1
|
Li M, Poonam AD, Cui Q, Hsieh T, Jagadeesan S, Xu J, Bruce WB, Vogel JT, Sessions A, Cabrera A, Saville AC, Ristaino JB, Paul R, Wei Q. Non-destructive seed genotyping via microneedle-based DNA extraction. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2317-2329. [PMID: 40108780 PMCID: PMC12120874 DOI: 10.1111/pbi.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Crop breeding plays an essential role in addressing food security by enhancing crop yield, disease resistance and nutritional value. However, the current crop breeding process faces multiple challenges and limitations, especially in genotypic evaluations. Traditional methods for seed genotyping remain labour-intensive, time-consuming and cost-prohibitive outside of large-scale breeding programs. Here, we present a handheld microneedle (MN)-based seed DNA extraction platform for rapid, non-destructive and in-field DNA isolation from crop seeds for instant marker analysis. Using soybean seeds as a case study, we demonstrated the use of polyvinyl alcohol (PVA) MN patches for the successful extraction of DNA from softened soybean seeds. This extraction technology maintained high seed viability, showing germination rates of 82% and 79%, respectively, before and after MN sampling. The quality of MN-extracted DNA was sufficient for various genomic analyses, including PCR, LAMP and whole-genome sequencing. Importantly, this MN patch method also allowed for the identification of specific genetic differences between soybean varieties. Additionally, we designed a 3D-printed extraction device, which enabled multiplexed seed DNA extraction in a microplate format. In the future, this method could be applied at scale and in-field for crop seed DNA extraction and genotyping analysis.
Collapse
Affiliation(s)
- Mingzhuo Li
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNCUSA
| | - Aditi Dey Poonam
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNCUSA
| | - Qirui Cui
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Tzungfu Hsieh
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Sumeetha Jagadeesan
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNCUSA
| | - Jin Xu
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNCUSA
| | | | | | | | | | - Amanda C. Saville
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Jean B. Ristaino
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
- Emerging Plant Disease and Global Food Security ClusterNorth Carolina State UniversityRaleighNCUSA
| | - Rajesh Paul
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNCUSA
- Present address:
UnivercellsAndoverMAUSA
| | - Qingshan Wei
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNCUSA
- Emerging Plant Disease and Global Food Security ClusterNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
2
|
Stubelj M, Gleščič E, Žvanut B, Širok K. Factors influencing the acceptance of alternative protein sources. Appetite 2025; 210:107976. [PMID: 40139507 DOI: 10.1016/j.appet.2025.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/15/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION The adequate consumption of protein-rich foods is essential for optimal human growth, development and health. However, climate change threatens global food security by disrupting agriculture and food supply chains. One possible strategy to avoid this is a sustainable diet and the consumption of plant-based protein substitutes, insect-derived proteins and cultured meat. METHODS The factors that could explain the (non-)acceptance of such foods in the population were investigated. The study included 458 adults who responded to our online questionnaire. RESULTS The results of our survey showed that 66.2 % of the respondents were open to including plant-based sources in their diet. 23.1 % were willing to eat meals derived from insects and 21 % were willing to eat cultured meat. Acceptance of these alternative protein sources was found to be influenced by a number of factors, including demographics, familiarity, frequency of meat consumption and the intention to reduce meat consumption in the future. Men and people who had tried insect-based foods in the past were more favourable towards the consumption of insect-based foods and cultured meat. The regression analysis showed that the higher the level of neophobia towards food technologies and aversion to eating insects, the lower the interest in trying cultured meat. Women have a lower interest in trying cultured meat. CONCLUSIONS The consumer acceptance of new protein sources in the diet can be measured by assessing their attitudes towards such sources. This understanding can in turn facilitate the formulation of future public health strategies to create more sustainable dietary standards in the face of climate change.
Collapse
Affiliation(s)
- Mojca Stubelj
- University of Primorska, Faculty of Health Sciences, 6310, Izola, Slovenia.
| | - Erika Gleščič
- University of Primorska, Faculty of Health Sciences, 6310, Izola, Slovenia
| | - Boštjan Žvanut
- University of Primorska, Faculty of Health Sciences, 6310, Izola, Slovenia
| | - Klemen Širok
- University of Primorska, Faculty of Health Sciences, 6310, Izola, Slovenia
| |
Collapse
|
3
|
Dwivedi S, Gaur VK, Gupta J. Ecotoxicological impact of succinate dehydrogenase inhibitor (SDHI) fungicides on non-targeted organisms: a review. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:341-361. [PMID: 39843715 DOI: 10.1007/s10646-024-02849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security. However, the impact of SDHIs on non-target organisms, including freshwater and terrestrial invertebrates, crustaceans, and oligochaetes, remains insufficiently understood. Empirical studies indicate that SDHIs can induce mortality, mitochondrial dysfunction, oxidative stress, and developmental delays in non-target organims. Additionally, the environmental persistence of these compounds raises concerns about their potential for ecological disruption. The effects of SDHIs on pollinating species and the possible transgenerational transmission of harmful effects warrant further investigation. Comprehensive transcriptomic analyses are necessary to elucidate the molecular disturbances and adverse outcome pathways triggered by SDHIs. Furthermore, there are emerging concerns about the endocrine-disrupting potential of SDHIs in aquatic organisms. For the first time, this review aims to synthesize existing knowledge on the ecotoxicological impacts of SDHIs on non-target organisms and identify critical research directions to address the ecological challenges posed by their use.
Collapse
Affiliation(s)
- Shreya Dwivedi
- Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India
- Ecotoxicology Laboratory, Toxicology Department, Institute for Industrial Research & Toxicology, F-209, UPSIDC, Industrial Area, MG Road, Ghaziabad, 201013, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Juhi Gupta
- Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.
| |
Collapse
|
4
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
5
|
Iqbal B, Alabbosh KF, Jalal A, Suboktagin S, Elboughdiri N. Sustainable food systems transformation in the face of climate change: strategies, challenges, and policy implications. Food Sci Biotechnol 2025; 34:871-883. [PMID: 39974856 PMCID: PMC11832833 DOI: 10.1007/s10068-024-01712-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 02/21/2025] Open
Abstract
Climate change-induced disruptions to agricultural systems and other socio-economic and geopolitical factors threaten food supply availability, access, and stability. The paper examines the crisis and explores the strategies, challenges, and policy implications of transforming food systems towards sustainability. It highlights the undeniable impact of climate change on agriculture, discussing how it affects crop yields and contributes to the increased frequency of extreme weather events. The paper discusses the extent and causes of food loss and waste in the supply chain, presents various technologies and initiatives to reduce it, and highlights models for efficient food distribution and surplus food redistribution. Lastly, it shifts its attention to food policy and governance, assessing the effectiveness of national and international policies in addressing food security and climate change. Conclusively, it underscores the pressing need for a holistic and sustainable approach to food systems transformation in the face of climate change.
