1
|
de Oliveira MJK, Babatunde OO, Rodrigues LA, Erinle TJ, Htoo JK, Mendoza SM, Columbus DA. Development of an indigestible dietary protein index to investigate the effects of dietary protein content in postweaned pigs. J Anim Sci 2025; 103:skae374. [PMID: 39657758 PMCID: PMC11705088 DOI: 10.1093/jas/skae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Proteolytic fermentation induces negative effects on gut health and function, which may affect pig performance. The objective was to conduct a meta-analysis to develop an index of dietary indigestible dietary protein (IDP) to investigate growth performance outcomes of mixed-sex weanling pigs (average body weight of 7.59 kg). Eighty-nine articles reporting growth performance variables [average daily gain (ADG), average daily feed intake (ADFI), gain:feed ratio (GF), initial (IBW), and final body weight] in pigs fed different dietary protein (DP) content (from 12% to 33.6%) and protein sources (plant and animal) were included. DP and IDP index was calculated in all experiments using a common database, with the IDP index defined as the difference between total DP and standardized ileal digestible DP. A DP- and an IDP-based model were developed to predict the ADG, GF, and ADFI (by their relationship) of weaning pigs using a multivariable linear mixed model regression approach with estimates of variable effects obtained using the residual maximum likelihood method. Based on a stepwise manual forward selection, significant predictor variables with improvement of at least 2 points in the Bayesian information criterion were included in the final regression model. Statistical significance was set at P ≤ 0.05 and a trend at P < 0.10. Initial exploratory analysis of the database showed a quadratic increase (P < 0.01) in the IDP index with increasing inclusion of plant protein sources in diet formulation and a linear decrease (P < 0.01) in the IDP index with increasing synthetic amino acid inclusion. Regarding the models, the DP-based model could not account for the inclusion of protein sources compared to the IDP-based model. There was a tendency for DP to positively affect (P < 0.10) ADG and GF. Increasing the IDP index tended to negatively impact (P < 0.10) ADG while reducing (P < 0.05) ADFI. Using a practical and hypothetical feed formulation simulation, the final regression models predicted the expected negative impact of a high IDP index on newly weaned pig performance when compared to a low IDP diet. The IDP-based model predicted a stronger negative effect of high IDP when compared to the DP-based model. Results indicate that IDP may be an improved and more reliable index to investigate the impact of DP on pig performance in the postweaning phase.
Collapse
Affiliation(s)
| | | | - Lucas A Rodrigues
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - Taiwo J Erinle
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | | | - Daniel A Columbus
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| |
Collapse
|
2
|
Virdis S, Luise D, Correa F, Laghi L, Arrigoni N, Amarie RE, Serra A, Biagi G, Negrini C, Palumbo F, Trevisi P. Productive and metabolomic consequences of arginine supplementation in sows during different gestation periods in two different seasons. J Anim Sci Biotechnol 2024; 15:121. [PMID: 39294768 PMCID: PMC11411819 DOI: 10.1186/s40104-024-01079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The prolificacy of sows (litter size at birth) has markedly increased, leading to higher post-natal mortality. Heat stress can exacerbate this issue. Arginine plays an important role in several physiological pathways; its effect on gestating sows can depend on the period of supplementation. This study evaluated the effects of arginine supplementation on the productive performance and physiological status of sows during different gestation periods and seasons, using a multi-omics approach. METHODS A total of 320 sows were divided into 4 groups over 2 seasons (warm/cold); a control group (CO) received a standard diet (including 16.5 g/d of arginine) and 3 other groups received the standard diet supplemented with 21.8 g/d of arginine (38.3 g/d of arginine) either during the first 35 d (Early35), the last 45 d (Late45) or throughout the entire gestation period (COM). The colostrum was analyzed for nutritional composition, immunoglobulins and metabolomic profile. Urine and feces were analyzed on d 35 and 106 for the metabolomic and microbial profiles. Piglet body weight and mortality were recorded at birth, d 6, d 26, and on d 14 post-weaning. RESULTS Interactions between arginine and season were never significant. The Early35 group had a lower percentage of stillborn (P < 0.001), mummified (P = 0.002) and low birthweight (LBW) piglets (P = 0.02) than the CO group. The Late45 group had a lower percentage of stillborn piglets (P = 0.029) and a higher percentage of high birthweight piglets (HBW; P < 0.001) than the CO group. The COM group had a higher percentage of LBW (P = 0.004) and crushed piglets (P < 0.001) than the CO group. Arginine supplementation modifies the metabolome characterization of colostrum, urine, and feces. Creatine and nitric oxide pathways, as well as metabolites related to microbial activity, were influenced in all matrices. A slight trend in the beta diversity index was observed in the microbiome profile on d 35 (P = 0.064). CONCLUSIONS Arginine supplementation during early gestation reduced the percentage of stillborn and LBW piglets, while in the last third of pregnancy, it favored the percentage of HBW pigs and reduced the percentage of stillbirths, showing that arginine plays a significant role in the physiology of pregnant sows.
Collapse
Affiliation(s)
- Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Norma Arrigoni
- Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Via Bianchi, 9, 25124, Brescia, Italy
| | - Roxana Elena Amarie
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giacomo Biagi
- Department of Veterinary Medicine, University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia (BO), Italy
| | - Clara Negrini
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Francesco Palumbo
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy.
| |
Collapse
|
3
|
Magalhães J, Cappellozza BI, Dos Santos TC, Inoe F, Pessoa Araújo Júnior J, Kurissio JK, Queiroz O, Joergensen JN, Cooke RF, Vasconcelos CGC, Vasconcelos JLM. Effects of supplementing direct-fed microbials on health and growth of preweaning Gyr × Holstein dairy calves. J Dairy Sci 2024; 107:6117-6130. [PMID: 38608942 DOI: 10.3168/jds.2023-24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to evaluate the effects of direct-fed microbials (DFM) on health and growth responses of preweaning Bos indicus × Bos taurus (Gyr × Holstein) crossbred calves. Ninety newborn heifer calves (initial BW of 35 ± 4.0 kg) were used. At birth, calves were ranked by initial BW and parity of the dam and assigned to: (1) whole milk without DFM supplementation (CON; n = 30), (2) whole milk with the addition of 1.0 g/calf per day of a Bacillus-based DFM (BAC; n = 30), or (3) whole milk with the addition of 1.0 g/calf per day of BAC and 1.2 g/calf per day of Enterococcus faecium 669 (MIX; n = 30). Milk was fed individually during the study (77 d), and the BAC and MIX treatments were offered daily throughout the 77-d preweaning period. All calves were offered a starter supplement and corn silage starting on d 1 and 60 of age, respectively. Milk and starter supplement intake were evaluated daily, and BW was recorded on d 0 and at weaning (d 77). Diarrhea and pneumonia were assessed daily, and fecal samples were collected on d 0, 7, 14, 21, and at weaning (d 77) for assessment of the presence of bacterial and protozoal pathogens via qPCR. All data were analyzed using SAS (v. 9.4) with calf as the experimental unit and using single-df orthogonal contrasts (BAC + MIX vs. CON; BAC vs. MIX). Daily feeding of DFM, regardless of type, improved weaning BW. Odds ratio for occurrence of pneumonia was lower for DFM-supplemented calves, but its occurrence did not differ between BAC and MIX calves. No Salmonella spp. or Escherichia coli F41 were detected in any of the calves. The proportion of calves positive for E. coli F17 was greater for DFM calves on d 7 (92% and 96% vs. 81% for BAC, MIX, and CON, respectively), on d 21 (13% and 26% vs. 7% for BAC, MIX, and CON, respectively), and at weaning (48% and 35% vs. 22% for BAC, MIX, and CON, respectively). For Clostridium difficile, more DFM calves were positive on d 7 (65% and 30% vs. 35% for BAC, MIX, and CON, respectively) and 14 (20% and 28% vs. 7% for BAC, MIX, and CON, respectively), but proportion of positive calves was also greater for BAC versus MIX on d 7. More CON calves were positive for Clostridium perfringens on d 14 (14% vs. 3% and 8% for CON, BAC, and MIX, respectively) compared with DFM-fed calves. Incidence of calves positive for C. perfringens was greater in BAC than MIX on d 7 (50% vs. 18%), and greater for MIX than BAC at weaning (9% vs. 0%). For protozoa occurrence, a lower proportion of DFM calves were positive for Cryptosporidium spp. on d 7 (58% and 48% vs. 76% for BAC, MIX, and CON, respectively), but opposite results were observed on d 21 for Cryptosporidium spp. (3% and 11% vs. 0% for BAC, MIX, and CON, respectively) and Eimeria spp. on d 14 (7% and 8% vs. 0% for BAC, MIX, and CON, respectively) and 21 (50% and 59% vs. 38% for BAC, MIX, and CON, respectively). In summary, DFM feeding alleviated the occurrence of pneumonia and improved growth rates, while also modulating the prevalence of bacteria and protozoa in preweaning Gyr × Holstein calves.
Collapse
Affiliation(s)
- Julia Magalhães
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - Bruno I Cappellozza
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Taynara C Dos Santos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - Fernanda Inoe
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - João Pessoa Araújo Júnior
- Institute of Biotechnology (IBTEC), School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil
| | - Jacqueline K Kurissio
- Institute of Biotechnology (IBTEC), School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil
| | - Oscar Queiroz
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Jens N Joergensen
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | | | - José Luiz M Vasconcelos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil.
| |
Collapse
|
4
|
Rajendrakumar S, Beaumal V, Kermarrec A, Lopez C, Novales B, Rabesona H, Simongiovanni A, Demersay TC, Marze S. Release profile of amino acids encapsulated in solid lipid particles during in vitro oro-gastrointestinal digestion. Food Res Int 2024; 190:114605. [PMID: 38945573 DOI: 10.1016/j.foodres.2024.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Some amino acids are known to mediate immune responses through gut microbiota metabolism in both humans and monogastric animals. However, through the diet, most free amino acids are absorbed in the small intestine and only a small quantity reaches the microbiota-rich colon. To enhance microbial metabolism of amino acids and their potential health benefits, encapsulation strategies are developed for their protection and delivery to the colon. So far, the main encapsulation systems for amino acids are based on solid lipid particles, but their fate within the digestive tract has never been fully clarified. In this study, we investigated the release of various amino acids (branched-chain amino acid mixture, or lysine, or tryptophan) loaded in solid lipid particles during in vitro oro-gastrointestinal digestion mimicking the piglet. The loaded solid lipid particles were fully characterized for their composition, thermal behavior, molecular structure, crystalline state, surface morphology, and particle size distribution. Moreover, we investigated the effect of particle size by sieving solid lipid particles into two non-overlapping size fractions. We found that amino acid release was high during the gastric phase of digestion, mainly controlled by physical parameters, namely particle size and crystalline state including surface morphology. Large particle size and/or smooth ordered particle indeed led to slower and lower release. Although lipid hydrolysis was significant during the intestinal phase of digestion, the impact of the crystalline state and surface morphology was also observed in the absence of enzymes, pointing to a dominant water/solute diffusion mechanism through these porous solid lipid particles.
