1
|
Wu J, Lin B, Pan N, Chen X, Chen B, Hou M, Qu X. Construction of a methacrylated gelatine composite hydrogel based on tachyplesin II and its application in the repair of infected wounds. Colloids Surf B Biointerfaces 2025; 250:114575. [PMID: 39985891 DOI: 10.1016/j.colsurfb.2025.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Tachyplesin II (TP) is a β-folded peptide isolated from horseshoe crabs. TP, with two disulfide bonds, effectively inhibits gram-negative and gram-positive bacteria, fungi and viruses. In this study, the antibacterial and antioxidant properties of synthetic TP were examined. Specifically, TP was incorporated into cross-linked methacrylated gelatine (GelMA) to construct a GelMA-TP hydrogel, which promoted infected wound healing. TP formed intermolecular hydrogen bonds with the GelMA network, endowing the GelMA-TP hydrogel with good antibacterial activity, stable rheological properties, high swelling capacity, self-healing behaviour, and good biocompatibility. We found that the anti-inflammatory and antioxidant activities of the GelMA-TP hydrogel significantly enhanced collagen production, thus accelerating healing in a rat-infected wound model. Overall, the GelMA-TP hydrogel demonstrates significant potential to stimulate the healing of infected wounds by reducing healing time and improving tissue repair outcomes. These findings highlight its translational promise as a clinically effective material for managing complex wounds, particularly in scenarios where conventional therapies are limited by persistent infections or excessive inflammation.
Collapse
Affiliation(s)
- Jingna Wu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources/Fujian Universities and Colleges Engineering Research Centre of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen 361023, China.
| | - Bangfeng Lin
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources/Fujian Universities and Colleges Engineering Research Centre of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen 361023, China
| | - Nan Pan
- Fujian Fisheries Research Institute, Xiamen 361013, China
| | - Xiaoting Chen
- Fujian Fisheries Research Institute, Xiamen 361013, China
| | - Bei Chen
- Fujian Fisheries Research Institute, Xiamen 361013, China
| | - Mingming Hou
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources/Fujian Universities and Colleges Engineering Research Centre of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen 361023, China
| | - Xiaoya Qu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources/Fujian Universities and Colleges Engineering Research Centre of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
2
|
Xiao W, Sun R, Lou J, Xu Y, Li X, Xin K, Lu W, Sun C, Chen T, Gao Y, Wu D. LPS-enriched interaction drives spectrum conversion in antimicrobial peptides: Design and optimization of AA16 derivatives for targeting gram-negative bacteria. Eur J Med Chem 2025; 289:117462. [PMID: 40048797 DOI: 10.1016/j.ejmech.2025.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
The increasing prevalence of antibiotic-resistant Gram-negative bacteria necessitates the development of novel antimicrobial agents with targeted specificity. In this study, we designed and optimized derivatives of the antimicrobial peptide AA16, which truncated from CD14 protein α-helical region, to selectively target Gram-negative bacteria by enhancing lipopolysaccharide (LPS)-enriched interactions, thereby achieving antibacterial spectrum conversion. Starting from the parent peptide AA16 (Ac-AARIPSRILFGALRVL-Amide), we performed strategic amino acid substitutions based on structure-activity relationship analysis. This led to the identification of AA16-10R, a derivative with a specific substitution at position 10, which demonstrated significantly enhanced antibacterial activity against Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa, while maintaining low hemolytic activity. Mechanistic studies revealed that AA16-10R exhibited a strong binding affinity to LPS (Kd = 0.15 μM), and its interaction with LPS induced the formation of an α-helical structure. This conformational change facilitated its accumulation on the bacterial outer membrane and disrupted membrane integrity. Our innovative approach of exploiting LPS-enriched interactions successfully converted the antimicrobial spectrum of AA16 derivatives from broad-spectrum to Gram-negative-specific. This study highlights a novel strategy for the rational design of antimicrobial peptides based on specific protein-protein interactions, offering a promising avenue for targeted antimicrobial therapy against Gram-negative pathogens.
Collapse
Affiliation(s)
- Wanyang Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ruize Sun
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Xiaokun Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Tianbao Chen
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
3
|
Muttiah B, Hanafiah A. Snake Venom Compounds: A New Frontier in the Battle Against Antibiotic-Resistant Infections. Toxins (Basel) 2025; 17:221. [PMID: 40423304 DOI: 10.3390/toxins17050221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025] Open
Abstract
The occurrence of antibiotic-resistant bacteria is a serious global health issue, and it emphasizes the need for novel antimicrobial agents. This review explores the potential of snake venom as another alternative strategy against antimicrobial resistance. Snake venoms are complex combinations of bioactive peptides and proteins, including metalloproteases (MPs), serine proteases (SPs), phospholipase A2 (PLA2) enzymes, three-finger toxins (3FTXs), cysteine-rich secretory proteins (CRISPs), L-amino acid oxidases (LAAOs), and antimicrobial peptides (AMPs). The antibacterial products possess wide-spectrum antibacterial activity against resistant microbes via diverse mechanisms such as cell membrane disruption, enzymatic hydrolysis of microbial structures, generation of oxidative stress, inhibition of biofilms, and immunomodulation. Strong antimicrobial activity is reported by most studies, but these are mostly restricted to in vitro testing with low translational use. Although preliminary insights into molecular targets and physiological effects exist, further studies are needed to clarify long-term safety and therapeutic potential. Special attention is given to snake venom-derived extracellular vesicles (SVEVs), which enhance the therapeutic potential of venom toxins by protecting them from degradation, improving bioavailability, and facilitating targeted delivery. Furthermore, innovative delivery strategies such as PEGylation, liposomes, hydrogels, microneedle patches, biopolymer films, and nanoparticles are discussed for their role in reducing systemic toxicity and enhancing antimicrobial efficacy. The rational modification of venom-derived peptides further expands their therapeutic utility by improving pharmacokinetics and minimizing off-target effects. Together, these approaches highlight the translational potential of snake venom-based therapies as next-generation antimicrobials in the fight against resistant infections. By outlining these challenges and directions, this review positions snake venom as an overlooked but fertile resource in the battle against antibiotic resistance.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Turgut BA, Örtücü S, Bezirganoğlu İ. Gene expression and characterization of an antimicrobial peptide from Medicago sativa "Sazova" cultivar. Biochem Biophys Res Commun 2025; 757:151617. [PMID: 40096787 DOI: 10.1016/j.bbrc.2025.151617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
In recent years, the discovery of new antimicrobial agents has become necessary because of the increase in antibiotic resistance, the development of herbicides and fungicides resistance. Among the antimicrobial agents, antimicrobial peptides (AMPs) stand out due to their stable structure. In this study, the aim was to identify a thermostable AMP from the seeds of M. sativa "Sazova" cultivar and to analyze gene expression during germination. Antimicrobial tests were performed for the seed peptides after heat treatment (85 °C for 10 min), revealing antimicrobial effects against S. aureus, E. coli, and C. albicans. Subsequently, the peptide band corresponding to the inhibition zone was identified as M. sativa Defensin 2.1 (MsDef2.1, MW: 5.2048 kDa). The gene expression analysis of MsDef2.1 in Sazova cultivar showed that the gene was expressed different plant organs, and the expression was decreased over time. As a result of the gene analysis of two cultivars (Sazova and LegenDairy) it was found that there are 5 base differences in the coding sequence and 3 amino acid differences between the sequences of MsDef2.1 isoforms from the LegenDairy and Sazova cultivars. The physiochemical properties, secondary, and tertiary structure of the Sazova Defensin 2.1 were predicted by using bioinformatic tools. Due to the amino acid substitutions in γ-core structures, the antimicrobial activity of the isoforms is expected to differ from each other. These findings demonstrated that the defensin MsDef2.1 can differ in M. sativa cultivars in respect of the gene and amino acid sequences and has a potential for future applications.
Collapse
Affiliation(s)
- Büşra Albayrak Turgut
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey.
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey
| | - İsmail Bezirganoğlu
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey.
| |
Collapse
|
5
|
Campos JV, Pontes JTC, Canales CSC, Roque-Borda CA, Pavan FR. Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides. BME FRONTIERS 2025; 6:0104. [PMID: 40041091 PMCID: PMC11876546 DOI: 10.34133/bmef.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
Nanotechnology offers innovative solutions for addressing the challenges posed by biofilm-forming bacteria, which are highly resistant to conventional antimicrobial therapies. This review explores the integration of pharmaceutical nanotechnology with antimicrobial peptides (AMPs) to enhance the treatment of biofilm-related infections. The use of various nanoparticle systems-including inorganic/metallic, polymeric, lipid-based, and dendrimer nanostructures-provides promising avenues for improving drug delivery, targeting, and biofilm disruption. These nanocarriers facilitate the penetration of biofilms, down-regulate biofilm-associated genes, such as ALS1, ALS3, EFG1, and HWP1, and inhibit bacterial defense mechanisms through membrane disruption, reactive oxygen species generation, and intracellular targeting. Furthermore, nanoparticle formulations such as NZ2114-NPs demonstrate enhanced efficacy by reducing biofilm bacterial counts by several orders of magnitude. This review highlights the potential of combining nanotechnology with AMPs to create novel, targeted therapeutic approaches for combatting biofilm-related infections and overcoming the limitations of traditional antimicrobial treatments.