Collapse
Affiliation(s)
- Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | | | - Abdul Jalal
- School of Emergency Management, School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Sultan Suboktagin
- School of Emergency Management, School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, 81441 Ha’il, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029 Gabes, Tunisia
| |
Collapse
|
6
|
Fan Z, Song H, Qi M, Wang M, Bai Y, Sun Y, Yu H. Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance. Int J Mol Sci 2025; 26:1283. [PMID: 39941051 PMCID: PMC11818821 DOI: 10.3390/ijms26031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Global warming poses a significant threat to crop production and food security, with maize (Zay mays L.) particularly vulnerable to high-temperature stress (HTS). This review explores the detrimental impacts of elevated temperatures on maize development across various growth stages, analyzed within the source-sink framework, with a particular focus on seed setting and yield reduction. It provides a broad analysis of maize cellular and molecular responses to HTS, highlighting the key roles of plant hormone abscisic acid (ABA) signaling, calcium signaling, chloroplast, and the DNA damage repair (DDR) system in maize. HTS disrupts ABA signaling pathways, impairing stomatal regulation and reducing water-use efficiency, while calcium signaling orchestrates stress responses by activating heat shock proteins and other protective mechanisms. Chloroplasts, as central to photosynthesis, are particularly sensitive to HTS, often exhibiting photosystem II damage and chlorophyll degradation. Recent studies also highlight the significance of the DDR system, with genes like ZmRAD51C playing crucial roles in maintaining genomic stability during reproductive organ development. DNA damage under HTS conditions emerges as a key factor contributing to reduced seed set, although the precise molecular mechanisms remain to be fully elucidated. Furthermore, the review examines cutting-edge genetic improvement strategies, aimed at developing thermotolerant maize cultivars. These recent research advances underscore the need for further investigation into the molecular basis of thermotolerance and open the door for future advancements in breeding thermotolerant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Hubab M, Lorestani N, Al-Awabdeh RAM, Shabani F. Climate change-driven shifts in the global distribution of tomato and potato crops and their associated bacterial pathogens. Front Microbiol 2025; 16:1520104. [PMID: 39949618 PMCID: PMC11821613 DOI: 10.3389/fmicb.2025.1520104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Climate change is increasingly affecting the global distribution and productivity of critical food crops, including Solanum lycopersicum (tomato) and Solanum tuberosum (potato). In particular, bacterial pathogens such as Clavibacter michiganensis and Ralstonia solanacearum are expected to shift their geographic ranges, posing new risks to these crops. This study hypothesizes that under future climate scenarios, the geographic overlap between these crops and their pathogens will increase in certain regions, leading to heightened agricultural risks, especially in areas currently considered safe from these pathogens. Methods To test our hypotheses, the objective was to evaluate the potential impact of climate change on the geographic distribution of two key food crops (tomato and potato) and their bacterial pathogens for the current time and by 2050. This study used four species distribution models (SDMs) to predict current and future habitat suitability for both tomato and potato crops, as well as their associated pathogens, under two shared socioeconomic pathways (SSP4.5 and SSP8.5) and four global circulation models (GCMs). Results The models projected significant poleward shifts in suitable habitats for tomatoes and potatoes, with notable expansions in higher-latitude regions such as Canada, northern Europe, and Russia, and contractions in current major production zones such as the United States (US), Brazil, parts of Africa, and China. For Clavibacter michiganensis, the overlap with tomatoes was substantial, whereas the overlap between potatoes and Ralstonia solanacearum was comparatively smaller. Discussion Our hypothesis was partially supported by the results. While the overall overlap between crop and pathogen habitats remains limited, the risk areas for both pathogens are expected to expand under future climate conditions in regions such as eastern Australia, Japan, Spain, and France. These findings underscore the importance of region-specific agricultural planning and pathogen management strategies to mitigate the risks posed by climate change. Future efforts should focus on vulnerable areas to prevent significant economic losses and ensure food security.
Collapse
Affiliation(s)
| | | | | | - Farzin Shabani
- College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Kotzé HC, Bahta YT, Jordaan H, Monteiro MA. Assessing Commercial Sugarcane Irrigators’ Intentions to Adapt Water-Use Behaviour in Response to Climate Variability in South Africa. WATER 2024; 16:3454. [DOI: 10.3390/w16233454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The scarcity of water resources in South Africa remains a considerable challenge for water users. This study evaluated the impact of climate variability on the adaptive water-use behaviour of sugarcane producers by identifying the factors influencing their adaptation decisions. A survey, the Theory of Planned Behaviour (TPB), and structural equation modelling (SEM) were used to achieve this objective. The study involved 54 sugarcane producers from the Impala Irrigation Scheme, selected through random sampling. Socio-economic profiles revealed a largely male, older demographic with varied education levels and farm characteristics. Results indicated that attitude (β = 0.349, p < 0.1) and subjective norms (β = 0.281, p < 0.05) significantly influenced farmers’ intentions to adapt, while perceived behavioural control had no significant effect (β = 0.051, p > 0.1). These findings suggest that improving farmers’ attitudes and strengthening social support systems can enhance their intentions to adopt adaptive strategies. However, the model’s explanatory power (R² = 0.276) suggests that other unexamined factors may also influence farmers’ adaptive intentions, highlighting the need for further research. Overall, our findings suggest that interventions targeting attitudes, social support, and resource access can improve adaptive behaviours.
Collapse
Affiliation(s)
- Heinrich C. Kotzé
- Department of Agricultural Economics, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Yonas T. Bahta
- Department of Agricultural Economics, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Henry Jordaan
- Department of Agricultural Economics, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Markus A. Monteiro
- Department of Agricultural Economics, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
9
|
Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, Du X. An insight into heat stress response and adaptive mechanism in cotton. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154324. [PMID: 39167998 DOI: 10.1016/j.jplph.2024.154324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.
Collapse
Affiliation(s)
- Washu Dev
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fahmida Sultana
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Waqas
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China
| | - Isah Mansur Aminu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China.
| |
Collapse
|
10
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
11
|
Filipponi T, Oommen H, Harris A, Evans P. Food consumption patterns, seasonal dietary diversity, and factors affecting food intake in rural Eastern Uganda: A mixed-methods cross-sectional study. Appetite 2024; 201:107550. [PMID: 38880283 DOI: 10.1016/j.appet.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
This mixed-methods cross-sectional study examines food consumption patterns, dietary diversity, and factors affecting food intake and malnutrition in the rural Mbale District in Eastern Uganda, during both wet and dry seasons. Participants (n = 100; 66% females) completed a food frequency questionnaire identifying foods and beverages consumed in the preceding 12 months. Individual interviews (n = 8) were conducted with key workers. Analysis of seventeen food items revealed seasonal variations in carbohydrate and protein sources. During the dry season, staples like matooke (mashed boiled plantains) and sweet and Irish potatoes were affected, while protein-rich foods such as beans and groundnuts saw increased consumption in the wet season. Fruit and vegetable intake also rose during the wet season. The main causes of malnutrition that emerged from the interviews were the lack of knowledge about food and nutrition, financial struggles, climate impact, and cultural beliefs. The last theme covered strategies to combat malnutrition. Although carbohydrate intake remains consistent throughout seasons due to reliance on posho (maize flour porridge) and cassava, variations in the number of meals and protein sources, particularly beans and groundnuts, were observed. Both of these, being the primary protein sources in rural households' diets, are highly susceptible to climate fluctuations. This may pose significant implications for food security, as heightened climate instability may impede their production. Solutions to combat malnutrition discussed by the interviewees include education, employment, family planning, and healthcare improvements. Professionals emphasise the need for comprehensive approaches to address these complex issues. In addition, data on food consumption during the dry and wet seasons should be collected as a difference in food consumption during the seasons may become more prominent with the need to implement tailored interventions.
Collapse
Affiliation(s)
- Teresa Filipponi
- Faculty of Life Sciences and Education, University of South Wales, Pontypridd, Wales, United Kingdom.
| | - Hanna Oommen
- Department of Obstetrics and Gynaecology, Sørlandet Hospital Kristiansand, Kristiansand, Norway; The Research Centre for Women's, Family and Child Health, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Buskerud, Norway
| | - Anthony Harris
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Wales, United Kingdom
| | - Peter Evans
- Faculty of Life Sciences and Education, University of South Wales, Pontypridd, Wales, United Kingdom
| |
Collapse
|
12
|
Badiche-El Hilali F, García-Pastor ME, Valverde JM, Castillo S, Valero D, Serrano M. Melatonin as an Efficient and Eco-Friendly Tool to Increase Yield and to Maintain Quality Attributes during Lemon Storage. Int J Mol Sci 2024; 25:10025. [PMID: 39337511 PMCID: PMC11432733 DOI: 10.3390/ijms251810025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lemon fruit (Citrus limon (L.) Burm.) is highly appreciated by consumers due to its antioxidant properties and health benefits. However, its shelf life can be limited by various factors, reducing the economy, and thereafter, new strategies to maintain the quality of lemons are necessary. Melatonin is a derivative of tryptamine, which is ubiquitously found in plants and has a wide range of functions regulating numerous physiological processes in plants. During two consecutive harvests, we evaluated the effect of preharvest treatments with melatonin on crop yield and on quality and functional properties of fruit of lemon cv. Verna at harvest and weekly after storage up to 28 days at 2 and 10 °C plus 2 days at 20 °C. Melatonin was applied as foliar spray treatments at dosages of 0.1, 0.3, and 0.5 mM and at three different stages of fruit development. The results showed that melatonin treatment had a positive impact on crop yield as well as in fruit quality parameters, such as firmness, content of bioactive compounds, and antioxidant activity, especially for a 0.5 mM dose. Taking all these effects into account, the application of melatonin along the growth cycle of fruit development could be considered a non-contaminant and eco-friendly tool for improving crop yield and quality of 'Verna' lemons at harvest and during postharvest storage.
