1
|
García Milla P, Nieto Martínez G, Maulen M, Tapia C, Díaz W. The effect of supplementation with prebiotic fiber on the gut microbiota of a group of older people with Parkinson's disease from the city of Santiago de Chile. A pilot study. NUTR HOSP 2025; 42:232-242. [PMID: 40008668 DOI: 10.20960/nh.05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Introduction Introduction: Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. It has been demonstrated that there is a correlation between the increase in bacterial abundance and the severity of certain symptoms associated with PD. Aim: the aim of this pilot study was to analyze the effect of supplementation with prebiotic fiber on the gut microbiota (GM) and nutritional status of elderly volunteers with Parkinson's disease. Methodology: this is a pilot study of pre and post intervention with prebiotic fiber. All subjects involved were volunteers with PD, who were given nutritional counseling and gut microbiota measured on time cero and after 30 days of prebiotic fiber intervention. Results: a statistically significant difference was found in calf circumference (p 0.0422) after the intervention with prebiotic fiber. GM analyses show an initial difference in gut bacterial abundance of older people with PD and people without PD. Furthermore, our results showed a difference in bacterial families and genera after the supplementation with prebiotic fiber. in addition, we found a statistically significant difference in the val-ue of circumference calf and a trend in the improvement of body weight, Body mass index (BMI), neck circumference, arm circumference, brachial area, and Diet Quality Questionnaire (DQQ) for older adults. Conclusion: supplementation with 20 g of prebiotic fiber for 30 days could modify the intestinal microbiota, reducing bacterial genera and phylum that are abundant in Park-inson's disease, such as Verrucomicrobia. Therefore, the use of prebiotic fiber could represent an alternative to improve intestinal health and nutritional status of people with Parkinson's disease.
Collapse
Affiliation(s)
- Paula García Milla
- Department of Food Technology, Nutrition and Food Science. Veterinary Faculty. Universidad de Murcia. Regional Campus of International Excellence "Campus Mare Nostrum". Campus de Espinardo. Nutrition and Dietetics. Health Sciences Faculty. Universidad Au
| | - Gema Nieto Martínez
- Department of Food Technology, Nutrition and Food Science. Veterinary Faculty. Universidad de Murcia. Regional Campus of International Excellence "Campus Mare Nostrum". Campus de Espinardo
| | - Mario Maulen
- Molecular Microbiology and Food Research Laboratory. School of Nutrition and Dietetics. Faculty of Sciences for Health Care. Universidad de San Sebastián
| | - Carlos Tapia
- Department of Food Technology, Nutrition and Food Science. Veterinary Faculty. Universidad de Murcia. Regional Campus of International Excellence "Campus Mare Nostrum". Campus de Espinardo
| | - Waldo Díaz
- Molecular Microbiology and Food Research Laboratory. School of Nutrition and Dietetics. Faculty of Sciences for Health Care. Universidad de San Sebastián
| |
Collapse
|
2
|
Palanivelu L, Chang CW, Li SJ, Liang YW, Lo YC, Chen YY. Interplay of Neuroinflammation and Gut Microbiota Dysbiosis in Alzheimer's Disease Using Diffusion Kurtosis Imaging Biomarker in 3 × Tg-AD Mouse Models. ACS Chem Neurosci 2025; 16:1511-1528. [PMID: 40195658 PMCID: PMC12006996 DOI: 10.1021/acschemneuro.5c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
The relationship between alterations in brain microstructure and dysbiosis of gut microbiota in Alzheimer's disease (AD) has garnered increasing attention, although the functional implications of these changes are not yet fully elucidated. This research examines how neuroinflammation, systemic inflammation, and gut microbiota interact in male 3 × Tg-AD and B6129SF1/J wild-type (WT) mice at 6 months-old (6-MO) and 12 months-old (12-MO). Employing a combination of behavioral assessments, diffusion kurtosis imaging (DKI), microbiota profiling, cytokine analysis, short-chain fatty acids (SCFAs), and immunohistochemistry, we explored the progression of AD-related pathology. Significant memory impairments in AD mice at both assessed ages were correlated with altered DKI parameters that suggest neuroinflammation and microstructural damage. We observed elevated levels of pro-inflammatory cytokines, such as IL-1β, IL-6, TNFα, and IFN-γ, in the serum, which were associated with increased activity of microglia and astrocytes in brain regions critical for memory. Although gut microbiota analysis did not reveal significant changes in alpha diversity, it did show notable differences in beta diversity and a diminished Firmicutes/Bacteroidetes (F/B) ratio in AD mice at 12-MO. Furthermore, a reduction in six kinds of SCFAs were identified at two time points of 6-MO and 12-MO, indicating widespread disruption in gut microbial metabolism. These findings underscore a complex bidirectional relationship between systemic inflammation and gut dysbiosis in AD, highlighting the gut-brain axis as a crucial factor in disease progression. This study emphasizes the potential of integrating DKI metrics, microbiota profiling, and SCFA analysis to enhance our understanding of AD pathology and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International
Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 7F., No. 250, Wuxing Street, Xinyi District, Taipei 11031, Taiwan
| | - Ching-Wen Chang
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Ssu-Ju Li
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Yao-Wen Liang
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Yu-Chun Lo
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education and Research Building, Shuang-Ho
Campus, No. 301, Yuantong Road, New Taipei
City 23564, Taiwan
| | - You-Yin Chen
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education and Research Building, Shuang-Ho
Campus, No. 301, Yuantong Road, New Taipei
City 23564, Taiwan
| |
Collapse
|
3
|
Zhao X, Cao R, Tian X, Liu P, Liu D, Yu X, Zheng Z, Chen GL, Zou L. OAB-14 Attenuated Glymphatic System Disorder, Neuroinflammation and Dyskinesia in Parkinson's Disease Model Mice Induced by Rotenone. Neurochem Res 2025; 50:142. [PMID: 40220255 DOI: 10.1007/s11064-025-04388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the pathological accumulation of alpha-synuclein (α-syn) in the neuronal cell bodies of the substantia nigra. The glymphatic system within the Central Nervous System (CNS) is responsible for clearing metabolic waste and abnormal proteins and its dysfunction may significantly contribute to the pathogenesis of PD. Our previous study showed that OAB-14, the novel small molecular compound, showed a great potential effect in APP/PS1 transgenic mice. Given the similarities in the pathogenesis of PD and Alzheimer's disease (AD), it is pertinent to explore the therapeutic potential of OAB-14 in the context of PD. This study utilized a rotenone-induced PD mice model to evaluate the effects of oral administration of OAB-14, and its underlying mechanisms. Here we confirmed the neuroprotective effect and motor improvement of OAB-14 in rotenone-induced PD model mice. Our research has shown that OAB-14 is capable of enhancing the glymphatic system function by promoting the influx and efflux of the CSF tracers to the brain and deep cervical lymph nodes, respectively, to promote the clearance of α-syn. In addition, OAB-14 could down-regulate MyD88, NF-kB (Ser 536) phosphorylation, and TLR4 to reduce glial cell activation; and down-regulate cleaved-caspase1, NLRP3, ASC, IL-1β, IL-6, IL-18, TNF-α, and IL-10 to reduce the expression of inflammatory vesicles and pro-inflammatory factors, and to reduce neuronal oxidative stress. In summary, OAB-14 may promote the clearance of brain α-syn through the glial lymphatic system, inhibit the α-syn/TLR4/NF-κB/NLRP3 inflammatory pathway, and improve movement disorders.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Ruolin Cao
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xiaoyi Tian
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xin Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd, Zibo, Shandong, 255086, PR China
| | - Guo-Liang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Libo Zou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
4
|
Song MK, Cramer SC. Dopaminergic Pathways in Neuroplasticity After Stroke and Vagus Nerve Stimulation. Stroke 2025. [PMID: 40207362 DOI: 10.1161/strokeaha.125.050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Stroke remains a significant cause of disability worldwide. In addition to multidisciplinary rehabilitation approaches, various forms of technology, including vagus nerve stimulation, have emerged to facilitate neuroplasticity and, thereby, improve functional status after stroke. Vagus nerve stimulation was recently approved by the Food and Drug Administration, but questions remain regarding its mechanism of action. Here, a potential role for dopaminergic signaling is considered. This review first examines evidence that dopamine is important to neuroplasticity after stroke. Next, 2 different dopaminergic pathways are considered potential mechanisms underlying vagus nerve stimulation-related benefits after stroke, direct modulation of brain dopaminergic pathways, and engagement of systemic dopaminergic pathways such as those found in the gut-brain axis. A contribution of dopamine signaling to vagus nerve stimulation efficacy could have therapeutic implications that extend to a precision medicine approach to stroke rehabilitation.
Collapse
Affiliation(s)
- Min-Keun Song
- Department of Neurology, California Rehabilitation Institute, University of California, Los Angeles (M.-K.S., S.C.C.)
