula ermanii, and Quercus mongolica. Additionally, new disturbance factors in forests inhabited by these species (A. nephrolepis and P. jezoensis) were evaluated based on community classification. The study sites were located in the Mt. Baekdu (Changbai) and South Korea regions, which are positioned at the southern limit of the phytogeographical patterns of target species. Results indicate that A. nephrolepis and P. jezoensis exhibit high levels of recovery and resilience, while B. ermanii and Q. mongolica demonstrate high resistance. Species-specific responses align with drought intensity, with resistance, recovery, and resilience decreasing notably with increasing pre-drought radial growth. South Korean forests, the invasion of the vine species Tripterygium regelii after the death of A. nephrolepis in the overstory vegetation threatens the regeneration of new trees. However, certain environmental factors, such as high rock exposure and dense overstory canopy, limit vine invasion. Based on the results, pre-drought radial growth emerges as a key determinant in how trees respond to drought. Additionally, the results suggest the potential for new disturbances to emerge in forest gaps due to overstory vegetation mortality induced by global warming. These findings contribute to a deeper understanding of increasing drought stress, aid in identifying climate refugia, and inform conservation priorities based on habitat characteristics.
Collapse
Affiliation(s)
- Seung-Jae Lee
- Department of Forestry, The Graduate School of Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ah-Rim Lee
- Department of Forestry, The Graduate School of Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Gi Byeon
- Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute, Bonghwa 36209, Republic of Korea
| | - Seung-Hwan Oh
- School of Forest Sciences and Landscape Architecture, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
20
|
Irshad A, Ahmad H, Muhammad I, Khan SU, Raza S. Editorial: The role of water stress and soil texture on plant roots anatomy, architecture, and senescence. FRONTIERS IN PLANT SCIENCE 2024; 15:1490001. [PMID: 39574454 PMCID: PMC11578691 DOI: 10.3389/fpls.2024.1490001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Affiliation(s)
- Annie Irshad
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sana Ullah Khan
- The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Sajjad Raza
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Burchardt S, Czernicka M, Kućko A, Pokora W, Kapusta M, Domagalski K, Jasieniecka-Gazarkiewicz K, Karwaszewski J, Wilmowicz E. Exploring the response of yellow lupine (Lupinus luteus L.) root to drought mediated by pathways related to phytohormones, lipid, and redox homeostasis. BMC PLANT BIOLOGY 2024; 24:1049. [PMID: 39506671 PMCID: PMC11539565 DOI: 10.1186/s12870-024-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Yellow lupine (Lupinus luteus L.) is a high-protein crop of considerable economic and ecological significance. It has the ability to fix atmospheric nitrogen in symbiosis with Rhizobium, enriching marginal soils with this essential nutrient and reducing the need for artificial fertilizers. Additionally, lupine produces seeds with a high protein content, making it valuable for animal feed production. However, drought negatively affects lupine development, its mutualistic relationship with bacteria, and overall yield. To understand how lupine responds to this stress, global transcriptome sequencing was conducted, along with in-depth biochemical, chromatography, and microscopy analyses of roots subjected to drought. The results presented here contribute to strategies aimed at mitigating the effects of water deficit on lupine growth and development. RESULTS Based on RNA-seq, drought-specific genes were identified and annotated to biological pathways involved in phytohormone biosynthesis/signaling, lipid metabolism, and redox homeostasis. Our findings indicate that drought-induced disruption of redox balance characterized by the upregulation of reactive oxygen species (ROS) scavenging enzymes, coincided with the accumulation of lipid-metabolizing enzymes, such as phospholipase D (PLD) and lipoxygenase (LOX). This disruption also led to modifications in lipid homeostasis, including increased levels of triacylglycerols (TAG) and free fatty acids (FFA), along with a decrease in polar lipid content. Additionally, the stress response involved alterations in the transcriptional regulation of the linolenic acid metabolism network, resulting in changes in the composition of fatty acids containing 18 carbons. CONCLUSION The first comprehensive global transcriptomic profiles of lupine roots, combined with the identification of key stress-responsive molecules, represent a significant advancement in understanding lupine's responses to abiotic stress. The increased expression of the Δ12DESATURASE gene and enhanced PLD activity lead to higher level of linoleic acid (18:2), which is subsequently oxidized by LOX, resulting in membrane damage and malondialdehyde (MDA) accumulation. Oxidative stress elevates the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), while the conversion of FFAs into TAGs provides protection against ROS. This research offers valuable molecular and biochemical candidates with significant potential to enhance drought tolerance . It enables innovative strategies in lupine breeding and crop improvement to address critical agricultural challenges.
Collapse
Affiliation(s)
- Sebastian Burchardt
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Krzysztof Domagalski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | | | - Jacek Karwaszewski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland.
| |
Collapse
|
22
|
Nieves DJ, Reich PB, Stefanski A, Bermudez R, Beidler KV, Kennedy PG. Ectomycorrhizal fungal community response to warming and rainfall reduction differs between co-occurring temperate-boreal ecotonal Pinus saplings. MYCORRHIZA 2024; 34:403-416. [PMID: 39382647 DOI: 10.1007/s00572-024-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Understanding the responses of ectomycorrhizal (ECM) fungi and their tree hosts to warming and reduced soil water availability under realistic future climate scenarios is essential, yet few studies have investigated how combined global change stressors impact ECM fungal community richness and composition as well as host performance. In this study, we leveraged a long-term factorial warming (ambient, + 1.7 ºC, + 3.2 ºC) and rainfall reduction (ambient, 30% reduced rainfall) experiment in northern Minnesota, USA to investigate the responses of two congeneric hosts with varying drought tolerances and their associated ECM fungal communities to a gradient of soil moisture induced by a combination of warming and rainfall reduction. Soil drying had host-specific effects; the less drought tolerant Pinus strobus had decreased stem growth and lower ECM fungal community richness (fewer ECM fungal Operational Taxonomic Units, OTUs), while the more drought tolerant Pinus banksiana experienced no decline in stem growth but had an altered ECM fungal community composition under drier, warmer soils. Taken together, the results of this study suggest that the combined effects of warming and decreased precipitation will largely be additive in terms of their impact on host performance and ECM fungal community richness, but that drier and warmer soil conditions may also differentially impact specific ECM fungal genera independently of host performance.
Collapse
Affiliation(s)
- Dyonishia J Nieves
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Raimundo Bermudez
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Katilyn V Beidler
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - Peter G Kennedy
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
23
|
Serafim C, Ramos MA, Yilmaz T, Sousa NR, Yu K, Van Geel M, Ceulemans T, Saudreau M, Somers B, Améglio T, Honnay O, Castro PML. Substrate pH mediates growth promotion and resilience to water stress of Tilia tomentosa seedlings after Ectomycorrhizal inoculation. BMC PLANT BIOLOGY 2024; 24:1001. [PMID: 39448897 PMCID: PMC11515430 DOI: 10.1186/s12870-024-05614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Colonization by Ectomycorrhizal (EcM) fungi is key for the health and performance of plants under different stress scenarios, such as those faced by trees in urban environments. Because urban environments can be lacking EcM fungi, we here assessed the benefits of inoculating Tilia tomentosa seedlings in a pre-transplantation nursery context with the EcM fungi Lactarius deliciosus and Paxillus involutus, using substrates of different pH and facing water-stress. P. involutus had a more evident positive effect in T. tomentosa seedlings and had a good performance in both acidic and alkaline substrate. In acidic substrate the fungus increased the plant height by 0.91-fold, increased the mycorrhization rate by 3.23-fold, expansion rate by 5.03-fold and formation of secondary roots by 0.46-fold, compared to the non-inoculated control. This species also improved the phosphorus content of leaves, which revealed a promotion of nutrient uptake. In alkaline substrate P. involutus increased root dry weight by 3.92-fold and the mycorrhization parameters. In contrast, L. deliciosus only had a positive effect in the improvement of mycorrhization and expansion rates and phosphorus content in the root, effects visible only in alkaline substrate. When exposed to water-stress the increase of proline content was visible in acidic substrate for both fungi, L. deliciosus and P. involutus, and in alkaline substrate for the fungus P. involutus, a response indicative of the enhancement of defenses in stressing scenarios such as water scarcity. We conclude that fungal inoculation improves the vigour and resilience of Tilia seedlings and that it is of utmost importance to select a suitable EcM fungus and to consider the soil pH of the transplanting site. The inoculation approach can be a valuable tool to produce robust seedlings which may have a better performance when transplanted to the challenging urban environment.