Collapse
Affiliation(s)
- Fátima Badiche-El Hilali
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - María E García-Pastor
- Department of Applied Biology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - Juan Miguel Valverde
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - Salvador Castillo
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - Daniel Valero
- Department of AgroFood Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| | - María Serrano
- Department of Applied Biology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain
| |
Collapse
|
13
|
Shaffique S, Shah AA, Peter O, Injamum-Ul-Hoque M, Elansary HO, Kang SM, Al Azzawi TNI, Yun BW, Lee IJ. The rhizobacterial Priestia megaterium strain SH-19 mitigates the hazardous effects of heat stress via an endogenous secondary metabolite elucidation network and molecular regulation signalling. BMC PLANT BIOLOGY 2024; 24:827. [PMID: 39227801 PMCID: PMC11373221 DOI: 10.1186/s12870-024-05534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Global warming is a leading environmental stress that reduces plant productivity worldwide. Several beneficial microorganisms reduce stress; however, the mechanism by which plant-microbe interactions occur and reduce stress remains to be fully elucidated. The aim of the present study was to elucidate the mutualistic interaction between the plant growth-promoting rhizobacterial strain SH-19 and soybeans of the Pungsannamul variety. The results showed that SH-19 possessed several plant growth-promoting traits, such as the production of indole-3-acetic acid, siderophore, and exopolysaccharide, and had the capacity for phosphate solubilisation. The heat tolerance assay showed that SH-19 could withstand temperatures up to 45 °C. The strain SH-19 was identified as P. megaterium using the 16S ribosomal DNA gene sequence technique. Inoculation of soybeans with SH-19 improved seedling characteristics under high-temperature stress. This may be due to an increase in the endogenous salicylic acid level and a decrease in the abscisic acid level compared with the negative control group. The strain of SH-19 increased the activity of the endogenous antioxidant defense system, resulting in the upregulation of GSH (44.8%), SOD (23.1%), APX (11%), and CAT (52.6%). Furthermore, this study involved the transcription factors GmHSP, GmbZIP1, and GmNCED3. The findings showed upregulation of the two transcription factors GmbZIP1 (17%), GmNCED3 (15%) involved in ABA biosynthesis and induced stomatal regulation, similarly, a downregulation of the expression pattern of GmHSP by 25% was observed. Overall, the results of this study indicate that the strain SH-19 promotes plant growth, reduces high-temperature stress, and improves physiological parameters by regulating endogenous phytohormones, the antioxidant defense system, and genetic expression. The isolated strain (SH-19) could be commercialized as a biofertilizer.
Collapse
Affiliation(s)
- Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan.
| | - Odongkara Peter
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
| | - Md Injamum-Ul-Hoque
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
| | - Hosam O Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sang-Mo Kang
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
| | - Tiba Nazar Ibrahim Al Azzawi
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
| | - Byung-Wook Yun
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
| | - In-Jung Lee
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea.
| |
Collapse
|
14
|
Fotakis EA, Kontele I, Tzoutzou M, Grammatikopoulou MG, Arvanitaki E, Sergentanis TN, Kotrokois K, Kornarou E, Vassilakou T. Food Insecurity in Greece and across the Globe: A Narrative Literature Review. Foods 2024; 13:1579. [PMID: 38790879 PMCID: PMC11121129 DOI: 10.3390/foods13101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Food insecurity comprises a major global public health threat, as its effects are detrimental to the mental, physical, and social aspects of the health and well-being of those experiencing it. We performed a narrative literature review on the magnitude of global food insecurity with a special emphasis on Greece and analyzed the major factors driving food insecurity, taking into consideration also the effect of the COVID-19 pandemic. An electronic search of international literature was conducted in three databases. More than 900 million people worldwide experience severe food insecurity, with future projections showing increasing trends. Within Europe, Eastern and Southern European countries display the highest food insecurity prevalence rates, with Greece reporting a prevalence of moderate or severe food insecurity ranging between 6.6% and 8% for the period 2019-2022. Climate change, war, armed conflicts and economic crises are major underlying drivers of food insecurity. Amidst these drivers, the COVID-19 pandemic had a profound impact on food insecurity levels around the globe, through halting economic growth, disrupting food supply chains and increasing unemployment and poverty. Tackling food insecurity through addressing its key drivers is essential to any progress towards succeeding the Sustainable Development Goal of "Zero Hunger".
Collapse
Affiliation(s)
- Emmanouil Alexandros Fotakis
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (E.A.F.); (I.K.); (E.A.); (T.N.S.); (K.K.); (E.K.)
| | - Ioanna Kontele
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (E.A.F.); (I.K.); (E.A.); (T.N.S.); (K.K.); (E.K.)
| | - Milia Tzoutzou
- Department of Nutrition and Dietetics, Hellenic Mediterranean University, 72300 Sitia, Greece;
| | - Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Eirini Arvanitaki
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (E.A.F.); (I.K.); (E.A.); (T.N.S.); (K.K.); (E.K.)
- Open Elderly Care Center, Municipality of Keratsini-Drapetsona, 18756 Athens, Greece
| | - Theodoros N. Sergentanis
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (E.A.F.); (I.K.); (E.A.); (T.N.S.); (K.K.); (E.K.)
| | - Konstantinos Kotrokois
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (E.A.F.); (I.K.); (E.A.); (T.N.S.); (K.K.); (E.K.)
| | - Eleni Kornarou
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (E.A.F.); (I.K.); (E.A.); (T.N.S.); (K.K.); (E.K.)
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (E.A.F.); (I.K.); (E.A.); (T.N.S.); (K.K.); (E.K.)
| |
Collapse
|
15
|
Erazo-Lara A, García-Pastor ME, Padilla-González PA, Valero D, Serrano M. Preharvest Elicitors as a Tool to Enhance Bioactive Compounds and Quality of Both Peel and Pulp of Yellow Pitahaya ( Selenicereus megalanthus Haw.) at Harvest and during Postharvest Storage. Int J Mol Sci 2024; 25:5435. [PMID: 38791472 PMCID: PMC11121277 DOI: 10.3390/ijms25105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.
Collapse
Affiliation(s)
- Alex Erazo-Lara
- Escuela Politécnica Superior de Chimborazo (ESPOCH), Sede Morona Santiago, Macas 140101, Ecuador;
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - María Emma García-Pastor
- Department of Applied Biology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - Pedro Antonio Padilla-González
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - Daniel Valero
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - María Serrano
- Department of Applied Biology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| |
Collapse
|
16
|
Bianco C. Plant-Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2024; 13:1323. [PMID: 38794394 PMCID: PMC11125013 DOI: 10.3390/plants13101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Global food-production levels may soon be insufficient for feeding the population, and changing climatic conditions could further limit agri-food production [...].
Collapse
Affiliation(s)
- Carmen Bianco
- Institute of Biosciences and BioResources, National Research Council, 80131 Naples, Italy
| |
Collapse
|
17
|
Pugliese M, Gilardi G, Garibaldi A, Gullino ML. The Impact of Climate Change on Vegetable Crop Diseases and Their Management: The Value of Phytotron Studies for the Agricultural Industry and Associated Stakeholders. PHYTOPATHOLOGY 2024; 114:843-854. [PMID: 38648074 DOI: 10.1094/phyto-08-23-0284-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Climate change is having a significant impact on global agriculture, particularly on vegetable crops, which play a critical role in global nutrition. Recently, increasing research has concentrated on the impact of climate change on vegetable crop diseases, with several studies being conducted in phytotrons, which have been used to explore the effects of increased temperatures and CO2 concentrations to simulate future scenarios. This review focuses on the combined effects of temperature and carbon dioxide increases on foliar and soilborne vegetable diseases, as evaluated under phytotron conditions. The influence of climate change on mycotoxin production and disease management strategies is also explored through case studies. The results offer valuable information that can be used to guide both seed and agrochemical industries, as well as to develop disease-resistant varieties and innovative control measures, including biocontrol agents, considering the diseases that are likely to become prevalent under future climatic scenarios. Recommendations on how to manage vegetable diseases under ongoing climate change are proposed to facilitate plants' adaptation to and enhanced against the changing conditions. A proactive and comprehensive response to climate-induced challenges in vegetable farming is imperative to ensure food security and sustainability.
Collapse
|
18
|
Jadhav Y, Thakur NR, Ingle KP, Ceasar SA. The role of phenomics and genomics in delineating the genetic basis of complex traits in millets. PHYSIOLOGIA PLANTARUM 2024; 176:e14349. [PMID: 38783512 DOI: 10.1111/ppl.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Millets, comprising a diverse group of small-seeded grains, have emerged as vital crops with immense nutritional, environmental, and economic significance. The comprehension of complex traits in millets, influenced by multifaceted genetic determinants, presents a compelling challenge and opportunity in agricultural research. This review delves into the transformative roles of phenomics and genomics in deciphering these intricate genetic architectures. On the phenomics front, high-throughput platforms generate rich datasets on plant morphology, physiology, and performance in diverse environments. This data, coupled with field trials and controlled conditions, helps to interpret how the environment interacts with genetics. Genomics provides the underlying blueprint for these complex traits. Genome sequencing and genotyping technologies have illuminated the millet genome landscape, revealing diverse gene pools and evolutionary relationships. Additionally, different omics approaches unveil the intricate information of gene expression, protein function, and metabolite accumulation driving phenotypic expression. This multi-omics approach is crucial for identifying candidate genes and unfolding the intricate pathways governing complex traits. The review highlights the synergy between phenomics and genomics. Genomically informed phenotyping targets specific traits, reducing the breeding size and cost. Conversely, phenomics identifies promising germplasm for genomic analysis, prioritizing variants with superior performance. This dynamic interplay accelerates breeding programs and facilitates the development of climate-smart, nutrient-rich millet varieties and hybrids. In conclusion, this review emphasizes the crucial roles of phenomics and genomics in unlocking the genetic enigma of millets.