Collapse
Affiliation(s)
- Julia Valladares Campos
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Janaína Teixeira Costa Pontes
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa 04000, Peru
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
6
|
Leroy G, Parizadeh L, Cuny H, Offret C, Protat M, Bazire A, Rodrigues S, Le Chevalier P, Brillet B, Gonzalez-Araya R, Jégou C, Fleury Y. Pseudoalteromonas Strains as Biofilm Control Agents in Ostrea edulis Aquaculture: Reducing Biofilm Biovolume While Preserving Microbial Diversity. Microorganisms 2025; 13:363. [PMID: 40005730 PMCID: PMC11858371 DOI: 10.3390/microorganisms13020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Biofilms in aquaculture tanks pose significant challenges, hindering cleaning processes and contributing to antibiotic resistance. This study investigated the effects of four Pseudoalteromonas strains on flat oyster (Ostrea edulis) rearing, with a specific focus on biofilm control and microbial communities. After confirming the safety of these strains for O. edulis, we monitored biofilm development and bacterial communities during a 4-month sexual maturation period. Biofilm biovolume was quantified using confocal laser scanning microscopy (CLSM), and bacterial community composition was analyzed via 16S rRNA gene metabarcoding of both biofilm and seawater samples. Our results revealed differences in bacterial community structure between biofilms and seawater. Furthermore, the presence of specific Pseudoalteromonas strains significantly impacted the composition of bacterial communities within the tanks. β-diversity analyses demonstrated that each strain exerted a unique influence on the bacterial community structure. Some Pseudoalteromonas strains effectively reduced biofilm biovolume without negatively impacting bacterial richness or diversity. These observations suggest that certain Pseudoalteromonas strains can effectively control biofilm formation while maintaining a diverse and potentially beneficial microbial community in O. edulis rearing tanks. The use of these strains as additives in aquaculture systems could offer several advantages, including reduced cleaning time and costs and a potential decrease in biocide usage.
Collapse
Affiliation(s)
- Garance Leroy
- Université de Brest, CNRS EMR 6076, IUEM, LBCM, F-29000 Quimper, France
| | - Leila Parizadeh
- Université de Brest, CNRS EMR 6076, IUEM, LBCM, F-29000 Quimper, France
| | - Héléna Cuny
- Université de Brest, CNRS EMR 6076, IUEM, LBCM, F-29000 Quimper, France
| | - Clément Offret
- Université de Brest, CNRS EMR 6076, IUEM, LBCM, F-29000 Quimper, France
| | - Martin Protat
- Comité Régional de la Conchyliculture de Bretagne-Nord (CRC BN), F-29678 Morlaix, France
| | - Alexis Bazire
- Universite Bretagne Sud, CNRS EMR 6076, IUEM, LBCM, F-56100 Lorient, France
| | - Sophie Rodrigues
- Universite Bretagne Sud, CNRS EMR 6076, IUEM, LBCM, F-56100 Lorient, France
| | | | - Benjamin Brillet
- Université de Brest, CNRS EMR 6076, IUEM, LBCM, F-29000 Quimper, France
| | | | - Camille Jégou
- Université de Brest, CNRS EMR 6076, IUEM, LBCM, F-29000 Quimper, France
| | - Yannick Fleury
- Université de Brest, CNRS EMR 6076, IUEM, LBCM, F-29000 Quimper, France
| |
Collapse
|
7
|
Pektaş AN, Korkmaz EM. Novel antimicrobial defensin peptides from different coleopteran insects (Coleoptera: Insecta): identification, characterisation and antimicrobial properties. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-15. [PMID: 39786793 DOI: 10.1080/10286020.2024.2448011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Antimicrobial peptides are crucial components of the immune systems of both vertebrates and invertebrates. Here, defensins, the most studied class of antimicrobial molecules in arthropods were investigated in four coleopteran insect species: Harpalus rufipes (DeGeer, 1774), Mylabris quadripunctata (Linnaeus, 1767), Sphaeridium marginatum (Linnaeus, 1758), and Ocypus mus (Brullé, 1832). The peptides synthesized with over 95% purity and their antimicrobial activities were evaluated by MIC test method. As a result, it was determined that Mylabris quadripunctata defensin (MqDef) showed high antimicrobial activity against Staphylococcus aureus and MRSA, whereas Sphaeridium marginatum (SmDef) and Harpalus rufipes (HrDef) defensins against Candida tropicalis.
Collapse
Affiliation(s)
- Ayşe Nur Pektaş
- Advanced Technology Research Centre (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Kim J, Hasan M, Liao X, Ding T, Ahn J. Combined antimicrobial activity of short peptide and phage-derived endolysin against antibiotic-resistant Salmonella Typhimurium. Food Microbiol 2025; 125:104642. [PMID: 39448152 DOI: 10.1016/j.fm.2024.104642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 10/26/2024]
Abstract
This study was designed to evaluate the combination effects of antimicrobial peptides (FK13 and FK16) and phage-encoded endolysin (LysPB32) on the inhibition of growth of polymyxin B-resistant Salmonella Typhimurium ATCC 19585 (STPMB). The inhibitory effects of FK13, FK16, and LysPB32 against STPMB were evaluated by using antimicrobial susceptibility, membrane permeability, biofilm reduction, cross-resistance, and mutant frequency assay. The minimum inhibitory concentrations (MICs) of FK13 and FK16 treated with LysPB32 (FK13+LysPB32 and FK16+LysPB32) against STPMB were decreased from more than 512 to 128 μg/ml and from 64 to 32 μg/ml, respectively. Compared to the control, the number of STPMB in the growing culture was reduced by 4.2 and 5.2 log CFU/ml, respectively, for FK13+LysPB32 and FK16+LysPB32 after 12-h incubation at 37 °C. All treatments (FK13, FK16, FK13+LysPB32, FK16+LysPB32) significantly increased the permeability of the outer membrane of STPMB. Biofilms were significantly decreased from OD600 of 0.6 to 0.16 for FK13+LysPB32 and from 0.6 to 0.13 for FK16+LysPB32. The ratios of MICs of erythromycin, ceftriaxone, polymyxin B, and ciprofloxacin to MIC of the control against STPMB were decreased to 0.50 for FK13+LysPB32 and FK16+LysPB32. The bactericidal activities of amikacin and gentamicin were enhanced for FK13+LysPB32 and FK16+LysPB32 (2-fold < MBC/MIC ratio). The mutant frequencies of STPMB to antibiotics were decreased when treated with FK13+LysPB32 and FK16+LysPB32. The results suggest that the combination of antimicrobial peptides and endolysins can be a promising strategy to control polymyxin B-resistant S. Typhimurium.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Mahadi Hasan
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China.
| |
Collapse
|
9
|
Qiu Z, Ran J, Yang Y, Wang Y, Zeng Y, Jiang Y, Hu Z, Zeng Z, Peng J. OmpH is Involved in the Decrease of Acinetobacter baumannii Biofilm by the Antimicrobial Peptide Cec4. Drug Des Devel Ther 2024; 18:5795-5810. [PMID: 39664965 PMCID: PMC11633299 DOI: 10.2147/dddt.s481225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose The emergence of carbapenem-resistant Acinetobacter baumannii (CRAB) poses great difficulties in clinical treatment, and has been listed by the World Health Organization as a class of pathogens in urgent need of new antibiotic development. In our previous report, the novel antimicrobial peptide Cec4 showed great potential in decreasing the clinical CRAB biofilm, but its mechanism of action is still illusive. Therefore, in order to evaluate the clinical therapeutic potential of Cec4, it is necessary to explore the mechanism of how Cec4 decreases mature biofilms. Methods Key genes involved in the removal of CRAB biofilms by Cec4 were analyzed using transcriptomics. Based on the results of the bioinformatics analysis, the CRISPR-Cas9 method was used to construct the deletion strain of the key gene. The pYMAb2 plasmid was used for the complementation strain construction. Finally, the roles of key genes in biofilm removal by Cec4 were determined by crystal violet staining, podocyte staining, laser confocal imaging, and MBC and MBEC50. Results Combined with transcriptome analysis, we hypothesized that OmpH is a key gene involved in the removal of CRAB biofilms by Cec4. Deletion of the OmpH gene did not affect A. baumannii growth, but decreased A. baumannii capsule thickness, increasing biofilm production, and made biofilm-state A. baumannii more sensitive to Cec4. Conclusion Cec4 decreases biofilms formed by CRAB targeting OmpH. Deletion of the OmpH gene results in an increase in biofilms and greater sensitivity to Cec4, which enhances the removal of A. baumannii biofilms by Cec4.