Collapse
|
5
|
Luise D, Correa F, Cestonaro G, Sattin E, Conte G, Mele M, Archetti I, Virdis S, Negrini C, Galasso I, Stefanelli C, Mazzoni M, Nataloni L, Trevisi P, Costanzo E. Effect of different doses of camelina cake inclusion as a substitute of dietary soyabean meal on growth performance and gut health of weaned pigs. Br J Nutr 2024; 131:1962-1974. [PMID: 38606551 PMCID: PMC11361914 DOI: 10.1017/s0007114524000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet data are still limited. This study aimed to evaluate the effect of different doses of CAM in substitution of soyabean meal on the growth, health and gut health of weaned pigs. At 14 d post-weaning (d0), sixty-four piglets were assigned either to a standard diet or to a diet with 4 %, 8 % or 12 % of CAM. Piglets were weighed weekly. At d7 and d28, faeces were collected for microbiota and polyamine and blood for reactive oxygen metabolites (ROM) and thyroxine analysis. At d28, pigs were slaughtered, organs were weighed, pH was recorded on gut, colon was analysed for volatile fatty acids (VFA) and jejunum was used for morphological and gene expression analysis. Data analysis was carried out using a mixed model including diet, pen and litter as factors; linear and quadratic contrasts were tested. CAM linearly reduced the average daily gain from d0-d7, d0-d14, d0-d21 and d0-d28 (P ≤ 0·01). From d0-d7 increasing CAM linearly decreased feed intake (P = 0·04) and increased linearly the feed to gain (P = 0·004). CAM increased linearly the liver weight (P < 0·0001) and affected the cadaverine (P < 0·001). The diet did not affect the ROM, thyroxine, intestinal pH, VFA and morphology. All doses of CAM increased the α diversity indices at d28 (P < 0·05). CAM at 4 % promoted the abundance of Butyricicoccaceae_UCG-008. Feeding with CAM enhanced resilience in the gut microbiome and can be evaluated as a potential alternative protein source with dose-dependent limitations on piglet growth performance.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Giulia Cestonaro
- Cereal Docks S.p.A – Dipartimento Ricerca & Innovazione (E. Costanzo, G. Cestonaro), Cereal Docks S.p.A (L. Nataloni) via Innovazione 1, Camisano Vicentino, 36043, Italy
| | | | - Giuseppe Conte
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, Pisa, 56124, Italy
| | - Marcello Mele
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, Pisa, 56124, Italy
| | - Ivonne Archetti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna Bruno Ubertini, V. Bianchi 9, 25124, Brescia, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Clara Negrini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Incoronata Galasso
- Institute of Agricultural Biology and Biotechnology, CNR, via Alfonso Corti 12, Milan, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso D’Augusto 237, 47921Rimini, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Science, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell’Emilia, Italy
| | - Luigi Nataloni
- Cereal Docks S.p.A – Dipartimento Ricerca & Innovazione (E. Costanzo, G. Cestonaro), Cereal Docks S.p.A (L. Nataloni) via Innovazione 1, Camisano Vicentino, 36043, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Enrico Costanzo
- Cereal Docks S.p.A – Dipartimento Ricerca & Innovazione (E. Costanzo, G. Cestonaro), Cereal Docks S.p.A (L. Nataloni) via Innovazione 1, Camisano Vicentino, 36043, Italy
| |
Collapse
|
6
|
Zhan X, Hou L, He Z, Cao S, Wen X, Liu S, Li Y, Chen S, Zheng H, Deng D, Gao K, Yang X, Jiang Z, Wang L. Effect of Miscellaneous Meals Replacing Soybean Meal in Feed on Growth Performance, Serum Biochemical Parameters, and Microbiota Composition of 25-50 kg Growing Pigs. Animals (Basel) 2024; 14:1354. [PMID: 38731358 PMCID: PMC11083263 DOI: 10.3390/ani14091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The present study aims to determine the effect of miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) replacing soybean meal in feed on growth performance, apparent digestibility of nutrients, serum biochemical parameters, serum free amino acid content, microbiota composition and SCFAs content in growing pigs (25-50 kg). A total of 72 (Duroc × Landrace × Yorkshire) growing pigs with initial weights of 25.79 ± 0.23 kg were randomly divided into three treatments. The pigs were fed corn-soybean meal (CON), corn-soybean-miscellaneous meals (CSM), and corn-miscellaneous meals (CMM). Each treatment included six replicates with four pigs per pen (n = 24, 12 barrows and 12 gilts). Soybean meal accounted for 22.10% of the basal diet in the CON group. In the CSM group, miscellaneous meals partially replaced soybean meal with a mixture of 4.50% rapeseed meal, 3.98% cottonseed meal, and 4.50% sunflower meal. In the CMM group, miscellaneous meals entirely replaced soybean meal with a mixture of 8.50% rapeseed meal, 8.62% cottonseed meal, and 8.5% sunflower. The results showed that compared with the CON, the CSM and CMM groups significantly improved the average daily gain (ADG) of growing pigs during the 25-50 kg stage (p < 0.05) but had no effects on average daily feed intake (ADFI) and average daily feed intake/average daily gain (F/G) (p > 0.05). Moreover, the CMM group significantly reduced nutrient apparent digestibility of gross energy compared with the CON group. The serum biochemical parameters results showed that the CSM group significantly improved the contents of total protein (TP) compared with the CON group (p < 0.05). The CMM group significantly improved the contents of total protein (TP), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) compared with the CON group in serum (p < 0.05). In comparison with the CON group, the CMM group also significantly improved lysine (Lys), threonine (Thr), valine (Val), isoleucine (Ile), leucine (Leu), phenylalanine (Phe), arginine (Arg), and citrulline (Cit) levels in serum (p < 0.05). However, the CMM group significantly decreased non-essential amino acid content glycine (Gly) in serum compared with CON (p < 0.05), while compared with the CON group, the CSM and CMM groups had no significant effects on the relative abundance, the alpha-diversity, or the beta-diversity of fecal microbiota. Moreover, compared with the CON group, the CSM group significantly increased butyric acid and valeric acid contents of short-chain fatty acids (SCFAs) in feces (p < 0.05). In contrast to the CON group, the CMM group significantly reduced the contents of SCFAs in feces, including acetic acid, propionic acid, and isobutyric acid (p < 0.05). Collectively, the results of the present study indicate that miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) can partially replace the soybean meal and significantly improve the growth performance of growing pigs during the 25-50 kg stage. Thus, miscellaneous meals are a suitable protein source as basal diets to replace soybean meals for 25-50 kg growing pigs. These results can be helpful to further develop miscellaneous meals as a functional alternative feed ingredient to soybean meal.
Collapse
Affiliation(s)
| | | | | | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (L.H.); (Z.H.); (X.W.); (S.L.); (Y.L.); (S.C.); (H.Z.); (D.D.); (K.G.); (X.Y.); (Z.J.)
| | | | | | | | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (L.H.); (Z.H.); (X.W.); (S.L.); (Y.L.); (S.C.); (H.Z.); (D.D.); (K.G.); (X.Y.); (Z.J.)
| |
Collapse
|
7
|
Gonçalves JPR, Melo ADB, Yang Q, de Oliveira MJK, Marçal DA, Ortiz MT, Righetti Arnaut P, França I, Alves da Cunha Valini G, Silva CA, Korth N, Pavlovikj N, Campos PHRF, Brand HG, Htoo JK, Gomes-Neto JC, Benson AK, Hauschild L. Increased Dietary Trp, Thr, and Met Supplementation Improves Performance, Health, and Protein Metabolism of Weaned Piglets under Mixed Management and Poor Housing Conditions. Animals (Basel) 2024; 14:1143. [PMID: 38672291 PMCID: PMC11047353 DOI: 10.3390/ani14081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
A sanitary challenge was carried out to induce suboptimal herd health while investigating the effect of amino acids supplementation on piglet responses. Weaned piglets of high sanitary status (6.33 ± 0.91 kg of BW) were distributed in a 2 × 2 factorial arrangement into two similar facilities with contrasting sanitary conditions and two different diets. Our results suggest that increased Trp, Thr, and Met dietary supplementation could support the immune systems of piglets under a sanitary challenge. In this manner, AA+ supplementation improved the performance and metabolism of piglets under mixed management and poor sanitary conditions. No major temporal microbiome changes were associated with differences in performance regardless of sanitary conditions or diets. Since piglets often become mixed in multiple-site production systems and facility hygiene is also often neglected, this study suggests that increased Trp, Thr, and Met (AA+) dietary supplementation could contribute to mitigating the side effects of these harmful risk factors in modern pig farms.
Collapse
Affiliation(s)
- Joseane Penteado Rosa Gonçalves
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Antonio Diego Brandão Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
| | - Qinnan Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Marllon José Karpeggiane de Oliveira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Danilo Alves Marçal
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Manoela Trevisan Ortiz
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Pedro Righetti Arnaut
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Ismael França
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Graziela Alves da Cunha Valini
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Cleslei Alisson Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | | | | | | | - João Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Animal Science, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Luciano Hauschild
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| |
Collapse
|
8
|
Perez-Palencia JY, Ramirez-Camba CD, Haydon K, Urschel KL, Levesque CL. Effects of increasing dietary arginine supply during the three first weeks after weaning on pig growth performance, plasma amino acid concentrations, and health status. Transl Anim Sci 2024; 8:txae047. [PMID: 38651117 PMCID: PMC11034433 DOI: 10.1093/tas/txae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
A total of 425 weaned pigs (Exp. 1: 225 pigs [5.8 ± 0.9 kg]; Exp. 2: 200 pigs [6.1 ± 1.2 kg]) were used to determine the optimal dietary standardized ileal digestible (SID) arginine (Arg) level in early nursery diets based on growth and health responses. The basal diet in Exp.1 was formulated to meet SID Arg recommendation (0.66%; NRC, 2012) and in Exp. 2, SID Arg was set to simulate current industry practices for feeding nursery pigs (1.15 %). Basal diets were supplemented with 0.3%, 0.6%, 0.9%, and 1.2% of l-arginine to provide five levels of dietary SID Arg. Experimental diets were fed during phases I (days 0 to 7) and II (days 8 to 21) with common diets until market. Feed disappearance and body weight (BW) were measured on days 7, 14, 21, and 43. Final BW was recorded at first removal of pigs for market. Pen fecal score was assigned daily from days 0 to 21. Plasma immunoglobulin A (IgA) was determined on days 0, 7, and 14 and amino acids (AAs) concentration and plasma urea nitrogen (PUN) on days 0 and 14. Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of dietary Arg. Optimal SID Arg was determined by fitting the data with piecewise regression, using growth performance as the primary response variable. In Exp. 1, dietary Arg linearly increased (P < 0.1) BW, average daily gain (ADG), and gain to feed ratio (G:F) ratio on day 21, as well as reduced (χ2 = 0.004) the percentage of pigs that lost weight (PLW) in week 1 by 29%. Dietary Arg resulted in linear improvement (P = 0.082) of ADG for the overall nursery period and quadratic improvement (P < 0.1) of final BW at marketing. In Exp. 2, dietary Arg linearly increased (P < 0.05) ADG and average daily feed intake (ADFI) in week 1, BW and ADFI (P < 0.1) on day 14, as well as reduced (χ2 ≤ 0.001) PLW in week 1. From days 0 to 21, G:F was improved quadratically (P < 0.1). Dietary Arg linearly increased (P < 0.1) ADG and BW on day 43. Dietary Arg supplementation decreased the incidence (χ2 < 0.05) of soft and watery feces during the first weeks after weaning and lower concentration of plasma IgA on days 7 and 14. Dietary Arg linearly and/or quadratically influenced plasma AA concentrations (P < 0.05), including an increase in Arg, Leu, Phe, Val, citrulline, ornithine, and PUN concentrations. Overall, weaned pigs exhibit optimal nursery growth performance and health when provided with dietary SID Arg ranging from 1.5% to 1.9%. This dietary range contributes to a reduction in the occurrence of fall-back pigs and improvements in final BW at marketing.