Collapse
Affiliation(s)
- Yashoda Jadhav
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
| | - Niranjan Ravindra Thakur
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
- Vasantrao Naik Marathwada Agricultural University, Parbhani, MS, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, KL, India
| |
Collapse
|
19
|
Tchonkouang RD, Onyeaka H, Nkoutchou H. Assessing the vulnerability of food supply chains to climate change-induced disruptions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171047. [PMID: 38373458 DOI: 10.1016/j.scitotenv.2024.171047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Climate change is one of the most significant challenges worldwide. There is strong evidence from research that climate change will impact several food chain-related elements such as agricultural output, incomes, prices, food access, food quality, and food safety. This scoping review seeks to outline the state of knowledge of the food supply chain's vulnerability to climate change and to identify existing literature that may guide future research, policy, and decision-making aimed at enhancing the resilience of the food supply chain. A total of 1526 publications were identified using the SCOPUS database, of which 67 were selected for the present study. The vulnerability assessment methods as well as the adaptation and resilience measures that have been employed to alleviate the impact of climate change in the food supply chain were discussed. The results revealed a growing number of publications providing evidence of the weakening of the food supply chain due to climate change and extreme weather events. Our assessment demonstrated the need to broaden research into the entire food supply chain and various forms of climatic variability because most studies have concentrated on the relationships between climatic fluctuations (especially extreme rainfall, temperatures, and drought) and production. A lack of knowledge about the effects of climate change on the food supply chain and the underlying socio-economic consequences could result in underperformance or failure of the food supply chain.
Collapse
Affiliation(s)
- Rose Daphnee Tchonkouang
- MED-Mediterranean Institute for Agriculture, Environment and Development & Change-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Hugue Nkoutchou
- Public Policy in Africa Initiative (PPiAI), Douala, Cameroon
| |
Collapse
|
20
|
Zaheer U, Munir F, Salum YM, He W. Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review. PeerJ 2024; 12:e17115. [PMID: 38560454 PMCID: PMC10979746 DOI: 10.7717/peerj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.
Collapse
Affiliation(s)
- Uroosa Zaheer
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Faisal Munir
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yussuf Mohamed Salum
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weiyi He
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Shuyskaya E, Rakhmankulova Z, Prokofieva M, Lunkova N, Voronin P. Salinity Mitigates the Negative Effect of Elevated Temperatures on Photosynthesis in the C 3-C 4 Intermediate Species Sedobassia sedoides. PLANTS (BASEL, SWITZERLAND) 2024; 13:800. [PMID: 38592796 PMCID: PMC10976079 DOI: 10.3390/plants13060800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The adaptation of plants to combined stresses requires unique responses capable of overcoming both the negative effects of each individual stress and their combination. Here, we studied the C3-C4 (C2) halophyte Sedobassia sedoides in response to elevated temperature (35 °C) and salinity (300 mM NaCl) as well as their combined effect. The responses we studied included changes in water-salt balance, light and dark photosynthetic reactions, the expression of photosynthetic genes, the activity of malate dehydrogenase complex enzymes, and the antioxidant system. Salt treatment led to altered water-salt balance, improved water use efficiency, and an increase in the abundance of key enzymes involved in intermediate C3-C4 photosynthesis (i.e., Rubisco and glycine decarboxylase). We also observed a possible increase in the activity of the C2 carbon-concentrating mechanism (CCM), which allowed plants to maintain high photosynthesis intensity and biomass accumulation. Elevated temperatures caused an imbalance in the dark and light reactions of photosynthesis, leading to stromal overreduction and the excessive generation of reactive oxygen species (ROS). In response, S. sedoides significantly activated a metabolic pathway for removing excess NADPH, the malate valve, which is catalyzed by NADP-MDH, without observable activation of the antioxidant system. The combined action of these two factors caused the activation of antioxidant defenses (i.e., increased activity of SOD and POX and upregulation of FDI), which led to a decrease in oxidative stress and helped restore the photosynthetic energy balance. Overall, improved PSII functioning and increased activity of PSI cyclic electron transport (CET) and C2 CCM led to an increase in the photosynthesis intensity of S. sedoides under the combined effect of salinity and elevated temperature relative to high temperature alone.
Collapse
Affiliation(s)
- Elena Shuyskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (M.P.); (N.L.); (P.V.)
| | | | | | | | | |
Collapse
|
22
|
Djalovic I, Kundu S, Bahuguna RN, Pareek A, Raza A, Singla-Pareek SL, Prasad PVV, Varshney RK. Maize and heat stress: Physiological, genetic, and molecular insights. THE PLANT GENOME 2024; 17:e20378. [PMID: 37587553 DOI: 10.1002/tpg2.20378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/19/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.
Collapse
Affiliation(s)
- Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Sayanta Kundu
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, USA
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
23
|
Taghvimi P, Mohsenzadeh Golfazani M, Taghvaei MM, Samizadeh Lahiji H. Investigating the effect of drought stress and methanol spraying on the influential genes in the Calvin cycle and photorespiration of rapeseed ( Brassica napus). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23280. [PMID: 38467163 DOI: 10.1071/fp23280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Due to global warming and changes in precipitation patterns, many regions are prone to permanent drought. Rapeseed (Brassica napus ) is one of the main sources of edible oils worldwide, and its production and yield are affected by drought. In this study, gene expression alterations under drought stress are investigated with bioinformatics studies to examine evolutionary relations of conserved motifs structure and interactions among Calvin cycle and photorespiration pathways key genes in drought-tolerant (SLM046) and drought-sensitive (Hayola308) genotypes of rapeseed. Investigating the conservation and evolutionary relationships revealed high conservation in motifs of FBPase, PRK, GlyK and NADP-ME enzymes. The analysis of protein interactions showed the correlation between FTRC, FBPase1, PRKX1, GlyKX2 and NADP-ME4 genes. Furthermore, in rapeseed, for the GlyKX2 and NADP-ME4 genes, four microRNAs of the miR172 family and four members of the miR167 family were identified as post-transcriptional regulators, respectively. The expression of ferredoxin thioredoxin reductase, fructose-1,6-bisphosphatase genes, phosphoribulokinase, glycerate kinase and malic enzyme 4 genes in the two rapeseed genotypes were evaluated by real-time qPCR method under 72h of drought stress and methanol foliar application. As a result, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed in methanol foliar application on the SLM046 genotype at 24h. In contrast, in methanol foliar application on the Hayola308 genotype, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed 8h after the treatment. Our study illustrated that methanol foliar application enhanced plant tolerance under drought stress.
Collapse
Affiliation(s)
- Parisa Taghvimi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Mohammad Mahdi Taghvaei
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Habibollah Samizadeh Lahiji
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
24
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
25
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
26
|
Rahman A, Ahmad MA, Mehmood S, Rauf A, Iqbal A, Ali B, Ullah M, Ali M, Mohamed HI, Uddin I. Isolation and Screening of Zn (Zn) Solubilizing Rhizosphere Bacteria from Different Vegetations for Their Ability to Improve Growth, Zn Uptake, and Expression of Zn Transporter Genes in Tomato. Curr Microbiol 2024; 81:83. [PMID: 38294556 DOI: 10.1007/s00284-023-03610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Zinc-solubilizing bacteria (ZSB) can convert insoluble zinc to an accessible form and increase Zn bioavailability in soil, which helps mitigate Zn deficiency in crops. In this study, different bacterial strains were screened for different Zn solubilization and plant growth promotion traits. Two bacterial strains, Acinetobacter pittii DJ55 and Stenotrophomonas maltophilia DJ24, were tested for their Zn-solubilizing potential on plate media, and both showed variable levels of Zn solubilization. The results showed that the bacterial strains applied to the plants in the pot experiment caused improvements in growth parameters compared to control conditions. DJ55, when applied with an insoluble source, enhanced plant height, leaf number, and leaf area compared to DJ24 and control conditions, while the maximum fruit weight was noticed in plants treated with ZnSO4. An increase in chlorophyll contents was noted in plants treated with ZnSO4, while maximum carotenoid contents were observed in plants treated with DJ55 + ZnO when compared with their controls. Plants supplemented with ZnO and DJ55 showed higher zinc content and iron content as compared to their respective controls. The expression patterns of the SLZIP5 and SLZIP4 genes were changed in the root and shoot. Application of ZnO stimulates both gene expression and protein synthesis in tomato roots and shoots. Inoculation of tomato plants with ZSB and insoluble ZnO reduced the expression of the SLZIP5 and SLZIP4 genes in the root and shoot. In conclusion, both strains can be considered as potential zinc-solubilizing bioinoculants to promote the growth and production yield of tomato.
