1
|
Wang C, Li H, Li F, Yang Y, Xu Z, Gao T, Li R, Zhang R, Mu Y, Guo Z, Guo Q, Liu S. The mitochondrial protectant SS31 optimized decellularized Wharton's jelly scaffold improves allogeneic chondrocyte implantation-mediated articular cartilage repair. J Orthop Translat 2025; 52:126-137. [PMID: 40291636 PMCID: PMC12032180 DOI: 10.1016/j.jot.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background The process of allogeneic chondrocyte implantation entails obtaining donor chondrocytes, culturing them in a medium enriched with growth factors, and then introducing them-either individually or in conjunction with biocompatible scaffolds-into areas of cartilage damage. While promising, this approach is hindered by mitochondrial dysfunction in the implanted chondrocytes. Methods This research introduced an innovative approach by creating a new type of scaffold derived from Decellularized Umbilical Cord Wharton's Jelly (DUCWJ) extracted from human umbilical cords. The scaffold was manufactured using procedures involving decellularization and lyophilization. The resulting scaffold demonstrated superior characteristics, including high porosity, hydrophilic properties, and excellent biocompatibility. To enhance its function, SS31 peptides, known for their mitochondrial-protective properties, were chemically bonded to the scaffold surface, creating an SS31@DUCWJ system. This system aims to protect chondrocytes and regulate the mitochondrial respiratory chain (MRC), thereby improving cartilage repair mediated by allogeneic chondrocyte implantation. Results In vitro studies have shown that SS31 effectively attenuates metabolic dysfunction, extracellular matrix degradation, oxidative stress, inflammation, and mitochondrial damage induced by serial cell passages. Complementary in vivo experiments showed that the SS31@DUCWJ scaffold promoted regeneration of healthy articular cartilage in femoral condylar defects in rabbits. Conclusions This SS31-modified porous decellularized scaffold represents an innovative biomaterial with anti-inflammatory properties and targeted mitochondrial regulation. It offers a promising new approach for treating articular cartilage injuries. The translational potential of this article Our study was the first to successfully load the mitochondrial protectant SS31 onto a DUCWJ hydrogel scaffold for localized drug delivery. This method is highly efficacious in repairing cartilage defects and offers a promising new avenue for the treatment of such conditions.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fakai Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yongkang Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ziheng Xu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Tianze Gao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Runmeng Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruiyang Zhang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuhao Mu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zheng Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Abraham N, Pandey G, Kolipaka T, Negi M, Srinivasarao DA, Srivastava S. Exploring advancements in polysaccharide-based approaches: The cornerstone of next-generation cartilage regeneration therapeutics. Int J Biol Macromol 2025; 306:141352. [PMID: 39986526 DOI: 10.1016/j.ijbiomac.2025.141352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Cartilage regeneration poses a formidable challenge in orthopaedics due to continuous wear and tear exertion and its limited intrinsic healing capacity, which demand exploration beyond current clinical approaches. Polysaccharides emerged as promising agents for cartilage regeneration, offering biocompatibility, biodegradability, bioactivity, and ECM mimicry. This article provides an overview of the pathophysiology of cartilage diseases and current clinical approaches, followed by polysaccharide-based strategies for cartilage repair, delineating the chemical and biological properties of various polysaccharides like alginates, hyaluronic acid, and chondroitin sulfate. The emphasis lies on innovative strategies such as sulphated and cross-linked polysaccharides, with injectable polysaccharide hydrogels offering adjustable mechanical properties and easy administration. Growth factor and cellular incorporation into hydrogels enhance their therapeutic potential. At the same time, biofabrication techniques, such as filamented light biofabrication, cartilage spheroid generation, and 3D printing, offer precise control over cartilage architecture, with bio-inks comprising alginate, gelatin, and hyaluronic acid showing promise. These advancements underscore the potential of polysaccharides to revolutionize cartilage regeneration strategies, offering hope for improved patient outcomes in the future. The article concludes by addressing regulatory hurdles and the future perspective of polysaccharide-based approaches in clinical translation for cartilage regeneration.
Collapse
Affiliation(s)
- Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Wang D, Zhong Q, Xu Y, Fu J, Xie J, Chen R, Lei M, Tang Z, Mai H, Li H, Shi Z, Zheng S, Cheng H. Injectable visible light cross-linking aldehyde-based methacrylated hyaluronic acid hydrogels enhance cartilage repair via improved BMSC homing and chondrogenic differentiation. Int J Biol Macromol 2025; 307:141857. [PMID: 40058436 DOI: 10.1016/j.ijbiomac.2025.141857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Self-repair of articular cartilage defects is a significant challenge that can be addressed using drug-infused hydrogels, which improve injection convenience and provide immediate in situ adhesion. In this study, we developed a hydrogel incorporating Lipo@Kartogenin (KGN) and the cationic functional peptide SKPPGTSS (SKP) linked to aldehyde-based methacrylated hyaluronic acid (AHAMA). The innovative injectable hydrogel responded to visible light, allowing cross-linking under white light (∼30 s) and effective adhesion to cartilage tissue. The hydrogel facilitated the sustained release of KGN and SKP over approximately 28 days as it degraded, thereby promoting the homing and differentiation of endogenous bone marrow-derived mesenchymal stem cells (BMSCs). Transcriptome sequencing showed that Smad4 expression and activation of the TGF-β signaling pathway are fundamental to these processes. In vivo studies in Sprague-Dawley (SD) rats showed that this hydrogel supports optimal hyaline cartilage regeneration within 8 weeks. In conclusion, our visible light-responsive adhesive co-delivery hydrogel effectively recruited native BMSCs to cartilage lesion sites and provided an environment conducive to their differentiation into cartilage, thereby facilitating effective cartilage regeneration. This innovation represents a novel approach to the clinical repair of cartilage defects.
Collapse
Affiliation(s)
- Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yixin Xu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlang Fu
- Department of Orthopedics, Kaiping Central Hospital, Kaiping 529300, China
| | - Jiajun Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huaming Mai
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhanjun Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shaowei Zheng
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518000, China; State Key Laboratory of Quality Research in Chinese Medicines, Laboratory of Drug Discovery from Natural Resources and Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Peng X, Chen X, Zhang Y, Tian Z, Wang M, Chen Z. Advances in the pathology and treatment of osteoarthritis. J Adv Res 2025:S2090-1232(25)00072-4. [PMID: 39889821 DOI: 10.1016/j.jare.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a widespread degenerative joint disease, predominantly affects individuals from middle age onwards, exhibiting non-inflammatory characteristics. OA leads to the gradual deterioration of articular cartilage and subchondral bone, causing pain and reduced mobility. The risk of OA increases with age, making it a critical health concern for seniors. Despite significant research efforts and various therapeutic approaches, the precise causes of OA remain unclear. AIM OF REVIEW This paper provides a thorough examination of OA characteristics, pathogenic mechanisms at various levels, and personalized treatment strategies for different OA stages. The review aims to enhance understanding of disease mechanisms and establish a theoretical framework for developing more effective therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW This review systematically examines OA through multiple perspectives, integrating current knowledge of clinical presentation, pathological mechanisms, and associated signaling pathways. It assesses diagnostic methods and reviews both pharmacological and surgical treatments for OA, as well as emerging tissue engineering approaches to manage the disease. While therapeutic strategies such as exercise, anti-inflammatory drugs, and surgical interventions are employed to manage symptoms and modify joint structure, none have been able to effectively halt OA's advancement or achieve long-lasting symptom relief. Tissue engineering strategies, such as cell-seeded scaffolds, supportive matrices, and growth factor delivery, have emerged as promising approaches for cartilage repair and OA treatment. To combat the debilitating effects of OA, it is crucial to investigate the molecular basis of its pathogenesis and seek out innovative therapeutic targets for more potent preventive and treatment strategies.
Collapse
Affiliation(s)
- Xueliang Peng
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Xuanning Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200215, China
| | - Yifan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhichao Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Meihua Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
5
|
Lin X, Zhang Y, Li J, Oliver BG, Wang B, Li H, Yong KT, Li JJ. Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects. Bioact Mater 2025; 43:510-549. [PMID: 40115881 PMCID: PMC11923379 DOI: 10.1016/j.bioactmat.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 03/23/2025] Open
Abstract
Chondral and osteochondral injuries are frequently encountered in clinical practice. However, articular cartilage has limited self-healing capacity due to its sophisticated zonal structure and avascular nature, introducing significant challenges to the restoration of chondral and osteochondral tissues after injury. Improperly repaired articular cartilage can lead to irreversible joint damage and increase the risk of osteoarthritis progression. Cartilage tissue engineering using stratified scaffolds with multizonal design to match the zonal structure of articular cartilage may help to meet the complex regeneration requirements of chondral and osteochondral tissues, and address the drawbacks experienced with single-phase scaffolds. Navigating the heterogeneity in matrix organisation and cellular composition across cartilage zones is a central consideration in multizonal scaffold design. With emphasis on recent advances in scaffold design and fabrication strategies, this review captures emerging approaches on biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage, including strategies on replicating native tissue structure through variations in fibre orientation, porous structure, and cell types. Exciting progress in this dynamic field has highlighted the tremendous potential of multizonal scaffolding strategies for regenerative medicine in the recreation of functional tissues.
Collapse
Affiliation(s)
- Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Ye Zhang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haiyan Li
- Chemical and Environmental Engineering Department, School of Engineering, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| |
Collapse
|
6
|
Rosochowicz MA, Lach MS, Richter M, Jagiełło I, Suchorska WM, Trzeciak T. The iPSC secretome is beneficial for in vitro propagation of primary osteoarthritic chondrocytes cell lines. Biochem Biophys Res Commun 2024; 730:150392. [PMID: 39003867 DOI: 10.1016/j.bbrc.2024.150392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND One of the obstacles to autologous chondrocyte implantation (ACI) is obtaining a large quantity of chondrocytes without depletion of their properties. The conditioned medium (CM) from different subpopulations of stem cells (mesenchymal stromal cells (MSC) or induced pluripotent stem cells (iPSC)) could be a gamechanger. MSCs' potential is related to the donor's health and age, which could be omitted when, as a source, iPSCs are used. There is a lack of data regarding their use in the chondrocyte culture expansion. Thus, we wanted to verify whether iPSC-CM could be beneficial for the cell culture of primary chondrocyte cells. METHODS We added the iPSC-CMs from GPCCi001-A and ND 41658*H cells to the culture of primary chondrocyte cell lines isolated from OA patients (n = 6) for other two passages. The composition of the CM was evaluated using Luminex technology. Then, we analysed the senescence, proliferation rate and using flow cytometry: viability, distribution of cell cycle phases, production of reactive oxygen species (ROS) and double-strand breaks. The cartilage-related markers were evaluated using Western blot and immunofluorescence. Additionally, a three-dimensional cell culture was used to determine the potential to form cartilage particles. RESULTS iPSC-CM increased proliferation and diminished cell ROS production and senescence. CM influenced the cartilage-related protein expression and promoted the growth of cartilage particles. The cell exposed to CM did not lose the ECM proteins, suggesting the chondroprotective effect for prolonged culture time. CONCLUSION Our preliminary results suggest a beneficial effect on maintaining chondrocyte biology during in vitro expansion.