Collapse
Grants
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- BR/175/A1/URBANMYCOSERVE 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
- 2015–2016 BiodivERsA COFUND call for research proposals, with the national funders: Belgian Science Policy (BelSPo), Research Foundation Flanders (FWO), Agence Nationale de la Recherche (ANR) and Fundação para a Ciência e a Tecnologia (FCT)
Collapse
Affiliation(s)
- Cindy Serafim
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Miguel A Ramos
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Tugce Yilmaz
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Nadine R Sousa
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal
| | - Kang Yu
- Precision Agriculture Lab, School of Life Sciences, Technical University of Munich, Dürnast 9, 85354, Freising, Germany
| | - Maarten Van Geel
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Tobias Ceulemans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Marc Saudreau
- Université Clermont Auvergne, INRAE, UMR PIAF, Chemin de Beaulieu 5, Clermont-Ferrand, 63000, France
| | - Ben Somers
- Division of Forest, Nature & Landscape, Department of Earth & Environmental Sciences, KU Leuven, Celestijnenlaan 200E, Heverlee, 3001, Belgium
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, UMR PIAF, Chemin de Beaulieu 5, Clermont-Ferrand, 63000, France
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Paula M L Castro
- Escola Superior de Biotecnologia, Catholic University of Portugal, Rua Diogo Botelho, 1327, Porto, 4169-005, Portugal.
| |
Collapse
|
24
|
Agar G, Yagci Ergul S, Yuce M, Arslan Yuksel E, Aydin M, Taspinar MS. Ellagic acid alleviates aluminum and/or drought stress through morpho-physiochemical adjustments and stress-related gene expression in Zea mays L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59521-59532. [PMID: 39358657 DOI: 10.1007/s11356-024-35185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al3+) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al3+) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption. Recently, ellagic acid (EA), a polyphenolic compound with potent antioxidant properties, has been identified for its role in regulating plant growth and enhancing stress tolerance mechanisms. However, the specific mechanisms through which EA contributes to Al3+ and/or drought tolerance in plants remain largely unknown. The present study was conducted to examine the defensive role of EA (100 μg/mL) in some morpho-physiochemical parameters and the expression profiles of some stress-related genes (ZmCPK22, ZmXTH1, ZmHIPP4, ZmSGR, ZmpsbA, ZmAPX1, and ZmGST1) in drought (polyethylene glycol-6000 (PEG-6000), - 0.6 MPa) and aluminum chloride (AlCl3, 60 μM) stressed Zea mays Ada 523 grown in nutrient solution. Our results indicated that drought and aluminum chloride stresses affected root length, shoot height, H2O2 content, chlorophyll content (SPAD), electrolyte leakage (EL), and relative water content (RWC) of maize with several significant (P < 0.05) shifts up and down. Conversely, EA (100 μg/mL) treatment had a mitigating effect on these parameters. Moreover, EA also mitigated the antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)), and regulated the expressions of aforementioned genes. These findings determined that EA treatment could efficiently improve the gene expressions and morpho-physiochemical parameters under drought and/or Al3+ stresses, thereby increasing the seedlings' adaptability to these stresses.
Collapse
Affiliation(s)
- Guleray Agar
- Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey
| | - Semra Yagci Ergul
- Faculty of Medicine, Department of Medicinal Genetics, Kafkas University, 36000, Kars, Turkey
| | - Merve Yuce
- Faculty of Agriculture, Department of Horticulture, Ataturk University, 25240, Erzurum, Turkey
| | - Esra Arslan Yuksel
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey.
| | - Murat Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
25
|
Zhang H, Jiang X, Zhu L, Liu L, Liao Z, Du B. A Preliminary Study on the Whole-Plant Regulations of the Shrub Campylotropis polyantha in Response to Hostile Dryland Conditions. Metabolites 2024; 14:495. [PMID: 39330502 PMCID: PMC11433755 DOI: 10.3390/metabo14090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Drylands cover more than 40% of global land surface and will continue to expand by 10% at the end of this century. Understanding the resistance mechanisms of native species is of particular importance for vegetation restoration and management in drylands. In the present study, metabolome of a dominant shrub Campylotropis polyantha in a dry-hot valley were investigated. Compared to plants grown at the wetter site, C. polyantha tended to slow down carbon (C) assimilation to prevent water loss concurrent with low foliar reactive oxygen species and sugar concentrations at the drier and hotter site. Nitrogen (N) assimilation and turn over were stimulated under stressful conditions and higher leaf N content was kept at the expense of root N pools. At the drier site, roots contained more water but less N compounds derived from the citric acid cycle. The site had little effect on metabolites partitioning between leaves and roots. Generally, roots contained more C but less N. Aromatic compounds were differently impacted by site conditions. The present study, for the first time, uncovers the apparent metabolic adaptations of C. polyantha to hostile dryland conditions. However, due to the limited number of samples, we are cautious about drawing general conclusions regarding the resistance mechanisms. Further studies with a broader spatial range and larger time scale are therefore recommended to provide more robust information for vegetation restoration and management in dryland areas under a changing climate.
Collapse
Affiliation(s)
- Hua Zhang
- College of Urban and Rural Development and Planning, Mianyang Normal University, Xianren Road 30, Mianyang 621000, China;
| | - Xue Jiang
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China;
| | - Lijun Zhu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Zhengqiao Liao
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| |
Collapse
|
26
|
Ndamane NG, Kraai M, Mkhize NR, Tjelele TJ, Tsvuura Z. Increasing densities of Leucosidea sericea have minimal effects on grazing capacity and soil characteristics of a high-altitude communal rangeland at Vuvu, South Africa. PLoS One 2024; 19:e0308472. [PMID: 39240942 PMCID: PMC11379305 DOI: 10.1371/journal.pone.0308472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/24/2024] [Indexed: 09/08/2024] Open
Abstract
Increasing densities of woody plants, known as woody plant encroachment, is a phenomenon affecting savannas and grasslands in many parts of the world. Yet, these ecosystems sustain a significant proportion of the human population through the provision of ecosystem services, such as forage for livestock and wildlife production. While low to medium altitude rangelands are encroached by many species of woody plants, high altitude rangelands in southern Africa show increasing densities of Leucosidea sericea, a woody shrub or small to medium-sized tree. Influences of this species on rangeland dynamics are unknown. This study aimed to determine the influence of L. sericea on rangeland functioning in the Vuvu communal area in the Eastern Cape, South Africa. Effects of L. sericea on plant species diversity and composition, rangeland condition and grazing capacity were measured in sites of variable densities of the species in topographical locations designated as plains, upland and stream sites, using a point-to-tuft method along 50-m long transects. Soil samples were collected to a depth of 5 cm from plains, streams, and upland sites, and analysed for organic carbon, nitrogen, phosphorus, magnesium, calcium, and pH. Plant species richness and abundance were similar among topographical locations, which was reflected by the similar Shannon-Weiner (H') diversity indices among sites. Topographical locations differed significantly in species composition. The plains sites had a higher grazing capacity than stream sites, which had a grazing capacity similar to that of upland sites. Values of soil physicochemical properties were similar among the sites. Overall, soils were acidic (range in pH: 4.4-4.6) and had low amounts of organic carbon and total nitrogen. These findings suggest that L. sericea is not the primary cause of rangeland degradation as all sites were in poor condition as shown by the low grazing capacity, poor rangeland condition and depauperate species richness and diversity. Therefore, rangeland management should shift towards restoration strategies aimed to revitalise the rangeland.