Collapse
Affiliation(s)
| | - Christian D Ramirez-Camba
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN 57008, USA
| | - Keith Haydon
- CJ Bio America Inc, Downers Grove, IL 60515, USA
| | - Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
9
|
Dierick M, Ongena R, Vanrompay D, Devriendt B, Cox E. Exploring the modulatory role of bovine lactoferrin on the microbiome and the immune response in healthy and Shiga toxin-producing E. coli challenged weaned piglets. J Anim Sci Biotechnol 2024; 15:39. [PMID: 38449023 PMCID: PMC10916201 DOI: 10.1186/s40104-023-00985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/22/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Post-weaned piglets suffer from F18+ Escherichia coli (E. coli) infections resulting in post-weaning diarrhoea or oedema disease. Frequently used management strategies, including colistin and zinc oxide, have contributed to the emergence and spread of antimicrobial resistance. Novel antimicrobials capable of directly interacting with pathogens and modulating the host immune responses are being investigated. Lactoferrin has shown promising results against porcine enterotoxigenic E. coli strains, both in vitro and in vivo. RESULTS We investigated the influence of bovine lactoferrin (bLF) on the microbiome of healthy and infected weaned piglets. Additionally, we assessed whether bLF influenced the immune responses upon Shiga toxin-producing E. coli (STEC) infection. Therefore, 2 in vivo trials were conducted: a microbiome trial and a challenge infection trial, using an F18+ STEC strain. BLF did not affect the α- and β-diversity. However, bLF groups showed a higher relative abundance (RA) for the Actinobacteria phylum and the Bifidobacterium genus in the ileal mucosa. When analysing the immune response upon infection, the STEC group exhibited a significant increase in F18-specific IgG serum levels, whereas this response was absent in the bLF group. CONCLUSION Taken together, the oral administration of bLF did not have a notable impact on the α- and β-diversity of the gut microbiome in weaned piglets. Nevertheless, it did increase the RA of the Actinobacteria phylum and Bifidobacterium genus, which have previously been shown to play an important role in maintaining gut homeostasis. Furthermore, bLF administration during STEC infection resulted in the absence of F18-specific serum IgG responses.
Collapse
Affiliation(s)
- Matthias Dierick
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ruben Ongena
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
10
|
Castro C, Niknafs S, Gonzalez-Ortiz G, Tan X, Bedford MR, Roura E. Dietary xylo-oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens. J Anim Sci Biotechnol 2024; 15:35. [PMID: 38433214 PMCID: PMC10910751 DOI: 10.1186/s40104-024-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND One of the main roles of the intestinal mucosa is to protect against environmental hazards. Supplementation of xylo-oligosaccharides (XOS) is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens. XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions. The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction (AXRF) supplementation on gut function and epithelial integrity in broiler chickens. METHODS A total of 128 broiler chickens (Ross 308) were assigned into one of two different dietary treatments for a period of 42 d: 1) control diet consisting of a corn/soybean meal-based diet; or 2) a control diet supplemented with 0.5% XOS and 1% AXRF. Each treatment was randomly distributed across 8 pens (n = 8) with 8 chickens each. Feed intake and body weight were recorded weekly. On d 42, one male chicken per pen was selected based on average weight and euthanized, jejunum samples were collected for proteomics analysis. RESULTS Dietary XOS/AXRF supplementation improved feed efficiency (P < 0.05) from d 1 to 42 compared to the control group. Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 differentially abundant proteins (DAP) (Padj < 0.00001) in supplemented chickens compared to the non-supplemented group. In the jejunum, the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue (e.g., inhibition of glycolysis and tricarboxylic acid cycle pathways). In addition, DAP were associated with decreased epithelial cell differentiation, and migration by reducing the actin polymerization pathway. Putting the two main pathways together, XOS/AXRF supplementation may decrease around 19% the energy required for the maintenance of the gastrointestinal tract. CONCLUSIONS Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation (hence, turnover), actin polymerization, and consequently energy requirement for maintenance of the jejunum of broiler chickens.
Collapse
Affiliation(s)
- Carla Castro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
11
|
Bozkurt M, Savaş NN. Effects of monensin sodium and live attenuated oocyst vaccine as coccidiosis management programs on productive performance, bone quality and mineral utilisation in broiler chickens. Br Poult Sci 2024; 65:87-96. [PMID: 38018563 DOI: 10.1080/00071668.2023.2287726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
1. The following study was conducted to evaluate the influence of coccidiosis vaccine-induced metabolic stress on the utilisation of minerals in broilers. The starter, grower and finisher phase diets, including macro- and micro minerals at the recommended levels for the breed standards, were fed to chickens between 1 and 39 d of age.2. A total of 486, one-d-old male broilers were randomly distributed into three coccidiosis management programs (CMP) with six replications each. The CMP comprised: monensin sodium (MON), coccidiosis vaccine (VAC), not treated with MON or VAC (CNT).3. No significant differences between CMP were observed for body weight and weight gain among treatments. When compared to the CNT, the VAC program increased feed intake (P < 0.05) between d 1 to 13 and 14 to 26, while FCR worsened in the latter (P < 0.05) and the former (P = 0.05) periods.4. For birds in the MON and VAC programs, tibia bone length at d 13 and bone diameter at d 39 were both enhanced (P < 0.05). Meat yield characteristics were comparable among the CMP.5. Faeces of VAC birds had a lower (P < 0.05) dry matter and ash content than those in CNT program. CMP had no effect on serum or bone mineral concentrations at any point in time. For minerals, Mg, Na, and K faecal excretion was reduced (P < 0.01) as a result of the VAC program at d 13 with a trend at d 26.6. Compared to the CNT, the VAC program decreased the percentage ratio of drip loss (P = 0.08), water holding capacity (P < 0.01) and cooking loss (P < 0.01) in breast meat.7. Overall, the results showed that current broiler industry practices are capable of meeting the mineral needs of broilers vaccinated against coccidiosis.
Collapse
Affiliation(s)
- M Bozkurt
- Faculty of Agriculture, Department of Animal Science, Aydın Adnan Menderes University, Aydın, Turkey
| | - N N Savaş
- Faculty of Agriculture, Department of Animal Science, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
12
|
Yvon S, Beaumont M, Dayonnet A, Eutamène H, Lambert W, Tondereau V, Chalvon-Demersay T, Belloir P, Paës C. Effect of diet supplemented with functional amino acids and polyphenols on gut health in broilers subjected to a corticosterone-induced stress. Sci Rep 2024; 14:1032. [PMID: 38200093 PMCID: PMC10781708 DOI: 10.1038/s41598-023-50852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
To address the overuse of antimicrobials in poultry production, new functional feed ingredients, i.e. ingredients with benefits beyond meeting basic nutritional requirements, can play a crucial role thanks to their prophylactic effects. This study evaluated the effects of the supplementation of arginine, threonine and glutamine together with grape polyphenols on the gut integrity and functionality of broilers facing a stress condition. 108 straight-run newly hatched Ross PM3 chicks were kept until 35 days and were allocated to 3 treatments. Broilers in the control group were raised in standard conditions. In experimental groups, birds were administered with corticosterone in drinking water (CORT groups) to impair the global health of the animal and were fed a well-balanced diet supplemented or not with a mix of functional amino acids together with grape extracts (1 g/kg of diet-CORT + MIX group). Gut permeability was significantly increased by corticosterone in non-supplemented birds. This corticosterone-induced stress effect was alleviated in the CORT + MIX group. MIX supplementation attenuated the reduction of crypt depth induced by corticosterone. Mucin 2 and TNF-α gene expression was up-regulated in the CORT + MIX group compared to the CORT group. Caecal microbiota remained similar between the groups. These findings indicate that a balanced diet supplemented with functional AA and polyphenols can help to restore broiler intestinal barrier after a stress exposure.
Collapse
Affiliation(s)
- Sophie Yvon
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | - Martin Beaumont
- GenPhySE, INRAE, ENVT, Université De Toulouse, Toulouse, France
| | | | - Hélène Eutamène
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | | | - Valérie Tondereau
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | | | | | - Charlotte Paës
- INP-Purpan, Toulouse, France.
- GenPhySE, INRAE, ENVT, Université De Toulouse, Toulouse, France.
| |
Collapse
|
13
|
Pearce SC, Nisley MJ, Kerr BJ, Sparks C, Gabler NK. Effects of dietary protein level on intestinal function and inflammation in nursery pigs. J Anim Sci 2024; 102:skae077. [PMID: 38504643 PMCID: PMC11015048 DOI: 10.1093/jas/skae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
High crude protein (CP; 21% to 26%) diets fed during the first 21 to 28 d postweaning are viewed negatively because of a perceived increase in the incidence rates of diarrhea due to increased intestinal protein fermentation and/or augmented enteric pathogen burden. This is thought to antagonize nursery pig health and growth performance. Therefore, our objective was to evaluate the impact of low vs. high dietary CP on 21-day postweaned pig intestinal function. Analyzed parameters included ex vivo intestinal barrier integrity (ileum and colon), ileal nutrient transport, tissue inflammation, and fecal DM. One hundred and twenty gilts and barrows (average body weight) were randomly assigned to one of two diets postweaning. Diets were fed for 21 d, in two phases. Phase 1 diets: low CP (17%) with a 1.4% standardized ileal digestible (SID) Lys (LCP), or high CP (24%) with a 1.4% SID Lysine (HCP). Phase 2: LCP (17%) and a 1.35% SID lysine, or HCP (24%) formulated to a 1.35% SID lysine. Pig growth rates, feed intakes, and fecal consistency did not differ (P > 0.05) due to dietary treatment. Six animals per treatment were euthanized for additional analyses. There were no differences in colonic epithelial barrier function as measured by transepithelial electrical resistance (TER) and fluorescein isothiocyanate (FITC)-dextran transport between treatments (P > 0.05). Interleukins (IL)-1α, IL-1β, IL-1ra, IL-2 IL-4, IL-6, and IL-12 were not different between treatments (P > 0.05). However, IL-8 and IL-18 were higher in HCP- vs. LCP-fed pigs (P < 0.05). There were no differences in fecal dry matter (DM; P > 0.05) between treatments. In the ileum, there was a tendency (P = 0.06) for TER to be higher in HCP-fed pigs, suggesting a more robust barrier. Interestingly, glucose and glutamine transport were decreased in HCP- vs. LCP-fed pigs (P < 0.05). FITC-dextran transport was not different between treatments (P > 0.05). There were also no differences in ileal cytokine concentrations between diets (P > 0.05). Taken together, the data show that low CP does not negatively impact colonic barrier function, fecal DM, or inflammation. In contrast, ileal barrier function and nutrient transport were altered, suggesting a regional effect of diet on overall intestinal function.