Collapse
Affiliation(s)
- Monika A Rosochowicz
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland; Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland; Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland.
| | - Michał S Lach
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland; Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland
| | - Inga Jagiełło
- Department of Tumour Pathology, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland; Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Street, 61-866, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland
| |
Collapse
|
7
|
Karami P, Laurent A, Philippe V, Applegate LA, Pioletti DP, Martin R. Cartilage Repair: Promise of Adhesive Orthopedic Hydrogels. Int J Mol Sci 2024; 25:9984. [PMID: 39337473 PMCID: PMC11432485 DOI: 10.3390/ijms25189984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cartilage repair remains a major challenge in human orthopedic medicine, necessitating the application of innovative strategies to overcome existing technical and clinical limitations. Adhesive hydrogels have emerged as promising candidates for cartilage repair promotion and tissue engineering, offering key advantages such as enhanced tissue integration and therapeutic potential. This comprehensive review navigates the landscape of adhesive hydrogels in cartilage repair, discussing identified challenges, shortcomings of current treatment options, and unique advantages of adhesive hydrogel products and scaffolds. While emphasizing the critical need for in situ lateral integration with surrounding tissues, we dissect current limitations and outline future perspectives for hydrogel scaffolds in cartilage repair. Moreover, we examine the clinical translation pathway and regulatory considerations specific to adhesive hydrogels. Overall, this review synthesizes the existing insights and knowledge gaps and highlights directions for future research regarding adhesive hydrogel-based devices in advancing cartilage tissue engineering.
Collapse
Affiliation(s)
- Peyman Karami
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Alexis Laurent
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Virginie Philippe
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Robin Martin
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
8
|
Chen Y, Yan Y, Tian R, Sheng Z, Li L, Chen J, Liao Y, Wen Y, Lu J, Liu X, Sun W, Wu H, Liao Y, Zhang X, Chen X, An C, Zhao K, Liu W, Gao J, Hay DC, Ouyang H. Chemically programmed metabolism drives a superior cell fitness for cartilage regeneration. SCIENCE ADVANCES 2024; 10:eadp4408. [PMID: 39259800 PMCID: PMC11389791 DOI: 10.1126/sciadv.adp4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
The rapid advancement of cell therapies underscores the importance of understanding fundamental cellular attributes. Among these, cell fitness-how transplanted cells adapt to new microenvironments and maintain functional stability in vivo-is crucial. This study identifies a chemical compound, FPH2, that enhances the fitness of human chondrocytes and the repair of articular cartilage, which is typically nonregenerative. Through drug screening, FPH2 was shown to broadly improve cell performance, especially in maintaining chondrocyte phenotype and enhancing migration. Single-cell transcriptomics indicated that FPH2 induced a super-fit cell state. The mechanism primarily involves the inhibition of carnitine palmitoyl transferase I and the optimization of metabolic homeostasis. In animal models, FPH2-treated human chondrocytes substantially improved cartilage regeneration, demonstrating well-integrated tissue interfaces in rats. In addition, an acellular FPH2-loaded hydrogel proved effective in preventing the onset of osteoarthritis. This research provides a viable and safe method to enhance chondrocyte fitness, offering insights into the self-regulatory mechanisms of cell fitness.
Collapse
Affiliation(s)
- Yishan Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Ruonan Tian
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zixuan Sheng
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiachen Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Liao
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junting Lu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Xinyu Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Haoyu Wu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhu Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuri Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengrui An
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhao
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
9
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Yue L, Lim R, Owens BD. Latest Advances in Chondrocyte-Based Cartilage Repair. Biomedicines 2024; 12:1367. [PMID: 38927573 PMCID: PMC11201646 DOI: 10.3390/biomedicines12061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chondrocyte-based cell therapy has been used for more than 30 years and is still considered to be a promising method of cartilage repair despite some limitations. This review introduces the latest developments of four generations of autologous chondrocyte implantation and current autologous chondrocyte products. The regeneration of cartilage from adult chondrocytes is limited by culture-induced dedifferentiation and patient age. Cartibeads is an innovative three-step method to produce high-quality hyaline cartilage microtissues, and it is developed from adult dedifferentiated chondrocytes with a high number of cell passages. In addition, allogeneic chondrocyte therapies using the Quantum hollow-fiber bioreactor and several signaling pathways involved in chondrocyte-based cartilage repair are mentioned, such as WNT signaling, the BMP-2/WISP1 pathway, and the FGF19 pathway.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ryan Lim
- Department of Biology, Brown University, Providence, RI 02912, USA;
| | - Brett D. Owens
- Department of Orthopaedics, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
- University Orthopedics, East Providence, RI 02914, USA
| |
Collapse
|
11
|
Zannoni F, Caravelli S, Russo A, Perisano C, Greco T, Baiardi A, Di Ponte M, Vocale E, Mosca M. Clinical results in patients affected by moderate-severe knee osteoarthritis and treated with micro-fragmented adipose tissue: the therapeutic effects on symptomatology. Musculoskelet Surg 2024; 108:215-224. [PMID: 38602604 DOI: 10.1007/s12306-024-00816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Osteoarthrosis is a degenerative musculoskeletal disease that presents a major public health problem, due to the increasing average age of the active population, as well as the increasing percentage of obesity or overweight of the general population. New therapeutic approaches have been developed, such as regenerative medicine that uses mesenchymal stromal cells taken from adipose tissue. This study analyzed the clinical potential benefits of using autologous adipose tissue to treat patients with moderate-severe knee osteoarthritis.In 2021, a total of 50 knees, affected by moderate-severe knee osteoarthritis, were treated with an intra-articular injection of micro-fragmented subcutaneous adipose tissue. Patients were submitted to the KOOS questionnaire before the operation and one year after the operation and VAS pain score at time 0, 3, 6, 12 months.Of the 50 patients treated, 2 patients were excluded from the study. Of the remaining 48 patients, improvements have been achieved in all subclasses of KOOS. In particular, VAS score proves that improvements are more considerable starting from the 3rd month after surgery.The results obtained in this study show the safety and potential benefit of the use of autologous micro-fragmented adipose on people who are affected by moderate-severe knee osteoarthritis.
Collapse
Affiliation(s)
- F Zannoni
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - S Caravelli
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy.
| | - A Russo
- II Clinic of Orthopaedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C Perisano
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - T Greco
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - A Baiardi
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - M Di Ponte
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - E Vocale
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| | - M Mosca
- U.O. Ortopedia Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bentivoglio (BO), Italy
| |
Collapse
|
12
|
Zhou L, Ho KWK, Zheng L, Xu J, Chen Z, Ye X, Zou L, Li Y, Chang L, Shao H, Li X, Long J, Nie Y, Stoddart MJ, Lai Y, Qin L. A rabbit osteochondral defect (OCD) model for evaluation of tissue engineered implants on their biosafety and efficacy in osteochondral repair. Front Bioeng Biotechnol 2024; 12:1352023. [PMID: 38766649 PMCID: PMC11099227 DOI: 10.3389/fbioe.2024.1352023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Osteochondral defect (OCD) is a common but challenging condition in orthopaedics that imposes huge socioeconomic burdens in our aging society. It is imperative to accelerate the R&D of regenerative scaffolds using osteochondral tissue engineering concepts. Yet, all innovative implant-based treatments require animal testing models to verify their feasibility, biosafety, and efficacy before proceeding to human trials. Rabbit models offer a more clinically relevant platform for studying OCD repair than smaller rodents, while being more cost-effective than large animal models. The core-decompression drilling technique to produce full-thickness distal medial femoral condyle defects in rabbits can mimic one of the trauma-relevant OCD models. This model is commonly used to evaluate the implant's biosafety and efficacy of osteochondral dual-lineage regeneration. In this article, we initially indicate the methodology and describe a minimally-invasive surgical protocol in a step-wise manner to generate a standard and reproducible rabbit OCD for scaffold implantation. Besides, we provide a detailed procedure for sample collection, processing, and evaluation by a series of subsequent standardized biochemical, radiological, biomechanical, and histological assessments. In conclusion, the well-established, easy-handling, reproducible, and reliable rabbit OCD model will play a pivotal role in translational research of osteochondral tissue engineering.
Collapse
Affiliation(s)
- Liangbin Zhou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
| | - Ki-Wai Kevin Ho
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Li Zou
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hongwei Shao
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jing Long
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| | - Yangyi Nie
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| | | | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
14
|
Lammi MJ, Qu C. Regulation of Oxygen Tension as a Strategy to Control Chondrocytic Phenotype for Cartilage Tissue Engineering and Regeneration. Bioengineering (Basel) 2024; 11:211. [PMID: 38534484 DOI: 10.3390/bioengineering11030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Cartilage defects and osteoarthritis are health problems which are major burdens on health care systems globally, especially in aging populations. Cartilage is a vulnerable tissue, which generally faces a progressive degenerative process when injured. This makes it the 11th most common cause of global disability. Conservative methods are used to treat the initial phases of the illness, while orthopedic management is the method used for more progressed phases. These include, for instance, arthroscopic shaving, microfracturing and mosaicplasty, and joint replacement as the final treatment. Cell-based implantation methods have also been developed. Despite reports of successful treatments, they often suffer from the non-optimal nature of chondrocyte phenotype in the repair tissue. Thus, improved strategies to control the phenotype of the regenerating cells are needed. Avascular tissue cartilage relies on diffusion for nutrients acquisition and the removal of metabolic waste products. A low oxygen content is also present in cartilage, and the chondrocytes are, in fact, well adapted to it. Therefore, this raises an idea that the regulation of oxygen tension could be a strategy to control the chondrocyte phenotype expression, important in cartilage tissue for regenerative purposes. This narrative review discusses the aspects related to oxygen tension in the metabolism and regulation of articular and growth plate chondrocytes and progenitor cell phenotypes, and the role of some microenvironmental factors as regulators of chondrocytes.