Collapse
Affiliation(s)
- Nandipha Gloria Ndamane
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Manqhai Kraai
- Department of Biological and Agricultural Sciences, School of Natural and Applied Sciences, Sol Plaatje University, Kimberley, South Africa
| | - Ntuthuko Raphael Mkhize
- Agricultural Research Council, Animal Production, Range and Forage Sciences, Irene, South Africa
| | - Tlou Julius Tjelele
- Agricultural Research Council, Animal Production, Range and Forage Sciences, Irene, South Africa
| | - Zivanai Tsvuura
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| |
Collapse
|
27
|
Fang J, Liu Z, Deng Y, Song B, Adams JM. Key microbial taxa play essential roles in maintaining soil muti-nutrient cycling following an extreme drought event in ecological buffer zones along the Yangtze River. FRONTIERS IN PLANT SCIENCE 2024; 15:1460462. [PMID: 39297006 PMCID: PMC11408313 DOI: 10.3389/fpls.2024.1460462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024]
Abstract
Climatic extremes, especially extreme droughts, are occurring more frequently and profoundly impacting biogeochemical processes. However, the relative importance of microbial communities on soil nutrient cycling and community maintenance under natural extreme drought events remains elusive. During a record-breaking drought in the Yangtze River Basin (YRB) in the summer of 2022, we collected ambient soils and drought-affected bare and vegetated soils in ecological buffer zones from two sites with similar soil and vegetation characteristics along the YRB, and examined the relative contribution of soil bacterial communities in supporting multi-nutrient cycling index (MNCI) involving carbon-, nitrate- and phosphorus-cycling and their associations with microbial network. Extreme drought decreased (p < 0.05) bacterial α-diversity but increased MNCI in vegetated soils at both sites, while both remained unchanged (p > 0.05) in bare soils, possibly as a result of vegetation releasing rhizodeposits under drought which selectively recruited bacterial communities. Bacterial community compositions were shifted (p < 0.05) only in vegetated soils, and they exerted more influence than α-diversity on soil MNCI. Notably, the Anaerolineae, identified as a biomarker enriched in vegetated soils, had close associations with enzyme activities and soil MNCI at both sites, suggesting their potential recruitment by vegetation to withstand drought. Furthermore, key ecological clusters (Module 1) in bacterial co-occurrence networks at both sites supported (p < 0.05) higher MNCI, despite no substantial variation in network structure due to drought. Specifically, the most important taxa within Module 1 for predicting soil MNCI revealed by random forest modeling analysis (R2 = 0.44 - 0.63, p < 0.001), such as B1-7BS, SBR1031 and Nocardioides, could be deeply involved in soil nitrogen-cycling, suggesting an essential role of specialized interactions of bacterial communities in maintaining soil multifunctionality. Overall, this study demonstrates that changes in biomarkers and functional taxa under extreme drought may better reflect the biological mechanisms involved in microbial communities impacting ecosystem function, which may aid in forecasting the ecological consequences of ongoing climate change in the ecological buffer zones along the YRB.
Collapse
Affiliation(s)
- Jie Fang
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| | - Zihao Liu
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Bin Song
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jonathan M Adams
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Jupa R, Plichta R, Plavcová L, Paschová Z, Gloser V. Adjustment of storage capacity for non-structural carbohydrates in response to limited water availability in two temperate woody species. PHYSIOLOGIA PLANTARUM 2024; 176:e14522. [PMID: 39248017 DOI: 10.1111/ppl.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L. and Betula pendula Roth., cultivated under different substrate water availability. We found that relative contents of soluble NSC, starch and total NSC increased with decreasing water availability in stems of both species, and similar tendencies were also observed in roots of A. negundo. In the roots of B. pendula, soluble NSC contents decreased along with the decreasing water availability, possibly due to phloem decoupling or NSC translocation to shoots. Despite the contrast in organ responses, NSC contents (namely starch) positively correlated with proportions of total organ SC. Individual types of SC showed markedly distinct plasticity upon decreasing water availability, suggesting that water availability changes the partitioning of organ storage capacity. We found an increasing contribution of parenchyma-rich bark to the total organ NSC storage capacity under decreasing water availability. However, xylem SC showed substantially greater plasticity than those in bark. Axial storage cells, namely living fibers in A. negundo, responded more sensitively to decreasing water availability than radial parenchyma. Our results demonstrate that drought-induced changes in carbon balance affect the organ storage capacity provided by living cells, whose proportions are sensitively coordinated along with changing NSC reserves.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Lenka Plavcová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Zuzana Paschová
- Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Vít Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Li H, Chang L, Liu H, Li Y. Diverse factors influence the amounts of carbon input to soils via rhizodeposition in plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174858. [PMID: 39034011 DOI: 10.1016/j.scitotenv.2024.174858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Rhizodeposition encompasses the intricate processes through which plants generate organic compounds via photosynthesis, store these compounds within aboveground biomass and roots through top-down transport, and subsequently release this organic matter into the soil. Rhizodeposition represents one of the carbon (C) cycle in soils that can achieve long-term organic C sequestration. This function holds significant implications for mitigating the climate change that partly stems from the greenhouse effect associated with increased atmospheric carbon dioxide levels. Therefore, it is essential to further understand how the process of rhizodeposition allocates the photosynthetic C that plants create via photosynthesis. While many studies have explored the basic principles of rhizodeposition, along with the associated impact on soil C storage, there is a palpable absence of comprehensive reviews that summarize the various factors influencing this process. This paper compiles and analyzes the literature on plant rhizodeposition to describe how rhizodeposition influences soil C storage. Moreover, the review summarizes the impacts of soil physicochemical, microbial, and environmental characteristics on plant rhizodeposition and priming effects, and concludes with recommendations for future research.
Collapse
Affiliation(s)
- Haoye Li
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Lei Chang
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Huijia Liu
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| |
Collapse
|
30
|
Sun Y, Robert CA, Thakur MP. Drought intensity and duration effects on morphological root traits vary across trait type and plant functional groups: a meta-analysis. BMC Ecol Evol 2024; 24:92. [PMID: 38965481 PMCID: PMC11223356 DOI: 10.1186/s12862-024-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The increasing severity and frequency of drought pose serious threats to plant species worldwide. Yet, we lack a general understanding of how various intensities of droughts affect plant traits, in particular root traits. Here, using a meta-analysis of drought experiments (997 effect sizes from 76 papers), we investigate the effects of various intensities of droughts on some of the key morphological root traits. Our results show that root length, root mean diameter, and root area decline when drought is of severe or extreme intensity, whereas severe drought increases root tissue density. These patterns are most pronounced in trees compared to other plant functional groups. Moreover, the long duration of severe drought decreases root length in grasses and root mean diameter in legumes. The decline in root length and root diameter due to severe drought in trees was independent of drought duration. Our results suggest that morphological root traits respond strongly to increasing intensity of drought, which further depends on drought duration and may vary among plant functional groups. Our meta-analysis highlights the need for future studies to consider the interactive effects of drought intensity and drought duration for a better understanding of variable plant responses to drought.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland.
| | | | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
31
|
Chen S, Stark SC, Nobre AD, Cuartas LA, de Jesus Amore D, Restrepo-Coupe N, Smith MN, Chitra-Tarak R, Ko H, Nelson BW, Saleska SR. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 2024; 631:111-117. [PMID: 38898277 DOI: 10.1038/s41586-024-07568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon sinks of atmospheric CO2 are declining, as deforestation and climate-change-associated droughts1-4 threaten to push these forests past a tipping point towards collapse5-8. Forests exhibit complex drought responses, indicating both resilience (photosynthetic greening) and vulnerability (browning and tree mortality), that are difficult to explain by climate variation alone9-17. Here we combine remotely sensed photosynthetic indices with ground-measured tree demography to identify mechanisms underlying drought resilience/vulnerability in different intact forest ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation characteristics). In higher-fertility southern Amazonia, drought response was structured by water-table depth, with resilient greening in shallow-water-table forests (where greater water availability heightened response to excess sunlight), contrasting with vulnerability (browning and excess tree mortality) over deeper water tables. Notably, the resilience of shallow-water-table forest weakened as drought lengthened. By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees (or, alternatively, tall forests, with deep-rooted water access), supported more-drought-resilient forests independent of water-table depth. This functional biogeography of drought response provides a framework for conservation decisions and improved predictions of heterogeneous forest responses to future climate changes, warning that Amazonia's most productive forests are also at greatest risk, and that longer/more frequent droughts are undermining multiple ecohydrological strategies and capacities for Amazon forest resilience.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Scott C Stark
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| | | | - Luz Adriana Cuartas
- National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
| | - Diogo de Jesus Amore
- National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Cupoazu LLC, Etobicoke, Ontario, Canada
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, USA
- School of Environmental and Natural Sciences, College of Science and Engineering, Bangor University, Bangor, UK
| | - Rutuja Chitra-Tarak
- Los Alamos National Laboratory, Earth and Environmental Sciences, Los Alamos, NM, USA
| | - Hongseok Ko
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Bruce W Nelson
- Brazil's National Institute for Amazon Research (INPA), Manaus, Brazil
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
32
|
Herol L, Avidar M, Yirmiahu S, Zach YY, Klein T, Shemesh H, Livne-Luzon S. Context-dependent benefits of forest soil addition on Aleppo pine seedling performance under drought and grass competition. MYCORRHIZA 2024; 34:217-227. [PMID: 38762648 PMCID: PMC11166812 DOI: 10.1007/s00572-024-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.
Collapse
Affiliation(s)
- Lior Herol
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Mor Avidar
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Shahar Yirmiahu
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Yair Yehoshua Zach
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Shemesh
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Stav Livne-Luzon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Zuo WT, Meng JH, Liu HC, Zhu HY, Lu MZ, Wang LQ. PagWOX11/12a from hybrid poplar enhances drought tolerance by modulating reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108662. [PMID: 38691876 DOI: 10.1016/j.plaphy.2024.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
WOX11/12 is a homeobox gene of WOX11 and WOX12 in Arabidopsis that plays important roles in crown root development and growth. It has been reported that WOX11/12 participates in adventitious root (AR) formation and different abiotic stress responses, but the downstream regulatory network of WOX11/12 in poplar remains to be further investigated. In this study, we found that PagWOX11/12a is strongly induced by PEG-simulated drought stress. PagWOX11/12a-overexpressing poplar plantlets showed lower oxidative damage levels, greater antioxidant enzyme activities and reactive oxygen species (ROS) scavenging capacity than non-transgenic poplar plants, whereas PagWOX11/12a dominant repression weakened root biomass accumulation and drought tolerance in poplar. RNA-seq analysis revealed that several differentially expressed genes (DEGs) regulated by PagWOX11/12a are involved in redox metabolism and drought stress response. We used RT-qPCR and yeast one-hybrid (Y1H) assays to validate the downstream target genes of PagWOX11/12a. These results provide new insights into the biological function and molecular regulatory mechanism of WOX11/12 in the abiotic resistance processes of poplar.
Collapse
Affiliation(s)
- Wen-Teng Zuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jia-Hui Meng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hong-Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hang-Yong Zhu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, 510520, China
| | - Meng-Zhu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
34
|
Han L, Nan G, He X, Wang J, Zhao J, Zhang X. Soil moisture and soil organic carbon coupled effects in apple orchards on the Loess Plateau, China. Sci Rep 2024; 14:12281. [PMID: 38811638 PMCID: PMC11136960 DOI: 10.1038/s41598-024-63039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
A large number of economic forests, especially apple orchards (AOs) in the Loess Plateau region of China, have been planted to develop the local economy and increase the income of farmers. The two main constraints preventing AOs on the Loess Plateau from developing sustainably and producing a high and steady yield are soil moisture content (SMC) and soil organic carbon (SOC). Nevertheless, little is currently known about the contributions of roots to these changes in the soil profile and the temporal modes of the SMC-SOC coupled effects. In our research, we analyzed the dynamic changes in SMC and SOC in AOs of various years in northern Shaanxi Province, as well as the coupled relationship between the two, and attempted to describe the function of roots in these changes. Research have shown: (1) As the age of the AOs increased, the SMC continued to decline throughout the 0-500 cm profile, especially at depths of 100-500 cm. SMC depletion mainly occurred in AOs aged 20 years (30.02%/year) and 30 years (31.18%/year). (2) Compared with abandoned land (AL), all the AOs except for the 6-year-old AO showed a carbon sequestration effect, and the carbon sequestration effect increased with age. The carbon sequestration rate of the 12-year-old AO was the highest and then decreased with age. Both surface and deeper soils showed better carbon sequestration, with a large amount of SOC being sequestered in deeper soil layers (> 100 cm). (3) The coupled effects of SMC and SOC varied with age and depth. The SMC in the deeper layers was significantly negatively correlated with SOC. Root dry weight density (RDWD) was significantly negatively correlated with SMC and significantly positively correlated with SOC. Path analysis suggested that SMC directly affects SOC at different soil depths, and regulates SOC by affecting RDWD, but these effects are significantly different at different depths. Therefore, we propose that management of AO should focus on the moisture deficit and carbon sequestration capabilities of deeper soils to ensure the sustainability of water use in AOs and the stability of agricultural carbon sequestration on the Loess Plateau.
Collapse
Affiliation(s)
- Lei Han
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Guowei Nan
- School of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China.
| | - Xinyu He
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Jinghui Wang
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Jirong Zhao
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| | - Xiangqian Zhang
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
- Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, 716000, Shaanxi, China
| |
Collapse
|
35
|
Li B, Wang R, Chen JM. Responses of phenology to preseason drought and soil temperature for different land cover types on the Mongolian Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171895. [PMID: 38531448 DOI: 10.1016/j.scitotenv.2024.171895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Drought and heat caused major disturbance in nature by interfering with plant phenology, and can also alter the vulnerability and resilience of terrestrial ecosystems. Existing research on the Mongolian Plateau has primarily focused on studying the response of the start (SOS) and end (EOS) of the growing season to drought and heat variations. However, there is still a lack of comprehensive understanding regarding the coupled effects of drought and heat on phenology across different land cover types. In this study, we retrieved SOS and EOS based on 34-year (1982-2015) normalized difference vegetation index (NDVI) dataset from Global Inventory Modeling and Mapping Studies (GIMMS). Results showed that grasslands and the Gobi-Desert show rapid advancement in SOS, and forests presented the slowest advancement in SOS, but SOS in croplands were delayed. EOS across four land cover types advanced, with the Gobi-Desert showed the highest rate of advancement and forests the lowest. Using the Palmer Drought Severity Index (PDSI) and soil temperature as the indicators of drought and thermal conditions, the responses of SOS and EOS to these two climate variables were evaluated. The advanced SOS driven by lower drought severity was detected in forests, grasslands, croplands and the Gobi-Desert. The dominant response of EOS to drought severity was positive in croplands, grasslands and forests, except for the Gobi-Desert, where drought severity had negative effects on EOS. Compared with the daily average soil temperature (STmean), the daily maximum soil temperature (STmax, daytime), and the daily minimum soil temperature (STmin, nighttime), the daily diurnal soil temperature range (DSTR, where DSTR = STmax - STmin) between night and day were the most suitable indicators for assessing the response of SOS and EOS to soil temperature. Strong negative correlation between SOS and the preseason DSTR was pronounced in all land cover types on the Mongolian Plateau. However, EOS was negatively correlated with the preseason DSTR only in the Gobi-Desert. Last but not least, normalized sensitivity assessments reveal that the negative impacts of DSTR on SOS and EOS were the main controlling factors on the Mongolian Plateau phenology, followed by the couple negative effects of drought severity and DSTR.