Collapse
Affiliation(s)
- Sarah C Pearce
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA, USA
| | | | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA, USA
| | | | | |
Collapse
|
14
|
Van Tran T, Kim YS, Yun HH, Nguyen DH, Bui TT, Van Tran P. A blend of bacillus-fermented soybean meal, functional amino acids, and nucleotides improves nutrient digestibility, bolsters immune response, reduces diarrhea, and enhances growth performance in weaned piglets. J Anim Sci 2024; 102:skae293. [PMID: 39320170 PMCID: PMC11497617 DOI: 10.1093/jas/skae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
This study investigated the effects of a blend of bacillus-fermented soybean meal, functional amino acids, and nucleotides (Functional protein blend-FP Blend) as a replacement for animal protein sources in a weaner pig diet without antibiotic growth promoters on nutrient digestibility, blood profiles, intestinal morphology, diarrhea incidence, and growth performance. A total of 288 crossbred weaned piglets [♂ Duroc x ♀ (Yorkshire × Landrace)] with an average body weight (BW) of 6.89 ± 0.71 kg were randomly allocated to 6 groups based on initial BW and sex (8 replicate pens per treatment; 3 gilts and 3 barrows/pen). The experiment lasted for 5 wk. Dietary treatments included PC [standard diet with 3% fish meal (FM) and 2% plasma protein (PP)], NC (nonanimal protein, AP), T1 (3% FM replaced with 5% FP Blend), T2 (3% FM and 1% PP replaced with 5% FP Blend), T3 (2% PP replaced with 5% FP Blend), and T4 (3% FM and 2% PP replaced with 5% FP Blend). Data were analyzed using Minitab version 17 software. Key results indicated that FP Blend improved the apparent ileal digestibility (AID) coefficient of dry matter, gross energy, lysine, and valine in T4 compared with NC treatment (P < 0.05), whereas AID coefficient of crude protein and other amino acids remained constant (P > 0.05). Compared with NC diet, the weaned pigs fed T4 diet reduced malondialdehyde, serum IL8, TNF-α, and increased IgG (P < 0.05), while showing no effect on serum IL6, IL10, white blood cells, IgA, and endotoxin (P > 0.05). Furthermore, FP blend significantly increased villus height in the duodenum and ileum in T4 compared with NC (P < 0.05). The average daily gain (ADG) was highest in T4 (502.73 g/d), followed by T1 (477.96 g/d) and T2 (475.85 g/d), compared with PC (450.86 g/d) and NC (439.79 g/d). T4's ADG significantly differed from PC and NC (P < 0.001), whereas no significant differences were observed in T1, T2, and T3 (P > 0.05). The feed conversion ratio (FCR) was significantly lower in T4 (1.45) compared with PC (1.57) and NC (1.59) (P < 0.001), with no significant differences among other groups. In conclusion, FP Blend demonstrated efficacy in improving nutrient digestibility, optimizing intestinal morphology, bolstering immune responses, reducing diarrhea incidence, alleviating the adverse effects of weaning stress, and enhancing growth performance of weaned piglets.
Collapse
Affiliation(s)
- Thang Van Tran
- Faculty of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Vietnam
| | - Yang Su Kim
- CJ BIO, Animal nutrition, Amino acid solution, Cheiljadang Center, 330, Dongho-ro, Jung-gu, Seoul 04560, South Korea
| | - Hyeon Ho Yun
- Technical Marketing, Protein Solution, CJ BIO, Cheiljadang Center, 330, Dongho-ro, Jung-gu, Seoul 04560, South Korea
| | - Dinh Hai Nguyen
- CJ Bio Vietnam, Technical Solution Center of The Asia Pacific Accreditation Cooperation, CJ Cheiljedang Building, Ho Chi Minh 700000, Vietnam
| | - Thom Thi Bui
- Institute of Life Sciences, Thai Nguyen University, Vietnam
| | - Phung Van Tran
- Institute of Life Sciences, Thai Nguyen University, Vietnam
| |
Collapse
|
15
|
Loor JJ, Lopreiato V, Palombo V, D’Andrea M. Physiological impact of amino acids during heat stress in ruminants. Anim Front 2023; 13:69-80. [PMID: 37841758 PMCID: PMC10575319 DOI: 10.1093/af/vfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Università degli Studi di Messina, Viale Palatucci snc 98168, Messina, Italy
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| | - Mariasilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| |
Collapse
|
16
|
Wang Z, Zeng B, Xue H, Liu C, Song W. Blidingia sp. extracts improve intestinal health and reduce diarrhoea in weanling piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:1198-1205. [PMID: 37203256 DOI: 10.1111/jpn.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
Blidingia sp. is a prominent fouling green macroalga and we previously found that extracts from Blidingia sp. alleviated intestinal inflammation in mice challenged with lipopolysaccharides. However, whether these extracts are effective in weanling piglets remains unknown. In the present study, Blidingia sp. extracts were supplemented in the diet and their effects on growth performance, incidence of diarrhoea and intestinal function in weanling piglets were explored. The results showed that diets supplemented with 0.1% or 0.5% Blidingia sp. extract significantly increased average daily body weight gain and feed intake in weanling piglets. Meanwhile, piglets supplemented with 0.5% Blidingia sp. extract showed decreased incidence of diarrhoea as well as reduced fecal water and Na+ content. Furthermore, the diet supplemented with 0.5% Blidingia sp. extracts improved intestinal morphology, as indicated by the results of hematoxylin and eosin staining. Diet supplemented with 0.5% Blidingia sp. extracts also improved tight junction function, as indicated by increased expression of Occludin, Claudin-1 and Zonula occludens-1, and alleviated the inflammatory response, as indicated by decreased tumor necrosis factor-α and interleukin-6 (IL6) contents and increased IL10 levels. Taken together, our results showed that Blidingia sp. extracts had beneficial effects in weanling piglets and we suggest that Blidingia sp. extracts could be potentially used as an additive for piglets.
Collapse
Affiliation(s)
- Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Boxin Zeng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Haoran Xue
- Department of Clinical Laboratory, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Chunyan Liu
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Song
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
17
|
Ferrocino I, Biasato I, Dabbou S, Colombino E, Rantsiou K, Squara S, Gariglio M, Capucchio MT, Gasco L, Cordero CE, Liberto E, Schiavone A, Cocolin L. Lactiplantibacillus plantarum, lactiplantibacillus pentosus and inulin meal inclusion boost the metagenomic function of broiler chickens. Anim Microbiome 2023; 5:36. [PMID: 37537673 PMCID: PMC10399007 DOI: 10.1186/s42523-023-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The inclusion of alternative ingredients in poultry feed is foreseen to impact poultry gut microbiota. New feeding strategies (probiotics/prebiotics) must be adopted to allow sustainable productions. Therefore, the current study aimed to use metagenomics approaches to determine how dietary inclusion of prebiotic (inulin) plus a multi-strain probiotic mixture of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus affected microbiota composition and functions of the gastro-intestinal tract of the broilers during production. Fecal samples were collected at the beginning of the trial and after 5, 11 and 32 days for metataxonomic analysis. At the end of the trial, broilers were submitted to anatomo-pathological investigations and caecal content was subjected to volatilome analysis and DNAseq. RESULTS Probiotic plus prebiotic inclusion did not significantly influence bird performance and did not produce histopathological alterations or changes in blood measurements, which indicates that the probiotic did not impair the overall health status of the birds. The multi-strain probiotic plus inulin inclusion in broilers increased the abundance of Blautia, Faecalibacterium and Lachnospiraceae and as a consequence an increased level of butyric acid was observed. In addition, the administration of probiotics plus inulin modified the gut microbiota composition also at strain level since probiotics alone or in combination with inulin select specific Faecalibacterium prausnitzi strain populations. The metagenomic analysis showed in probiotic plus prebiotic fed broilers a higher number of genes required for branched-chain amino acid biosynthesis belonging to selected F. prausnitzi strains, which are crucial in increasing immune function resistance to pathogens. In the presence of the probiotic/prebiotic a reduction in the occurrence of antibiotic resistance genes belonging to aminoglycoside, beta-lactamase and lincosamide family was observed. CONCLUSIONS The positive microbiome modulation observed is particularly relevant, since the use of these alternative ingredients could promote a healthier status of the broiler's gut.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Turin, Italy
| | - Elena Colombino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simone Squara
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | | | - Erica Liberto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
18
|
Hodkovicova N, Halas S, Tosnerova K, Stastny K, Svoboda M. The use of functional amino acids in different categories of pigs - A review. VET MED-CZECH 2023; 68:299-312. [PMID: 37982122 PMCID: PMC10646542 DOI: 10.17221/72/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023] Open
Abstract
The present review deals with a particularly important topic: the use of functional amino acids in different categories of pigs. It is especially relevant in the context of the current efforts to reduce the use of antibiotics in pig farming and the search for possible alternatives to replace them. The review is based on the definition that functional amino acids (FAAs) are classified as dispensable amino acids, but with additional biological functions, i.e., not only are they used for protein formation, but they are also involved in regulating essential metabolic pathways to improve health, survival, growth, and development. We describe the mechanism of action of individual FAAs and their potential use in pigs, including glutamate, glutamine, arginine, branched-chain amino acids (i.e., leucine, isoleucine, and valine), tryptophan and glycine. The work is divided into three parts. The first part deals with the FAAs and their role in the overall health of sows and their offspring. The second part describes the use of functional amino acids in piglets after weaning. Part three examines the use of functional amino acids in growing and fattening pigs and their impact on meat quality.
Collapse
Affiliation(s)
- Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Simon Halas
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Martin Svoboda
- Ruminant and Swine Clinic, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
19
|
Luise D, Chalvon-Demersay T, Correa F, Bosi P, Trevisi P. Review: A systematic review of the effects of functional amino acids on small intestine barrier function and immunity in piglets. Animal 2023; 17 Suppl 2:100771. [PMID: 37003917 DOI: 10.1016/j.animal.2023.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The need to reduce the use of antibiotics and zinc oxide at the pharmacological level, while preserving the performance of postweaning piglets, involves finding adequate nutritional strategies which, coupled with other preventive strategies, act to improve the sustainability of the piglet-rearing system. Amino acids (AAs) are the building blocks of proteins; however, they also have many other functions within the body. AA supplementation, above the suggested nutritional requirement for piglets, has been investigated in the diets of postweaning piglets to limit the detrimental consequences occurring during this stressful period. A systematic review was carried out to summarise the effects of AAs on gut barrier function and immunity, two of the parameters contributing to gut health. An initial manual literature search was completed using an organised search strategy on PubMed, utilising the search term " AND ". These searches yielded 302 articles (published before October 2021); 59 were selected. Based on the method for extracting data (synthesis of evidence), this review showed that L-Arginine, L-Glutamine and L-Glutamate are important functional AAs playing major roles in gut morphology and immune functions. Additional benefits of AA supplementation, refereed to a supplementation above the suggested nutritional requirement for piglets, could also be observed; however, data are needed to provide consistent evidence. Taken together, this review showed that supplementation with AAs during the weaning phase supported a plethora of the physiological functions of piglets. In addition, the data reported confirmed that each amino acid targets different parameters related to gut health, suggesting the existence of potential synergies among them.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
20
|
Ramirez-Camba CD, Levesque CL. The Linear-Logistic Model: A Novel Paradigm for Estimating Dietary Amino Acid Requirements. Animals (Basel) 2023; 13:ani13101708. [PMID: 37238138 DOI: 10.3390/ani13101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to determine whether current methods for estimating AA requirements for animal health and welfare are sufficient. An exploratory data analysis (EDA) was conducted, which involved a review of assumptions underlying AA requirements research, a data mining approach to identify animal responses to dietary AA levels exceeding those for maximum protein retention, and a literature review to assess the physiological relevance of the linear-logistic model developed through the data mining approach. The results showed that AA dietary levels above those for maximum growth resulted in improvements in key physiological responses, and the linear-logistic model depicted the AA level at which growth and protein retention rates were maximized, along with key metabolic functions related to milk yield, litter size, immune response, intestinal permeability, and plasma AA concentrations. The results suggest that current methods based solely on growth and protein retention measurements are insufficient for optimizing key physiological responses associated with health, survival, and reproduction. The linear-logistic model could be used to estimate AA doses that optimize these responses and, potentially, survival rates.