Collapse
Affiliation(s)
- Mikko J Lammi
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Chengjuan Qu
- Department of Odontology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
15
|
Walton BL, Shattuck-Brandt R, Hamann CA, Tung VW, Colazo JM, Brand DD, Hasty KA, Duvall CL, Brunger JM. A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578281. [PMID: 38352576 PMCID: PMC10862827 DOI: 10.1101/2024.01.31.578281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Objective Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites characterized by cartilage degeneration. Methods An scFv specific for type II collagen (CII) was used to produce a synthetic Notch (synNotch) receptor that enables "CII-synNotch" mesenchymal stromal cells (MSCs) to recognize CII fibers exposed in damaged cartilage. Engineered cell activation by both CII-treated culture surfaces and on primary tissue samples was measured via inducible reporter transgene expression. TGFβ3-expressing cells were assessed for cartilage anabolic gene expression via qRT-PCR. In a co-culture with CII-synNotch MSCs engineered to express IL-1Ra, ATDC5 chondrocytes were stimulated with IL-1α, and inflammatory responses of ATDC5s were profiled via qRT-PCR and an NF-κB reporter assay. Results CII-synNotch MSCs are highly responsive to CII, displaying activation ranges over 40-fold in response to physiologic CII inputs. CII-synNotch cells exhibit the capacity to distinguish between healthy and damaged cartilage tissue and constrain transgene expression to regions of exposed CII fibers. Receptor-regulated TGFβ3 expression resulted in upregulation of Acan and Col2a1 in MSCs, and inducible IL-1Ra expression by engineered CII-synNotch MSCs reduced pro-inflammatory gene expression in chondrocytes. Conclusion This work demonstrates proof-of-concept that the synNotch platform guides MSCs for spatially regulated, disease-dependent delivery of OA-relevant biologic drugs.
Collapse
Affiliation(s)
- Bonnie L. Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Catherine A. Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Victoria W. Tung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - David D. Brand
- Research Service, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Karen A. Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis VA Medical Center, Memphis, TN, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Jonathan M. Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
16
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
17
|
Diaz-Solano D, Sadri B, Peshkova M, Shpichka A, Smirnova O, Shams R, Timashev P, Vosough M. Advanced Therapeutic Medicinal Products in Bone and Cartilage Defects. Curr Rev Clin Exp Pharmacol 2024; 19:355-369. [PMID: 38275042 DOI: 10.2174/0127724328274436231207062008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
The number of patients with functional loss of bone and cartilage tissue has shown an increasing trend. Insufficient or inappropriate conventional treatments applied for trauma, orthopedic diseases, or other bone and cartilage-related disorders can lead to bone and cartilage damage. This represents a worldwide public health issue and a significant economic burden. Advanced therapeutic medicinal products (ATMPs) proposed promising alternative therapeutic modalities by application of cell-based and tissue engineering approaches. Recently, several ATMPs have been developed to promote bone and cartilage tissue regeneration. Fifteen ATMPs, two related to bone and 13 related to cartilage, have received regulatory approval and marketing authorization. However, four ATMPs were withdrawn from the market for various reasons. However, ATMPs that are still on the market have demonstrated positive results, their broad application faced limitations. The development and standardization of methodologies will be a major challenge in the coming decades. Currently, the number of ATMPs in clinical trials using mesenchymal stromal cells or chondrocytes indicates a growing recognition that current ATMPs can be improved. Research on bone and cartilage tissue regeneration continues to expand. Cell-based therapies are likely to be clinically supported by the new ATMPs, innovative fabrication processes, and enhanced surgical approaches. In this study, we highlighted the available ATMPs that have been used in bone and cartilage defects and discussed their advantages and disadvantages in clinical applications.
Collapse
Affiliation(s)
- Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Moser LB, Bauer C, Otahal A, Kern D, Dammerer D, Zantop T, Nehrer S. Mincing bovine articular cartilage with commercially available shavers reduces the viability of chondrocytes compared to scalpel mincing. J Exp Orthop 2023; 10:97. [PMID: 37768416 PMCID: PMC10539273 DOI: 10.1186/s40634-023-00661-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The study aimed to compare the effect of mincing bovine articular cartilage with different shaver blades on chondrocyte viability. METHODS Bovine articular cartilage was harvested either with a scalpel or with three different shaver blades (2.5 mm, 3.5 mm, or 4.2 mm) from a commercially available shaver. The cartilage harvested with a scalpel was then minced into fragments smaller than 1 mm3 with a scalpel. All four conditions were cultivated in a culture medium for seven days. After Day 1 and Day 7, the following measurements were performed: metabolic activity, RNA isolation, and gene expression of anabolic (COL2A1 and ACAN) and catabolic genes (MMP1 and MMP13), live/dead staining and visualization using confocal microscopy, and flow cytometric characterization of minced cartilage chondrocytes. RESULTS Mincing the cartilage with shavers significantly reduced metabolic activity after one and seven days compared to scalpel mincing (p < 0.001). Gene expression of anabolic genes (COL2A1 and ACAN) was reduced, while catabolic genes (MMP1 and MMP13) were increased after day 7 in all shaver conditions. Confocal microscopy showed a thin line of dead cells at the lesion side with viable cells beneath for the scalpel mincing and a higher number of dead cells diffusely distributed in the shaver conditions. After seven days, there was a significant decrease in viable cells in the shaver conditions compared to scalpel mincing (p < 0.05). Flow cytometric characterization revealed fewer intact cells and proportionally more dead cells in all shaver conditions compared to the scalpel mincing. CONCLUSION Mincing bovine articular cartilage with commercially available shavers reduces the viability of chondrocytes compared to scalpel mincing immediately after harvest and after seven days in culture. This suggests that mincing cartilage with a shaver should be considered a matrix rather than a cell therapy. LEVEL OF EVIDENCE Level II therapeutic study.
Collapse
Affiliation(s)
- Lukas B Moser
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria.
- Department of Orthopaedics and Traumatology, University Hospital Krems, 3500, Krems, Austria.
| | - Christoph Bauer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Alexander Otahal
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Daniela Kern
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Dietmar Dammerer
- Department of Orthopaedics and Traumatology, University Hospital Krems, 3500, Krems, Austria
| | - Thore Zantop
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Sporthopaedicum Straubing, Straubing, Germany
- Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, 3500, Krems, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Orthopaedics and Traumatology, University Hospital Krems, 3500, Krems, Austria
| |
Collapse
|
19
|
Philippe V, Jeannerat A, Peneveyre C, Jaccoud S, Scaletta C, Hirt-Burri N, Abdel-Sayed P, Raffoul W, Darwiche S, Applegate LA, Martin R, Laurent A. Autologous and Allogeneic Cytotherapies for Large Knee (Osteo)Chondral Defects: Manufacturing Process Benchmarking and Parallel Functional Qualification. Pharmaceutics 2023; 15:2333. [PMID: 37765301 PMCID: PMC10536774 DOI: 10.3390/pharmaceutics15092333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cytotherapies are often necessary for the management of symptomatic large knee (osteo)-chondral defects. While autologous chondrocyte implantation (ACI) has been clinically used for 30 years, allogeneic cells (clinical-grade FE002 primary chondroprogenitors) have been investigated in translational settings (Swiss progenitor cell transplantation program). The aim of this study was to comparatively assess autologous and allogeneic approaches (quality, safety, functional attributes) to cell-based knee chondrotherapies developed for clinical use. Protocol benchmarking from a manufacturing process and control viewpoint enabled us to highlight the respective advantages and risks. Safety data (telomerase and soft agarose colony formation assays, high passage cell senescence) and risk analyses were reported for the allogeneic FE002 cellular active substance in preparation for an autologous to allogeneic clinical protocol transposition. Validation results on autologous bioengineered grafts (autologous chondrocyte-bearing Chondro-Gide scaffolds) confirmed significant chondrogenic induction (COL2 and ACAN upregulation, extracellular matrix synthesis) after 2 weeks of co-culture. Allogeneic grafts (bearing FE002 primary chondroprogenitors) displayed comparable endpoint quality and functionality attributes. Parameters of translational relevance (transport medium, finished product suturability) were validated for the allogeneic protocol. Notably, the process-based benchmarking of both approaches highlighted the key advantages of allogeneic FE002 cell-bearing grafts (reduced cellular variability, enhanced process standardization, rationalized logistical and clinical pathways). Overall, this study built on our robust knowledge and local experience with ACI (long-term safety and efficacy), setting an appropriate standard for further clinical investigations into allogeneic progenitor cell-based orthopedic protocols.
Collapse
Affiliation(s)
- Virginie Philippe
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Salim Darwiche
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Alexis Laurent
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| |
Collapse
|
20
|
Qin Y, Coleman RM. Ligand Composition and Coating Density Co-Modulate the Chondrocyte Function on Poly(glycerol-dodecanedioate). J Funct Biomater 2023; 14:468. [PMID: 37754882 PMCID: PMC10531919 DOI: 10.3390/jfb14090468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Inducing chondrocyte redifferentiation and promoting cartilaginous matrix accumulation are key challenges in the application of biomaterials in articular cartilage repair. Poly(glycerol-dodecanedioate) (PGD) is a viable candidate for scaffold design in cartilage tissue engineering (CTE). However, the surface properties of PGD are not ideal for cell attachment and growth due to its relative hydrophobicity compared with natural extracellular matrix (ECM). In this study, PGD was coated with various masses of collagen type I or hyaluronic acid, individually or in combination, to generate a cell-material interface with biological cues. The effects of ligand composition and density on the PGD surface properties and shape, metabolic activity, cell phenotype, and ECM production of human articular chondrocytes (hACs) were evaluated. Introducing ECM ligands on PGD significantly improved its hydrophilicity and promoted the chondrocyte's anabolic activity. The morphology and anabolic activity of hACs on PGD were co-modulated by ligand composition and density, suggesting a combinatorial effect of both coating parameters on chondrocyte function during monolayer culture. Hyaluronic acid and its combination with collagen maintained a round cell shape and redifferentiated phenotype. This study demonstrated the complex mechanism of ligand-guided interactions between cell and biomaterial substrate and the potential of PGD as a scaffold material in the field of CTE.