Collapse
Affiliation(s)
- Bing Li
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Rong Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China.
| | - Jing M Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China.
| |
Collapse
|
36
|
de Oliveira ACP, Nunes A, Oliveira MA, Oliveira RS, Rodrigues RG, Branquinho C. Shifts in plant functional groups along an aridity gradient in a tropical dry forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171695. [PMID: 38485025 DOI: 10.1016/j.scitotenv.2024.171695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Increasing aridity associated with climate change may lead to the crossing of critical ecosystem thresholds in drylands, compromising ecosystem services for millions of people. In this context, finding tools to detect at early stages the effects of increasing aridity on ecosystems is extremely urgent to avoid irreversible damage. Here, we assess shifts in plant community functional structure along a spatial aridity gradient in tropical dryland (Brazilian Caatinga), to select the most appropriate plant functional groups as ecological indicators likely useful to predict temporal ecosystem trajectories in response to aridity. We identified seven plant functional groups based on 13 functional traits associated with plant establishment, defense, regeneration, and dispersal, whose relative abundances changed, linearly and non-linearly, with increasing aridity, showing either increasing or decreasing trends. Of particular importance is the increase in abundance of plants with high chemical defense and Crassulacean Acid Metabolism (CAM) photosynthetic pathway, with increasing aridity. We propose the use of these functional groups as early warning indicators to detect aridity impacts on these dryland ecosystems and shifts in ecosystem functioning. This information can also be used in the elaboration of mitigation and ecological restoration measures to prevent and revert current and future climate change impacts on tropical dry forests.
Collapse
Affiliation(s)
- Ana Cláudia Pereira de Oliveira
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Institute for Global Change and Sustainability, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Alice Nunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Institute for Global Change and Sustainability, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Maria Alexandra Oliveira
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Institute for Global Change and Sustainability, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafael S Oliveira
- Department of Plant Biology, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Renato Garcia Rodrigues
- Centre for Ecology and Environmental Monitoring, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Cristina Branquinho
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Institute for Global Change and Sustainability, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
37
|
Blanca-Reyes I, Lechuga V, Llebrés MT, Carreira JA, Ávila C, Cánovas FM, Castro-Rodríguez V. Under Stress: Searching for Genes Involved in the Response of Abies pinsapo Boiss to Climate Change. Int J Mol Sci 2024; 25:4820. [PMID: 38732040 PMCID: PMC11084517 DOI: 10.3390/ijms25094820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, Mediterranean forests are experiencing the deleterious effects of global warming, which mainly include increased temperatures and decreased precipitation in the region. Relict Abies pinsapo fir forests, endemic in the southern Iberian Peninsula, are especially sensitive to these recent environmental disturbances, and identifying the genes involved in the response of this endangered tree species to climate-driven stresses is of paramount importance for mitigating their effects. Genomic resources for A. pinsapo allow for the analysis of candidate genes reacting to warming and aridity in their natural habitats. Several members of the complex gene families encoding late embryogenesis abundant proteins (LEAs) and heat shock proteins (HSPs) have been found to exhibit differential expression patterns between wet and dry seasons when samples from distinct geographical locations and dissimilar exposures to the effects of climate change were analyzed. The observed changes were more perceptible in the roots of trees, particularly in declining forests distributed at lower altitudes in the more vulnerable mountains. These findings align with previous studies and lay the groundwork for further research on the molecular level. Molecular and genomic approaches offer valuable insights for mitigating climate stress and safeguarding this endangered conifer.
Collapse
Affiliation(s)
- Irene Blanca-Reyes
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - Víctor Lechuga
- Department of Ecology, Universidad de Jaen, Campus Las Lagunillas s/n., 23009 Jaén, Spain; (V.L.); (J.A.C.)
| | - María Teresa Llebrés
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - José A. Carreira
- Department of Ecology, Universidad de Jaen, Campus Las Lagunillas s/n., 23009 Jaén, Spain; (V.L.); (J.A.C.)
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| | - Vanessa Castro-Rodríguez
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica en Instituto Andaluz de Biotecnología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain; (I.B.-R.); (M.T.L.); (C.Á.)
| |
Collapse
|
38
|
Yang JY, Wang HB, Zhang DC. Response of the root anatomical structure of Carex moorcroftii to habitat drought in the Western Sichuan Plateau of China. PLANTA 2024; 259:131. [PMID: 38652171 PMCID: PMC11039561 DOI: 10.1007/s00425-024-04412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION The anatomical structures of Carex moorcroftii roots showing stronger plasticity during drought had a lower coefficient of variation in cell size in the same habitats, while those showing weaker plasticity had a higher coefficient of variation. The complementary relationship between these factors comprises the adaptation mechanism of the C. moorcroftii root to drought. To explore the effects of habitat drought on root anatomy of hygrophytic plants, this study focused on roots of C. moorcroftii. Five sample plots were set up along a soil moisture gradient in the Western Sichuan Plateau to collect experimental materials. Paraffin sectioning was used to obtain root anatomy, and one-way ANOVA, correlation analysis, linear regression analysis, and RDA ranking were applied to analyze the relationship between root anatomy and soil water content. The results showed that the root transverse section area, thickness of epidermal cells, exodermis and Casparian strips, and area of aerenchyma were significantly and positively correlated with soil moisture content (P < 0.01). The diameter of the vascular cylinder and the number and total area of vessels were significantly and negatively correlated with the soil moisture content (P < 0.01). The plasticity of the anatomical structures was strong for the diameter and area of the vascular cylinder and thickness of the Casparian strip and epidermis, while it was weak for vessel diameter and area. In addition, there was an asymmetrical relationship between the functional adaptation of root anatomical structure in different soil moisture and the variation degree of root anatomical structure in the same soil moisture. Therefore, the roots of C. moorcroftii can shorten the water transport distance from the epidermis to the vascular cylinder, increase the area of the vascular cylinder and the number of vessels, and establish a complementary relationship between the functional adaptation of root anatomical structure in different habitats and the variation degree of root anatomical structure in the same habitat to adapt to habitat drought. This study provides a scientific basis for understanding the response of plateau wetland plants to habitat changes and their ecological adaptation strategies. More scientific experimental methods should be adopted to further study the mutual coordination mechanisms of different anatomical structures during root adaptation to habitat drought for hygrophytic plants.