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, South Korea (M.-K.S.)
| | - Steven C Cramer
- Department of Neurology, California Rehabilitation Institute, University of California, Los Angeles (M.-K.S., S.C.C.)
| |
Collapse
|
5
|
Ding X, Chen Y, Du L, Li J, Meng X, Lv H, Tong B, Niu G, Jian T, Chen J. Benefits of inulin and fructo-oligosaccharides on high fat diet-induced type 2 diabetes mellitus by regulating the gut microbiota in mice. J Nutr Biochem 2025; 141:109908. [PMID: 40122150 DOI: 10.1016/j.jnutbio.2025.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is pathologically associated with gut microbiota imbalance, which is implicated in disease progression through metabolic and inflammatory pathways. The therapeutic potential of inulin, a well-characterized prebiotic, has been explored to mitigate T2DM via microbiota modulation. However, the efficacy of this intervention, with its performance dependent on the degree of polymerization (DP), requires further investigation. This study assessed the therapeutic roles of inulin (DP3-60) and fructo-oligosaccharides (FOS, DP3-10) in T2DM management. Dietary administration of these prebiotic compounds demonstrated a significant capacity to alleviate multiple metabolic pathologies, including obesity, insulin resistance, systemic inflammation, oxidative stress, dyslipidemia and hepatic steatosis in high-fat diet (HFD)-fed induced T2DM mice. Significant superior efficacy was observed in FOS for ameliorating glucose metabolic dysregulation, adipocyte hypertrophy, liver weight, and histopathological alterations in colonic tissue, while inulin exhibited greater potency in alleviating oxidative stress. Both inulin and FOS enhanced gut microbiota diversity and richness in T2DM mice, accompanied by a significant reduction in Firmicutes/Bacteroidetes ratio. Notably, the S24-7 family emerged as a crucial microbial taxon modulated by both inulin and FOS. Furthermore, FOS demonstrated superior capacity to restore HFD-induced gut microbiota. Taxonomically significant amplicon sequence variants (ASVs), which were altered by HFD and modulated by inulin and FOS, exhibited distinct taxonomic profiles between the two compounds. This study provides preliminary evidence that the biological effects and beneficial properties of inulin-type fructans exhibit DP-dependent variations, which may enhance their efficient utilization in metabolic disorders.
Collapse
Affiliation(s)
- Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lanlan Du
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Bertollo AG, Puntel CF, da Silva BV, Martins M, Bagatini MD, Ignácio ZM. Neurobiological Relationships Between Neurodevelopmental Disorders and Mood Disorders. Brain Sci 2025; 15:307. [PMID: 40149827 PMCID: PMC11940368 DOI: 10.3390/brainsci15030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), neurodevelopmental disorders (NDDs) are a group of conditions that arise early in development and are characterized by deficits in personal, social, academic, or occupational functioning. These disorders frequently co-occur and include conditions such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Mood disorders (MDs), such as major depressive disorder and bipolar disorder, also pose significant global health challenges due to their high prevalence and substantial impact on quality of life. Emerging evidence highlights overlapping neurobiological mechanisms between NDDs and MDs, including shared genetic susceptibilities, neurotransmitter dysregulation (e.g., dopaminergic and serotonergic pathways), neuroinflammation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Environmental factors such as early-life adversity further exacerbate these vulnerabilities, contributing to the complexity of their clinical presentation and comorbidity. Functional neuroimaging studies reveal altered connectivity in brain regions critical for emotional regulation and executive function, such as the prefrontal cortex and amygdala, across these disorders. Despite these advances, integrative diagnostic frameworks and targeted therapeutic strategies remain underexplored, limiting effective intervention. This review synthesizes current knowledge on the shared neurobiological underpinnings of NDDs and MDs, emphasizing the need for multidisciplinary research, including genetic, pharmacological, and psychological approaches, for unified diagnosis and treatment. Addressing these intersections can improve clinical outcomes and enhance the quality of life for individuals affected by these disorders.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Postgraduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil;
| | - Camila Ferreira Puntel
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| | - Brunna Varela da Silva
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| | - Marcio Martins
- Postgraduate Program in Contemporary Cultural Studies, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| | - Margarete Dulce Bagatini
- Cell Culture Laboratory, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil;
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| |
Collapse
|
7
|