Collapse
Affiliation(s)
- Yue Qin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Rhima M. Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Hulme CH, Garcia JK, Mennan C, Perry J, Roberts S, Norris K, Baird D, Rix L, Banerjee R, Meyer C, Wright KT. The Upscale Manufacture of Chondrocytes for Allogeneic Cartilage Therapies. Tissue Eng Part C Methods 2023; 29:424-437. [PMID: 37395490 PMCID: PMC10517319 DOI: 10.1089/ten.tec.2023.0037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Allogeneic chondrocyte therapies need to be developed to allow more individuals to be treated with a cell therapy for cartilage repair and to reduce the burden and cost of the current two-stage autologous procedures. Upscale manufacture of chondrocytes using a bioreactor could help provide an off-the-shelf allogeneic chondrocyte therapy with many doses being produced in a single manufacturing run. In this study, we assess a good manufacturing practice-compliant hollow-fiber bioreactor (Quantum®) for adult chondrocyte manufacture. Chondrocytes were isolated from knee arthroplasty-derived cartilage (n = 5) and expanded in media supplemented with 10% fetal bovine serum (FBS) or 5% human platelet lysate (hPL) on tissue culture plastic (TCP) for a single passage. hPL-supplemented cultures were then expanded in the Quantum bioreactor for a further passage. Matched, parallel cultures in hPL or FBS were maintained on TCP. Chondrocytes from all culture conditions were characterized in terms of growth kinetics, morphology, immunoprofile, chondrogenic potential (chondrocyte pellet assays), and single telomere length analysis. Quantum expansion of chondrocytes resulted in 86.4 ± 38.5 × 106 cells in 8.4 ± 1.5 days, following seeding of 10.2 ± 3.6 × 106 cells. This related to 3.0 ± 1.0 population doublings in the Quantum bioreactor, compared with 2.1 ± 0.6 and 1.3 ± 1.0 on TCP in hPL- and FBS-supplemented media, respectively. Quantum- and TCP-expanded cultures retained equivalent chondropotency and mesenchymal stromal cell marker immunoprofiles, with only the integrin marker, CD49a, decreasing following Quantum expansion. Quantum-expanded chondrocytes demonstrated equivalent chondrogenic potential (as assessed by ability to form and maintain chondrogenic pellets) with matched hPL TCP populations. hPL manufacture, however, led to reduced chondrogenic potential and increased cell surface positivity of integrins CD49b, CD49c, and CD51/61 compared with FBS cultures. Quantum expansion of chondrocytes did not result in shortened 17p telomere length when compared with matched TCP cultures. This study demonstrates that large numbers of adult chondrocytes can be manufactured in the Quantum hollow-fiber bioreactor. This rapid, upscale expansion does not alter chondrocyte phenotype when compared with matched TCP expansion. Therefore, the Quantum provides an attractive method of manufacturing chondrocytes for clinical use. Media supplementation with hPL for chondrocyte expansion may, however, be unfavorable in terms of retaining chondrogenic capacity.
Collapse
Affiliation(s)
- Charlotte H. Hulme
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - John K. Garcia
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Claire Mennan
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Jade Perry
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Sally Roberts
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Kevin Norris
- TeloNostiX Ltd, Central Biotechnology Services, Cardiff, United Kingdom
| | - Duncan Baird
- TeloNostiX Ltd, Central Biotechnology Services, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Larissa Rix
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Robin Banerjee
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Carl Meyer
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| | - Karina T. Wright
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
| |
Collapse
|
22
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
23
|
Jiang J, Altammar J, Cong X, Ramsauer L, Steinbacher V, Dornseifer U, Schilling AF, Machens HG, Moog P. Hypoxia Preconditioned Serum (HPS) Promotes Proliferation and Chondrogenic Phenotype of Chondrocytes In Vitro. Int J Mol Sci 2023; 24:10441. [PMID: 37445617 PMCID: PMC10341616 DOI: 10.3390/ijms241310441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous chondrocyte implantation (ACI) for the treatment of articular cartilage defects remains challenging in terms of maintaining chondrogenic phenotype during in vitro chondrocyte expansion. Growth factor supplementation has been found supportive in improving ACI outcomes by promoting chondrocyte redifferentiation. Here, we analysed the chondrogenic growth factor concentrations in the human blood-derived secretome of Hypoxia Preconditioned Serum (HPS) and assessed the effect of HPS-10% and HPS-40% on human articular chondrocytes from osteoarthritic cartilage at different time points compared to normal fresh serum (NS-10% and NS-40%) and FCS-10% culture conditions. In HPS, the concentrations of TGF-beta1, IGF-1, bFGF, PDGF-BB and G-CSF were found to be higher than in NS. Chondrocyte proliferation was promoted with higher doses of HPS (HPS-40% vs. HPS-10%) and longer stimulation (4 vs. 2 days) compared to FCS-10%. On day 4, immunostaining of the HPS-10%-treated chondrocytes showed increased levels of collagen type II compared to the other conditions. The promotion of the chondrogenic phenotype was validated with quantitative real-time PCR for the expression of collagen type II (COL2A1), collagen type I (COL1A1), SOX9 and matrix metalloproteinase 13 (MMP13). We demonstrated the highest differentiation index (COL2A1/COL1A1) in HPS-10%-treated chondrocytes on day 4. In parallel, the expression of differentiation marker SOX9 was elevated on day 4, with HPS-10% higher than NS-10/40% and FCS-10%. The expression of the cartilage remodelling marker MMP13 was comparable across all culture conditions. These findings implicate the potential of HPS-10% to improve conventional FCS-based ACI culture protocols by promoting the proliferation and chondrogenic phenotype of chondrocytes during in vitro expansion.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Jannat Altammar
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Vincent Steinbacher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
24
|
Canonici F, Cocumelli C, Cersini A, Marcoccia D, Zepparoni A, Altigeri A, Caciolo D, Roncoroni C, Monteleone V, Innocenzi E, Alimonti C, Ghisellini P, Rando C, Pechkova E, Eggenhöffner R, Scicluna MT, Barbaro K. Articular Cartilage Regeneration by Hyaline Chondrocytes: A Case Study in Equine Model and Outcomes. Biomedicines 2023; 11:1602. [PMID: 37371697 DOI: 10.3390/biomedicines11061602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cartilage injury defects in animals and humans result in the development of osteoarthritis and the progression of joint deterioration. Cell isolation from equine hyaline cartilage and evaluation of their ability to repair equine joint cartilage injuries establish a new experimental protocol for an alternative approach to osteochondral lesions treatment. Chondrocytes (CCs), isolated from the autologous cartilage of the trachea, grown in the laboratory, and subsequently arthroscopically implanted into the lesion site, were used to regenerate a chondral lesion of the carpal joint of a horse. Biopsies of the treated cartilage taken after 8 and 13 months of implantation for histological and immunohistochemical evaluation of the tissue demonstrate that the tissue was still immature 8 months after implantation, while at 13 months it was organized almost similarly to the original hyaline cartilage. Finally, a tissue perfectly comparable to native articular cartilage was detected 24 months after implantation. Histological investigations demonstrate the progressive maturation of the hyaline cartilage at the site of the lesion. The hyaline type of tracheal cartilage, used as a source of CCs, allows for the repair of joint cartilage injuries through the neosynthesis of hyaline cartilage that presents characteristics identical to the articular cartilage of the original tissue.
Collapse
Affiliation(s)
- Fernando Canonici
- Equine Practice s.r.l., Campagnano, Strada Valle del Baccano 80, 00063 Rome, Italy
| | - Cristiano Cocumelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Alessia Zepparoni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Annalisa Altigeri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Daniela Caciolo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Cristina Roncoroni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Valentina Monteleone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Elisa Innocenzi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Paola Ghisellini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Cristina Rando
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Eugenia Pechkova
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Roberto Eggenhöffner
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
25
|
Vignon C, Hilpert M, Toupet K, Goubaud A, Noël D, de Kalbermatten M, Hénon P, Jorgensen C, Barbero A, Garitaonandia I. Evaluation of expanded peripheral blood derived CD34+ cells for the treatment of moderate knee osteoarthritis. Front Bioeng Biotechnol 2023; 11:1150522. [PMID: 37288358 PMCID: PMC10242004 DOI: 10.3389/fbioe.2023.1150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023] Open
Abstract
Knee osteoarthritis (OA) is a degenerative joint disease of the knee that results from the progressive loss of articular cartilage. It is most common in the elderly and affects millions of people worldwide, leading to a continuous increase in the number of total knee replacement surgeries. These surgeries improve the patient's physical mobility, but can lead to late infection, loosening of the prosthesis, and persistent pain. We would like to investigate if cell-based therapies can avoid or delay such surgeries in patients with moderate OA by injecting expanded autologous peripheral blood derived CD34+ cells (ProtheraCytes®) into the articular joint. In this study we evaluated the survival of ProtheraCytes® when exposed to synovial fluid and their performance in vitro with a model consisting of their co-culture with human OA chondrocytes in separate layers of Transwells and in vivo with a murine model of OA. Here we show that ProtheraCytes® maintain high viability (>95%) when exposed for up to 96 hours to synovial fluid from OA patients. Additionally, when co-cultured with OA chondrocytes, ProtheraCytes® can modulate the expression of some chondrogenic (collagen II and Sox9) and inflammatory/degrading (IL1β, TNF, and MMP-13) markers at gene or protein levels. Finally, ProtheraCytes® survive after injection into the knee of a collagenase-induced osteoarthritis mouse model, engrafting mainly in the synovial membrane, probably due to the fact that ProtheraCytes® express CD44, a receptor of hyaluronic acid, which is abundantly present in the synovial membrane. This report provides preliminary evidence of the therapeutic potential of CD34+ cells on OA chondrocytes in vitro and their survival after in vivo implantation in the knee of mice and merits further investigation in future preclinical studies in OA models.
Collapse
Affiliation(s)
| | - Morgane Hilpert
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karine Toupet
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, Montpellier, France
| | | | - Danièle Noël
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, Montpellier, France
| | | | | | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, Montpellier, France
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
26
|
Cancedda R, Mastrogiacomo M. Transit Amplifying Cells (TACs): a still not fully understood cell population. Front Bioeng Biotechnol 2023; 11:1189225. [PMID: 37229487 PMCID: PMC10203484 DOI: 10.3389/fbioe.2023.1189225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Maintenance of tissue homeostasis and tissue regeneration after an insult are essential functions of adult stem cells (SCs). In adult tissues, SCs proliferate at a very slow rate within "stem cell niches", but, during tissue development and regeneration, before giving rise to differentiated cells, they give rise to multipotent and highly proliferative cells, known as transit-amplifying cells (TACs). Although differences exist in diverse tissues, TACs are not only a transitory phase from SCs to post-mitotic cells, but they also actively control proliferation and number of their ancestor SCs and proliferation and differentiation of their progeny toward tissue specific functional cells. Autocrine signals and negative and positive feedback and feedforward paracrine signals play a major role in these controls. In the present review we will consider the generation and the role played by TACs during development and regeneration of lining epithelia characterized by a high turnover including epidermis and hair follicles, ocular epithelial surfaces, and intestinal mucosa. A comparison between these different tissues will be made. There are some genes and molecular pathways whose expression and activation are common to most TACs regardless their tissue of origin. These include, among others, Wnt, Notch, Hedgehog and BMP pathways. However, the response to these molecular signals can vary in TACs of different tissues. Secondly, we will consider cultured cells derived from tissues of mesodermal origin and widely adopted for cell therapy treatments. These include mesenchymal stem cells and dedifferentiated chondrocytes. The possible correlation between cell dedifferentiation and reversion to a transit amplifying cell stage will be discussed.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genoa, Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università Degli Studi di Genova, Genova, Italy
| |
Collapse
|
27
|
Isaeva E, Kisel A, Beketov E, Demyashkin G, Yakovleva N, Lagoda T, Arguchinskaya N, Baranovsky D, Ivanov S, Shegay P, Kaprin A. Effect of Collagen and GelMA on Preservation of the Costal Chondrocytes' Phenotype in a Scaffold in vivo. Sovrem Tekhnologii Med 2023; 15:5-16. [PMID: 37389022 PMCID: PMC10306965 DOI: 10.17691/stm2023.15.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 07/01/2023] Open
Abstract
The aim of the study was to compare type I collagen-based and methacryloyl gelatin-based (GelMA) hydrogels by their ability to form hyaline cartilage in animals after subcutaneous implantation of scaffolds. Materials and Methods Chondrocytes were isolated from the costal cartilage of newborn rats using 0.15% collagenase solution in DMEM. The cells was characterized by glycosaminoglycan staining with alcian blue. Chondrocyte scaffolds were obtained from 4% type I porcine atelocollagen and 10% GelMA by micromolding and then implanted subcutaneously into the withers of two groups of Wistar rats. Histological and immunohistochemical studies were performed on days 12 and 26 after implantation. Tissue samples were stained with hematoxylin and eosin, alcian blue; type I and type II collagens were identified by the corresponding antibodies. Results The implanted scaffolds induced a moderate inflammatory response in both groups when implanted in animals. By day 26 after implantation, both collagen and GelMA had almost completely resorbed. Cartilage tissue formation was observed in both animal groups. The newly formed tissue was stained intensively with alcian blue, and the cells were positive for both types of collagen. Cartilage tissue was formed among muscle fibers. Conclusion The ability of collagen type I and GelMA hydrogels to form hyaline cartilage in animals after subcutaneous implantation of scaffolds was studied. Both collagen and GelMA contributed to formation of hyaline-like cartilage tissue type in animals, but the chondrocyte phenotype is characterized as mixed. Additional detailed studies of possible mechanisms of chondrogenesis under the influence of each of the hydrogels are needed.