Collapse
Affiliation(s)
- Zhilang Qiu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Jun Ran
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yifan Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yue Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yang Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yinhui Jiang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- The Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| |
Collapse
|
10
|
Rachmawati E, Asarina S, Bagus Kennardi G, Tabina Tawangalun A, Arumimaniyah C, Indah Sari K, Tjaturina Pramesti H, Safitri R, Maskoen AM. Isolation of Thermophilic Bacteria Geobacillus subterraneus From Mount Tangkuban Perahu and the Novelty as a Candidate for Streptococcus mutans Anti-Biofilm. Int J Dent 2024; 2024:4285984. [PMID: 39629160 PMCID: PMC11614514 DOI: 10.1155/ijod/4285984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Thermophilic bacteria living in extreme areas with high temperatures are capable of producing secondary metabolites, such as antimicrobial peptides (AMPs). AMPs are stable at high temperatures and show good antibacterial activity. Therefore, this study aimed to identify thermophilic bacteria from the crater of Mount Tangkuban Perahu around West Java and assess antibacterial effectiveness of AMPs against Streptococcus mutans, which contribute to oral biofilm formation. The isolate obtained was identified using 16S ribosomal ribonucleic acid (rRNA) gene sequencing, and the supernatant of the isolate was tested against S. mutans American Type Culture Collection (ATCC) 25175 using the disc assay method. To determine AMPs-coding genes, its genome was uploaded to antibiotic and secondary metabolite analysis shell (antiSMASH) 5.0.0 platform and biofilm inhibition was tested using the microtiter plate technique (with a 96-well bottom). Subsequently, the results were assessed using a microplate reader operating at 595 nm wavelength. The isolate was identified as Geobacillus subterraneus, with antibacterial activity against S. mutans, and produced an inhibition zone of 8.40 mm at an optimum pH of 8. The output of AMPs-coding gene showed that AMPs of the isolate were a member of the lanthipeptide class I, or bacteriocin-I group. AMPs of G. subterraneus suppressed the growth of S. mutans biofilm at a supernatant concentration of 5%, with the lowest optical density (OD) value of 0.061 and the highest percentage of biofilm growth inhibition at 28.24%. Based on the results, G. subterraneus derived from the crater of Mount Tangkuban Perahu showed potent antibacterial properties against S. mutans, making it a promising novel S. mutans anti-biofilm candidate.
Collapse
Affiliation(s)
- Emma Rachmawati
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Shinta Asarina
- Microbiology Laboratory Assistant, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Gabriel Bagus Kennardi
- Biotechnology Student, Postgraduate School, Bandung Technology Institute, Bandung, Indonesia
| | - Akeyla Tabina Tawangalun
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Candra Arumimaniyah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Kartika Indah Sari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Ratu Safitri
- Senior Lecturer of the Biotechnology Study Program, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ani Melani Maskoen
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
11
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Gangwar R, Salem MM, Maurya VK, Bekhit MM, Singh N, Amara AAAF, Sahu RK, Ibrahim MA. Exploring time-killing and biofilm inhibition potential of bioactive proteins extracted from two varieties of Pleurotus ostreatus. Front Microbiol 2024; 15:1456358. [PMID: 39600574 PMCID: PMC11588479 DOI: 10.3389/fmicb.2024.1456358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Dental caries, caused by oral microbial pathogens, are a global health concern, further exacerbated by the presence of methicillin-resistant Staphylococcus aureus (MRSA). Bioactive proteins and peptides (BAPs) exhibit potent antimicrobial properties, targeting multiple cellular mechanisms within pathogens, reducing the likelihood of resistance development. Given the antimicrobial potential of BAPs, this study aimed to compare the efficacy of BAPs extracted from cultivated (Pleurotus ostreatus, PoC) and wild (Pleurotus ostreatus, PoW) mushrooms against pathogens responsible for dental caries. Methods BAPs were extracted from both PoC and PoW using a TCA-acetone method. Antimicrobial activities were tested against seven bacteria and one fungus using agar well diffusion and MIC determination. Antibiofilm activity was assessed via modified CV assay, while DPPH and erythrocyte lysis tests evaluated free radical scavenging. Results PoC showed superior antimicrobial efficacy, with lower MIC and MBC values, and disrupted biofilm integrity at increasing concentrations. PoW exhibited better antioxidant activity with higher DPPH scavenging, though its antimicrobial efficacy was slightly lower than PoC. Discussion Both PoC and PoW BAPs inhibited dental pathogens, with PoC showing stronger inhibition against MRSA and nystatin-resistant Candida albicans. This suggests BAPs may target additional cellular mechanisms beyond membranes, PBPs, and ergosterols. Despite PoW's stronger antioxidant properties, both BAPs had comparable antibiofilm activity. These findings suggest complementary actions of BAPs from PoC and PoW both, in treating dental caries, offering broad-spectrum antimicrobial and antioxidant benefits.
Collapse
Affiliation(s)
- Reena Gangwar
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, India
| | - Mohamed M. Salem
- College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Vineet Kumar Maurya
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, India
| | - Mounir M. Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nisha Singh
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, India
- Department of Biochemistry, Faculty of Science, University of Lucknow, Lucknow, India
| | - Amro Abd Al Fattah Amara
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Universities and Research Centre District, New Borg El-Arab, Egypt
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, India
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Bina M, Coats JP, Skowicki M, Malekovic M, Mihali V, Palivan CG. Hybrid Planar Copolymer Membranes with Dual Functionality against Bacteria Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23178-23188. [PMID: 39453821 DOI: 10.1021/acs.langmuir.4c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Antibacterial surfaces can be classified into two categories: passive surfaces, which repel bacteria by affecting surface wettability, and active surfaces, which have bactericidal properties that disrupt cell membranes upon contact. With the increasing demand for effective antibacterial solutions that combine these properties, advanced strategies are concentrating on developing surfaces with dual antimicrobial functionalities. Here, we present surfaces with nanotexture resulting from the phase separation of two different amphiphilic block copolymers displaying efficient dual functionality against bacteria growth. This approach combines the inherent antifouling properties of poly(ethylene oxide) as the hydrophilic domain of one copolymer with the antimicrobial effect of a peptide covalently attached to the hydrophilic domain of the second copolymer. The planar membranes are generated by self-assembly of the amphiphilic copolymer mixture deposited by Langmuir-Blodgett and Langmuir-Schaffer methods on a solid support, followed by covalent attachment of the antimicrobial peptides to one of the copolymers, specifically functionalized. Combining both copolymers, in terms of their properties and functionalities on the same surface, significantly limitsEscherichia colibiofilm formation and effectively eradicates bacteria during short-term incubation. While such multifunctional antimicrobial planar polymer membranes show promising potential in the design of fine coatings for small surgical or implantable devices, they are not limited to this application. Their use can be completely changed by attaching other active molecules or assemblies to induce specific multifunctionality for the targeted application.