Collapse
Affiliation(s)
- Jia-Ying Yang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Hong-Bin Wang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Da-Cai Zhang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China.
| |
Collapse
|
39
|
Grünhofer P, Heimerich I, Pohl S, Oertel M, Meng H, Zi L, Lucignano K, Bokhari SNH, Guo Y, Li R, Lin J, Fladung M, Kreszies T, Stöcker T, Schoof H, Schreiber L. Suberin deficiency and its effect on the transport physiology of young poplar roots. THE NEW PHYTOLOGIST 2024; 242:137-153. [PMID: 38366280 DOI: 10.1111/nph.19588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The precise functions of suberized apoplastic barriers in root water and nutrient transport physiology have not fully been elucidated. While lots of research has been performed with mutants of Arabidopsis, little to no data are available for mutants of agricultural crop or tree species. By employing a combined set of physiological, histochemical, analytical, and transport physiological methods as well as RNA-sequencing, this study investigated the implications of remarkable CRISPR/Cas9-induced suberization defects in young roots of the economically important gray poplar. While barely affecting overall plant development, contrary to literature-based expectations significant root suberin reductions of up to 80-95% in four independent mutants were shown to not evidently affect the root hydraulic conductivity during non-stress conditions. In addition, subliminal iron deficiency symptoms and increased translocation of a photosynthesis inhibitor as well as NaCl highlight the involvement of suberin in nutrient transport physiology. The multifaceted nature of the root hydraulic conductivity does not allow drawing simplified conclusions such as that the suberin amount must always be correlated with the water transport properties of roots. However, the decreased masking of plasma membrane surface area could facilitate the uptake but also leakage of beneficial and harmful solutes.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Ines Heimerich
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Svenja Pohl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Marlene Oertel
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Hongjun Meng
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lin Zi
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Kevin Lucignano
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Syed Nadeem Hussain Bokhari
- Department Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Czech Academy of Sciences, Biology Centre, Branišovská 31/1160, CZ-37005, České Budějovice, Czech Republic
| | - Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Tino Kreszies
- Department of Crop Sciences, Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Tyll Stöcker
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Heiko Schoof
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
40
|
Dhiedt E, Baeten L, De Smedt P, Verheyen K. Soil legacies of tree species richness in a young plantation do not modulate tree seedling response to watering regime. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:316-329. [PMID: 38041577 DOI: 10.1111/plb.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
Trees have a strong and species-specific influence on biotic and abiotic properties of the soil. Even after the vegetation is removed, the effect can persist to form so-called soil legacies. We investigated the effects of soil legacies of tree species richness on the emergence and growth of tree seedlings, and how these legacy effects modulate the seedling responses to irrigation frequency. We used a 9-year-old tree plantation on former agricultural land in Belgium, which is part of a biodiversity-ecosystem functioning experiment (FORBIO). Soil originating from monocultures and four-species plots, with different species combinations, was translocated to a greenhouse. Five tree species (Betula pendula, Fagus sylvatica, Pinus sylvestris, Quercus robur, and Tilia cordata) were sown and grown for one growing season in these soils. We performed a watering treatment (low and high irrigation frequency) to measure any potential interaction effects between the soil legacies and irrigation frequency. There was no evidence for soil legacy effects of species richness on plant performance or their response to the irrigation frequency. However, the effect of irrigation frequency was dependent on species identity of the tree seedlings. Despite the lack of clear legacy effects, performance measures did show correlated responses that are likely due to species composition effects. We ascribe these patterns to the young age of the forest and the agricultural past land use. At this early stage in forest development, the land-use history likely has a more important role in shaping soil characteristics that affect plant growth and their response to drought, than species diversity.
Collapse
Affiliation(s)
- E Dhiedt
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales, Bangor, UK
| | - L Baeten
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P De Smedt
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - K Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| |
Collapse
|
41
|
Meng Z, Mo X, Meng W, Hu B, Liu B, Li H, Liu J, Xu M, Hou Q, Lu X, He M. Microplastics could alter invasive plant community performance and the dominance of Amaranthus palmeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169275. [PMID: 38086482 DOI: 10.1016/j.scitotenv.2023.169275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The increase in alien plant invasions poses a major threat to global biodiversity and ecosystem stability. However, the presence of microplastics (MPs) as an environmental stressor could impact the interactions between invasive and native species in an invasive plant community. Nevertheless, the community alterations and underlying mechanisms resulting from these interactions remain unclear. Herein, we systematically investigated the impacts of polyethylene (PE) and polypropylene (PP) on invasive plant communities invaded by Amaranthus palmeri through soil seed bank. The results illustrated that MPs markedly declined community height and biomass, and altered community structure, low-dose MPs could prominently increase community invasion resistance, but reduced community stability. The niche width and niche overlap of A. palmeri and S. viridis declined when exposed to high-dose MPs, but MPs elicited a significant rise in the niche width of S. salsa. PP had the potential to reduce the diversity of invasive plant community. Structural equation model revealed that PP addition could change soil total phosphorus content, thereby leading to a reduction of the community stability. Our study helps to fill the knowledge gap regarding the effects of MPs on invasive plant communities and provide new perspectives for invasive plant management.
Collapse
Affiliation(s)
- Zirui Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300382, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300382, China
| | - Weiqing Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China
| | - Beibei Hu
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China
| | - Baiqiao Liu
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China
| | - Hongyuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mengyao Xu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qidong Hou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300382, China.
| |
Collapse
|
42
|
Jin X, Chai Q, Liu C, Niu X, Li W, Shang X, Gu A, Zhang D, Guo W. Cotton GhNAC4 promotes drought tolerance by regulating secondary cell wall biosynthesis and ribosomal protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1052-1068. [PMID: 37934782 DOI: 10.1111/tpj.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.
Collapse
Affiliation(s)
- Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qichao Chai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aixing Gu
- Engineering Research Center of Ministry of Education for Cotton, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
43
|
Xu S, Wang J, Sayer EJ, Lam SK, Lai DYF. Precipitation change affects forest soil carbon inputs and pools: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168171. [PMID: 37923258 DOI: 10.1016/j.scitotenv.2023.168171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The impacts of precipitation change on forest carbon (C) storage will have global consequences, as forests play a major role in sequestering anthropogenic CO2. Although forest soils are one of the largest terrestrial C pools, there is great uncertainty around the response of forest soil organic carbon (SOC) to precipitation change, which limits our ability to predict future forest C storage. To address this, we conducted a meta-analysis to determine the effect of drought and irrigation experiments on SOC pools, plant C inputs and the soil environment based on 161 studies across 139 forest sites worldwide. Overall, forest SOC content was not affected by precipitation change, but both drought and irrigation altered plant C inputs and soil properties associated with SOC formation and storage. Drought may enhance SOC stability by altering soil aggregate fractions, but the effect of irrigation on SOC fractions remains unexplored. The apparent insensitivity of SOC to precipitation change can be explained by the short duration of most experiments and by biome-specific responses of C inputs and pools to drought or irrigation. Importantly, we demonstrate that SOC content is more likely to decline under irrigation at drier temperate sites, but that dry forests are currently underrepresented across experimental studies. Thus, our meta-analysis advances research into the impacts of precipitation change in forests by revealing important differences among forest biomes, which are likely linked to plant adaptation to extant conditions. We further demonstrate important knowledge gaps around how precipitation change will affect SOC stability, as too few studies currently consider distinct soil C pools. To accurately predict future SOC storage in forests, there is an urgent need for coordinated studies of different soil C pools and fractions across existing sites, as well as new experiments in underrepresented forest types.