Collapse
Affiliation(s)
- E.V. Isaeva
- Senior Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - A.A. Kisel
- Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - E.E. Beketov
- Researcher, Laboratory of Medical and Environmental Dosimetry and Radiation Safety; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Associate Professor, Engineering Physics Institute of Biomedicine; Obninsk Institute for Nuclear Power Engineering — Branch of the National Research Nuclear University MEPhI, 1 Studgorodok, Obninsk, 249034, Russia
| | - G.A. Demyashkin
- Head of the Department of Pathomorphology; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Head of Department of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Malaya Trubetskaya St., Moscow, 119991, Russia
| | - N.D. Yakovleva
- Lecturer; Medical Technical School, 75 A Lenina St., Obninsk, 249037, Russia
| | - T.S. Lagoda
- Research Laboratory Assistant, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - N.V. Arguchinskaya
- Junior Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - D.S. Baranovsky
- Head of Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Researcher, Research and Educational Resource Center for Cellular Technologies; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - S.A. Ivanov
- Corresponding Member of the Russian Academy of Sciences, Director; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Professor, Department of Oncology and X-ray Radiology named after V.P. Kharchenko, Medical Institute; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - P.V. Shegay
- Head of the Center for Innovative Radiological and Regenerative Technologies; National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - A.D. Kaprin
- Professor, Academician of the Russian Academy of Sciences, General Director; National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia Head of the Department of Urology and Operative Nephrology with a Course of Oncourology, Medical Institute; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| |
Collapse
|
28
|
Yildirim N, Amanzhanova A, Kulzhanova G, Mukasheva F, Erisken C. Osteochondral Interface: Regenerative Engineering and Challenges. ACS Biomater Sci Eng 2023; 9:1205-1223. [PMID: 36752057 DOI: 10.1021/acsbiomaterials.2c01321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Osteochondral (OC) defects are debilitating for patients and represent a significant clinical problem for orthopedic surgeons as well as regenerative engineers due to their potential complications, which are likely to lead to osteoarthritis and related diseases. If they remain untreated or are treated suboptimally, OC lesions are known to impact the articular cartilage and the transition from cartilage to bone, that is, the cartilage-bone interface. An important component of the OC interface, that is, a selectively permeable membrane, the tidemark, still remains unaddressed in more than 90% of the published research in the past decade. This review focuses on the structure, composition, and function of the OC interface, regenerative engineering attempts with different scaffolding strategies and challenges ahead of us in recapitulating the native OC interface. There are different schools of thought regarding the structure of the native OC interface: stratified and graded. The former assumes the cartilage-to-bone interface to be hierarchically divided into distinct yet continuous zones of uncalcified cartilage-calcified cartilage-subchondral bone. The latter assumes the interface is continuously graded, that is, formed by an infinite number of layers. The cellular composition of the interface, either in respective layers or continuously changing in a graded manner, is chondrocytes, hypertrophic chondrocytes, and osteoblasts as moved from cartilage to bone. Functionally, the interface is assumed to play a role in enabling a smooth transition of loads exerted on the cartilage surface to the bone underneath. Regenerative engineering involves, first, a characterization of the native OC interface in terms of the composition, structure, and function, and, then, proposes the appropriate biomaterials, cells, and biomolecules either alone or in combination to eventually form a structure that mimics and functionally behaves similar to the native interface. The major challenge regarding regeneration of the OC interface appears to lie, in addition to others, in the formation of tidemark, which is a thin membrane separating the OC interface into two distinct zones: the avascular OC interface and the vascular OC interface. There is a significant amount of literature on regenerative approaches to the OC interface; however, only a small portion of them consider the importance of tidemark. Therefore, this review aims at highlighting the significance of the structural organization of the components of the OC interface and increasing the awareness of the orthopedics community regarding the importance of tidemark formation after clinical interventions or regenerative engineering attempts.
Collapse
Affiliation(s)
- Nuh Yildirim
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Amina Amanzhanova
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Gulzada Kulzhanova
- Nazarbayev University, School of Sciences and Humanities, Department of Biological Sciences, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Fariza Mukasheva
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| | - Cevat Erisken
- Nazarbayev University, School of Engineering and Digital Sciences, Department of Chemical and Materials Engineering, 53 Kabanbay Batyr, Block 3, Astana 010000, Kazakhstan
| |
Collapse
|
29
|
Han L, Wang W, Chen Z, Cai Y, Chen C, Chen G, Wang F. Sericin-reinforced dual-crosslinked hydrogel for cartilage defect repair. Colloids Surf B Biointerfaces 2023; 222:113061. [PMID: 36508890 DOI: 10.1016/j.colsurfb.2022.113061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Articular cartilage is essential for normal daily joint function activities. However, it is difficult for articular cartilage to repair itself after injury due to the lack of nerves and blood vessels, so an effective cartilage repair method is necessary. As a three-dimensional polymer network structure with high water content, hydrogel is a good candidate material for cartilage repair, and it is also a research hotspot in the treatment of cartilage injury. Here, a porous dual-crosslinked hydrogel containing sodium alginate (SA) and silk sericin (SS) was designed for in situ repair of cartilage damage. The degradation rate of the hydrogel was regulated by changing the content of SS to match the rate of cartilage regeneration. The hydrogel had excellent mechanical properties (compressive strength≈245 kPa, compressibility≈60%), high water content (85%-88%) and porosity(>20%), and when the content of SS is 1%, the scaffold has the best comprehensive performance. Existing excellent cytocompatibility, the scaffold can promote the adhesion and proliferation of chondrocytes while reducing inflammatory cell infiltration. The cartilage defect repair experiments in vivo showed that artificial cartilage was formed at 4 weeks with molecular structure similar to natural cartilage. It is expected to be applied to clinical cartilage repair through the dual-crosslinked three-dimensional cartilage scaffold.
Collapse
Affiliation(s)
- Lili Han
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Weiwei Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Aoti Biomedical Research Institute Co., Ltd, Chongqing 400020, PR China.
| | - Yong Cai
- Chongqing Aoti Biomedical Research Institute Co., Ltd, Chongqing 400020, PR China
| | - Cai Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
30
|
Yavuz NC, Dikbaş O, Kulaklı F, Sarı IF, Sengul D, Sengul I. Revisiting femoral cartilage thickness in cases with Hashimoto's thyroiditis in thyroidology: a single institute experience. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221615. [PMID: 37075449 PMCID: PMC10176637 DOI: 10.1590/1806-9282.20221615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Hashimoto's thyroiditis, also known as chronic lymphocytic thyroiditis or autoimmune thyroiditis, is a considerable part of the spectrum of chronic autoimmune thyroid gland disorders which is pathologically associated with various degrees of lymphocytic infiltration. The purpose of the present study was to evaluate whether cartilage thickness is affected in patients with Hashimoto's thyroiditis or not in thyroidology. METHODS A total of 61 individuals had been evaluated in this case-control study, including 32 euthyroid Hashimoto's thyroiditis patients and 29 healthy subjects comparable in age, sex, and body mass index. The patients with a history of knee trauma or knee surgery, an additional systemic disease such as diabetes mellitus, or an inflammatory disease like rheumatoid arthritis, systemic lupus erythematosus, and scleroderma had not been included in the study. The thickness of the femoral articular cartilage was measured using B-mode ultrasonography, and the right lateral condyle, right intercondylar area, right medial condyle, left medial condyle, left intercondylar area, and left lateral condyle were also measured. RESULTS No statistically significant difference between patients with Hashimoto's thyroiditis diagnosis and healthy controls in terms of age, age groups, gender, and body mass index (p>0.05). CONCLUSION As a consequence, no obvious connection between autoimmune markers and cartilage thickness in patients with Hashimoto's thyroiditis was recognized. Although the diverse manifestation of Hashimoto's thyroiditis could be observed, it seems to be no liaison between thyroid autoimmunity and cartilage thickness.
Collapse
Affiliation(s)
- Nurce Cilesizoglu Yavuz
- Giresun University, Faculty of Medicine, Department of Physical Therapy and Rehabilitation - Giresun, Turkey
| | - Oğuz Dikbaş
- Giresun University, Faculty of Medicine, Department of Endocrinology - Giresun, Turkey
| | - Fazıl Kulaklı
- Giresun University, Faculty of Medicine, Department of Physical Therapy and Rehabilitation - Giresun, Turkey
| | - Ilker Fatih Sarı
- Giresun University, Faculty of Medicine, Department of Physical Therapy and Rehabilitation - Giresun, Turkey
| | - Demet Sengul
- Giresun University, Faculty of Medicine, Department of Pathology - Giresun, Turkey
| | - Ilker Sengul
- Giresun University, Faculty of Medicine, Division of Endocrine Surgery - Giresun, Turkey
- Giresun University, Faculty of Medicine, Department of General Surgery - Giresun, Turkey
| |
Collapse
|
31
|
Harrison P, Hopkins T, Hulme C, McCarthy H, Wright K. Chondrocyte Isolation and Expansion. Methods Mol Biol 2023; 2598:9-19. [PMID: 36355281 DOI: 10.1007/978-1-0716-2839-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chondrocyte isolation requires a combination of enzymatic and mechanical digestion of cartilaginous tissues in order to release the chondrocytes. Extracted primary chondrocytes will then adhere to standard tissue culture plastics, typically in small clusters, over a period of a few days in monolayer culture. Chondrocyte populations are expanded in a basal medium containing serum, supplemented with ascorbic acid, antibiotics, and sometimes antifungal agents and growth factors. Here we describe the standard research grade and good manufacturing practice (GMP) protocols used for the isolation and expansion of chondrocytes by the Oswestry/Keele University Orthopaedic Research (OsKOR) group and John Charnley GMP and MHRA licensed laboratory, both based at the RJAH Orthopaedic Hospital, Oswestry, UK.