Collapse
Affiliation(s)
- Attequr Rahman
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan.
| | - Shiraz Mehmood
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Abdur Rauf
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Bakhtiar Ali
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Mohib Ullah
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Murad Ali
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| | - Israr Uddin
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, KP, Pakistan
| |
Collapse
|
27
|
Elshamly AMS, Parrey ZA, Gaafar ARZ, Siddiqui MH, Hussain S. Potassium humate and cobalt enhance peanut tolerance to water stress through regulation of proline, antioxidants, and maintenance of nutrient homeostasis. Sci Rep 2024; 14:1625. [PMID: 38238388 PMCID: PMC10796332 DOI: 10.1038/s41598-023-50714-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/23/2023] [Indexed: 01/22/2024] Open
Abstract
Water stress is an important factor that substantially impacts crop production. As a result, there is a need for various strategies that can mitigate these negative effects. One such strategy is the application of potassium humate (Kh) and cobalt (Co), which have been reported to enhance the resistance of crop plants. Therefore, the present experiment was designed to investigate whether the application of Kh and Co could positively affect proline, chlorophyll and mineral elements contents, and antioxidant defense systems which in turn will mitigate the negative impact of water stress under different irrigation strategies. In 2021 and 2022, an open-field experiments were conducted by using a split-plot design. The main plots were divided to represent different irrigation strategies (ST), with additional control of full irrigation requirements (ST1). Four STs were implemented, with ST1, followed by the application of 75%, 50%, and 25% irrigation strategies in ST2, ST3, and ST4 respectively, in the next irrigation, followed by the full requirements, and so on. In the subplots, peanut plants were treated with tap water (Control), Kh at 2 g l-1 and 3 g l-1, Co, Co + Kh 2 g l-1 and Co + Kh 3 g l-1. The yield was negatively affected by the implementation of ST4, despite the increase in proline contents. Furthermore, there was a decrease in relative water content, chlorophyll content, antioxidant enzymes, protein, and mineral nutrient elements. However, the application of Kh or Co showed better improvements in most of the studied parameters. It is worth noting that there was an antagonistic relationship between Co and iron/manganese, and the intensity of this relationship was found to depend on the STs implemented. The highest mineral nutrient accumulation, chlorophyll content, relative water content, protein content, oil content, seed yield, and water productivity were observed when peanut plants were treated with Kh 3 g l-1 + Co under the ST2 water strategy.
Collapse
Affiliation(s)
- Ayman M S Elshamly
- Water Studies and Research Complex, National Water Research Centre, Cairo, Egypt.
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sadam Hussain
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Ansari WA, Kumar M, Krishna R, Singh A, Zeyad MT, Tiwari P, Kumar SC, Chakdar H, Srivastava AK. Influence of rice-wheat and sugarcane-wheat rotations on microbial diversity and plant growth promoting bacteria: Insights from high-throughput sequencing and soil analysis. Microbiol Res 2024; 278:127533. [PMID: 37924641 DOI: 10.1016/j.micres.2023.127533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Wheat is a staple food crop, primarily grown in India's Indo-Gangetic plains, crucial for sustaining the region. Soil quality, vitality, and microbial inhabitants' interplay are pivotal. However, very little information is available on the impacts of agricultural practices, such as crop rotation and cropping systems, on the diversity of both bulk soil (BS) and rhizospheric soil (RS) microbiota. The impact of two different cropping systems, rice-wheat (RW) and sugarcane-wheat (SW) on soil properties, microbial diversity, and plant growth-promoting bacteria (PGPB) in wheat cultivation was investigated in the Indo-Gangetic plains of India. Microbial richness and diversity were analyzed using 16S rRNA sequencing, which reveals distinct clustering patterns between RS and BS, with higher diversity in BS of RW and higher richness in RS of SW. Notably, Proteobacteria dominated across all samples, along with Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Firmicutes, Planctomycetes, candidate division TM7, Cyanobacteria, and Nitrospirae. Intriguingly, the RS associated with the SW system exhibited the presence of 67 distinct genera, whereas the RS under the RW system showed 48 such genera. Within the realm of specific microbial genera exhibiting plant growth-promoting (PGP) activity, a higher abundance was noted in the RS (17.48%), as opposed to the BS (15.21%). Moreover, certain genera such as Haliangium, Iamia, Bacillus, Gaiella, Candidatus_Entotheonella, Anaerolinea, and Anaeromyxobacter, were found to be positively correlated with the availability of nitrogen, phosphorus, potassium, iron, and sulfur. The study sheds light on the intricate relationships between cropping practices, soil properties, and microbial dynamics, contributing to the development of sustainable agricultural practices for wheat cultivation.
Collapse
Affiliation(s)
- Waquar Akhter Ansari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India.
| | - Ram Krishna
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, Uttar Pradesh, India
| | - Arjun Singh
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow 226002, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Pushpendra Tiwari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Shiv Charan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, Uttar Pradesh, India
| |
Collapse
|
29
|
Verma T, Bhardwaj S, Raza A, Djalovic I, Prasad PVV, Kapoor D. Mitigation of salt stress in Indian mustard ( Brassica juncea L.) by the application of triacontanol and hydrogen sulfide. PLANT SIGNALING & BEHAVIOR 2023; 18:2189371. [PMID: 36934336 PMCID: PMC10026909 DOI: 10.1080/15592324.2023.2189371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Salinity stress is a well-known abiotic stress that has been shown to have a negative impact on crop growth, production, and soil richness. The current study was intended to ameliorate salt stress in Indian mustard (Brassica juncea L.), keeping in mind the detrimental influence of salt stress. A pot experimentation was executed on B. juncea to examine the efficacy of exogenous application of triacontanol (TRIA) and hydrogen sulfide (H2S) (NaHS donor), either alone or in combination, on growth attributes, metabolites, and antioxidant defense system exposed to salt stress at three distinct concentrations (50, 100 and 150 mM NaCl). Increase in the concentration of oxidative markers (malondialdehyde and hydrogen peroxide) was found which results in inhibited growth of B. juncea. The growth characteristics of plant, such as root and shoot length, fresh and dry weight under salt stress, were improved by foliar application of TRIA (150 µM) and H2S (25 µM) alone as well as in combination. Additionally, salt stress reduced the levels of protein, metabolites (flavonoids, phenolic and anthocyanin), antioxidant enzyme activity including that of ascorbate peroxidase, catalase, polyphenol oxidase and guaiacol peroxidase as well as the level of ascorbic acid and glutathione (non-enzymatic antioxidants). However, application of TRIA and H2S alone or in grouping substantially raised the content of protein, metabolites and antioxidant defense system in plants of B. juncea.
Collapse
Affiliation(s)
- Tunisha Verma
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Savita Bhardwaj
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Dhriti Kapoor
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
30
|
Kausar A, Zahra N, Zahra H, Hafeez MB, Zafer S, Shahzadi A, Raza A, Djalovic I, Prasad PVV. Alleviation of drought stress through foliar application of thiamine in two varieties of pea ( Pisum sativum L.). PLANT SIGNALING & BEHAVIOR 2023; 18:2186045. [PMID: 37016728 PMCID: PMC10012936 DOI: 10.1080/15592324.2023.2186045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (Pisum sativum L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.