Collapse
Affiliation(s)
- Shan Xu
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Emma J Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom; Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| | - Shu Kee Lam
- School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Centre for Environmental Policy and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
44
|
Ji W, Li R, Qian X, Albasher G, Li Z. Microbial nitrogen mineralization is slightly affected by conversion from farmland to apple orchards in thick loess deposits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168268. [PMID: 37918737 DOI: 10.1016/j.scitotenv.2023.168268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Organic nitrogen mineralization, indispensable to soil carbon and nitrogen cycles, is the largest contributor to nitrate reservoirs in deep vadose zones. The microbial nitrogen mineralization (MNM) within deep soils, particularly in regions with intensive agricultural activities and thick soil horizons, has been largely disregarded. As such, this study aims to address this knowledge gap by investigating the chiA-harboring microbial structure and network within nine 10-m profiles beneath cultivated farmland and two apple orchards. The results showed that apple orchards, compared to farmland, had considerable water deficit and nitrogen accumulation within deeper soil layers due to well-developed root systems and the overuse of chemical fertilizers. However, the chiA-harboring microbial diversity, composition, and abundance all exhibited significant variations with soil depths rather than being influenced by different land use types. Moreover, the diversity indices and gene abundances decreased with soil depths, and the related soil microbes included 19 phyla, 29 classes, 72 orders, 114 families, and 197 genera, with Actinobacteria and Proteobacteria being the two major bacterial phyla. The microbial co-occurrence network was simper beneath apple orchards. The chiA-harboring microorganisms within deep unsaturated zones were greatly influenced by the depth-dependent soil nutrients, such as total nitrogen, organic carbon, and available potassium. The limited plant root biomass and the inhibitory effects of dried soil layers both restricted the availability of carbon sources, which further interfered with the MNM processes within deep soils insignificantly. Therefore, despite the considerable plant-induced ecohydrological consequences, the depth-dependent MNM processes were slightly affected after the transformation from farmland to apple orchards within thick loess deposits. This study offers crucial insights into microbial dynamics of the deep biosphere, thereby contributing to our understanding of depth-dependent biogeochemical cycles within global deep unsaturated zones.
Collapse
Affiliation(s)
- Wangjia Ji
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifeng Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhi Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
45
|
Wang C, Sun Y, Zou X, Chen HYH, Delgado-Baquerizo M, Yang J, Wang G, Liu Y, Ruan H. Increased fine root production coupled with reduced aboveground production of plantations under a three-year experimental drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168370. [PMID: 37952676 DOI: 10.1016/j.scitotenv.2023.168370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Climate change has led to more frequent and intense droughts. A better understanding of forest production under drought stress is critical for assessing the resilience of forests and their capacity to deliver ecosystem services under climate change. However, the direction and magnitude of drought effects on aboveground and belowground forest ecosystem components remain poorly understood. Here, we conducted a drought experiment including 30 % and 50 % throughfall reduction in a poplar plantation in the eastern coast of China to test how different drought intensities affected aboveground and fine root production. We further investigated the responses of soil physicochemical properties (e.g., soil moisture, soil pH, soil carbon, and soil nitrogen), and microbial properties (e.g., total microbial biomass, fungi:bacteria ratios, and Gram+:Gram- bacteria ratios) to drought. We found that the aboveground production decreased by 12.2 % and 19.3 % following 30 % and 50 % drought intensities, respectively. However, fine root production increased by 21.6 % and 35.1 % under 30 % and 50 % drought intensities, respectively. Moreover, all above- and belowground components exhibited stronger responses to 50 % compared with 30 % drought intensity. Our results provide some of the first direct evidence for simultaneous responses of forest above- and belowground production to moderate and intense droughts, by demonstrating that fine root production is more sensitive than aboveground production to both levels of drought stress.
Collapse
Affiliation(s)
- Cuiting Wang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuan Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China
| | - Xiaoming Zou
- Department of Environmental Science, University of Puerto Rico, P. O. Box 70377, San Juan, PR 00936-8377, USA
| | - Han Y H Chen
- Faculty of Natural Resource Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P78 5E1, Canada
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Jingyan Yang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guobing Wang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuwei Liu
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
46
|
Peralta Ogorek LL, Jiménez JDLC, Visser EJW, Takahashi H, Nakazono M, Shabala S, Pedersen O. Outer apoplastic barriers in roots: prospects for abiotic stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37814289 DOI: 10.1071/fp23133] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Floods and droughts are becoming more frequent as a result of climate change and it is imperative to find ways to enhance the resilience of staple crops to abiotic stresses. This is crucial to sustain food production during unfavourable conditions. Here, we analyse the current knowledge about suberised and lignified outer apoplastic barriers, focusing on the functional roles of the barrier to radial O2 loss formed as a response to soil flooding and we discuss whether this trait also provides resilience to multiple abiotic stresses. The barrier is composed of suberin and lignin depositions in the exodermal and/or sclerenchyma cell walls. In addition to the important role during soil flooding, the barrier can also restrict radial water loss, prevent phytotoxin intrusion, salt intrusion and the main components of the barrier can impede invasion of pathogens in the root. However, more research is needed to fully unravel the induction pathway of the outer apoplastic barriers and to address potential trade-offs such as reduced nutrient or water uptake. Nevertheless, we suggest that the outer apoplastic barriers might act as a jack of all trades providing tolerance to multiple abiotic and/or biotic stressors.
Collapse
Affiliation(s)
- Lucas León Peralta Ogorek
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark; and School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Juan de la Cruz Jiménez
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen 6525 AJ, Netherlands
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; and School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark; and School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
47
|
He P, Sardans J, Wang X, Ma C, Man L, Peñuelas J, Han X, Jiang Y, Li MH. Nutritional changes in trees during drought-induced mortality: A comprehensive meta-analysis and a field study. GLOBAL CHANGE BIOLOGY 2024; 30:e17133. [PMID: 38273504 DOI: 10.1111/gcb.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Both macronutrients and micronutrients are essential for tree growth and development through participating in various ecophysiological processes. However, the impact of the nutritional status of trees on their ability to withstand drought-induced mortality remains inconclusive. We thus conducted a comprehensive meta-analysis, compiling data on 11 essential nutrients from 44 publications (493 independent observations). Additionally, a field study was conducted on Pinus sylvestris L. trees with varying drought-induced vitality loss in the "Visp" forest in southern Switzerland. No consistent decline in tree nutritional status was observed during tree mortality. The meta-analysis revealed significantly lower leaf potassium (K), iron (Fe), and copper (Cu) concentrations with tree mortality. However, the field study showed no causal relationships between nutritional levels and the vitality status of trees. This discrepancy is mainly attributed to the intrinsic differences in the two types of experimental designs and the ontogenetic stages of target trees. Nutrient reductions preceding tree mortality were predominantly observed in non-field conditions, where the study was conducted on seedlings and saplings with underdeveloped root systems. It limits the nutrient uptake capacity of these young trees during drought. Furthermore, tree nutritional responses are also influenced by many variables. Specifically, (a) leaf nutrients are more susceptible to drought stress than other organs; (b) reduced tree nutrient concentrations are more prevalent in evergreen species during drought-induced mortality; (c) of all biomes, Mediterranean forests are most vulnerable to drought-induced nutrient deficiencies; (d) soil types affect the direction and extent of tree nutritional responses. We identified factors that influence the relationship between tree nutritional status and drought survival, and proposed potential early-warning indicators of impending tree mortality, for example, decreased K concentrations with declining vitality. These findings contribute to our understanding of tree responses to drought and provide practical implications for forest management strategies in the context of global change.