Collapse
Affiliation(s)
- Maryame Bina
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - John P Coats
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Mirela Malekovic
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| |
Collapse
|
14
|
Eltarahony M, El-Deeb N, Abu-Serie M, El-Shall H. Biovalorization of whey waste as economic nutriment for mycogenic production of single cell oils with promising antibiofilm and anticancer potentiality. J Biol Eng 2024; 18:62. [PMID: 39497156 PMCID: PMC11533293 DOI: 10.1186/s13036-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/05/2024] [Indexed: 11/06/2024] Open
Abstract
The production of value-added bio-compounds from rejuvenated sources and their recruitment for healthcare services are paramount objectives in the agenda of white biotechnology. Hereupon, the current study focused on economic production of single cell oils (SCOs) from oleaginous fungi Alternaria sp. (A-OS) and Drechslera sp. (D-OS) using cheese whey waste stream, followed by their evaluation as antibiofilm and anticancer agents, for the first time. As a sole substrate for growth, the whey aided in lipid accumulation by 3.22 and 4.33 g/L, which representing 45.3 and 48.2% lipid content in Drechslera sp. (D-OS) and Alternaria sp. (A-OS), respectively. Meanwhile, a higher unsaturation degree was detected in A-OS by 62.18% comparing to 53.15% of D-OS, with advantageous presence of omega-6 poly unsaturated fatty acid by 22.67% and 15.04% for A-OS and D-OD, respectively, as revealed by GC-MS and FTIR characterization analysis. Interestingly, an eminent and significant (P ≤ 0.05) antibiofilm potency was observed in a dose-dependent modality upon employing both SCOs as antibiofilm agents. Whereas, 100 µg/mL of A-OS recorded superior inhibition of P. aeruginosa, S. aureus and C. albicans biofilms development by 84.10 ± 0.445, 90.37 ± 0.065 and 94.96 ± 0.21%, respectively. Whereas, D-OS (100 µg/mL) thwarted the biofilms of P. aeruginosa, S. aureus and C. albicans by 47.41 ± 2.83, 62.63 ± 5.82 and 78.67 ± 0.23%, correspondingly. Besides, the metabolic performance of cells within biofilm matrix, protein, carbohydrate contents and hydrophobicity of examined biofilms were also curtailed in a significant correlation with biofilm biomass (r ≥ 0.9). Further, as anticancer agents, D-OS recorded higher potency against A549 and CaCo-2 cell lines with IC50 values of 2.55 and 3.425% and SI values of 10.1 and 7.5, respectively. However, A-OS recorded 8.275% and 2.88 for IC50 and SI of Caco-2 cells, respectively. Additionally, A-OS activated caspase 3 by 64.23 ± 1.18% and 53.77 ± 0.995% more than D-OS (52.09 ± 0.222% and 49.72 ± 0.952%) in A549 and Caco-2 cells, respectively. Furthermore, the enzymes, which associated with cancer invasion, metastasis, and angiogenesis (i.e., MMP2 and MMP9) were strongly inhibited by A-OS with 18.58% and 8.295%, respectively as IC50 values; while D-OS results recorded 23.61% and 13.16%, respectively, which could be ascribed to the higher ω-6/ω-3 contents of A-OS. The promising results of the current study opens up the vision to employ SCOs as anti-infective nutraceuticals and in complementary/alternative therapy and prophylactic programs as well.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| | - Nehal El-Deeb
- Pharmaceutical Bioproducts Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt
| | - Hadeel El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
15
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
16
|
Rizkinata D, Waturangi DE, Yulandi A. Synergistic action of bacteriophage and metabolites of Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM against Enterotoxigenic Escherichia coli and Bacillus cereus and their biofilm. BMC Microbiol 2024; 24:398. [PMID: 39385119 PMCID: PMC11463113 DOI: 10.1186/s12866-024-03557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Foodborne disease and food spoilage are the prime public health issue and food security round the globe. Significant disease outbreaks mostly linked to the existence of pathogenic bacteria that extremely challenging due to the persistence of biofilm-forming. Proteins and bacterial metabolites have been shown to have good antibacterial activity and effectively removal bacterial biofilm. Recently, bacteriophage and their encoded lytic proteins such as lysin have attracted attention as potential alternative agent to control undesirable pathogens in human body infection, increasing food safety as advance preservations and medical treatment such as phage therapy. For these reasons, the efficacy of bacteriophage and their potential in combination with bacterial metabolites from Phyllosphere and Actinomycetes bacteria (Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM crude extracts) was the aim of this present study. RESULTS In this study, bacteriophage BC-VP (1.28 ± 0.29 × 1011 PFU/ml) and ETEC-phage-TG (8.9 ± 2.19 × 108 PFU/ml) isolated from artificial lake water from previous study showed potential activity to control Bacillus cereus (BC) and Enterotoxigenic Escherichia coli (ETEC) population. The combination of BC-VP with metabolite (P. fluorescens JB3B and S. thermocarboxydus 18PM) which were known from previous study had antibiofilm activities were able to inhibit (86.1%; 83.3%) and destruct (41%; 45.5%) biofilm formation of B. cereus respectively. Likewise, the synergy of bacteriophage ETEC-phage-TG with the same crude extract also showed promising activity against biofilm of ETEC with percentage of inhibition (81.9%; 76.4%) and percentage of destruction (54.1%; 44.4%). Application in various food, combination of BC-VP and bacterial metabolite extract (P. fluorescens JB3B; S. thermocarboxydus 18PM) were able to reduce Bacillus cereus population in mashed potato (99.6%; 99.4%) at cold temperature (4 °C) and (68.9%; 56.6%) at room temperature (28 °C), boiled pasta (99.5%; 99.4%) and (84.7%; 75.7%), also soymilk (96.9%; 96.7%) and (42.4%; 39.4%) respectively. Likewise, combination of ETEC-phage-TG and bacterial metabolite (P. fluorescens JB3B; S. thermocarboxydus 18PM) potentially reduced ETEC population after two different temperatures (4 °C and 28 °C) incubation in bean sprouts (TFTC; TFTC) and (47.5%; 49.1%), chicken meat (TFTC; TFTC) and (58.1%; 54%), also minced beef (99.5%; 99.4%) and (41.1%; 28%). GC-MS determination performed, oxalic acid, phenol, phenylethyl alcohol, N-hexadecanoic acid, and pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl was the most active compound in P. fluorescens JB3B. 2,4-Di-tert-butylphenol, phenyl acetic acid, N-Hexadecanoic acid, pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl, and Bis(2-ethylhexyl) phthalate was most active compound in the S. thermocarboxydus 18PM isolates. CONCLUSIONS The combination of isolated bacteriophages and bacterial metabolite showed promising results to be used as biocontrol candidate to overcome biofilm formed by foodborne and food spoilage bacteria using their ability to produce antibiofilm compounds and lytic activity. In addition, this combination also potentially reduces the use or replace the drawbacks of common application such as antibiotic treatment.
Collapse
Affiliation(s)
- Denny Rizkinata
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia.
| | - Adi Yulandi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| |
Collapse
|
17
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Canè C, Gallucci N, Amoresano A, Fontanarosa C, Paduano L, De Gregorio E, Duilio A, Di Somma A. The antimicrobial peptide Temporin-L induces vesicle formation and reduces the virulence in S. aureus. Biochem Biophys Rep 2024; 39:101808. [PMID: 39238505 PMCID: PMC11375239 DOI: 10.1016/j.bbrep.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
The evolution of methicillin-resistant Staphylococcus aureus (MRSA) has required the development of new antimicrobial agents and new approaches to prevent and overcome drug resistance. AntiMicrobial Peptides (AMPs) represent promising alternatives due to their rapid bactericidal activity and their broad-spectrum of action against a wide range of microorganisms. The amphibian Temporins constitute a well-known family of AMPs with high antibacterial properties against both Gram-positive and Gram-negative bacteria. In this paper, we evaluated the in vivo effect of Temp-L on S. aureus performing morphological studies using Transmission Electron Microscopy (TEM) that revealed the occurrence of protrusions from the cell surface. The formation of vesicle-like structure was confirmed by Dynamic Light Scattering (DLS). The global effect of Temp-L on Staphylococcus aureus (S. aureus) was deeply investigated by differential proteomics leading to the identification of up-regulated proteins involved in the synthesis of the cell membrane and fatty acids, and down-regulated virulence factors. GC-MS analysis suggested a possible protective response mechanism implemented by the bacterium after treatment with Temp-L, as the synthesis of fatty acids was increased. Adhesion and invasion assays on eukaryotic cells confirmed a reduced virulence of S. aureus following treatment with Temp-L. These results suggested the targeting of virulence factors as novel strategy to replace traditional antimicrobial agents that can be used to treat infections, especially infections caused by the resistant pathogen S. aureus.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126, Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80126, Napoli, Italy
| |
Collapse
|
19
|
Liu Y, Li K, Zhuang W, Liang L, Chen X, Yu D. Tetrahedral framework nucleic acid-based small-molecule inhibitor delivery for ecological prevention of biofilm. Cell Prolif 2024; 57:e13678. [PMID: 38812355 PMCID: PMC11503243 DOI: 10.1111/cpr.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Biofilm formation constitutes the primary cause of various chronic infections, such as wound infections, gastrointestinal inflammation and dental caries. While preliminary achievement of biofilm inhibition is possible, the challenge lies in the difficulty of eliminating the bactericidal effects of current drugs that lead to microbiota imbalance. This study, utilizing in vitro and in vivo models of dental caries, aims to efficiently inhibit biofilm formation without inducing bactericidal effects, even against pathogenic bacteria. The tetrahedral framework nucleic acid (tFNA) was employed as a delivery vector for a small-molecule inhibitor (smI) specifically targeting the activity of glucosyltransferases C (GtfC). It was observed that tFNA loaded smI in a small-groove binding manner, efficiently transferring it into Streptococcus mutans, thereby inhibiting GtfC activity and extracellular polymeric substances formation without compromising bacterial survival. Furthermore, smI-loaded tFNA demonstrated a reduction in the severity of dental caries in vivo without adversely affecting oral microbial diversity and exhibited desirable topical and systemic biosafety. This study emphasizes the concept of 'ecological prevention of biofilm', which is anticipated to advance the optimization of biofilm prevention strategies and the clinical application of DNA nanocarrier-based drug formulations.
Collapse
Affiliation(s)
- Yuhao Liu
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Kechen Li
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Weijie Zhuang
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Lulu Liang
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
- Guangzhou Development District Hospital, Chinese Association of Medicinal BiotechnologySouthern Center of Biology Diagnosis and TherapyGuangzhouChina
| | - Xiangyi Chen
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Dongsheng Yu
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
20
|
Artesani L, Ciociola T, Vismarra A, Bacci C, Conti S, Giovati L. Activity of Synthetic Peptide KP and Its Derivatives against Biofilm-Producing Escherichia coli Strains Resistant to Cephalosporins. Antibiotics (Basel) 2024; 13:683. [PMID: 39199983 PMCID: PMC11350827 DOI: 10.3390/antibiotics13080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Bacterial resistance to β-lactam antibiotics, particularly new generation cephalosporins, is a major public health concern. In Escherichia coli, resistance to these antibiotics is mainly mediated by extended-spectrum β-lactamases (ESBL), which complicates a range of health-threatening infections. These infections may also be biofilm-related, making them more difficult to treat because of the higher tolerance to conventional antibiotics and the host immune response. In this study, we tested as potential new drug candidates against biofilm-forming ESBL-producing E. coli four antimicrobial peptides previously shown to have antifungal properties. The peptides proved to be active in vitro at micromolar concentrations against both sensitive and ESBL-producing E. coli strains, effectively killing planktonic cells and inhibiting biofilm formation. Quantitative fluorescence intensity analysis of three-dimensional reconstructed confocal laser scanning microscopy (CLSM) images of mature biofilm treated with the most active peptide showed significant eradication and a reduction in viable bacteria, while scanning electron microscopy (SEM) revealed gross morphological alterations in treated bacteria. The screening of the investigated peptides for antibacterial and antibiofilm activity led to the selection of a leading candidate to be further studied for developing new antimicrobial drugs as an alternative treatment against microbial infections, primarily associated with biofilms.