Collapse
Affiliation(s)
- Abida Kausar
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Hina Zahra
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | | | - Sara Zafer
- Department of Botany, GC University, Faisalabad, Pakistan
| | - Abida Shahzadi
- Department of Economics, Government College University, Faisalabad, Pakistan
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
31
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PVV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM CROPS & FOOD 2023; 14:1-20. [PMID: 36606637 PMCID: PMC9828793 DOI: 10.1080/21645698.2022.2146952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
Affiliation(s)
- Huwaida Yaqoob
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Arooj Tariq
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Kaisar Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Iqra Bashir Nehvi
- Department of Clinical Biochemistry, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China,Ali Raza College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India,CONTACT Rakeeb Ahmad MirDepartment of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
32
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
33
|
Raza A, Charagh S, Abbas S, Hassan MU, Saeed F, Haider S, Sharif R, Anand A, Corpas FJ, Jin W, Varshney RK. Assessment of proline function in higher plants under extreme temperatures. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:379-395. [PMID: 36748909 DOI: 10.1111/plb.13510] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Climate change and abiotic stress factors are key players in crop losses worldwide. Among which, extreme temperatures (heat and cold) disturb plant growth and development, reduce productivity and, in severe cases, lead to plant death. Plants have developed numerous strategies to mitigate the detrimental impact of temperature stress. Exposure to stress leads to the accumulation of various metabolites, e.g. sugars, sugar alcohols, organic acids and amino acids. Plants accumulate the amino acid 'proline' in response to several abiotic stresses, including temperature stress. Proline abundance may result from de novo synthesis, hydrolysis of proteins, reduced utilization or degradation. Proline also leads to stress tolerance by maintaining the osmotic balance (still controversial), cell turgidity and indirectly modulating metabolism of reactive oxygen species. Furthermore, the crosstalk of proline with other osmoprotectants and signalling molecules, e.g. glycine betaine, abscisic acid, nitric oxide, hydrogen sulfide, soluble sugars, helps to strengthen protective mechanisms in stressful environments. Development of less temperature-responsive cultivars can be achieved by manipulating the biosynthesis of proline through genetic engineering. This review presents an overview of plant responses to extreme temperatures and an outline of proline metabolism under such temperatures. The exogenous application of proline as a protective molecule under extreme temperatures is also presented. Proline crosstalk and interaction with other molecules is also discussed. Finally, the potential of genetic engineering of proline-related genes is explained to develop 'temperature-smart' plants. In short, exogenous application of proline and genetic engineering of proline genes promise ways forward for developing 'temperature-smart' future crop plants.
Collapse
Affiliation(s)
- A Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - S Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - S Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - M U Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - F Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - S Haider
- Plant Biochemistry and Molecular Biology Lab, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - R Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - A Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council, CSIC, Granada, Spain
| | - W Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - R K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
34
|
Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KHM, Zhuang W, Varshney RK. Developing drought-smart, ready-to-grow future crops. THE PLANT GENOME 2023; 16:e20279. [PMID: 36366733 DOI: 10.1002/tpg2.20279] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/02/2022] [Indexed: 05/10/2023]
Abstract
Breeding crop plants with increased yield potential and improved tolerance to stressful environments is critical for global food security. Drought stress (DS) adversely affects agricultural productivity worldwide and is expected to rise in the coming years. Therefore, it is vital to understand the physiological, biochemical, molecular, and ecological mechanisms associated with DS. This review examines recent advances in plant responses to DS to expand our understanding of DS-associated mechanisms. Suboptimal water sources adversely affect crop growth and yields through physical impairments, physiological disturbances, biochemical modifications, and molecular adjustments. To control the devastating effect of DS in crop plants, it is important to understand its consequences, mechanisms, and the agronomic and genetic basis of DS for sustainable production. In addition to plant responses, we highlight several mitigation options such as omics approaches, transgenics breeding, genome editing, and biochemical to mechanical methods (foliar treatments, seed priming, and conventional agronomic practices). Further, we have also presented the scope of conventional and speed breeding platforms in helping to develop the drought-smart future crops. In short, we recommend incorporating several approaches, such as multi-omics, genome editing, speed breeding, and traditional mechanical strategies, to develop drought-smart cultivars to achieve the 'zero hunger' goal.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | | | - Rahat Sharif
- Dep. of Horticulture, College of Horticulture and Plant Protection, Yangzhou Univ., Yangzhou, Jiangsu, 225009, China
| | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Rd., Islamabad, 45500, Pakistan
| | - Warda Jabeen
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National Univ. of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney Univ., Penrith, NSW, 2751, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The Univ. of Western Australia, Crawley, Perth, 6009, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch Univ., Murdoch, WA, 6150, Australia
| |
Collapse
|
35
|
Majeed Y, Zhu X, Zhang N, ul-Ain N, Raza A, Haider FU, Si H. Harnessing the role of mitogen-activated protein kinases against abiotic stresses in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:932923. [PMID: 36909407 PMCID: PMC10000299 DOI: 10.3389/fpls.2023.932923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Crop plants are vulnerable to various biotic and abiotic stresses, whereas plants tend to retain their physiological mechanisms by evolving cellular regulation. To mitigate the adverse effects of abiotic stresses, many defense mechanisms are induced in plants. One of these mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signaling pathway used in the transduction of extracellular stimuli into intercellular responses. This stress signaling pathway is activated by a series of responses involving MAPKKKs→MAPKKs→MAPKs, consisting of interacting proteins, and their functions depend on the collaboration and activation of one another by phosphorylation. These proteins are key regulators of MAPK in various crop plants under abiotic stress conditions and also related to hormonal responses. It is revealed that in response to stress signaling, MAPKs are characterized as multigenic families and elaborate the specific stimuli transformation as well as the antioxidant regulation system. This pathway is directed by the framework of proteins and stopping domains confer the related associates with unique structure and functions. Early studies of plant MAPKs focused on their functions in model plants. Based on the results of whole-genome sequencing, many MAPKs have been identified in plants, such as Arbodiposis, tomato, potato, alfalfa, poplar, rice, wheat, maize, and apple. In this review, we summarized the recent work on MAPK response to abiotic stress and the classification of MAPK cascade in crop plants. Moreover, we highlighted the modern research methodologies such as transcriptomics, proteomics, CRISPR/Cas technology, and epigenetic studies, which proposed, identified, and characterized the novel genes associated with MAPKs and their role in plants under abiotic stress conditions. In-silico-based identification of novel MAPK genes also facilitates future research on MAPK cascade identification and function in crop plants under various stress conditions.
Collapse
Affiliation(s)
- Yasir Majeed
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xi Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Noor ul-Ain
- Fujian Agricultural and Forestry University (FAFU) and University of Illinois Urbana-Champaign-School of Integrative Biology (UIUC-SIB) Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
36
|
Galanakis CM. The "Vertigo" of the Food Sector within the Triangle of Climate Change, the Post-Pandemic World, and the Russian-Ukrainian War. Foods 2023; 12:foods12040721. [PMID: 36832796 PMCID: PMC9956103 DOI: 10.3390/foods12040721] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Over the last few years, the world has been facing dramatic changes due to a condensed period of multiple crises, including climate change, the COVID-19 pandemic, and the Russian-Ukrainian war. Although different, these consecutive crises share common characteristics (e.g., systemic shocks and non-stationary nature) and impacts (e.g., disruption of markets and supply chains), questioning food safety, security, and sustainability. The current article analyses the effects of the noted crises in the food sector before proposing target mitigation measures to address the different challenges. The goal is to transform the food systems to increase their resilience and sustainability. This goal can only be achieved if all relevant actors within the supply chain (e.g., governments, companies, distributors, farmers, etc.) play their role by designing and implementing target interventions and policies. In addition, the transformation of the food sector should be proactive concerning food safety, circular (valorizing several bioresources under the principles of climate neutral economy and blue bioeconomy), digital (based on Industry 4.0 applications), and inclusive (ensuring that all citizens are actively engaged). Food production modernization (e.g., by implementing emerging technologies) and developing shorter and more domestic supply chains are also critical to achieving food resilience and security.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Galanakis Laboratories, Research & Innovation Department, 73131 Chania, Greece;
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| |
Collapse
|
37
|
Santos CS, Habyarimana E, Vasconcelos MW. Editorial: The impact of climate change on nutrient composition of staple foods and the role of diversification in increasing food system resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1087712. [PMID: 36755693 PMCID: PMC9900100 DOI: 10.3389/fpls.2023.1087712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ephrem Habyarimana
- Sorghum Breeding, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
38
|
Yahya M, Rasul M, Hussain SZ, Dilawar A, Ullah M, Rajput L, Afzal A, Asif M, Wubet T, Yasmin S. Integrated analysis of potential microbial consortia, soil nutritional status, and agro-climatic datasets to modulate P nutrient uptake and yield effectiveness of wheat under climate change resilience. FRONTIERS IN PLANT SCIENCE 2023; 13:1074383. [PMID: 36714699 PMCID: PMC9878846 DOI: 10.3389/fpls.2022.1074383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Climate change has a devastating effect on wheat production; therefore, crop production might decline by 2030. Phosphorus (P) nutrient deficiency is another main limiting factor of reduced yield. Hence, there is a dire need to judiciously consider wheat yield, so that human requirements and nutrition balance can be sustained efficiently. Despite the great significance of biostimulants in sustainable agriculture, there is still a lack of integrated technology encompassing the successful competitiveness of inoculated phosphate-solubilizing bacteria (PSB) in agricultural systems in the context of climatic conditions/meteorological factors and soil nutritional status. Therefore, the present study reveals the modulation of an integrated P nutrient management approach to develop potential PSB consortia for recommended wheat varieties by considering the respective soil health and agro-climatic conditions. The designed consortia were found to maintain adequate viability for up to 9 months, verified through field emission scanning electron microscopy and viable count. Furthermore, a significant increase in grain yield (5%-8%) and seed P (4%) content was observed in consortia-inoculated wheat plants with 20% reduced Diammonium phosphate (DAP) application under net house conditions. Fluorescence in situ hybridization analysis of roots and amplification of the gcd gene of Ochrobactrum sp. SSR indicated the survival and rhizosphere competency of the inoculated PSB. Categorical principal component analysis (CAT-PCA) showed a positive correlation of inoculated field-grown wheat varieties in native soils to grain yield, soil P content, and precipitation for sites belonging to irrigated plains and seed P content, soil organic matter, and number of tillers for sites belonging to Northern dry mountains. However, the impact of inoculation at sites belonging to the Indus delta was found significantly correlated to soil potassium (K) content, electrical conductivity (EC), and temperature. Additionally, a significant increase in grain yield (15%) and seed P (14%) content was observed in inoculated wheat plants. Thus, the present study demonstrates for the first time the need to integrate soil biological health and agro-climatic conditions for consistent performance of augmented PSB and enhanced P nutrient uptake to curtail soil pollution caused by the extensive use of agrochemicals. This study provides innovative insights and identifies key questions for future research on PSB to promote its successful implementation in agriculture.