Collapse
Affiliation(s)
- Paul Harrison
- RJAH Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
| | - Timothy Hopkins
- RJAH Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Charlotte Hulme
- RJAH Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Helen McCarthy
- RJAH Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Karina Wright
- RJAH Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK.
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK.
| |
Collapse
|
32
|
Sohn HS, Choi JW, Jhun J, Kwon SP, Jung M, Yong S, Na HS, Kim JH, Cho ML, Kim BS. Tolerogenic nanoparticles induce type II collagen-specific regulatory T cells and ameliorate osteoarthritis. SCIENCE ADVANCES 2022; 8:eabo5284. [PMID: 36427299 PMCID: PMC9699678 DOI: 10.1126/sciadv.abo5284] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Local inflammation in the joint is considered to contribute to osteoarthritis (OA) progression. Here, we describe an immunomodulating nanoparticle for OA treatment. Intradermal injection of lipid nanoparticles (LNPs) loaded with type II collagen (Col II) and rapamycin (LNP-Col II-R) into OA mice effectively induced Col II-specific anti-inflammatory regulatory T cells, substantially increased anti-inflammatory cytokine expression, and reduced inflammatory immune cells and proinflammatory cytokine expression in the joints. Consequently, LNP-Col II-R injection inhibited chondrocyte apoptosis and cartilage matrix degradation and relieved pain, while injection of LNPs loaded with a control peptide and rapamycin did not induce these events. Adoptive transfer of CD4+CD25+ T cells isolated from LNP-Col II-R-injected mice suggested that Tregs induced by LNP-Col II-R injection were likely responsible for the therapeutic effects. Collectively, this study suggests nanoparticle-mediated immunomodulation in the joint as a simple and effective treatment for OA.
Collapse
Affiliation(s)
- Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangmin Yong
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Sik Na
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Corresponding author. (M.-L.C.), (B.-S.K.)
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (M.-L.C.), (B.-S.K.)
| |
Collapse
|
33
|
Xu W, Zhu J, Hu J, Xiao L. Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering. Life Sci 2022; 309:121043. [DOI: 10.1016/j.lfs.2022.121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
|
34
|
Kutaish H, Bengtsson L, Tscholl PM, Marteyn A, Braunersreuther V, Guérin A, Béna F, Gimelli S, Longet D, Ilmjärv S, Dietrich PY, Gerstel E, Jaquet V, Hannouche D, Menetrey J, Assal M, Krause KH, Cosset E, Tieng V. Hyaline Cartilage Microtissues Engineered from Adult Dedifferentiated Chondrocytes: Safety and Role of WNT Signaling. Stem Cells Transl Med 2022; 11:1219-1231. [PMID: 36318262 PMCID: PMC9801297 DOI: 10.1093/stcltm/szac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
The repair of damaged articular cartilage is an unmet medical need. Chondrocyte-based cell therapy has been used to repair cartilage for over 20 years despite current limitations. Chondrocyte dedifferentiation upon expansion in monolayer is well known and is the main obstacle to their use as cell source for cartilage repair. Consequently, current approaches often lead to fibrocartilage, which is biomechanically different from hyaline cartilage and not effective as a long-lasting treatment. Here, we describe an innovative 3-step method to engineer hyaline-like cartilage microtissues, named Cartibeads, from high passage dedifferentiated chondrocytes. We show that WNT5A/5B/7B genes were highly expressed in dedifferentiated chondrocytes and that a decrease of the WNT signaling pathway was instrumental for full re-differentiation of chondrocytes, enabling production of hyaline matrix instead of fibrocartilage matrix. Cartibeads showed hyaline-like characteristics based on GAG quantity and type II collagen expression independently of donor age and cartilage quality. In vivo, Cartibeads were not tumorigenic when transplanted into SCID mice. This simple 3-step method allowed a standardized production of hyaline-like cartilage microtissues from a small cartilage sample, making Cartibeads a promising candidate for the treatment of cartilage lesions.
Collapse
Affiliation(s)
| | | | - Philippe Matthias Tscholl
- University Medical Center, University of Geneva, Geneva, Switzerland,Department of Orthopaedics Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Antoine Marteyn
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Vincent Braunersreuther
- Service of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Alexandre Guérin
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Frédérique Béna
- Service of Genetic Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Stefania Gimelli
- Service of Genetic Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - David Longet
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Laboratory of Tumor Immunology, Oncology Department, Center for Translational Research in Onco-Hematology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Eric Gerstel
- University Medical Center, University of Geneva, Geneva, Switzerland,Clinique la Colline, Hirslanden, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland,READS Unit, Medical School, University of Geneva, Geneva, Switzerland
| | - Didier Hannouche
- University Medical Center, University of Geneva, Geneva, Switzerland,Department of Orthopaedics Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Jacques Menetrey
- University Medical Center, University of Geneva, Geneva, Switzerland,Centre for Sports Medicine and Exercise, Clinique la Colline, Hirslanden, Geneva, Switzerland
| | - Mathieu Assal
- University Medical Center, University of Geneva, Geneva, Switzerland,Foot and Ankle Surgery Centre, Centre Assal, Clinique La Colline, Hirslanden Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland,University Medical Center, University of Geneva, Geneva, Switzerland
| | | | - Vannary Tieng
- Corresponding author: Vannary Tieng, Vanarix SA, Avenue Mon-Repos 14, 1005 Lausanne, Switzerland.
| |
Collapse
|
35
|
Advances in Biomaterial-Mediated Gene Therapy for Articular Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9100502. [PMID: 36290470 PMCID: PMC9598732 DOI: 10.3390/bioengineering9100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage defects caused by various reasons are relatively common in clinical practice, but the lack of efficient therapeutic methods remains a substantial challenge due to limitations in the chondrocytes’ repair abilities. In the search for scientific cartilage repair methods, gene therapy appears to be more effective and promising, especially with acellular biomaterial-assisted procedures. Biomaterial-mediated gene therapy has mainly been divided into non-viral vector and viral vector strategies, where the controlled delivery of gene vectors is contained using biocompatible materials. This review will introduce the common clinical methods of cartilage repair used, the strategies of gene therapy for cartilage injuries, and the latest progress.
Collapse
|
36
|
Talesa G, Manfreda F, Pace V, Ceccarini P, Antinolfi P, Rinonapoli G, Caraffa A. The treatment of knee cartilage lesions: state of the art. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022099. [PMID: 36043984 PMCID: PMC9534246 DOI: 10.23750/abm.v93i4.11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/11/2022] [Indexed: 11/11/2022]
Abstract
The management and repair of knee cartilage lesions currently represents a challenge for the orthopaedic surgeon. Identifiable causes are the characteristics of the involved tissues themselves and the presence of poor vascularization, which is responsible for overall reduced repair capacity. The literature reports three types of cartilage lesions' treatment modalities: chondroprotection, chondroreparation and chondrogeneration. The preference for one or the other therapeutic option depends on the pattern of the lesion and the clinical conditions of the patient. Each treatment technique is distinguished by the quality of the restorative tissue that is generated. In particular, the chondrorigeneration represents the last frontier of regenerative medicine, as it aims at the complete restoration of natural cartilage. However, the most recent literature documents good results only in the short and medium terms. In recent years the optimization of chondroregeneration outcomes is based on the modification of the scaffolds and the search for new chondrocyte sources, in order to guarantee satisfactory long-term results.
Collapse
|
37
|
Muthuchamy M, Subramanian K, Padhiar C, Dhanraj AK, Desireddy S. Feasibility study on intact human umbilical cord Wharton's jelly as a scaffold for human autologous chondrocyte: In-vitro study. Int J Artif Organs 2022; 45:936-944. [PMID: 35982588 DOI: 10.1177/03913988221118102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Placental tissue is an established biomaterial used in many clinical applications. However, its use for tissue engineering purposes has not been fully realized. Though articular cartilage extracellular matrix (ECM)-derived oriented scaffolds for cartilage tissue engineering were developed, resources are a hindrance to its application. In this regard, the present study investigated the feasibility of using intact decellularized human umbilical cord Wharton's jelly (hUC-WJ) as a new material for chondrocyte carrier in cartilage tissue engineering. The developed hUC-WJ scaffold provides a good microenvironment for the attachment, viability, and delivery of seeded human autologous chondrocytes. It has an advantage over other biomaterials in terms of abundant availability and similar biochemistry to cartilage ECM. MATERIALS AND METHODS hUC-WJ obtained from fresh human placenta were decellularized and gamma sterilized. Human cartilage tissue was obtained from the patients with a total knee replacement. The chondrocytes were isolated and expanded in-vitro and seeded onto the hUC-WJ scaffold. The efficiency of the decellularized tissue as a delivery system for human cartilage cells was investigated by histology, immunohistochemistry, cell count, flow cytometry, and scanning electron microscopy (SEM). RESULTS The results showed that the decellularized hUC-WJ scaffold has supported the microenvironment for chondrocyte attachment and viability without losing its phenotype. In addition, the cells were spread through the hUC-WJ scaffold as confirmed by histology and SEM. CONCLUSION Based on obtained results, the hUC-WJ scaffold has great potential as a 3D scaffold for human autologous chondrocyte carriers in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Muthuraman Muthuchamy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.,LifeCell International Private Limited, Chennai, Tamil Nadu, India
| | - Kumaran Subramanian
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.,Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Chirayu Padhiar
- LifeCell International Private Limited, Chennai, Tamil Nadu, India
| | | | - Swathi Desireddy
- LifeCell International Private Limited, Chennai, Tamil Nadu, India
| |
Collapse
|
38
|
Evuarherhe A, Condron NB, Knapik DM, Haunschild ED, Gilat R, Huddleston HP, Kaiser JT, Parvaresh KC, Wagner KR, Chubinskaya S, Yanke AB, Cole BJ. Effect of Mechanical Mincing on Minimally Manipulated Articular Cartilage for Surgical Transplantation. Am J Sports Med 2022; 50:2515-2525. [PMID: 35736385 DOI: 10.1177/03635465221101004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Point-of-care treatment options for medium to large symptomatic articular cartilage defects are limited. Minced cartilage implantation is an encouraging single-stage option, providing fresh viable autologous tissue with minimal morbidity and cost. PURPOSE To determine the histological properties of mechanically minced versus minimally manipulated articular cartilage. STUDY DESIGN Controlled laboratory study. METHODS Remnant articular cartilage was collected from fresh femoral condylar allografts. Cartilage samples were divided into 4 groups: cartilage explants with or without fibrin glue and mechanically minced cartilage with or without fibrin glue. Samples were cultured for 42 days. Chondrocyte viability was assessed using live/dead assay. Cellular migration and outgrowth were monitored using bright-field microscopy. Extracellular matrix deposition was assessed via histological staining. Proteoglycan content and synthesis were assessed using dimethylmethylene blue assay and radiolabeled 35S-sulfate, respectively. Type II collagen (COL2A1) gene expression was analyzed via polymerase chain reaction. RESULTS The mean viability of minced cartilage particles (34% ± 14%) was not significantly reduced compared with baseline (46% ± 13%) on day 0 (P = .90). After culture, no significant difference in the percentage of live cells was appreciated between mechanically minced (58% ± 23%) and explant (73% ± 14%) cartilage in the presence of fibrin glue (P = .52). The addition of fibrin glue did not significantly affect the viability of cartilage samples. The qualitative assessment revealed comparable cellular migration and outgrowth between groups. Proteoglycan synthesis was not significantly different between groups. Histological analysis findings were positive for COL2A1 in all groups, and matrix formation was appreciated in all groups. COL2A1 expression in minced cartilage (1.72 ± 1.88) was significantly higher than in explant cartilage (0.15 ± 0.07) in the presence of fibrin glue (P = .01). CONCLUSION Mechanically minced articular cartilage remained viable after 42 days of culture in vitro and was comparable with cartilage explants with regard to cellular migration, outgrowth, and extracellular matrix synthesis. CLINICAL RELEVANCE Mechanically minced articular cartilage is an encouraging intervention for the treatment of symptomatic cartilage defects. Further translational work is warranted to determine the viability of minced cartilage implantation as a single-stage therapeutic intervention in vivo.