Collapse
Affiliation(s)
- Lorenza Artesani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Alice Vismarra
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
21
|
D’Aquila P, De Rose E, Sena G, Scorza A, Cretella B, Passarino G, Bellizzi D. Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance. Antibiotics (Basel) 2024; 13:619. [PMID: 39061301 PMCID: PMC11273524 DOI: 10.3390/antibiotics13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
With the widespread phenomenon of antibiotic resistance and the diffusion of multiple drug-resistant bacterial strains, enormous efforts are being conducted to identify suitable alternative agents against pathogenic microorganisms. Since an association between biofilm formation and antibiotic resistance phenotype has been observed, a promising strategy pursued in recent years focuses on controlling and preventing this formation by targeting and inhibiting the Quorum Sensing (QS) system, whose central role in biofilm has been extensively demonstrated. Therefore, the research and development of Quorum Quenching (QQ) compounds, which inhibit QS, has gradually attracted the attention of researchers and has become a new strategy for controlling harmful microorganisms. Among these, a number of both natural and synthetic compounds have been progressively identified as able to interrupt the intercellular communication within a microbial community and the adhesion to a surface, thus disintegrating mature/preformed biofilms. This review describes the role played by QS in the formation of bacterial biofilms and then focuses on the mechanisms of different natural and synthetic QS inhibitors (QSIs) exhibiting promising antibiofilm ability against Gram-positive and Gram-negative bacterial pathogens and on their applications as biocontrol strategies in various fields.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Angelo Scorza
- Villa Ermelinda, Progetto Terza Età, 88842 Cutro, Italy; (A.S.); (B.C.)
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.D.R.); (G.S.); (G.P.)
| |
Collapse
|
22
|
Sedighi O, Bednarke B, Sherriff H, Doiron AL. Nanoparticle-Based Strategies for Managing Biofilm Infections in Wounds: A Comprehensive Review. ACS OMEGA 2024; 9:27853-27871. [PMID: 38973924 PMCID: PMC11223148 DOI: 10.1021/acsomega.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Chronic wounds containing opportunistic bacterial pathogens are a growing problem, as they are the primary cause of morbidity and mortality in developing and developed nations. Bacteria can adhere to almost every surface, forming architecturally complex communities called biofilms that are tolerant to an individual's immune response and traditional treatments. Wound dressings are a primary source and potential treatment avenue for biofilm infections, and research has recently focused on using nanoparticles with antimicrobial activity for infection control. This Review categorizes nanoparticle-based approaches into four main types, each leveraging unique mechanisms against biofilms. Metallic nanoparticles, such as silver and copper, show promising data due to their ability to disrupt bacterial cell membranes and induce oxidative stress, although their effectiveness can vary based on particle size and composition. Phototherapy-based nanoparticles, utilizing either photodynamic or photothermal therapy, offer targeted microbial destruction by generating reactive oxygen species or localized heat, respectively. However, their efficacy depends on the presence of light and oxygen, potentially limiting their use in deeper or more shielded biofilms. Nanoparticles designed to disrupt extracellular polymeric substances directly target the biofilm structure, enhancing the penetration and efficacy of antimicrobial agents. Lastly, nanoparticles that induce biofilm dispersion represent a novel strategy, aiming to weaken the biofilm's defense and restore susceptibility to antimicrobials. While each method has its advantages, the selection of an appropriate nanoparticle-based treatment depends on the specific requirements of the wound environment and the type of biofilm involved. The integration of these nanoparticles into wound dressings not only promises enhanced treatment outcomes but also offers a reduction in the overall use of antibiotics, aligning with the urgent need for innovative solutions in the fight against antibiotic-tolerant infections. The overarching objective of employing these diverse nanoparticle strategies is to replace antibiotics or substantially reduce their required dosages, providing promising avenues for biofilm infection management.
Collapse
Affiliation(s)
- Omid Sedighi
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brooke Bednarke
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Hannah Sherriff
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L. Doiron
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
23
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
24
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
25
|
Almeida LHDO, Ramalho SR, Almeida CV, Gutierrez CDO, Sardi JDCO, Miranda AD, Oliveira RAD, Rezende SBD, Crusca E, Franco OL, Oliveira CFRD, Cardoso MH, Macedo MLR. A potent candicidal peptide designed based on an encrypted peptide from a proteinase inhibitor. Biochim Biophys Acta Gen Subj 2024; 1868:130583. [PMID: 38360076 DOI: 10.1016/j.bbagen.2024.130583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Antimicrobial peptides (AMP) represent an alternative in the treatment of fungal infections associated with countless deaths. Here, we report a new AMP, named KWI-19, which was designed based on a peptide encrypted in the sequence of an Inga laurina Kunitz-type inhibitor (ILTI). KWI-19 inhibited the growth of Candida species and acted as a fungicidal agent from 2.5 to 20 μmol L-1, also showing synergistic activity with amphotericin B. Kinetic assays showed that KWI-19 killed Candida tropicalis cells within 60 min. We also report the membrane-associated mechanisms of action of KWI-19 and its interaction with ergosterol. KWI-19 was also characterized as a potent antibiofilm peptide, with activity against C. tropicalis. Finally, non-toxicity was reported against Galleria mellonella larvae, thus strengthening the interest in all the bioactivities mentioned above. This study extends our knowledge on how AMPs can be engineered from peptides encrypted in larger proteins and their potential as candicidal agents.
Collapse
Affiliation(s)
- Luís Henrique de Oliveira Almeida
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Suellen Rodrigues Ramalho
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Claudiane Vilharroel Almeida
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Camila de Oliveira Gutierrez
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Janaína de Cassia Orlandi Sardi
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Antonio de Miranda
- Departamento de Biofísica da Universidade Federal de São Paulo - SP, Brazil
| | - Ricardo Abreu de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Samilla Beatriz de Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, MS, Brazil
| | - Edson Crusca
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, DF, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, DF, Brazil
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
| |
Collapse
|
26
|
Mehraj I, Hamid A, Gani U, Iralu N, Manzoor T, Saleem Bhat S. Combating Antimicrobial Resistance by Employing Antimicrobial Peptides: Immunomodulators and Therapeutic Agents against Infectious Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2023-2035. [PMID: 38533844 DOI: 10.1021/acsabm.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The rising prevalence of multiple-drug-resistant pathogens poses a formidable challenge to conventional antimicrobial treatments. The inability of potent antibiotics to combat these "superbugs" underscores the pressing need for alternative therapeutic agents. Antimicrobial peptides (AMPs) represent an alternative class of antibiotics. AMPs are essential immunomodulatory molecules that are found in various organisms. They play a pivotal role in managing microbial ecosystems and bolstering innate immunity by targeting and eliminating invading microorganisms. AMPs also have applications in the agriculture sector by combating animal as well as plant pathogens. AMPs can be exploited for the targeted therapy of various diseases and can also be used in drug-delivery systems. They can be used in synergy with current treatments like antibiotics and can potentially lead to a lower required dosage. AMPs also have huge potential in wound healing and regenerative medicine. Developing AMP-based strategies with improved safety, specificity, and efficacy is crucial in the battle against alarming global microbial resistance. This review will explore AMPs' increasing applicability, their mode of antimicrobial activity, and various delivery systems enhancing their stability and efficacy.
Collapse
Affiliation(s)
- Insha Mehraj
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Nulevino Iralu
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| |
Collapse
|
27
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
28
|
Cong F, Gu L, Lin J, Liu G, Wang Q, Zhang L, Chi M, Xu Q, Zhao G, Li C. Plumbagin inhibits fungal growth, HMGB1/LOX-1 pathway and inflammatory factors in A. fumigatus keratitis. Front Microbiol 2024; 15:1383509. [PMID: 38655086 PMCID: PMC11035880 DOI: 10.3389/fmicb.2024.1383509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1β, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1β levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Thomas AM, Antony SP. Marine Antimicrobial Peptides: An Emerging Nightmare to the Life-Threatening Pathogens. Probiotics Antimicrob Proteins 2024; 16:552-578. [PMID: 37022565 DOI: 10.1007/s12602-023-10061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The emergence of multidrug-resistant pathogens due to improper usage of conventional antibiotics has created a global health crisis. Alternatives to antibiotics being an urgent need, the scientific community is forced to search for new antimicrobials. This exploration has led to the discovery of antimicrobial peptides, a group of small peptides occurring in different phyla such as Porifera, Cnidaria, Annelida, Arthropoda, Mollusca, Echinodermata, and Chordata, as a component of their innate immune system. The marine environment, possessing immense diversity of organisms, is undoubtedly one of the richest sources of unique potential antimicrobial peptides. The distinctiveness of marine antimicrobial peptides lies in their broad-spectrum activity, mechanism of action, less cytotoxicity, and high stability, which form the benchmark for developing a potential therapeutic. This review aims to (1) synthesise the available information on the distinctive antimicrobial peptides discovered from marine organisms, particularly over the last decade, and (2) discuss the distinctiveness of marine antimicrobial peptides and their prospects.