Collapse
Affiliation(s)
- Christian D Ramirez-Camba
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
21
|
Luise D, Correa F, Stefanelli C, Simongiovanni A, Chalvon-Demersay T, Zini M, Fusco L, Bosi P, Trevisi P. Productive and physiological implications of top-dress addition of branched-chain amino acids and arginine on lactating sows and offspring. J Anim Sci Biotechnol 2023; 14:40. [PMID: 36879289 PMCID: PMC9990366 DOI: 10.1186/s40104-022-00819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/04/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs), including L-leucine (L-Leu), L-isoleucine (L-Ile), L-valine (L-Val), and L-arginine (L-Arg), play a crucial role in mammary gland development, secretion of milk and regulation of the catabolic state and immune response of lactating sows. Furthermore, it has recently been suggested that free amino acids (AAs) can also act as microbial modulators. This study aimed at evaluating whether the supplementation of lactating sows with BCAAs (9, 4.5 and 9 g/d/sow of L-Val, L-Ile and L-Leu, respectively) and/or L-Arg (22.5 g/d/sow), above the estimated nutritional requirement, could influence the physiological and immunological parameters, microbial profile, colostrum and milk composition and performance of sows and their offspring. RESULTS At d 41, piglets born from the sows supplemented with the AAs were heavier (P = 0.03). The BCAAs increased glucose and prolactin (P < 0.05) in the sows' serum at d 27, tended to increase immunoglobulin A (IgA) and IgM in the colostrum (P = 0.06), increased the IgA (P = 0.004) in the milk at d 20 and tended to increase lymphocyte% in the sows' blood at d 27 (P = 0.07). Furthermore, the BCAAs tended to reduce the Chao1 and Shannon microbial indices (P < 0.10) in the sows' faeces. The BCAA group was discriminated by Prevotellaceae_UCG-004, Erysipelatoclostridiaceae UCG-004, the Rikenellaceae_RC9_gut_group and Treponema berlinense. Arginine reduced piglet mortality pre- (d 7, d 14) and post-weaning (d 41) (P < 0.05). Furthermore, Arg increased the IgM in the sow serum at d 10 (P = 0.05), glucose and prolactin (P < 0.05) in the sow serum at d 27 and the monocyte percentage in the piglet blood at d 27 (P = 0.025) and their jejunal expression of NFKB2 (P = 0.035) while it reduced the expression of GPX-2 (P = 0.024). The faecal microbiota of the sows in Arg group was discriminated by Bacteroidales. The combination of BCAAs and Arg tended to increase spermine at d 27 (P = 0.099), tended to increase the Igs (IgA and IgG, P < 0.10) at d 20 in the milk, favoured the faecal colonisation of Oscillospiraceae UCG-005 and improved piglet growth. CONCLUSION Feeding Arg and BCAAs above the estimated requirements for milk production may be a strategy to improve sow productive performance in terms of piglet average daily gain (ADG), immune competence and survivability via modulation of the metabolism, colostrum and milk compositions and intestinal microbiota of the sows. The synergistic effect between these AAs, noticeable by the increase of Igs and spermine in the milk and in the improvement of the performance of the piglets, deserves additional investigation.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921, Rimini, Italy
| | | | | | - Maddalena Zini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Luciano Fusco
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy.,Freelancer, Reggio nell'Emilia, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy.
| |
Collapse
|
22
|
Wang B, Cui L, Song Q, Liu M, Kou J, Sun S, Chen H, Shi Y, Wu Z, Dai Z. Excessive dietary L-tryptophan regulated amino acids metabolism and serotonin signaling in the colon of weaning piglets with acetate-induced gut inflammation. Amino Acids 2023; 55:403-412. [PMID: 36648538 DOI: 10.1007/s00726-023-03239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
L-Tryptophan (Trp) was shown to improve the gut barrier and growth of weaning piglets. However, whether excessive dietary Trp regulates amino acids (AAs) metabolism and gut serotonin (5-HT) homeostasis in piglets with gut inflammation is not clear yet. We hypothesize that excessive dietary Trp alleviates acetate-induced colonic inflammation and gut barrier damage in weaning piglets partially through the regulation of colonic AAs metabolism and 5-HT signaling. Fifty-four 21-day-old weaned piglets were divided into six groups: control, acetate, 0.2%Trp, 0.2%Trp + acetate, 0.4% Trp, and 0.4%Trp + acetate. Piglets were fed a basal diet supplemented with 0%, 0.2%, or 0.4% of Trp throughout the 12-day experiment. During days 0-7, all piglets had free access to diet and drinking water. On day 8, piglets were intrarectal administered with 10 mL of 10% acetate saline solution or 0.9% saline. During days 8-12, all piglets were pair-fed the same amount of feed per kg bodyweight. Results showed that excessive dietary Trp alleviated acetate-induced reductions in daily weight gain and increase in feed/gain ratio. Trp restored (P < 0.05) acetate-induced increase in concentrations of free aspartate, glutamate/glutamine, glycine, 5-HT, and 3-methylindole in the colon, downregulation of zonula occludens-1 and 5-HT reuptake transporter (SERT) expression and upregulation of IL-1β, IL-8, TLR4, and 5-HT receptor 2A (HTR2A) expression, and the increase in ratios of p-STAT3/ STAT3 and p-p65/p65 in the colon. The above findings suggested that excessive dietary Trp in the proper amount regulated colonic AAs metabolism, 5-HT homeostasis, and signaling that may contribute as important regulators of gut inflammation during the weaning transition.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lu Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qingqing Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Moyan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jiao Kou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shiqiang Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hui Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yahui Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
23
|
Jang KB, Kim SW. Evaluation of standardized ileal digestibility of amino acids in fermented soybean meal for nursery pigs using direct and difference procedures. Anim Biosci 2023; 36:275-283. [PMID: 36108691 PMCID: PMC9834720 DOI: 10.5713/ab.22.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study was to evaluate standardized ileal digestibility (SID) of amino acids (AA) in fermented soybean meal (FSBM) for nursery pigs using both direct procedure and difference procedure when FSBM was added at 20% in diets. METHODS Forty-eight pigs at 9.2±0.9 kg body weight (BW) were individually housed and allotted to 4 treatments. Treatments included NFD (a semi-purified N free diet), FSD (a diet with 20% FSBM), CBD (corn basal diet), and CFD (corn basal diet:FSBM at 80:20). The FSD was used to measure AA digestibility in FSBM using the direct procedure, whereas CBD and CFD were used in the difference procedure. Pigs were fed for 10 days (0.09×BW0.75 kg per day) and euthanized to collect ileal digesta for TiO2 and AA. RESULTS Total endogenous AA loss was 12.1 g/kg of dry matter intake. The apparent ileal digestibility (AID) Thr was greater (p<0.05) and AID His (p = 0.073) and Leu (p = 0.052) tended to be greater using the direct procedure compared with the difference procedure. The SID Thr were greater (p<0.05) in FSBM for nursery pigs calculated using a direct procedure compared with a difference procedure. In addition, SID Lys in FSBM was about 83% to 88% for nursery pigs higher than SID Lys described in National Research Council (2012). CONCLUSION The SID of AA in FSBM when included at practical levels using the direct procedure were similar to those from the difference procedure. Considering the SID of AA obtained using both direct and difference procedures, FSBM is an effective protein supplement providing highly digestible AA to nursery pigs. The SID of AA from this study was considerably higher than those previous reported. This study also indicates the importance of including the test feedstuffs at practical levels when evaluating digestibility.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695,
USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695,
USA,Corresponding Author: Sung Woo Kim, E-mail:
| |
Collapse
|
24
|
Bertocci F, Mannino G. Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs-A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods 2023; 12:571. [PMID: 36766100 PMCID: PMC9914002 DOI: 10.3390/foods12030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Due to environmental and human factors, there is a growing amount of agri-food waste worldwide. The European Commission is incentivizing a zero-waste policy by 2025, pushing to find a "second life" for at least the avoidable ones. In this review, after summarizing the nutritional values of pork and the importance of its inclusion in human diet, a phylogenetic analysis was conducted to investigate potential differences in the structure and activity of HMGCR, which is a key enzyme in cholesterol metabolism. In addition, a bibliometric analysis combined with visual and meta-analytical studies on 1047 scientific articles was conducted to understand whether the inclusion of agro-food waste could affect the growth performance of pigs and reduce cholesterol levels in pork. Although some critical issues were highlighted, the overall data suggest a modern and positive interest in the reuse of agri-food waste as swine feed. However, although interesting and promising results have been reported in several experimental trials, further investigation is needed, since animal health and meat quality are often given marginal consideration.
Collapse
Affiliation(s)
- Filippo Bertocci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80134 Naples, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
25
|
Trevisi P, Negrini C, Correa F, Virdis S, Laghi L, Marcello M, Conte G, Mazzoni M, Luise D. Insight into the long-term impact of birth weight on intestinal development, microbial settlement, and the metabolism of weaned piglets. J Anim Sci 2023; 101:skad395. [PMID: 38064718 PMCID: PMC10963063 DOI: 10.1093/jas/skad395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Infant mortality of low birth body weight (LBBW) piglets can reach 10% and is mainly due to gut and immune system immaturity which can lead to a higher risk in the long term. This study aimed to assess the impact of birth body weight (BBW) on piglet metabolism, gut status, and microbial profile from weaning to 21 d postweaning. At birth, 32 piglets were selected for their BBW and inserted into the normal BBW (NBBW:1.38 ± 0.09 g) or the LBBW (0.92 ± 0.07 g) group. The piglets were weighed weekly from weaning (d0) to d21. At d9 and d21, 8 piglets/group were slaughtered to obtain the distal jejunum for morphology, immunohistochemistry, and gene expression analysis, colon content for microbiota and short-chain fatty acid (SCFA) analysis, and intestinal content for pH measurement. Blood was collected for metabolomic, haptoglobin (Hp), and reactive oxygen metabolite (ROM) analysis. The LBBW group had a lower body weight (BW) throughout the study (P < 0.01), a lower average daily gain from d9-d21 (P = 0.002), and lower feed intake (P = 0.02). The LBBW piglets had lower Hp at d9 (P = 0.03), higher ROMs at d21 (P = 0.06), and a net alteration of the amino acid (AA) metabolism at d9 and d21. A higher expression of NFKB2 was observed in the LBBW piglets at d9 (P = 0.003) and d21 (P < 0.001). MYD88 expression was enhanced in NBBW piglets at d9 (P < 0.001). The LBBW piglets had a lower villus height, absorptive mucosal surface (P = 0.01), and villus height:crypt depth ratio (P = 0.02), and a greater number of T-lymphocytes in both the epithelium and the crypts (P < 0.001) at d21. At d21, the LBBW piglets had higher lactic acid, acetate, butyrate, and valerate, and also higher SCFA in the colon (P < 0.05). The LBBW piglets had a higher Shannon index (P = 0.01) at d9 and a higher abundance of SCFA-fermenting bacteria. In conclusion, the present study confirmed that LBBW could impact the gut mucosal structure, immunity, and inflammatory and oxidative status, leading to an altered AA metabolism, and delaying the recovery from weaning.
Collapse
Affiliation(s)
- Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Clara Negrini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Mele Marcello
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Alves da Cunha Valini G, Righetti Arnaut P, França I, Trevisan Ortiz M, Karpeggiane de Oliveira MJ, Brandão Melo AD, Alves Marçal D, Reis Furtado Campos PH, Khun Htoo J, Gastmann Brand H, Hauschild L. Increased dietary Trp, Thr, and Met supplementation improves growth performance and protein deposition of salmonella-challenged growing pigs under poor housing conditions. J Anim Sci 2023; 101:skad141. [PMID: 37141101 PMCID: PMC10205462 DOI: 10.1093/jas/skad141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023] Open
Abstract
Highly intensified rearing conditions and precarious sanitary management predispose pigs to immune system activation, altered amino acid (AA) metabolism, and decreased growth performance. Thus, the main objective of this study was to evaluate the effects of increased dietary tryptophan (Trp), threonine (Thr), and methionine + cysteine (Met + Cys) supplementation on performance, body composition, metabolism, and immune responses of group-housed growing pigs under challenging sanitary conditions. A hundred and twenty pigs (25.4 ± 3.7 kg) were randomly assigned to a 2 × 2 factorial arrangement, consisting of two sanitary conditions (SC, good [GOOD] or salmonella-challenge and poor housing condition [Salmonella Typhimurium (ST) + POOR]) and two diets, control (CN) or supplemented with AA (Trp, Thr, and Met + Cys:Lys ratios 20% higher than those of the CN diet [AA>+]). Pigs were followed during the growing phase (25-50 kg) and the trial lasted 28 d. The ST + POOR SC pigs were challenged with Salmonella Typhimurium and raised in a poor housing condition. The ST + POOR SC increased rectal temperature, fecal score, serum haptoglobin, and urea concentration (P < 0.05) and decreased serum albumin concentration (P < 0.05) compared with GOOD SC. Body weight, average daily feed intake, average daily gain (ADG), feed efficiency (G:F), and protein deposition (PD) were greater in GOOD SC than in ST + POOR SC (P < 0.01). However, pigs housed in ST + POOR SC fed with AA+ diet had lower body temperature (P < 0.05), increased ADG (P < 0.05) and nitrogen efficiency (P < 0.05), and a tendency for improved PD and G:F (P < 0.10) compared with CN diet fed pigs. Regardless of the SC, pigs fed AA+ diet had lower serum albumin (P < 0.05) and tended to decrease serum urea levels (P < 0.10) compared with CN diet. The results of this study suggest that the ratio of Trp, Thr, and Met + Cys to Lys for pigs are modified by sanitary conditions. Furthermore, supplementation of diets with a blend of Trp, Thr, and Met + Cys improves performance, especially under salmonella-challenge and poor housing conditions. Dietary tryptophan, threonine, and methionine supplementation can modulate immune status and influence resilience to sanitary challenges.