Collapse
Affiliation(s)
- Aghogho Evuarherhe
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Nolan B Condron
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Derrick M Knapik
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Eric D Haunschild
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Ron Gilat
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Hailey P Huddleston
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Joshua T Kaiser
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Kevin C Parvaresh
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Kyle R Wagner
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Susan Chubinskaya
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Adam B Yanke
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| | - Brian J Cole
- Midwest Orthopaedics at Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
39
|
Dong X, Askinas C, Kim J, Sherman JE, Bonassar LJ, Spector J. Efficient engineering of human auricular cartilage through mesenchymal stem cell chaperoning. J Tissue Eng Regen Med 2022; 16:825-835. [PMID: 35689509 DOI: 10.1002/term.3332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 01/08/2023]
Abstract
A major challenge to the clinical translation of tissue-engineered ear scaffolds for ear reconstruction is the limited auricular chondrocyte (hAuC) yield available from patients. Starting with a relatively small number of chondrocytes in culture results in dedifferentiation and loss of phenotype with subsequent expansion. To significantly decrease the number of chondrocytes required for human elastic cartilage engineering, we co-cultured human mesenchymal stem cells (hMSCs) with HAuCs to promote healthy elastic cartilage formation. HAuCs along with human bone marrow-derived hMSCs were encapsulated into 1% Type I collagen at 25 million/mL total cell density with different ratios (HAuCs/hMSCs: 10/90, 25/75, 50/50) and then injected into customized 3D-printed polylactic acid (PLA) ridged external scaffolds, which simulate the shape of the auricular helical rim, and implanted subcutaneously in nude rats for 1, 3 and 6 months. The explanted constructs demonstrated near complete volume preservation and topography maintenance of the ridged "helical" feature after 6 months with all ratios. Cartilaginous appearing tissue formed within scaffolds by 3 months, verified by histologic analysis demonstrating mature elastic cartilage within the constructs with chondrocytes seen in lacunae within a Type II collagen and proteoglycan-enriched matrix, and surrounded by a neoperichondrial external layer. Compressive mechanical properties comparable to human elastic cartilage were achieved after 6 months. Co-implantation of hAuCs and hMSCs in collagen within an external scaffold efficiently produced shaped human elastic cartilage without volume loss even when hAuC comprised only 10% of the implanted cell population, marking a crucial step toward the clinical translation of auricular tissue engineering.
Collapse
Affiliation(s)
- Xue Dong
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Carly Askinas
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Jongkil Kim
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - John E Sherman
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Jason Spector
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA.,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
40
|
Kim J, Park J, Song SY, Kim E. Advanced Therapy medicinal products for autologous chondrocytes and comparison of regulatory systems in target countries. Regen Ther 2022; 20:126-137. [PMID: 35582708 PMCID: PMC9079100 DOI: 10.1016/j.reth.2022.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Autologous chondrocytes (ACs) are Human cell/tissue-based products used for the treatment of joint cartilage defects. Regulatory agencies have established regulations related to ACs to ensure their safety and efficacy. This study investigated the status and characteristics of ACs approved worldwide. Furthermore, the AC-related regulations were compared by country to provide reference materials for the development of product approval procedures. Methods This study reviewed the current status of global AC products over the past 20 years by referring to the AC approval list provided on the International Society for Cell & Gene Therapy (ISCT) website. Based on the review report provided by the regulatory agencies that approved the products, major nonclinical/clinical data and product characteristics were reviewed; and the classification and definition of ACs and the approval review procedures were compared through the regulatory agencies’ websites. The development status of ACs was also analyzed using a clinical trial registration site. Results Eight ACs were approved during the study period in Europe, the US, Japan, Australia, and Korea. Two products were withdrawn owing to marketability problems. Human cell/tissue-based products in each country are classified and defined distinguished from biopharmaceuticals, but the approval process for both products is the same. The approval period differs by country, with an average of 282.4 days and the shortest being in Korea (115 days). On Clinical Trials.gov, we screened 46 clinical trials related to ACs, which were conducted in Europe (41%), Korea (20%), and the US (17%). The knee accounted for the largest portion of the indication (37/46, 80%), followed by the ankle or hip joints. Measurements of improvements in function and pain were the main endpoints used to evaluate the efficacy of ACs. Observational studies were conducted to confirm the long-term safety of these products. Conclusions This is the first study comparing the current status and characteristics of globally approved AC products, as well as their classification and definition by country. In the past two decades, clinical trials have been conducted on the application of ACs in tissue engineering to treat joint cartilage defects. ACs are expected to be used for the treatment of cartilage defect diseases. This is the first study that compared AC products that are currently approved globally per country. AC products are classified distinguished from biopharmaceuticals. Regulatory agencies implement systems to ensure long-term safety and efficacy of ACs.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Pharmaceutical Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
- Data Science, Evidence-Based Clinical Research Laboratory, Departments of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaehong Park
- Department of Pharmaceutical Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
- Data Science, Evidence-Based Clinical Research Laboratory, Departments of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeon Song
- Data Science, Evidence-Based Clinical Research Laboratory, Departments of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunyoung Kim
- Department of Pharmaceutical Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
- Data Science, Evidence-Based Clinical Research Laboratory, Departments of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Corresponding author. Division of Licensing of Medicines and Regulatory Science, The Graduate School of Pharmaceutical Management, Chung-Ang University, 84 Heukseok-Ro, Dangjak-gu, Seoul, 06974, Republic of Korea. Tel: +82-2-820-5791, Fax: +82-2-816-7338.
| |
Collapse
|
41
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
42
|
Klimek K, Tarczynska M, Truszkiewicz W, Gaweda K, Douglas TEL, Ginalska G. Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation-A Pilot In-Vitro Study. Cells 2022; 11:282. [PMID: 35053397 PMCID: PMC8773726 DOI: 10.3390/cells11020282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young's modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Wieslaw Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA 1 4YW, UK;
- Materials Science Institute (MSI), Lancaster University, Lancaster LA 1 4YW, UK
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| |
Collapse
|
43
|
Bauza‐Mayol G, Quintela M, Brozovich A, Hopson M, Shaikh S, Cabrera F, Shi A, Niclot FB, Paradiso F, Combellack E, Jovic T, Rees P, Tasciotti E, Francis LW, Mcculloch P, Taraballi F. Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo. Adv Healthc Mater 2022; 11:e2101127. [PMID: 34662505 PMCID: PMC11469755 DOI: 10.1002/adhm.202101127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Focal chondral lesions of the knee are the most frequent type of trauma in younger patients and are associated with a high risk of developing early posttraumatic osteoarthritis. The only current clinical solutions include microfracture, osteochondral grafting, and autologous chondrocyte implantation. Cartilage tissue engineering based on biomimetic scaffolds has become an appealing strategy to repair cartilage defects. Here, a chondrogenic collagen-chondroitin sulfate scaffold is tested in an orthotopic Lapine in vivo model to understand the beneficial effects of the immunomodulatory biomaterial on the full chondral defect. Using a combination of noninvasive imaging techniques, histological and whole transcriptome analysis, the scaffolds are shown to enhance the formation of cartilaginous tissue and suppression of host cartilage degeneration, while also supporting tissue integration and increased tissue regeneration over a 12 weeks recovery period. The results presented suggest that biomimetic materials could be a clinical solution for cartilage tissue repair, due to their ability to modulate the immune environment in favor of regenerative processes and suppression of cartilage degeneration.