Collapse
Affiliation(s)
- Anne Maria Thomas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
30
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
31
|
Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: types and mechanism of action. Res Microbiol 2024; 175:104111. [PMID: 37844786 DOI: 10.1016/j.resmic.2023.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/18/2023]
Abstract
Biofilms have been recognized as a serious threat to public health as it protects microbes from antimicrobials, immune defence mechanisms, chemical treatments and nutritional stress. Biofilms are also a source of concern in industries and water treatment because their presence compromises the integrity of equipment. To overcome these problems, it is necessary to identify novel anti-biofilm compounds. Products of microorganisms have been identified as promising broad-spectrum anti-biofilm agents. These natural products include biosurfactants, antimicrobial peptides, enzymes and bioactive compounds. Anti-biofilm products of microbial origin are chemically diverse and possess a broad spectrum of activities against biofilms. The objective of this review is to give an overview of the different types of microbial anti-biofilm products and their mechanisms of action.
Collapse
Affiliation(s)
| | - Oluwafemi Adebayo Oyewole
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Minna, Nigeria; African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria.
| | | | | | - Asmau Nna Sulaiman
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reham Tarek
- Department of Biotechnology, Cairo University, Egypt
| |
Collapse
|
32
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
33
|
Han J, Wu P, Yang J, Weng Y, Lin Y, Chen Z, Yu F, Lü X, Ni L. Development of a novel hybrid antimicrobial peptide for enhancing antimicrobial spectrum and potency against food-borne pathogens. J Appl Microbiol 2024; 135:lxae023. [PMID: 38337177 DOI: 10.1093/jambio/lxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
AIMS To address the increasingly serious challenge of the transmission of foodbrone pathogens in the food chain. METHODS AND RESULTS In this study, we employed rational design strategies, including truncation, amino acid substitution, and heterozygosity, to generate seven engineered peptides with α-helical structure, cationic property, and amphipathic characteristics based on the original Abhisin template. Among them, as the hybird antimicrobial peptide (AMP), AM exhibits exceptional stability, minimal toxicity, as well as broad-spectrum and potent antimicrobial activity against foodborne pathogens. Besides, it was observed that the electrostatic incorporation demonstrates by AM results in its primary targeting and disruption of the cell wall and membrane of Escherichia coli O157: H7 (EHEC) and methicillin-resistant Staphylococcus aureus (MRSA), resulting in membrane perforation and enhanced permeability. Additionally, AM effectively counteracts the deleterious effects of lipopolysaccharide, eradicating biofilms and ultimately inducing the demise of both food spoilage and pathogenic microorganisms. CONCLUSIONS The findings highlight the significant potential of AM as a highly promising candidate for a novel food preservative and its great importance in the design and optimization of AMP-related agents.
Collapse
Affiliation(s)
- Jinzhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Zhiying Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Fengfan Yu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Xucong Lü
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| |
Collapse
|
34
|
Canè C, Lucignano R, Di Somma A, Liccardo M, Iannuzzi C, Duilio A, Picone D. Release of a novel peptide from ferritin nanocages: A new tool for therapeutic applications. Biochim Biophys Acta Gen Subj 2024; 1868:130525. [PMID: 38043914 DOI: 10.1016/j.bbagen.2023.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
The development of new drug delivery systems for targeted chemotherapy release in cancer cells represents a very promising tool. In this contest, protein-based nanocages have considerable potential as drug delivery devices. Notably, ferritin has emerged as an excellent candidate due to its unique architecture, surface properties and high biocompatibility. A promising strategy might then involve ferritin cargos for specifical release of AntiMicrobial Peptides endowed with anticancer activity to cancer cells. In this paper, we encapsulated the TRIL analogue of Temporin-L peptide within a ferritin nanocage and evaluated the cargo biological properties. The results demonstrated a reduced haemolytic activity of the peptide and a selective cytotoxicity activity on cancer cells likely mediated by oxidative stress while having no effects on non-tumoral cells. The combination of the properties of ferritin with TRIL, might open up the way to the development of novel peptide delivery systems for future pharmaceutical applications.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore", Via G. Salvatore 486, 80131 Napoli, Italy.
| | - Maria Liccardo
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy.
| |
Collapse
|
35
|
Geng X, Yang YJ, Li Z, Ge WB, Xu X, Liu XW, Li JY. Fingolimod Inhibits Exopolysaccharide Production and Regulates Relevant Genes to Eliminate the Biofilm of K. pneumoniae. Int J Mol Sci 2024; 25:1397. [PMID: 38338675 PMCID: PMC10855953 DOI: 10.3390/ijms25031397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) exhibits the ability to form biofilms as a means of adapting to its adverse surroundings. K. pneumoniae in this biofilm state demonstrates remarkable resistance, evades immune system attacks, and poses challenges for complete eradication, thereby complicating clinical anti-infection efforts. Moreover, the precise mechanisms governing biofilm formation and disruption remain elusive. Recent studies have discovered that fingolimod (FLD) exhibits biofilm properties against Gram-positive bacteria. Therefore, the antibiofilm properties of FLD were evaluated against multidrug-resistant (MDR) K. pneumoniae in this study. The antibiofilm activity of FLD against K. pneumoniae was assessed utilizing the Alamar Blue assay along with confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and crystal violet (CV) staining. The results showed that FLD effectively reduced biofilm formation, exopolysaccharide (EPS), motility, and bacterial abundance within K. pneumoniae biofilms without impeding its growth and metabolic activity. Furthermore, the inhibitory impact of FLD on the production of autoinducer-2 (AI-2) signaling molecules was identified, thereby demonstrating its notable anti-quorum sensing (QS) properties. The results of qRT-PCR analysis demonstrated that FLD significantly decreased the expression of genes associated with the efflux pump gene (AcrB, kexD, ketM, kdeA, and kpnE), outer membrane (OM) porin proteins (OmpK35, OmpK36), the quorum-sensing (QS) system (luxS), lipopolysaccharide (LPS) production (wzm), and EPS production (pgaA). Simultaneously, FLD exhibited evident antibacterial synergism, leading to an increased survival rate of G. mellonella infected with MDR K. pneumoniae. These findings suggested that FLD has substantial antibiofilm properties and synergistic antibacterial potential for colistin in treating K. pneumoniae infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi-Wang Liu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (Y.-J.Y.); (Z.L.); (W.-B.G.); (X.X.)
| | - Jian-Yong Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (Y.-J.Y.); (Z.L.); (W.-B.G.); (X.X.)
| |
Collapse
|
36
|
Grooters KE, Ku JC, Richter DM, Krinock MJ, Minor A, Li P, Kim A, Sawyer R, Li Y. Strategies for combating antibiotic resistance in bacterial biofilms. Front Cell Infect Microbiol 2024; 14:1352273. [PMID: 38322672 PMCID: PMC10846525 DOI: 10.3389/fcimb.2024.1352273] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Biofilms, which are complexes of microorganisms that adhere to surfaces and secrete protective extracellular matrices, wield substantial influence across diverse domains such as medicine, industry, and environmental science. Despite ongoing challenges posed by biofilms in clinical medicine, research in this field remains dynamic and indeterminate. This article provides a contemporary assessment of biofilms and their treatment, with a focus on recent advances, to chronicle the evolving landscape of biofilm research.
Collapse
Affiliation(s)
- Kayla E. Grooters
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - David M. Richter
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Matthew J. Krinock
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Ashley Minor
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Patrick Li
- University of Michigan, Ann Arbor, MI, United States
- Division of Biomedical Engineering, Department of Orthopedic Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Audrey Kim
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Robert Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Division of Biomedical Engineering, Department of Orthopedic Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
37
|
Yue L, Song L, Zhu S, Fu X, Li X, He C, Li J. Machine learning assisted rational design of antimicrobial peptides based on human endogenous proteins and their applications for cosmetic preservative system optimization. Sci Rep 2024; 14:947. [PMID: 38200054 PMCID: PMC10781772 DOI: 10.1038/s41598-023-50832-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Preservatives are essential components in cosmetic products, but their safety issues have attracted widespread attention. There is an urgent need for safe and effective alternatives. Antimicrobial peptides (AMPs) are part of the innate immune system and have potent antimicrobial properties. Using machine learning-assisted rational design, we obtained a novel antibacterial peptide, IK-16-1, with significant antibacterial activity and maintaining safety based on β-defensins. IK-16-1 has broad-spectrum antimicrobial properties against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, and has no haemolytic activity. The use of IK-16-1 holds promise in the cosmetics industry, since it can serve as a preservative synergist to reduce the amount of other preservatives in cosmetics. This study verified the feasibility of combining computational design with artificial intelligence prediction to design AMPs, achieving rapid screening and reducing development costs.