Collapse
Affiliation(s)
- Graziela Alves da Cunha Valini
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| | - Pedro Righetti Arnaut
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| | - Ismael França
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| | - Manoela Trevisan Ortiz
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| | - Marllon José Karpeggiane de Oliveira
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| | - Antonio Diego Brandão Melo
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| | - Danilo Alves Marçal
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| | | | | | | | - Luciano Hauschild
- Department of Animal Science, Agriculture and Veterinarian Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo 14884-900, Jaboticabal, Brazil
| |
Collapse
|
27
|
Beaumont M, Roura E, Lambert W, Turni C, Michiels J, Chalvon-Demersay T. Selective nourishing of gut microbiota with amino acids: A novel prebiotic approach? Front Nutr 2022; 9:1066898. [PMID: 36601082 PMCID: PMC9806265 DOI: 10.3389/fnut.2022.1066898] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Prebiotics are dietary substrates which promote host health when utilized by desirable intestinal bacteria. The most commonly used prebiotics are non-digestible oligosaccharides but the prebiotic properties of other types of nutrients such as polyphenols are emerging. Here, we review recent evidence showing that amino acids (AA) could function as a novel class of prebiotics based on: (i) the modulation of gut microbiota composition, (ii) the use by selective intestinal bacteria and the transformation into bioactive metabolites and (iii) the positive impact on host health. The capacity of intestinal bacteria to metabolize individual AA is species or strain specific and this property is an opportunity to favor the growth of beneficial bacteria while constraining the development of pathogens. In addition, the chemical diversity of AA leads to the production of multiple bacterial metabolites with broad biological activities that could mediate their prebiotic properties. In this context, we introduce the concept of "Aminobiotics," which refers to the functional role of some AA as prebiotics. We also present studies that revealed synergistic effects of the co-administration of AA with probiotic bacteria, indicating that AA can be used to design novel symbiotics. Finally, we discuss the difficulty to bring free AA to the distal gut microbiota and we propose potential solutions such as the use of delivery systems including encapsulation to bypass absorption in the small intestine. Future studies will need to further identify individual AA, dose and mode of administration to optimize prebiotic effects for the benefit of human and animal health.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Eugeni Roura
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | | | - Conny Turni
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | |
Collapse
|
28
|
Rezaei R, Wu G. Branched-chain amino acids regulate intracellular protein turnover in porcine mammary epithelial cells. Amino Acids 2022; 54:1491-1504. [DOI: 10.1007/s00726-022-03203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023]
|
29
|
Supplementation of mixed doses of glutamate and glutamine can improve the growth and gut health of piglets during the first 2 weeks post-weaning. Sci Rep 2022; 12:14533. [PMID: 36008459 PMCID: PMC9411166 DOI: 10.1038/s41598-022-18330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to test the effect of mixing doses of glutamate (Glu) and glutamine (Gln) on the growth, health and gut health of post-weaning piglets. One hundred twenty weaned piglets (24 ± 2 days of age) were assigned to 6 dietary groups: (1) standard diet (CO); (2) CO plus Glu (6 kg/Ton): 100Glu; (3) CO plus 75Glu + 25Gln; (4) CO plus 50Glu + 50Gln; (5) CO plus 25Glu + 75Gln and (6) CO plus 100Gln. At days 8 and 21, blood was collected for haematological and reactive oxygen metabolite analysis, intestinal mucosa for morphological and gene expression analysis, and caecal content for microbial analysis. Data were fitted using a Generalised Linear Model (GLM). Piglet growth increased linearly with an increase in Gln from d7 to d14. The Glu:Gln ratio had a quadratic effect on faecal consistency and days of diarrhoea, neutrophil% and lymphocyte%, and a positive linear effect on monocyte% in the blood at d8. The amino acids (AAs) reduced the intraepithelial lymphocytes in the jejunum, and 100Gln improved intestinal barrier integrity at d8. The caecal microbiota did not differ. Overall, this study suggested a favourable effect of mixing Glu and Gln (25 + 75-50 + 50) as a dietary supplementation in post-weaning piglets to benefit the immune and barrier function of the gut, resulting in an increase in faecal consistency and improvement of growth during the first 2 weeks post-weaning.
Collapse
|
30
|
Vasquez R, Oh JK, Song JH, Kang DK. Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:671-695. [PMID: 35969697 PMCID: PMC9353353 DOI: 10.5187/jast.2022.e58] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ju Kyoung Oh
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
31
|
Early Stepdown Weaning of Dairy Calves with Glutamine and Branched-Chain Amino Acid Supplementations. Animals (Basel) 2022; 12:ani12121474. [PMID: 35739810 PMCID: PMC9219432 DOI: 10.3390/ani12121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary We demonstrated previously that supplementation of glutamine (Gln) at 2.0% of dry matter intake (DMI) increased the rate at which dairy calves achieved ≥1.0 kg/d starter feed intake (SFI) during weaning. Because Gln supplements at <1.0% of DMI or branched-chain amino acid (BCAA) supplements have been shown to improve the performance of weaning piglets, we examined the effects of a lower dose of Gln (8.0 g/d equivalent to 1% of DMI) alone or in combination with BCAA supplementations on SFI and average daily gain (ADG) in this study. Amino acids did not affect SFI or ADG during the supplementations but decreased post-weaning SFI in an additive manner even though the ADG was not affected. The blood analysis on the last day of supplementations revealed a possibility for the Gln and BCAA supplementations to suppress SFI through leptin and serotonin secreted by the gastrointestinal tract. Abstract The study objective was to examine the effects of supplementing Gln and BCAA on the SFI and ADG of weaning dairy calves. Holstein heifer calves (11 calves /treatment) at 35 d of age were assigned to: (1) no amino acids (CTL), (2) Gln (8.0 g/d) alone (GLN), or (3) Gln (8.0 g/d) and BCAA (GLNB; 17.0, 10.0, and 11.0 g/d leucine, isoleucine, and valine, respectively) supplementations in whole milk during a stepdown weaning scheme. Calves were weaned completely once they achieved ≥1.0 kg/d SFI. Neither GLN nor GLNB affected SFI or ADG in the first week during weaning. The GLNB decreased SFI compared to CTL, but the SFI was similar between CTL and GLN in the remainder of the weaning scheme. All calves were weaned at 50 d of age. The SFI of GLNB was lower than that of GLN, and the SFI of both GLN and GLNB were lower than CTL post-weaning. The decreased SFI did not alter ADG during weaning or post-weaning. The GLNB tended to have higher plasma leptin and lower plasma serotonin concentrations compared to CTL. Glutamine and BCAA seem to affect the SFI of calves by modulating the secretions of endocrine cells in the gastrointestinal tract.
Collapse
|
32
|
Effects of Bacillus licheniformis and Bacillus subtilis on Gut Barrier Function, Proinflammatory Response, ROS Production and Pathogen Inhibition Properties in IPEC-J2—Escherichia coli/Salmonella Typhimurium Co-Culture. Microorganisms 2022; 10:microorganisms10050936. [PMID: 35630380 PMCID: PMC9145911 DOI: 10.3390/microorganisms10050936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of antimicrobial resistance raises serious concerns worldwide. Probiotics offer a promising alternative to enhance growth promotion in farm animals; however, their mode of action still needs to be elucidated. The IPEC-J2 cell line (porcine intestinal epithelial cells) is an appropriate tool to study the effect of probiotics on intestinal epithelial cells. In our experiments, IPEC-J2 cells were challenged by two gastrointestinal (GI) infection causing agents, Escherichia coli (E. coli) or Salmonella enterica ser. Typhimurium (S. Typhimurium). We focused on determining the effect of pre-, co-, and post-treatment with two probiotic candidates, Bacillus licheniformis or Bacillus subtilis, on the barrier function, proinflammatory cytokine (IL-6 and IL-8) response, and intracellular reactive oxygen species (ROS) production of IPEC-J2 cells, in addition to the adhesion inhibition effect. Bacillus licheniformis (B. licheniformis) and Bacillus subtilis (B. subtilis) proved to be anti-inflammatory and had an antioxidant effect under certain treatment combinations, and further effectively inhibited the adhesion of pathogenic bacteria. Interestingly, they had little effect on paracellular permeability. Based on our results, Bacillus licheniformis and Bacillus subtilis are both promising candidates to contribute to the beneficial effects of probiotic multispecies mixtures.
Collapse
|
33
|
Abstract
Amino acids (AAs) are required for syntheses of proteins and low-molecular-weight substances with enormous physiological importance. Since 1912, AAs have been classified as nutritionally essential amino acids (EAAs) or nonessential amino acids (NEAAs) for animals. EAAs are those AAs that are either not synthesized or insufficiently synthesized de novo in the organisms. It was assumed that all NEAAs (now known as AAs that are synthesizable in animal cells de novo [AASAs]) were formed sufficiently in animals and were not needed in diets. However, studies over the past three decades have shown that sufficient dietary AASAs (e.g. glutamine, glutamate, glycine, and proline) are necessary for the maximum growth and optimum health of pigs, chickens, and fish. Thus, the concept of "ideal protein" (protein with an optimal EAA pattern that precisely meets the physiological needs of animals), which was originally proposed in the 1950s but ignored AASAs, is not ideal in animal nutrition. Ideal diets must provide all physiologically and nutritionally essential AAs. Improved patterns of AAs in diets for swine and chickens as well as zoo and companion animals have been proposed in recent years. Animal-sourced feedstuffs supply abundant EAAs and AASAs (including glutamate, glutamine, glycine, proline, 4-hydroxyproline, and taurine) for diets of swine, poultry, fish, and crustaceans to improve their growth, development, reproduction, and health, while sustaining global animal production. Nutritionists should move beyond the "ideal protein" concept to consider optimum ratios and amounts of all proteinogenic AAs in diets for mammals, birds, and aquatic animals, and, in the case of carnivores, also taurine.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Peng Li
- North American Renderers Association, Alexandria, VA 22314, USA
| |
Collapse
|
34
|
The Effect of Amino Acids on Production of SCFA and bCFA by Members of the Porcine Colonic Microbiota. Microorganisms 2022; 10:microorganisms10040762. [PMID: 35456812 PMCID: PMC9025589 DOI: 10.3390/microorganisms10040762] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Functional amino acids supplementation to farm animals is considered to not only be beneficial by regulating intestinal barrier, oxidative stress, and immunity, but potentially also by impacting the gut microbiota. The impact of amino acids on a piglet-derived colonic microbiota was evaluated using a 48-h in vitro batch incubation strategy. The combination of 16S rRNA gene profiling with flow cytometry demonstrated that specific microbial taxa were involved in the fermentation of each of the amino acids resulting in the production of specific metabolites. Branched chain amino acids (leucine, isoleucine, valine) strongly increased branched-chain fatty acids (+23.0 mM) and valerate levels (+3.0 mM), coincided with a marked increase of Peptostreptococcaceae. Further, glutamine and glutamate specifically stimulated acetate (~20 mM) and butyrate (~10 mM) production, relating to a stimulation of a range of families containing known butyrate-producing species (Ruminococcaceae, Oscillospiraceae, and Christensenellaceae). Finally, while tryptophan was only fermented to a minor extent, arginine and lysine specifically increased propionate levels (~2 mM), likely produced by Muribaculaceae members. Overall, amino acids were thus shown to be selectively utilized by microbes originating from the porcine colonic microbiota, resulting in the production of health-related short-chain fatty acids, thus confirming the prebiotic potential of specific functional amino acids.