Collapse
Affiliation(s)
- Guillermo Bauza‐Mayol
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Marcos Quintela
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Ava Brozovich
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Texas A&M College of MedicineBryanTX77807USA
| | - Michael Hopson
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Shazad Shaikh
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Fernando Cabrera
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Aaron Shi
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Federica Banche Niclot
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Polytechnic of TurinDepartment of Applied Science and TechnologyCorso Duca degli Abruzzi 24Torino10129Italy
| | - Francesca Paradiso
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Emman Combellack
- Reconstructive Surgery and Regenerative Medicine Research GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Tom Jovic
- Reconstructive Surgery and Regenerative Medicine Research GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Paul Rees
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | | | - Lewis W. Francis
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
| | - Patrick Mcculloch
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Francesca Taraballi
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| |
Collapse
|
44
|
Niethammer TR, Uhlemann F, Zhang A, Holzgruber M, Wagner F, Müller PE. Hydrogel-based autologous chondrocyte implantation leads to subjective improvement levels comparable to scaffold based autologous chondrocyte implantation. Knee Surg Sports Traumatol Arthrosc 2022; 30:3386-3392. [PMID: 35226109 PMCID: PMC9464160 DOI: 10.1007/s00167-022-06886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Scaffold-based autologous chondrocyte implantation is a well-established treatment for cartilage defects in the knee joint. Hydrogel-based autologous chondrocyte implantation using an in situ polymerizable biomaterial is a relatively new treatment option for arthroscopic cartilage defects. It is therefore important to determine if there are significant differences in the outcomes. The aim of this study is to compare the outcomes (using subjective parameters) of hydrogel-based autologous chondrocyte implantation (NOVOCART® Inject) with the outcomes of scaffold based autologous chondrocyte Implantation (NOVOCART® 3D) using biphasic collagen scaffold. METHODS The data of 50 patients, which were paired with 25 patients in each treatment group, was analyzed. The main parameters used for matching were gender, number of defects and localization. Both groups were compared based on Visual Analogue Scale (VAS) and subjective IKDC scores, both of which were examined pre-operatively and after 6, 12 and 24 months. RESULTS Significant benefits in both VAS and IKDC scores after 2 years of follow-up in both groups were found. Comparing the groups, the results showed that in the hydrogel-based autologous chondrocyte implantation group, significant changes in IKDC scores are measurable after 6 months, while it takes 12 months until they are seen in the scaffold based autologous chondrocyte group. CONCLUSION Hydrogel-based autologous chondrocyte and scaffold based autologous chondrocyte show comparable improvements and significant benefits to the patients' subjective well-being after a 2-year-follow-up. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Thomas Richard Niethammer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Felix Uhlemann
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Anja Zhang
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Martin Holzgruber
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ferdinand Wagner
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Peter Ernst Müller
- grid.5252.00000 0004 1936 973XDepartment of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
45
|
Regenerative Potential of Platelet Concentrate Lysate in Mechanically Injured Cartilage and Matrix-Associated Chondrocyte Implantation In Vitro. Int J Mol Sci 2021; 22:ijms222413179. [PMID: 34947976 PMCID: PMC8703707 DOI: 10.3390/ijms222413179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022] Open
Abstract
Adjuvant therapy in autologous chondrocyte implantation (ACI) can control the post-traumatic environment and guide graft maturation to support cartilage repair. To investigate both aspects, we examined potential chondro-regenerative effects of lysed platelet concentrate (PC) and supplementary interleukin 10 (IL-10) on mechanically injured cartilage and on clinically used ACI scaffolds. ACI remnants and human cartilage explants, which were applied to an uniaxial unconfined compression as injury model, were treated with human IL-10 and/or PC from thrombocyte concentrates. We analyzed nuclear blebbing/TUNEL, sGAG content, immunohistochemistry, and the expression of COL1A1, COL2A1, COL10A1, SOX9, and ACAN. Post-injuriously, PC was associated with less cell death, increased COL2A1 expression, and decreased COL10A1 expression and, interestingly, the combination with Il-10 or Il-10 alone had no additional effects, except on COL10A1, which was most effectively decreased by the combination of PC and Il-10. The expression of COL2A1 or SOX9 was statistically not modulated by these substances. In contrast, in chondrocytes in ACI grafts the combination of PC and IL-10 had the most pronounced effects on all parameters except ACAN. Thus, using adjuvants such as PC and IL-10, preferably in combination, is a promising strategy for enhancing repair and graft maturation of autologous transplanted chondrocytes after cartilage injury.
Collapse
|
46
|
Shah SS, Mithoefer K. Scientific Developments and Clinical Applications Utilizing Chondrons and Chondrocytes with Matrix for Cartilage Repair. Cartilage 2021; 13:1195S-1205S. [PMID: 33155482 PMCID: PMC8808934 DOI: 10.1177/1947603520968884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Injuries to articular cartilage of the knee are increasingly common. The operative management of these focal chondral lesions continues to be problematic for the treating orthopedic surgeon secondary to the limited regenerative capacity of articular cartilage. The pericellular matrix (PCM) is a specialized, thin layer of the extracellular matrix that immediately surrounds chondrocytes forming a unit together called the chondron. The advancements in our knowledge base with regard to the PCM/chondrons as well as interterritorial matrix has permeated and led to advancements in product development in conjunction with minced cartilage, marrow stimulation, osteochondral allograft, and autologous chondrocyte implantation (ACI). This review intends to summarize recent progress in chondrocytes with matrix research, with an emphasis on the role the PCM/extracellular matrix (ECM) plays for favorable chondrogenic gene expression, as a barrier/filtration unit, and in osteoarthritis. The bulk of the review describes cutting-edge and evolving clinical developments and discuss these developments in light of underlying basic science applications. Clinical applications of chondrocytes with matrix science include Reveille Cartilage Processor, Cartiform, and ACI with Spherox (which was recently recommended for the treatment of grade III or IV articular cartilage defects over 2 cm2 by the National Institute of Health and Care Excellence [NICE] in the United Kingdom). The current article presents a comprehensive overview of both the basic science and clinical results of these next-generation cartilage repair techniques by focusing specifically on the scientific evolution in each category as it pertains with underlying chondrocytes with matrix theory.
Collapse
Affiliation(s)
- Sarav S. Shah
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA,Sarav S. Shah, Division of Sports Medicine,
Department of Orthopaedic Surgery, New England Baptist Hospital, 125 Parker Hill
Avenue, Boston, MA 02120, USA.
| | - Kai Mithoefer
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
47
|
Abstract
OBJECTIVE To determine the extent of acute cartilage injury by using trans-articular sutures. METHODS Five different absorbable sutures, monofilament polydioxanone (PDS) and braided polyglactin (Vicryl), were compared on viable human osteochondral explants. An atraumatic needle with 30 cm of thread was advanced through the cartilage with the final thread left in the tissue. A representative 300 μm transversal slice from the cartilage midportion was stained with Live/Dead probes, scanned under the confocal laser microscope, and analyzed for the diameters of (a) central "Black zone" without any cells, representing in situ thread thickness and (b) "Green zone," including the closest Live cells, representing the maximum injury to the tissue. The exact diameters of suture needles and threads were separately measured under an optical microscope. RESULTS The diameters of the Black (from 144 to 219 µm) and the Green zones (from 282 to 487 µm) varied between the different sutures (P < 0.001). The Green/Black zone ratio remained relatively constant (from 1.9 to 2.2; P = 0.767). A positive correlation between thread diameters and PDS suturing material, toward the Black and Green zone, was established, but needle diameters did not reveal any influence on the zones. CONCLUSIONS The width of acute cartilage injury induced by the trans-articular sutures is about twice the thread thickness inside of the tissue. Less compressible monofilament PDS induced wider tissue injury in comparison to a softer braided Vicryl. Needle diameter did not correlate to the extent of acute cartilage injury.
Collapse
Affiliation(s)
- Matic Ciglič
- Department of Traumatology, University
Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tomaž Marš
- Institute for Pathologic-Physiology,
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mitja Maružin
- Institute for Pathologic-Physiology,
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Armin Alibegović
- Institute of Forensic Medicine, Faculty
of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Vesel
- Department of Radiology, University
Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matej Drobnič
- Department of Orthopedic Surgery,
University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Orthopedics, Faculty of
Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
48
|
Zonal-Layered Chondrocyte Sheets for Repairment of Full-Thickness Articular Cartilage Defect: A Mini-Pig Model. Biomedicines 2021; 9:biomedicines9121806. [PMID: 34944622 PMCID: PMC8698967 DOI: 10.3390/biomedicines9121806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The cell sheet technique is a promising approach for tissue engineering, and the present study is aimed to determine a better configuration of cell sheets for cartilage repair. For stratified chondrocyte sheets (S-CS), articular chondrocytes isolated from superficial, middle, and deep zones were stacked accordingly. Heterogeneous chondrocyte sheets (H-CS) were obtained by mixing zonal chondrocytes. The expressions of chondrocytes, cytokine markers, and glycosaminoglycan (GAG) production were assessed in an in vitro assay. The curative effect was investigated in an in vivo porcine osteochondral defect model. The S-CS showed a higher cell viability, proliferation rate, expression of chondrogenic markers, secretion of tissue inhibitor of metalloproteinase, and GAG production level than the H-CS group. The expressions of ECM destruction enzyme and proinflammatory cytokines were lower in the S-CS group. In the mini-pigs articular cartilage defect model, the S-CS group had a higher International Cartilage Repair Society (ICRS) macroscopic score and displayed a zonal structure that more closely resembled the native cartilage than those implanted with the H-CS. Our study demonstrated that the application of the S-CS increased the hyaline cartilage formation and improved the surgical outcome of chondrocyte implication, offering a better tissue engineering strategy for treating articular cartilage defects.
Collapse
|
49
|
Sauerland K, Wolf A, Schudok M, Steinmeyer J. A novel model of a biomechanically induced osteoarthritis-like cartilage for pharmacological in vitro studies. J Cell Mol Med 2021; 25:11221-11231. [PMID: 34766430 PMCID: PMC8650028 DOI: 10.1111/jcmm.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
Excessive pressure or overload induces and aggravates osteoarthritic changes in articular cartilage, but the underlying biomechanical forces are largely ignored in existing pharmacological in vitro models that are used to investigate drugs against osteoarthritis (OA). Here, we introduce a novel in vitro model to perform pathophysiological and pharmacological investigations, in which cartilage explants are subjected to intermittent cyclic pressure, and characterize its ability to mimic OA‐like tissue reactivity. Mechanical loading time‐dependently increased the biosynthesis, content and retention of fibronectin (Fn), whereas collagen metabolism remained unchanged. This protocol upregulated the production and release of proteoglycans (PGs). The release of PGs from explants was significantly inhibited by a matrix metalloproteinase (MMP) inhibitor, suggesting the involvement of such proteinases in the destruction of the model tissue, similar to what is observed in human OA cartilage. In conclusion, the metabolic alterations in our new biomechanical in vitro model are similar to those of early human OA cartilage, and our pharmacological prevalidation with an MMP‐inhibitor supports its value for further in vitro drug studies.
Collapse
Affiliation(s)
- Katrin Sauerland
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Amela Wolf
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Manfred Schudok
- R&D, Drug Metabolism & Pharmacokinetics, Sanofi-Aventis Deutschand GmbH, Frankfurt, Germany
| | - Juergen Steinmeyer
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany.,Laboratory for Experimental Orthopaedics, Department of Orthopaedics, University of Giessen, Giessen, Germany
| |
Collapse
|
50
|
Hulme CH, Perry J, McCarthy HS, Wright KT, Snow M, Mennan C, Roberts S. Cell therapy for cartilage repair. Emerg Top Life Sci 2021; 5:575-589. [PMID: 34423830 PMCID: PMC8589441 DOI: 10.1042/etls20210015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Regenerative medicine, using cells as therapeutic agents for the repair or regeneration of tissues and organs, offers great hope for the future of medicine. Cell therapy for treating defects in articular cartilage has been an exemplar of translating this technology to the clinic, but it is not without its challenges. These include applying regulations, which were designed for pharmaceutical agents, to living cells. In addition, using autologous cells as the therapeutic agent brings additional costs and logistical challenges compared with using allogeneic cells. The main cell types used in treating chondral or osteochondral defects in joints to date are chondrocytes and mesenchymal stromal cells derived from various sources such as bone marrow, adipose tissue or umbilical cord. This review discusses some of their biology and pre-clinical studies before describing the most pertinent clinical trials in this area.
Collapse
Affiliation(s)
- Charlotte H. Hulme
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Jade Perry
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Helen S. McCarthy
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Karina T. Wright
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham, U.K
| | - Claire Mennan
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| |
Collapse
|