Collapse
Affiliation(s)
- Lizhi Yue
- Key Laboratory of Cosmetic of China National Light Industry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
- School of Chemistry and Chemical Engineering, Qilu Normal University, Shandong, China
| | - Liya Song
- Key Laboratory of Cosmetic of China National Light Industry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Siyu Zhu
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Harvest Biotech (Zhejiang) Co., Ltd., Zhejiang, China
| | - Xiaolei Fu
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Harvest Biotech (Zhejiang) Co., Ltd., Zhejiang, China
| | - Xuhui Li
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Congfen He
- Key Laboratory of Cosmetic of China National Light Industry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China.
| | - Junxiang Li
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China.
- Harvest Biotech (Zhejiang) Co., Ltd., Zhejiang, China.
| |
Collapse
|
38
|
Masadeh MM, Alshogran H, Alsaggar M, Sabi SH, Al Momany EM, Masadeh MM, Alrabadi N, Alzoubi KH. Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics. Curr Protein Pept Sci 2024; 25:826-843. [PMID: 38910428 DOI: 10.2174/0113892037291252240528110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity. METHODS The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide's antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922) and two resistant (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC50 value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood. RESULTS The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 μM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC50 value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains. CONCLUSION The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Haneen Alshogran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Alsaggar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Enaam M Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. box 330127, Zarqa 13133, Jordan
| | - Majd M Masadeh
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, 11800, Penang, Malaysia
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
39
|
Yang J, Wu P, Weng Y, Lin Y, Chen Z, Yu F, Lv X, Ni L, Han J. Rational Design and Antimicrobial Potency Assessment of Abaecin Analogues. ACS Biomater Sci Eng 2023; 9:6698-6714. [PMID: 37988627 DOI: 10.1021/acsbiomaterials.3c01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The widespread and escalating emergence of multidrug resistance is now recognized as one of the most severe global threats to human health. To address the urgent issue of drug-resistant bacteria and the limitation of effective clinical treatments, antimicrobial peptides (AMPs) have been developed as promising substituents of conventional antibiotics. In this study, rational design strategies were employed to acquire seven cationic and α-helical engineered peptides based on the original template of Abaecin. After investigation, we found that AC7 (LLRRWKKLFKKIIRWPRPLPNPGH) demonstrated potent and broad-spectrum antimicrobial activity. Additionally, it demonstrated low cytotoxicity and hemolysis while maintaining good stability. Notably, AC7 displays the antibacterial mechanism with superior abilities in cell membrane disruption and potential DNA binding in vitro, as well as effectively disrupting biofilms. Moreover, the murine skin wound model infected with drug-resistant Pseudomonas aeruginosa was employed to evaluate the anti-infective efficacy and therapeutic potential of AC7. It was observed that AC7 displays a remarkable capacity to inhibit wound colonization, reduce levels of inflammatory cytokines (TNF-α) and inflammatory cells (white blood cells (WBC), monocytes (MONO), lymphocytes (LYMPH), neutrophils (GRAN)), promote the levels of IL-10 and VEGF, and enhance wound healing. Overall, these findings demonstrate the potential of AC7 as a viable alternative to traditional antibiotics.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiying Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fengfan Yu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Jinzhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| |
Collapse
|
40
|
Louis M, Tahrioui A, Tremlett CJ, Clamens T, Leprince J, Lefranc B, Kipnis E, Grandjean T, Bouffartigues E, Barreau M, Defontaine F, Cornelis P, Feuilloley MG, Harmer NJ, Chevalier S, Lesouhaitier O. The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm. Biofilm 2023; 5:100131. [PMID: 37252226 PMCID: PMC10220261 DOI: 10.1016/j.bioflm.2023.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Melissande Louis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Courtney J. Tremlett
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas Clamens
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Jérôme Leprince
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Eric Kipnis
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Teddy Grandjean
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Magalie Barreau
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Florian Defontaine
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Marc G.J. Feuilloley
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Nicholas J. Harmer
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Sylvie Chevalier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| |
Collapse
|
41
|
R PA, Anbarasu A. Antimicrobial Peptides as Immunomodulators and Antimycobacterial Agents to Combat Mycobacterium tuberculosis: a Critical Review. Probiotics Antimicrob Proteins 2023; 15:1539-1566. [PMID: 36576687 DOI: 10.1007/s12602-022-10018-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) is a devastating disease foisting a significantly high morbidity, prepotent in low- and middle-income developing countries. Evolution of drug resistance among Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has made the TB treatment more complicated. The protracted nature of present TB treatment, persistent and tolerant Mtb populations, interaction with antiretroviral therapy and existing toxicity concerned with conventional anti-TB drugs are the four major challenges inflicted with emergence of drug-resistant mycobacterial strains, and the standard medications are unable to combat these strains. These factors emphasize an exigency to develop new drugs to overcome these barriers in current TB therapy. With this regard, antimycobacterial peptides derived from various sources such as human cells, bacterial sources, mycobacteriophages, fungal, plant and animal sources could be considered as antituberculosis leads as most of these peptides are associated with dual advantages of having both bactericidal activity towards Mtb as well as immuno-regulatory property. Some of the peptides possess the additional advantage of interacting synergistically with antituberculosis medications too, thereby increasing their efficiency, underscoring the vigour of antimicrobial peptides (AMPs) as best possible alternative therapeutic candidates or adjuvants in TB treatment. Albeit the beneficiary features of these peptides, few obstacles allied with them like cytotoxicity and proteolytic degradation are matter of concerns too. In this review, we have focused on structural hallmarks, targeting mechanisms and specific structural aspects contributing to antimycobacterial activity and discovered natural and synthetic antimycobacterial peptides along with their sources, anti-TB, immuno-regulatory properties, merits and demerits and possible delivery methods of AMPs.
Collapse
Affiliation(s)
- Preethi A R
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India.
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
42
|
Wang D, Yu J, Liu H, Zhang T, Haney EF, Hancock REW, Peng L, Shen Y. Influence of a D-enantiomeric peptide on the anticorrosion ability of titanium with different surface roughness against Streptococcus mutans biofilms. J Dent 2023; 139:104777. [PMID: 37944630 DOI: 10.1016/j.jdent.2023.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE To investigate the effectiveness of a d-enantiomeric antibiofilm peptide (DJK-5) on the anticorrosion ability of titanium (Ti) with different surface roughness against Streptococcus mutans biofilms. METHODS Commercially pure Ti disks with machined (MA, smooth) or sandblasted + acid-etched (SLA, rough) surfaces were prepared and characterized. All disks were divided into three groups: a positive control (PC) group with S. mutans, a DJK-5-treated group, and a negative control (NC) group without S. mutans. Biofilm formation and corrosion on Ti surfaces were determined by confocal laser scanning microscopy and scanning electron microscopy after 2 and 6 days, and the electrochemical properties were evaluated. RESULTS Ten μg/mL of DJK-5 killed 83.3 % and 87.4 % of biofilms on SLA and MA Ti surfaces, respectively after 2 days, and 72.9 % and 77.7 % after 6 days, with more bacteria surviving on SLA surfaces with higher roughness (p < 0.05). DJK-5 treatment induced less surface defects with tiny pit corrosion than PC. DJK-5 treatment when compared to PC, led to electrochemical properties more reflecting NC surfaces, including significantly less negative corrosion potential, lower corrosion current, and higher passive film resistance (p < 0.05). SLA surfaces exhibited higher current density and lower resistance than MA surfaces (p < 0.05). CONCLUSION DJK-5 effectively enhanced the corrosion resistance of Ti with different surface roughness while killing S. mutans biofilms, and smooth surfaces were more susceptible to peptide treatment. CLINICAL SIGNIFICANCE The antibiofilm peptide is promising for promoting the anticorrosion ability of Ti against biofilms, thereby preventing biofilm-related infections.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Tian Zhang
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
43
|
El-Nour SAA, Hammad AA, Fathy R, Eid AS. Application of coliphage as biocontrol agent in combination with gamma irradiation to eliminate multi-drug-resistant E. coli in minimally processed vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123907-123924. [PMID: 37995029 PMCID: PMC10746767 DOI: 10.1007/s11356-023-31071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Biofilm formation is a rising concern in the food industry. Escherichia coli (E. coli) is one of the most important food-borne pathogens that can survive in food and food-related environments and eventually produce biofilms. This study suggested that both coliphages used were successful in preventing the creation of new biofilms as well as removing existing ones. Confocal laser scanning microscopy verified these findings. According to the findings, neither coliphage survived at 37 °C, but both remained stable at 4 °C and - 20 °C for extended periods of time. The study revealed that both coliphages demonstrated a greater degree of gamma irradiation resistance when compared to E. coli. The study's results indicate that the implementation of a dual method, which incorporates gamma irradiation (1.5 kGy) and coliphage treatment, on various kinds of vegetables that were infected with E. coli, resulted in a significant reduction in bacterial count (surpassing 99.99%) following a 24-h incubation period. Combining gamma irradiation and the coliphage approach was significantly effective at lowering polysaccharide concentrations and proteins in the biofilm matrix. The results revealed that the pairing of gamma irradiation and coliphages acted in conjunction to cause disruptions in the matrix of biofilm, thereby promoting cell removal compared with either of the individual treatments. Ca+ ions strengthen the weak virion interaction with the relevant bacterial host cell receptors during the adsorption process. In conclusion, use of coliphage in combination with gamma irradiation treatment can be applied to improve fresh produce's microbial safety and enhance its storability in supermarkets.