Collapse
|
35
|
Zaitsev SY, Kolesnik NS, Bogolyubova NV. Correlations between the Major Amino Acids and Biochemical Blood Parameters of Pigs at Controlled Fattening Duration. Molecules 2022; 27:2278. [PMID: 35408677 PMCID: PMC9000419 DOI: 10.3390/molecules27072278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Analytical control of protein and amino acid (AA) contents of animal tissues is an important problem in the fundamental and applied aspects. The aims of the work were the following: to measure the pig blood AAs; and to establish the correlations between AAs and biochemical parameters in dependence on the pig fattening duration. All 80 animals were divided onto 4 animal groups: 65, 72, 82, and 90 fattening days. The correlations between AAs and the total protein or its fractions (TP&F), nitrogen metabolites, carbohydrates, lipids, some enzymes in the pig blood for each of these animal groups obtained for the first time. The authors established the following total amounts of correlation coefficients (with reasonable p-values) in each of the group separately: group 1, 1* (p < 0.05); group 2, 0; group 3, 28* (p < 0.05) and 9** (p < 0.01); group 4, 28* (p < 0.05) and 25** (p < 0.01). Thus, about 82−90 days (groups 3 and 4) can be the optimal for the pig fattening, based on the correlation analysis for the numerous data of major AA and biochemical parameters of pig blood. These results can be useful for animal health monitoring and husbandry.
Collapse
Affiliation(s)
- Sergei Yu. Zaitsev
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 60, 142132 Podolsk, Moscow Region, Russia; (N.S.K.); (N.V.B.)
| | | | | |
Collapse
|
36
|
Müller M, Van Liefferinge E, Navarro M, Garcia-Puig E, Tilbrook A, van Barneveld R, Roura E. CCK and GLP-1 release in response to proteinogenic amino acids using a small intestine ex vivo model in pigs. J Anim Sci 2022; 100:6552238. [PMID: 35323927 PMCID: PMC9030139 DOI: 10.1093/jas/skac093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 12/03/2022] Open
Abstract
The impact of individual amino acids (AA) on gut hormone secretion and appetite regulation in pigs remains largely unknown. The aim of the present study was to determine the effect of the 20 proteinogenic AA on the release of the anorexigenic hormones cholecystokinin (CCK) and glucagon-like peptide 1 (GLP-1) in postweaning pigs. Six 25-d-old male piglets (Domestic Landrace × Large White; body weight = 6.94 ± 0.29 kg) were humanely killed for the collection of intestinal segments from the duodenum, jejunum, and ileum. Tissue samples from the three intestinal segments were used to determine which of the regions were more relevant for the analysis of gut peptides. Only the segments with the highest CCK and GLP-1 secretion and expression levels were evaluated with the 20 individual AA. Tissue segments were cut open, cleaned, and stripped of their muscle layer before identical circular samples were collected and incubated in 24-well plates for 1 h (37 °C, 5% v/v CO2). The culture broth consisted of a glucose-free KRB buffer containing no added AA (control) or with the addition of 10 mM of 1 of the 20 proteinogenic AA. Following incubation, tissues and supernatant were collected for gene expression and secretion analysis of CCK and GLP-1 levels. CCK secretion and mRNA expression were higher (P < 0.05) in duodenum when compared with proximal jejunum or ileum, whereas GLP-1/proglucagon levels were higher in ileum vs. duodenum (P < 0.05) and jejunum (P < 0.05, for GLP-1 only) in postweaning pigs. Based on these results, the effect of AA on CCK and GLP-1 secretion was studied in the duodenum and ileum, respectively. None of the AA tested stimulated both anorexigenic hormones. Of all the essential AA, Ile, Leu, Met, and Trp significantly (P < 0.05) stimulated GLP-1 from the ileum, while only Phe stimulated CCK from the duodenum. Of the nonessential AA, amide AA (Gln and Asn) caused the release of CCK, while Glu and Arg increased the release of GLP-1 from the ileum. Interpreting the results in the context of the digestion and absorption dynamics, non-bound AA are quickly absorbed and have their effect on gut peptide secretion limited to the proximal small intestine (i.e., duodenum), thus, mainly CCK. In contrast, protein-bound AA would only stimulate CCK release from the duodenum through feedback mechanisms (such as through GLP-1 secreted mainly in the ileum).
Collapse
Affiliation(s)
- Maximiliano Müller
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Elout Van Liefferinge
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Flanders, Belgium
| | - Marta Navarro
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Elisabet Garcia-Puig
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Alan Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI) and the School of Veterinary Science, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Eugeni Roura
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
37
|
He W, Wu G. Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of developing pigs. Amino Acids 2022; 54:1025-1039. [PMID: 35294675 DOI: 10.1007/s00726-022-03151-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Enterocytes of young pigs are known to use glutamine, glutamate, and glucose as major metabolic fuels. However, little is known about the roles of aspartate, alanine, and fatty acids as energy sources for these cells. Therefore, this study simultaneously determined the oxidation of the amino acids and glucose as well as short- and long-chain fatty acids in enterocytes of developing pigs. Jejunal enterocytes were isolated from 0-, 7-, 14- and 21-day-old piglets, and incubated at 37 °C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 5 mM D-glucose and one of the following: D-[U-14C]glucose, 0.5-5 mM L-[U-14C]glutamate, 0.5-5 mM L-[U-14C]glutamine, 0.5-5 mM L-[U-14C]aspartate, 0.5-5 mM L-[U-14C]alanine, 0.5-2 mM L-[U-14C]palmitate, 0.5-5 mM [U-14C]propionate, and 0.5-5 mM [1-14C]butyrate. At the end of the incubation, 14CO2 produced from each 14C-labeled substrate was collected. Rates of oxidation of each substrate by enterocytes from all age groups of piglets increased (P < 0.05) gradually with increasing its extracellular concentrations. The rates of oxidation of glutamate, glutamine, aspartate, and glucose by enterocytes from 0- to 21-day-old pigs and of alanine from newborn pigs were much greater (P < 0.05) than those for the same concentrations of palmitate, propionate, and butyrate. Compared with 0-day-old pigs, the rates of oxidation of glutamate, aspartate, glutamine, alanine, and glucose by enterocytes from 21-day-old pigs decreased (P < 0.05) markedly, without changes in palmitate oxidation. Oxidation of alanine, propionate, butyrate and palmitate by enterocytes of pigs was limited during their postnatal growth. At each postnatal age, the oxidation of glutamate, glutamine, aspartate, and glucose produced much more ATP than alanine, propionate, butyrate and palmitate. The degradation of glutamate was initiated primarily by glutamate-pyruvate and glutamate-oxaloacetate transaminases. Our results indicated that amino acids (glutamate plus glutamine plus aspartate) are the major metabolic fuels in enterocytes of 0- to 21-day-old pigs.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
38
|
Lee DT, Rochell SJ. Precision intestinal nutrition: knowledge and gaps regarding the role of amino acids during an enteric challenge. Poult Sci 2022; 101:101674. [PMID: 35124351 PMCID: PMC8819384 DOI: 10.1016/j.psj.2021.101674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/11/2023] Open
Abstract
Poultry nutritionists continually strive for more “precision” nutritional programs that provide the exact balance of nutrients that maximize broiler growth performance without economically and environmentally costly excesses. Many factors affect the precise amount and balance of nutrients needed by the broiler, including genetics, age, sex, and environment. Furthermore, broilers in intensive rearing environments will almost always be subjected to some degree of enteric stress that can alter nutrient needs. Exposure to enteric pathogens such as Eimeria spp., the intestinal parasites that cause avian coccidiosis, induces physical damage to the intestinal epithelium and activates immune responses, ultimately resulting in the repartitioning of amino acids (AA) in response to these prioritized demands. Even without any pathogenic challenge, the intestine has an already high demand for many AA, with 30 to 100% of dietary AA extracted during first pass intestinal metabolism. In many cases, increasing dietary protein from intact proteins has been shown to be a viable option to ameliorate impaired AA digestion and absorption and heightened need for certain AA of birds under an enteric stress. However, increasing dietary protein often results in concomitant increases in indigestible protein and carbohydrates that can stimulate the overgrowth of pathogenic bacteria (i.e., Clostridium perfringens). Alternative options to increase dietary AA levels are to increase all feed-grade, free AA (e.g., Met, Lys, Thr, Val), or specific individual feed-grade AA. Therefore, the objectives of this paper are to discuss precision nutrition, the dietary AA demands of the intestine, consequences of coccidiosis on AA needs of the intestine, and formulation approaches to meet these altered needs. In summary, increased dietary protein met by intact proteins has consistently demonstrated its benefits during an Eimeria spp. infection; however, to further the goal of precision nutritional programs, feeding higher levels of a specific AA to support desired functions such as intestinal recovery or immune function for birds experiencing an enteric stress still require further evaluation.
Collapse
Affiliation(s)
- D Trevor Lee
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Samuel J Rochell
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA.
| |
Collapse
|
39
|
Effect of Different Dietary Regimes on the Gut Microbiota and Fecal Metabolites of Père David’s Deer. Animals (Basel) 2022; 12:ani12050584. [PMID: 35268151 PMCID: PMC8909101 DOI: 10.3390/ani12050584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Père David’s deer is native to the middle and lower reaches of the Yangtze River and the Yellow River in China. However, the wild population became extinct in China around 1900. In 1986, 39 Père David’s deer were reintroduced into Dafeng. Up until now, its wild population has reached 2658, with a total of 6119 in 2021. At present, due to the continuous increase in the population, the repeated grazing on the same plants by the Père David’s deer has affected the re-growth of plants, which has led to insufficient natural food. Therefore, feeding supplement with silage is necessary. As a key nutritional factor, diet is the most important for the gut microbiota and metabolites of wild animals. In order to determine the effect of different dietary patterns on the nutrition and health of Père David’s deer in Dafeng Reserve in spring, we conducted a comprehensive analysis of Père David’s deer feces by UPLC-MS/MS and 16S rRNA gene sequencing to reveal its intestinal chemical environment and the differences in the fecal microbiome. Altogether, our data explored the significant changes in the gut microbiota and metabolic pathways during the transition from full silage to a combination diet with silage and plant in spring. These data provided important information to make more reasonable measures for Père David’s deer’s protection. Abstract A deep understanding of the effect of seasonal dietary changes on the nutrition and health of Père David’s deer in Dafeng Reserve will contribute greatly to Père David’s deer’s protection. In this reserve, there were three seasonal dietary regimes: feeding on naturally occurring plants (PLANT diet), silage (SILAGE diet), and a combination of natural plants and silage (COMB diet). To some extent, the COMB diet reflects the seasonal transition from silage to the all-natural plant diet, especially in early spring. However, little is known regarding the gut microbiota changes and metabolic consequences under the COMB diet. Based on 16S rRNA sequencing and ultra-high performance liquid chromatography combined with tandem mass spectrometry, the gut microbiota and fecal metabolites of Père David’s deer under these three diets were compared. Results showed the alpha diversity of the gut microbiota was significantly lower under the COMB diet compared to either the SILAGE or PLANT diets. Although no significant changes were observed in the core phyla, Firmicutes and Bacteroidetes, among the three dietary regimes, a significant lower abundance of several other phyla (Spirochaetes, Melainabacteria, Proteobacteria, and Verrucobacteria) was observed in the COMB diet compared to the SILAGE diet. A greater number of fecal metabolite differences was identified between the COMB and SILAGE or COMB and PLANT diets than between the SILAGE and PLANT diets, suggesting that the COMB diet had more of an effect on the metabolism of Père David’s deer. The integrated pathway analysis showed that several metabolic pathways were significantly affected by the different dietary regimes, such as tryptophan metabolism, vitamin metabolism, and the platelet activation pathways. These metabolic changes reflect the responses and adaptations of Père David’s deer to different diets. Taken overall, our data reveal the difference in the gut microbiota and metabolic pathways of Père David’s deer under three dietary regimes in Dafeng Reserve, which provides important information for Père David’s deer conservation.