Collapse
Affiliation(s)
- Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Xiaoyu Wang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Jiyang College, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chengcang Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Liang Man
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Xingguo Han
- College of Life Sciences, Hebei University, Baoding, China
| | - Yong Jiang
- College of Life Sciences, Hebei University, Baoding, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
48
|
Jaeger FC, Handa IT, Paquette A, Parker WC, Messier C. Young temperate tree species show different fine root acclimation capacity to growing season water availability. PLANT AND SOIL 2023; 496:485-504. [PMID: 38510944 PMCID: PMC10948563 DOI: 10.1007/s11104-023-06377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 03/22/2024]
Abstract
Background and aims Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years. Methods Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Acer saccharum Marsh., Betula papyrifera Marsh., Larix laricina K. Koch, Pinus strobus L., Picea glauca (Moench) Voss and Quercus rubra L. established at the International Diversity Experiment Network with Trees (IDENT) field experiment in Sault Ste. Marie, Ontario, Canada. Four replicates of each monoculture were subjected to high or low water availability treatments. Results Absorptive fine root density increased by 67% for Larix laricina, and 90% for Picea glauca, under the high-water availability treatment at 0-5 cm soil depth. The two late successional, slower growing tree species, Acer saccharum and Picea glauca, showed higher plasticity in absorptive fine root biomass in the upper 5 cm of soil (PIv = 0.36 & 0.54 respectively), and lower plasticity in fine root depth over the entire 30 cm soil profile compared to the early successional, faster growing tree species Betula papyrifera and Larix laricina. Conclusion Temperate tree species show contrasting acclimation responses in absorptive fine root biomass and rooting depth to differences in water availability. Some of these responses vary with tree species successional status and seem to benefit both early and late successional tree species. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06377-w.
Collapse
Affiliation(s)
- Florentin C. Jaeger
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - I. Tanya Handa
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - Alain Paquette
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - William C. Parker
- Forest Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON Canada
| | - Christian Messier
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
- Institut des Sciences de La Forêt tempérée, Université du Québec en Outaouais, Ripon, Canada
| |
Collapse
|
49
|
Giberti GS, von Arx G, Giovannelli A, du Toit B, Unterholzner L, Bielak K, Carrer M, Uhl E, Bravo F, Tonon G, Wellstein C. The admixture of Quercus sp. in Pinus sylvestris stands influences wood anatomical trait responses to climatic variability and drought events. FRONTIERS IN PLANT SCIENCE 2023; 14:1213814. [PMID: 38034580 PMCID: PMC10687546 DOI: 10.3389/fpls.2023.1213814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Introduction Forests are threatened by increasingly severe and more frequent drought events worldwide. Mono-specific forests, developed as a consequence of widespread management practices established early last century, seem particularly susceptible to global warming and drought compared with mixed-species forests. Although, in several contexts, mixed-species forests display higher species diversity, higher productivity, and higher resilience, previous studies highlighted contrasting findings, with not only many positive but also neutral or negative effects on tree performance that could be related to tree species diversity. Processes underlying this relationship need to be investigated. Wood anatomical traits are informative proxies of tree functioning, and they can potentially provide novel long-term insights in this regard. However, wood anatomical traits are critically understudied in such a context. Here, we assess the role of tree admixture on Pinus sylvestris L. xylem traits such as mean hydraulic diameter, cell wall thickness, and anatomical wood density, and we test the variability of these traits in response to climatic parameters such as temperature, precipitation, and drought event frequency and intensity. Methods Three monocultural plots of P. sylvestris and three mixed-stand plots of P. sylvestris and Quercus sp. were identified in Poland and Spain, representing Continental and Mediterranean climate types, respectively. In each plot, we analyzed xylem traits from three P. sylvestris trees, for a total of nine trees in monocultures and nine in mixed stands per study location. Results The results highlighted that anatomical wood density was one of the most sensitive traits to detect tree responses to climatic conditions and drought under different climate and forest types. Inter-specific facilitation mechanisms were detected in the admixture between P. sylvestris and Quercus sp., especially during the early growing season and during stressful events such as spring droughts, although they had negligible effects in the late growing season. Discussion Our findings suggest that the admixture between P. sylvestris and Quercus sp. increases the resilience of P. sylvestris to extreme droughts. In a global warming scenario, this admixture could represent a useful adaptive management option.
Collapse
Affiliation(s)
- Giulia Silvia Giberti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano - Bozen, Bolzano, Italy
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale Ricerche, Sesto Fiorentino, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Ben du Toit
- Department of Forest and Wood Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lucrezia Unterholzner
- Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy
- Chair of Forest Growth and Woody Biomass Production, Technische Universität Dresden, Tharandt, Germany
| | - Kamil Bielak
- Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marco Carrer
- Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy
| | - Enno Uhl
- School of Life Sciences, Chair for Forest Growth and Yield Science, Technical University of Munich (TUM), Freising, Germany
- Bavarian State Institute of Forestry (LWF), Freising, Germany
| | - Felipe Bravo
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR). Escuela Técnica Superior de Ingenierías Agrarias de Palencia, Universidad de Valladolid, Palencia, Spain
| | - Giustino Tonon
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano - Bozen, Bolzano, Italy
| | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano - Bozen, Bolzano, Italy
| |
Collapse
|
50
|
Hildebrand GA, Honeker LK, Freire-Zapata V, Ayala-Ortiz C, Rajakaruna S, Fudyma J, Daber LE, AminiTabrizi R, Chu RL, Toyoda J, Flowers SE, Hoyt DW, Hamdan R, Gil-Loaiza J, Shi L, Dippold MA, Ladd SN, Werner C, Meredith LK, Tfaily MM. Uncovering the dominant role of root metabolism in shaping rhizosphere metabolome under drought in tropical rainforest plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165689. [PMID: 37481084 DOI: 10.1016/j.scitotenv.2023.165689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Plant-soil-microbe interactions are crucial for driving rhizosphere processes that contribute to metabolite turnover and nutrient cycling. With the increasing frequency and severity of water scarcity due to climate warming, understanding how plant-mediated processes, such as root exudation, influence soil organic matter turnover in the rhizosphere is essential. In this study, we used 16S rRNA gene amplicon sequencing, rhizosphere metabolomics, and position-specific 13C-pyruvate labeling to examine the effects of three different plant species (Piper auritum, Hibiscus rosa sinensis, and Clitoria fairchildiana) and their associated microbial communities on soil organic carbon turnover in the rhizosphere. Our findings indicate that in these tropical plants, the rhizosphere metabolome is primarily shaped by the response of roots to drought rather than direct shifts in the rhizosphere bacterial community composition. Specifically, the reduced exudation of plant roots had a notable effect on the metabolome of the rhizosphere of P. auritum, with less reliance on neighboring microbes. Contrary to P. auritum, H. rosa sinensis and C. fairchildiana experienced changes in their exudate composition during drought, causing alterations to the bacterial communities in the rhizosphere. This, in turn, had a collective impact on the rhizosphere's metabolome. Furthermore, the exclusion of phylogenetically distant microbes from the rhizosphere led to shifts in its metabolome. Additionally, C. fairchildiana appeared to be associated with only a subset of symbiotic bacteria under drought conditions. These results indicate that plant species-specific microbial interactions systematically change with the root metabolome. As roots respond to drought, their associated microbial communities adapt, potentially reinforcing the drought tolerance strategies of plant roots. These findings have significant implications for maintaining plant health and preference during drought stress and improving plant performance under climate change.
Collapse
Affiliation(s)
- Gina A Hildebrand
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Linnea K Honeker
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Viviana Freire-Zapata
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Christian Ayala-Ortiz
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Sumudu Rajakaruna
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Jane Fudyma
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95816, USA
| | - L Erik Daber
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Roya AminiTabrizi
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Rosalie L Chu
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Jason Toyoda
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sarah E Flowers
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Rasha Hamdan
- Department of Chemistry and Biochemistry, Lebanese University, Beirut, Lebanon
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Lingling Shi
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - Michaela A Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - S Nemiah Ladd
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany; Department of Environmental Science, University of Basel, Bernoullistrasse 30/32, 4056 Basel, Switzerland
| | - Christiane Werner
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Laura K Meredith
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA; Biosphere 2, University of Arizona, 32540 S Biosphere Rd, Oracle, AZ 85739, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| |
Collapse
|