Collapse
Affiliation(s)
- Salwa A Abou El-Nour
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ali A Hammad
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Reham Fathy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amal S Eid
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
44
|
Petit M, Tessier J, Sahli C, Schmitzer AR. Confronting the Threat: Designing Highly Effective bis-Benzimidazolium Agents to Overcome Biofilm Persistence and Antimicrobial Resistance. ACS Infect Dis 2023; 9:2202-2214. [PMID: 37882623 DOI: 10.1021/acsinfecdis.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The objective of this study is to take the initial steps toward developing novel antibiotics to counteract the escalating problem of antimicrobial and bacterial persistence, particularly in relation to biofilms. Our approach involves emulating the structural characteristics of cationic antimicrobial peptides. To circumvent resistance development, we have designed a library of bis-benzimidazolium salts that selectively target the microbial membranes in a nonspecific manner. To explore their structure-activity relationship, we conducted experiments using these compounds on various pathogens known for their resistance to conventional antibiotics, including Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and Gram-negative Escherichia coli (E. coli). Notably, two bis-benzimidazolium salts exhibited robust antimicrobial activity while maintaining a high level of selectivity compared with mammalian cells. Our investigations revealed significant antibiofilm activity, as these compounds rapidly acted against established biofilms. In addition, bis-benzimidazolium compounds exhibited consistent results in resistance development and cross-resistance studies. Consequently, amphiphilic bis-benzimidazolium salts hold promise as potential candidates to combat resistance-associated infections.
Collapse
Affiliation(s)
- Maude Petit
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| | - Jérémie Tessier
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
- Collège Bois-de-Boulogne, 10555 Ave. de Bois-de-Boulogne, Montréal H4N 1L4, Canada
| | - Célia Sahli
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
- CNRS-UMR 7086, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), Université Paris Cité, Paris 75013 , France
| | - Andreea R Schmitzer
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| |
Collapse
|
45
|
Zhang X, Tao L, Wei G, Yang M, Wang Z, Shi C, Shi Y, Huang A. Plant-derived rennet: research progress, novel strategies for their isolation, identification, mechanism, bioactive peptide generation, and application in cheese manufacturing. Crit Rev Food Sci Nutr 2023; 65:444-456. [PMID: 37902764 DOI: 10.1080/10408398.2023.2275295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Rennet, an aspartate protease found in the stomach of unweaned calves, effectively cuts the peptide bond between Phe105-Met106 in κ-casein, hydrolyzing the casein micelles to coagulate the milk and is a crucial additive in cheese production. Rennet is one of the most used enzymes of animal origin in cheese making. However, using rennet al.one is insufficient to meet the increasing demand for cheese production worldwide. Numerous studies have shown that plant rennet can be an alternative to bovine rennet and exhibit a good renneting effect. Therefore, it is crucial and urgent to find a reliable plant rennet. Based on our team's research on rennet enzymes of plant origin, such as from Dregea sinensis Hemsl. and Moringa oleifer Lam., for more than ten years, this paper reviews the relevant literature on rennet sources, isolation, identification, rennet mechanism, functional active peptide screening, and application in cheese production. In addition, it proposes the various techniques for targeted isolation and identification of rennet and efficient screening of functionally active peptides, which show excellent prospects for development.
Collapse
Affiliation(s)
- Xueting Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
46
|
Cafaro V, Bosso A, Di Nardo I, D’Amato A, Izzo I, De Riccardis F, Siepi M, Culurciello R, D’Urzo N, Chiarot E, Torre A, Pizzo E, Merola M, Notomista E. The Antimicrobial, Antibiofilm and Anti-Inflammatory Activities of P13#1, a Cathelicidin-like Achiral Peptoid. Pharmaceuticals (Basel) 2023; 16:1386. [PMID: 37895857 PMCID: PMC10610514 DOI: 10.3390/ph16101386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are powerful molecules with antimicrobial, antibiofilm and endotoxin-scavenging activities. These properties make CAMPs very attractive drugs in the face of the rapid increase in multidrug-resistant (MDR) pathogens, but they are limited by their susceptibility to proteolytic degradation. An intriguing solution to this issue could be the development of functional mimics of CAMPs with structures that enable the evasion of proteases. Peptoids (N-substituted glycine oligomers) are an important class of peptidomimetics with interesting benefits: easy synthetic access, intrinsic proteolytic stability and promising bioactivities. Here, we report the characterization of P13#1, a 13-residue peptoid specifically designed to mimic cathelicidins, the best-known and most widespread family of CAMPs. P13#1 showed all the biological activities typically associated with cathelicidins: bactericidal activity over a wide spectrum of strains, including several ESKAPE pathogens; the ability to act in combination with different classes of conventional antibiotics; antibiofilm activity against preformed biofilms of Pseudomonas aeruginosa, comparable to that of human cathelicidin LL-37; limited toxicity; and an ability to inhibit LPS-induced proinflammatory effects which is comparable to that of "the last resource" antibiotic colistin. We further studied the interaction of P13#1 with SDS, LPSs and bacterial cells by using a fluorescent version of P13#1. Finally, in a subcutaneous infection mouse model, it showed antimicrobial and anti-inflammatory activities comparable to ampicillin and gentamicin without apparent toxicity. The collected data indicate that P13#1 is an excellent candidate for the formulation of new antimicrobial therapies.
Collapse
Affiliation(s)
- Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Assunta D’Amato
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Nunzia D’Urzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | | | | | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| |
Collapse
|
47
|
Abd El-Aal AAA, Jayakumar FA, Lahiri C, Tan KO, Reginald K. Novel cationic cryptides in Penaeus vannamei demonstrate antimicrobial and anti-cancer activities. Sci Rep 2023; 13:14673. [PMID: 37673929 PMCID: PMC10482825 DOI: 10.1038/s41598-023-41581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Cryptides are a subfamily of bioactive peptides that exist in all living organisms. They are latently encrypted in their parent sequences and exhibit a wide range of biological activities when decrypted via in vivo or in vitro proteases. Cationic cryptides tend to be drawn to the negatively charged membranes of microbial and cancer cells, causing cell death through various mechanisms. This makes them promising candidates for alternative antimicrobial and anti-cancer therapies, as their mechanism of action is independent of gene mutations. In the current study, we employed an in silico approach to identify novel cationic cryptides with potential antimicrobial and anti-cancer activities in atypical and systematic strategy by reanalysis of a publicly available RNA-seq dataset of Pacific white shrimp (Penaus vannamei) in response to bacterial infection. Out of 12 cryptides identified, five were selected based on their net charges and potential for cell penetration. Following chemical synthesis, the cryptides were assayed in vitro to test for their biological activities. All five cryptides demonstrated a wide range of selective activity against the tested microbial and cancer cells, their anti-biofilm activities against mature biofilms, and their ability to interact with Gram-positive and negative bacterial membranes. Our research provides a framework for a comprehensive analysis of transcriptomes in various organisms to uncover novel bioactive cationic cryptides. This represents a significant step forward in combating the crisis of multi-drug-resistant microbial and cancer cells, as these cryptides neither induce mutations nor are influenced by mutations in the cells they target.
Collapse
Affiliation(s)
- Amr Adel Ahmed Abd El-Aal
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Marine Microbiology Lab., National Institute of Oceanography and Fisheries (NIOF), Alexandria, 84511, Egypt
| | - Fairen Angelin Jayakumar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chandrajit Lahiri
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Department of Biotechnology, Atmiya University, Rajkot, Gujarat, 360005, India
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
48
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
49
|
Dreab A, Bayse CA. The effect of metalation on antimicrobial piscidins imbedded in normal and oxidized lipid bilayers. RSC Chem Biol 2023; 4:573-586. [PMID: 37547452 PMCID: PMC10398361 DOI: 10.1039/d3cb00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
Metalation of the N-terminal Amino Terminal Cu(ii)- and Ni(ii)-binding (ATCUN) motif may enhance the antimicrobial properties of piscidins. Molecular dynamics simulations of free and nickelated piscidins 1 and 3 (P1 and P3) were performed in 3 : 1 POPC/POPG and 2.6 : 1 : 0.4 POPC/POPG/aldo-PC bilayers (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; aldo-PC, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine) bilayer models. Nickel(ii) binding decreases the conformation dynamics of the ATCUN motif and lowers the charge of the N-terminus to allow it to embed deeper in the bilayer without significantly changing the overall depth due to interactions of the charged half-helix of the peptide with the headgroups. Phe1⋯Ni2+ cation-π and Phe2-Phe1 CH-π interactions contribute to a small fraction of structures within the nickelated P1 simulations and may partially protect a bound metal from metal-centered chemical activity. The substitution of Phe2 for Ile2 in P3 sterically blocks conformations with cation-π interactions offering less protection to the metal. This difference between metalated P1 and P3 may indicate a mechanism by which peptide sequence can influence antimicrobial properties. Any loss of bilayer integrity due to chain reversal of the oxidized phospholipid chains of aldo-PC may be enhanced in the presence of metalated piscidins.
Collapse
Affiliation(s)
- Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| |
Collapse
|
50
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|