Collapse
|
40
|
Luise D, Bosi P, Raff L, Amatucci L, Virdis S, Trevisi P. Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens. Front Microbiol 2022; 13:801827. [PMID: 35197953 PMCID: PMC8859173 DOI: 10.3389/fmicb.2022.801827] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 01/20/2023] Open
Abstract
The pressure to increasingly optimize the breeding of livestock monogastric animals resulted in antimicrobials often being misused in an attempt to improve growth performance and counteract diseases in these animals, leading to an increase in the problem of antibiotic resistance. To tackle this problem, the use of probiotics, also known as direct in-feed microbials (DFM), seems to be one of the most promising strategies. Among probiotics, the interest in Bacillus strains has been intensively increased in recent decades in pigs and poultry. The aim of the present review was to evaluate the effectiveness of Bacillus strains as probiotics and as a potential strategy for reducing the misuse of antibiotics in monogastric animals. Thus, the potential modes of action, and the effects on the performance and health of pigs (weaning pigs, lactation and gestation sows) and broilers are discussed. These searches yielded 131 articles (published before January 2021). The present review showed that Bacillus strains could favor growth in terms of the average daily gain (ADG) of post-weaning piglets and broilers, and reduce the incidence of post-weaning diarrhea in pigs by 30% and mortality in broilers by 6-8%. The benefits of Bacillus strains on these parameters showed results comparable to the benefit obtained by the use of antibiotics. Furthermore, the use of Bacillus strains gives promising results in enhancing the local adaptative immune response and in reducing the oxidative stress of broilers. Fewer data were available regarding the effect on sows. Discordant effects have been reported regarding the effect on body weight (BW) and feed intake while a number of studies have supported the hypothesis that feeding probiotics to sows could benefit their reproductive performance, namely the BW and ADG of the litters. Taken all the above-mentioned facts together, this review confirmed the effectiveness of Bacillus strains as probiotics in young pigs and broilers, favoring their health and contributing to a reduction in the misuse of direct in-feed antibiotics. The continuous development and research regarding probiotics will support a decrease in the misuse of antibiotics in livestock production in order to endorse a more sustainable rearing system in the near future.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Lena Raff
- Chr. Hansen, Animal Health and Nutrition, Hørsholm, Denmark
| | - Laura Amatucci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Eugenio FA, van Milgen J, Duperray J, Sergheraert R, Le Floc'h N. Feeding intact proteins, peptides, or free amino acids to monogastric farm animals. Amino Acids 2022; 54:157-168. [PMID: 35106634 DOI: 10.1007/s00726-021-03118-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
For terrestrial farm animals, intact protein sources like soybean meal have been the main ingredients providing the required amino acids (AA) to sustain life. However, in recent years, the availability of hydrolysed protein sources and free AA has led to the use of other forms of AA to feed farm animals. The advent of using these new forms is especially important to reduce the negative environmental impacts of animal production because these new forms allow reducing the dietary crude protein content and provide more digestible materials. However, the form in which dietary AA are provided can have an effect on the dynamics of nutrient availability for protein deposition and tissue growth including the efficiency of nutrient utilization. In this literature review, the use of different forms of AA in animal diets is explored, and their differences in digestion and absorption rates are focused on. These differences affect the postprandial plasma appearance of AA, which can have metabolic consequences, like greater insulin response when free AA or hydrolysates instead of intact proteins are fed, which can have a profound effect on metabolism and growth performance. Nevertheless, the use and application of the different AA forms in animal diets are important to achieve a more sustainable and efficient animal production system in the future, as they allow for a more precise diet formulation and reduced negative environmental impact. It is, therefore, important to differentiate the physiological and metabolic effects of different forms of AA to maximize their nutritional value in animal diets.
Collapse
Affiliation(s)
- F A Eugenio
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - J van Milgen
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - J Duperray
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - R Sergheraert
- BCF Life Sciences, Boisel, 56140, Pleucadeuc, France
| | - N Le Floc'h
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.
| |
Collapse
|
42
|
Kanmanee C, Srinual O, Punyatong M, Moonmanee T, Lumsangkul C, Tangtaweewipat S, Van Doan H, Yachai M, Chaiyaso T, Tapingkae W. Effects of Dietary Supplementation with Red Yeast (Sporidiobolus pararoseus) on Productive Performance, Egg Quality, and Duodenal Cell Proliferation of Laying Hens. Animals (Basel) 2022; 12:ani12030238. [PMID: 35158561 PMCID: PMC8833782 DOI: 10.3390/ani12030238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The present study investigated the effect of different levels of red yeast added to the diet of laying hens as a substitute for antibiotics. The aim of this study is to measure growth performance, egg quality, and small intestinal health of hens receiving this supplement at various levels during 22–60 weeks of age. The results indicate that supplementation with dietary red yeast has a positive effect on productivity and gut health; thus, we suggest administration of this additive as a substitute for antibiotics in laying hens. Abstract Nowadays, industrial poultry producers are more focused on the safety of their products, especially contaminants from feedstuffs such as mycotoxin and pesticides. The residue from animal production using antibiotic growth promoters (AGPs) may cause some problems with antimicrobial resistance in human and animals. Red yeast (Sporidiobolus pararoseus) has a cell wall consisting of β-glucan and mannan-oligosaccharides and pigments from carotenoids that may be suitable for use as a substitute for AGPs. The objective was to evaluate the effects of red yeast in laying hen diets on productive performance, egg quality, and duodenal health. A total of 22-week-old laying hens (n = 480) were divided into five groups: control diet (CON), AGP at 4.5 g/kg and red yeast supplementation at 1.0 (RY1.0), 2.0 (RY2.0) and 4.0 g/kg (RY4.0) of diet. The results show that the AGP, RY2.0, and RY4.0 groups had significantly higher final body weight compared with the other groups (p < 0.001). The red yeast supplementation improved the egg shape index (p = 0.025), Haugh unit (p < 0.001), and yolk color (p = 0.037), and decreased yolk cholesterol (p < 0.001). Diet with red yeast supplementation improved villus height to crypt depth ratio and crypt cell proliferations. In conclusion, red yeast supplementation at 2.0 g/kg of diet can substitute AGP in layer diet.
Collapse
Affiliation(s)
- Chanidapha Kanmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
| | - Montri Punyatong
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suchon Tangtaweewipat
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Mongkol Yachai
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Thanongsak Chaiyaso
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (O.S.); (M.P.); (T.M.); (C.L.); (S.T.); (H.V.D.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: ; Tel.: +66-81-594-1833
| |
Collapse
|
43
|
Supplementing functional amino acids and polyphenols at low dose can restore performance and amino acid digestibility in broilers challenged with coccidiosis. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
45
|
Luise D, Correa F, Fusco L, Bosi P, Trevisi P. Productive effects of a colostrum-oriented amino acid dietary supply for sows in transition from gestation to lactation. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1960210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diana Luise
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federico Correa
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Paolo Bosi
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Beaumont M, Lencina C, Painteaux L, Viémon-Desplanque J, Phornlaphat O, Lambert W, Chalvon-Demersay T. A mix of functional amino acids and grape polyphenols promotes the growth of piglets, modulates the gut microbiota in vivo and regulates epithelial homeostasis in intestinal organoids. Amino Acids 2021; 54:1357-1369. [PMID: 34642825 DOI: 10.1007/s00726-021-03082-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Weaning is a challenging period for gut health in piglets. Previous studies showed that dietary supplementations with either amino acids or polyphenols promote piglet growth and intestinal functions, when administered separately. Thus, we hypothesized that a combination of amino acids and polyphenols could facilitate the weaning transition. Piglets received during the first two weeks after weaning a diet supplemented or not with a mix of a low dose (0.1%) of functional amino acids (L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine) and 100 ppm of a polyphenol-rich extract from grape seeds and skins. The mix of amino acids and polyphenols improved growth and feed efficiency. These beneficial effects were associated with a lower microbiota diversity and a bloom of Lactobacillaceae in the jejunum content while the abundance of Proteobacteria was reduced in the caecum content. The mix of amino acids and polyphenols also increased the production by the caecum microbiota of short-chain fatty acids (butyrate, propionate) and of metabolites derived from amino acids (branched-chain fatty acids, valerate, putrescine) and from polyphenols (3-phenylpropionate). Experiments in piglet jejunum organoids revealed that the mix of amino acids and polyphenols upregulated the gene expression of epithelial differentiation markers while it reduced the gene expression of proliferation and innate immunity markers. In conclusion, the supplementation of a mix of amino acids and polyphenols is a promising nutritional strategy to manage gut health in piglets through the modulation of the gut microbiota and of the epithelial barrier.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France.
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Louise Painteaux
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | | | - Orasin Phornlaphat
- BARC, Bangkok Animal Research Center Co., Ltd, 74/4 Mu 7 Tambon Naiklong Bangplakod, Phrasamutjedi,, Samut Prakan, 10290, Thailand
| | | | | |
Collapse
|
47
|
Barekatain R, Chalvon-Demersay T, McLaughlan C, Lambert W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals (Basel) 2021; 11:2416. [PMID: 34438873 PMCID: PMC8388668 DOI: 10.3390/ani11082416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Two experiments were conducted to investigate the effect of arginine (Arg); the combination of Arg and glutamine (Gln); as well as an amino acid-based solution (MIX) containing Arg, Gln, threonine (Thr), and grape extract, on performance, intestinal permeability, and expression of selected mechanistic genes. Using 240 male Ross 308 off-sex broiler chickens, four experimental treatments were replicated six times with 10 birds per replicate. The experimental treatments included 5 g/kg Arg, 2.5 g/kg Arg and 2.5 g/kg Gln, and 1 g/kg MIX added to a basal diet as control. In the second study, the four dietary treatments were then given to 24 birds with or without a synthetic glucocorticoid, dexamethasone (DEX), as a gut dysfunction model. Feed conversion ratio was improved by all the supplemented treatments from day 7 to 35 of age (p < 0.001). DEX injections increased (p < 0.001) the intestinal permeability in all treatments, which tended to be reversed by Arg or MIX. Additional Arg, Arg-Gln, and MIX suppressed (p < 0.05) the overexpression of IL-1β generated by DEX. Feeding birds with MIX treatment increased (p < 0.05) expression of SGLT-1 and glutathione synthetase. In conclusion, tested amino acid supplements were effective in improving feed efficiency and restraining intestinal inflammation caused by DEX through IL-1β pathway.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | | | - Clive McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | - William Lambert
- METEX NOOVISTAGO, 32 Rue Guersant, 75017 Paris, France; (T.C.-D.); (W.L.)
| |
Collapse
|