Collapse
Affiliation(s)
- Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
- Department of Environment and Energy, Sejong University, Neungdong-ro, Gwangjin-gu, Republic of Korea
| | - Sayed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali-School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Punjab, Pakistan
| | - Adil Dilawar
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Khyber Pakhtunkhwa, Pakistan
| | - Lubna Rajput
- Plant Physiology and Biotechnology Agricultural Research Centre, Sindh, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| | - Tesfaye Wubet
- Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| |
Collapse
|
39
|
Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM CROPS & FOOD 2022; 13:196-217. [PMID: 35983948 PMCID: PMC9397135 DOI: 10.1080/21645698.2022.2106111] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Global climate changes cause extreme temperatures and a significant reduction in crop production, leading to food insecurity worldwide. Temperature extremes (including both heat and cold stresses) is one of the most limiting factors in plant growth and development and severely affect plant physiology, biochemical, and molecular processes. Biostimulants like melatonin (MET) have a multifunctional role that acts as a "defense molecule" to safeguard plants against the noxious effects of temperature stress. MET treatment improves plant growth and temperature tolerance by improving several defense mechanisms. Current research also suggests that MET interacts with other molecules, like phytohormones and gaseous molecules, which greatly supports plant adaptation to temperature stress. Genetic engineering via overexpression or CRISPR/Cas system of MET biosynthetic genes uplifts the MET levels in transgenic plants and enhances temperature stress tolerance. This review highlights the critical role of MET in plant production and tolerance against temperature stress. We have documented how MET interacts with other molecules to alleviate temperature stress. MET-mediated molecular breeding would be great potential in helping the adverse effects of temperature stress by creating transgenic plants.
Collapse
Affiliation(s)
- Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, Zhejiang, China
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Korea
| | | | - Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Turkey
| | - Wanmei Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Peking, China
| |
Collapse
|
40
|
Sperotto RA, Ricachenevsky FK, Waters ER, Bai G, Arasimowicz-Jelonek M. Editorial: Identification and characterization of contrasting genotypes/cultivars to discover novel players in crop responses to abiotic/biotic stresses, volume II. FRONTIERS IN PLANT SCIENCE 2022; 13:1105598. [PMID: 36605958 PMCID: PMC9808395 DOI: 10.3389/fpls.2022.1105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Raul A. Sperotto
- Graduate Program in Biotechnology, Life Sciences Area, University of Taquari Valley - Univates, Lajeado, Brazil
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Felipe K. Ricachenevsky
- Graduate Program in Cell and Molecular Biology, Botany Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elizabeth R. Waters
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | | |
Collapse
|
41
|
Zhang X, Zhao J, Wang M, Li Z, Lin S, Chen H. Potential distribution prediction of Amaranthus palmeri S. Watson in China under current and future climate scenarios. Ecol Evol 2022; 12:e9505. [PMID: 36518625 PMCID: PMC9743064 DOI: 10.1002/ece3.9505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
The vicious invasive alien plant Amaranthus palmeri poses a serious threat to ecological security and food security due to its strong adaptability, competitiveness, and herbicide resistance. Predicting its potential habitats under current and future climate change is critical for monitoring and early warning. In this study, we used two sets of climate data, namely, WorldClim1.4 and RCPs (the historical climate data of WorldClim version 1.4 and future climate data of RCPs), WorldClim2.1 and SSPs (the historical climate data of WorldClim version 2.1 and future climate data of SSPs), to analyze the dominant environmental variables affecting the habitat suitability and predict the potential distribution of A. palmeri to climate change in China based on the MaxEnt model. The results show that (i) Temperature has a greater impact on the distribution of A. palmeri. The relative contributions of temperature-related variables count to 70% or more, and the annual mean temperature (bio1) reached more than 40%. (ii) At present, the potentially suitable area is widely distributed in the central-east and parts of southwest China, and the high suitable area is focused on the North China Plain. The potential suitable area predicted by WorldClim1.4 and WorldClim2.1 both accounts for about 31% of China's total land area. (iii) Future climate change will expand the suitable habitats to high latitudes and altitudes. The overall suitable area maximum increased to 44.93% under SSPs and 38.91% under RCPs. We conclude that climate change would increase the risk of A. palmeri expanding to high latitudes and altitudes, the results have practical implications for the effective long-term management in response to the global warming of A. palmeri.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Digital AgricultureFujian Academy of Agricultural SciencesFuzhouChina
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsInstitute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Jian Zhao
- Institute of Digital AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| | - Miaomiao Wang
- Institute of Digital AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| | - Zhipeng Li
- Institute of Digital AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| | - Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsInstitute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Hong Chen
- Institute of Digital AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| |
Collapse
|
42
|
Farooq MS, Khaskheli MA, Uzair M, Xu Y, Wattoo FM, Rehman OU, Amatus G, Fatima H, Khan SA, Fiaz S, Yousuf M, Ramzan Khan M, Khan N, Attia KA, Ercisli S, Golokhvast KS. Inquiring the inter-relationships amongst grain-filling, grain-yield, and grain-quality of Japonica rice at high latitudes of China. Front Genet 2022; 13:988256. [PMID: 36338987 PMCID: PMC9635508 DOI: 10.3389/fgene.2022.988256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The widespread impacts of projected global and regional climate change on rice yield have been investigated by different indirect approaches utilizing various simulation models. However, direct approaches to assess the impacts of climatic variabilities on rice growth and development may provide more reliable evidence to evaluate the effects of climate change on rice productivity. Climate change has substantially impacted rice production in the mid-high latitudes of China, especially in Northeast China (NEC). Climatic variabilities occurring in NEC since the 1970s have resulted in an obvious warming trend, which made this region one of the three major rice-growing regions in China. However, the projections of future climate change have indicated the likelihood of more abrupt and irregular climatic changes, posing threats to rice sustainability in this region. Hence, understanding the self-adaptability and identifying adjustive measures to climate variability in high latitudes has practical significance for establishing a sustainable rice system to sustain future food security in China. A well-managed field study under randomized complete block design (RCBD) was conducted in 2017 and 2018 at two study sites in Harbin and Qiqihar, located in Heilongjiang province in NEC. Four different cultivars were evaluated: Longdao-18, Longdao-21 (longer growth duration), Longjing-21, and Suijing-18 (shorter growth duration) to assess the inter-relationships among grain-filling parameters, grain yield and yield components, and grain quality attributes. To better compare the adaptability mechanisms between grain-filling and yield components, the filling phase was divided into three sub-phases (start, middle, and late). The current study evaluated the formation and accumulation of the assimilates in superior and inferior grains during grain-filling, mainly in the middle sub-phase, which accounted for 59.60% of the yield. The grain yields for Suijing-18, Longjing-21, Longdao-21, and Longdao-18 were 8.02%, 12.78%, 17.19%, and 20.53% higher in Harbin than those in Qiqihar, respectively in 2017, with a similar trend observed in 2018. At Harbin, a higher number of productive tillers was noticed in Suijing-18, with averages of 17 and 15 in 2017 and 2018, respectively. The grain-filling parameters of yield analysis showed that the filling duration in Harbin was conducive to increased yield but the low dry weight of inferior grains was a main factor limiting the yield in Qiqihar. The average protein content values in Harbin were significantly higher (8.54% and 9.13%) than those in Qiqihar (8.34% and 9.14%) in 2017 and 2018, respectively. The amylose content was significantly higher in Harbin (20.03% and 22.27%) than those in Qiqihar (14.44% and 14.67%) in 2017 and 2018, respectively. The chalkiness percentage was higher in Qiqihar, indicating that Harbin produced good quality rice. This study provides more direct evidence of the relative changes in rice grain yield due to changes in grain-filling associated with relative changes in environmental components. These self-adaptability mechanisms to climatic variability and the inter-relationships between grain-filling and grain yield underscore the urgent to investigate and explore measures to improve Japonica rice sustainability, with better adaptation to increasing climatic variabilities. These findings may also be a reference for other global rice regions at high latitudes in addressing the impacts of climate change on future rice sustainability.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maqsood Ahmed Khaskheli
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Yinlong Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fahad Masood Wattoo
- Department of Plant Breeding and Genetics, PMAS- Arid Agriculture University, Rawalpindi, Pakistan
| | - Obaid ur Rehman
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Gyilbag Amatus
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hira Fatima
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | | | | | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, Florida University, Gainesville, FL, United States
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
43
|
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961872. [PMID: 36176673 PMCID: PMC9514553 DOI: 10.3389/fpls.2022.961872] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuhui Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
44
|
Zhang X, Sun Y, Qiu X, Lu H, Hwang I, Wang T. Tolerant mechanism of model legume plant Medicago truncatula to drought, salt, and cold stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:847166. [PMID: 36160994 PMCID: PMC9490062 DOI: 10.3389/fpls.2022.847166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Legume plants produce one-third of the total yield of primary crops and are important food sources for both humans and animals worldwide. Frequent exposure to abiotic stresses, such as drought, salt, and cold, greatly limits the production of legume crops. Several morphological, physiological, and molecular studies have been conducted to characterize the response and adaptation mechanism to abiotic stresses. The tolerant mechanisms of the model legume plant Medicago truncatula to abiotic stresses have been extensively studied. Although many potential genes and integrated networks underlying the M. truncatula in responding to abiotic stresses have been identified and described, a comprehensive summary of the tolerant mechanism is lacking. In this review, we provide a comprehensive summary of the adaptive mechanism by which M. truncatula responds to drought, salt, and cold stress. We also discuss future research that need to be explored to improve the abiotic tolerance of legume plants.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciencess, Beijing, China
| | - Yu Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciencess, Changchun, China
| | - Xiao Qiu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciencess, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Farooq MS, Wang X, Uzair M, Fatima H, Fiaz S, Maqbool Z, Rehman OU, Yousuf M, Khan MR. Recent trends in nitrogen cycle and eco-efficient nitrogen management strategies in aerobic rice system. FRONTIERS IN PLANT SCIENCE 2022; 13:960641. [PMID: 36092421 PMCID: PMC9453445 DOI: 10.3389/fpls.2022.960641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa L.) is considered as a staple food for more than half of the global population, and sustaining productivity under a scarcity of resources is challenging to meet the future food demands of the inflating global population. The aerobic rice system can be considered as a transformational replacement for traditional rice, but the widespread adaptation of this innovative approach has been challenged due to higher losses of nitrogen (N) and reduced N-use efficiency (NUE). For normal growth and developmental processes in crop plants, N is required in higher amounts. N is a mineral nutrient and an important constituent of amino acids, nucleic acids, and many photosynthetic metabolites, and hence is essential for normal plant growth and metabolism. Excessive application of N fertilizers improves aerobic rice growth and yield, but compromises economic and environmental sustainability. Irregular and uncontrolled use of N fertilizers have elevated several environmental issues linked to higher N losses in the form of nitrous oxide (N2O), ammonia (NH3), and nitrate (NO3 -), thereby threatening environmental sustainability due to higher warming potential, ozone depletion capacities, and abilities to eutrophicate the water resources. Hence, enhancing NUE in aerobic rice has become an urgent need for the development of a sustainable production system. This article was designed to investigate the major challenge of low NUE and evaluate recent advances in pathways of the N cycle under the aerobic rice system, and thereby suggest the agronomic management approaches to improve NUE. The major objective of this review is about optimizing the application of N inputs while sustaining rice productivity and ensuring environmental safety. This review elaborates that different soil conditions significantly shift the N dynamics via changes in major pathways of the N cycle and comprehensively reviews the facts why N losses are high under the aerobic rice system, which factors hinder in attaining high NUE, and how it can become an eco-efficient production system through agronomic managements. Moreover, it explores the interactive mechanisms of how proper management of N cycle pathways can be accomplished via optimized N fertilizer amendments. Meanwhile, this study suggests several agricultural and agronomic approaches, such as site-specific N management, integrated nutrient management (INM), and incorporation of N fertilizers with enhanced use efficiency that may interactively improve the NUE and thereby plant N uptake in the aerobic rice system. Additionally, resource conservation practices, such as plant residue management, green manuring, improved genetic breeding, and precision farming, are essential to enhance NUE. Deep insights into the recent advances in the pathways of the N cycle under the aerobic rice system necessarily suggest the incorporation of the suggested agronomic adjustments to reduce N losses and enhance NUE while sustaining rice productivity and environmental safety. Future research on N dynamics is encouraged under the aerobic rice system focusing on the interactive evaluation of shifts among activities and diversity in microbial communities, NUE, and plant demands while applying N management measures, which is necessary for its widespread adaptation in face of the projected climate change and scarcity of resources.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Hira Fatima
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Zubaira Maqbool
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Obaid Ur Rehman
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | | | | |
Collapse
|
46
|
Yan L, Jin H, Raza A, Huang Y, Gu D, Zou X. WRKY genes provide novel insights into their role against Ralstonia solanacearum infection in cultivated peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:986673. [PMID: 36204053 PMCID: PMC9531958 DOI: 10.3389/fpls.2022.986673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 05/11/2023]
Abstract
As one of the most important and largest transcription factors, WRKY plays a critical role in plant disease resistance. However, little is known regarding the functions of the WRKY family in cultivated peanuts (Arachis hypogaea L.). In this study, a total of 174 WRKY genes (AhWRKY) were identified from the genome of cultivated peanuts. Phylogenetic analysis revealed that AhWRKY proteins could be divided into four groups, including 35 (20.12%) in group I, 107 (61.49%) in group II, 31 (17.82%) in group III, and 1 (0.57%) in group IV. This division is further supported by the conserved motif compositions and intron/exon structures. All AhWRKY genes were unevenly located on all 20 chromosomes, among which 132 pairs of fragment duplication and seven pairs of tandem duplications existed. Eighteen miRNAs were found to be targeting 50 AhWRKY genes. Most AhWRKY genes from some groups showed tissue-specific expression. AhWRKY46, AhWRKY94, AhWRKY156, AhWRKY68, AhWRKY41, AhWRKY128, AhWRKY104, AhWRKY19, AhWRKY62, AhWRKY155, AhWRKY170, AhWRKY78, AhWRKY34, AhWRKY12, AhWRKY95, and AhWRKY76 were upregulated in ganhua18 and kainong313 genotypes after Ralstonia solanacearum infection. Ten AhWRKY genes (AhWRKY34, AhWRKY76, AhWRKY78, AhWRKY120, AhWRKY153, AhWRKY155, AhWRKY159, AhWRKY160, AhWRKY161, and AhWRKY162) from group III displayed different expression patterns in R. solanacearum sensitive and resistant peanut genotypes infected with the R. solanacearum. Two AhWRKY genes (AhWRKY76 and AhWRKY77) from group III obtained the LRR domain. AhWRKY77 downregulated in both genotypes; AhWRKY76 showed lower-higher expression in ganhua18 and higher expression in kainong313. Both AhWRKY76 and AhWRKY77 are targeted by ahy-miR3512, which may have an important function in peanut disease resistance. This study identified candidate WRKY genes with possible roles in peanut resistance against R. solanacearum infection. These findings not only contribute to our understanding of the novel role of WRKY family genes but also provide valuable information for disease resistance in A. hypogaea.
Collapse
Affiliation(s)
- Lei Yan
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Haotian Jin
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Huang
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Deping Gu
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Deping Gu
| | - Xiaoyun Zou
- Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- *Correspondence: Xiaoyun Zou
| |
Collapse
|