Gurow K, Joshi DC, Gwasikoti J, Joshi N. Gut Microbial Control of Neurotransmitters and Their Relation to Neurological Disorders: A Comprehensive Review. Horm Metab Res 2025. [PMID: 40073909 DOI: 10.1055/a-2536-1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The study explores the vital role of gut microbiota in regulating neurotransmitters and its subsequent effects on brain function and mental health. It aims to unravel the mechanisms by which microbial metabolites influence neurotransmitter synthesis and signaling. The ultimate goal is to identify potential therapeutic strategies targeting gut microbiota for the management and treatment of neurological disorders, such as depression, autism spectrum disorder (ASD), anxiety, and Parkinson's disease. The review synthesizes current research on the gut-brain axis, focusing on the influence of gut microbial metabolites on key neurotransmitters, including dopamine, serotonin, and gamma-aminobutyric acid (GABA). It incorporates a multidisciplinary approach, linking microbiology, neurobiology, and clinical research. Each section presents an in-depth review of scientific studies, clinical trials, and emerging therapeutic strategies. The findings highlight the intricate interplay between gut microbiota and the central nervous system. Gut microbes significantly impact the synthesis and signaling of crucial neurotransmitters, which play a pivotal role in neurological health. Evidence supports the hypothesis that modulating gut microbiota can alter neurotransmitter output and alleviate symptoms associated with neurological disorders. Notable therapeutic potentials include microbiota-targeted interventions for managing depression, ASD, anxiety, and Parkinson's disease. This comprehensive analysis underscores the critical connection between gut microbiota and neurological health. By bridging gaps between microbiology, neurobiology, and clinical practice, the study opens avenues for innovative therapeutic approaches. It provides a valuable resource for researchers, clinicians, and students, emphasizing the need for continued investigation into gut microbiota's role in neurological disorders and its therapeutic potential.
Collapse
Affiliation(s)
- Kajal Gurow
- Gurukul Pharmacy College IPB-13, RIICO Industrial Area, Ranpur, Kota, Rajasthan, India
| | - Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan, India
| | - Jyoti Gwasikoti
- Department of Pharmacy, Graphic Era Hill University, Bhimtal, India
| | - Nirmal Joshi
- Faculty of Pharmaceutical Sciences, Amrapali University, Haldwani, India
| |
Collapse
|
8
|
Chen L, Wu LL, Yu CY, Xu ZC, Huang H. Bibliometric analysis of the intestinal microbiota and demyelinating diseases, particularly multiple sclerosis, since 2014. Front Neurosci 2025; 19:1506566. [PMID: 40109663 PMCID: PMC11919904 DOI: 10.3389/fnins.2025.1506566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Background The gut-brain axis (GBA) represents a complex, bidirectional communication network that connects the central nervous system (CNS) and the gastrointestinal system. Our study aimed to explore the correlation between the intestinal microbiota and demyelinating diseases from a bibliometric perspective, focusing on research since 2014. Methods A comprehensive search was carried out on the Web of Science Core Collection (WoSCC) to locate studies on the intestinal microbiota and demyelinating diseases, with a focus on publications from 1 January 2014 to 29 March 2024. We visualized and analyzed the data using VOSviewer, CiteSpace, and Charticulator. Results We gathered 429 scholarly articles on the intestinal microbiota and demyelinating disorders published in the past 10 years. Research concerning the intestinal microbiota and demyelinating diseases has demonstrated a consistent increase in frequency over time. The USA has the highest number of publications, while Canada has the highest average number of citations, reaching as high as 3,429, which is greater than that of the USA. Moreover, the journal with the highest number of publications was Frontiers in Immunology, with 33 publications and 1,494 citations. The majority of the scholars focused on "multiple sclerosis" and "gut microbiota," which are the primary keywords in the field of the intestinal microbiota and demyelinating diseases. Conclusion This study conducted a comprehensive analysis of existing research investigating the correlation between the intestinal microbiota and demyelinating diseases. Using advanced bibliometric tools such as VOSviewer and CiteSpace, this study analyzed the intricate relationship between the intestinal microbiota and the pathogenesis of demyelinating conditions. In addition, the study used literature statistical analysis to identify research hotspots and future directions in the field.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Le-Le Wu
- Department of Neurology, Xinqiao Hospital and the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zu-Cai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Terrazas F, Kelley ST, DeMasi T, Giltvedt K, Tsang M, Nannini K, Kern M, Hooshmand S. Influence of menstrual cycle and oral contraception on taxonomic composition and gas production in the gut microbiome. J Med Microbiol 2025; 74:001987. [PMID: 40153295 PMCID: PMC11952661 DOI: 10.1099/jmm.0.001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/20/2025] [Indexed: 03/30/2025] Open
Abstract
Introduction. Oral contraceptives (OCs) are widely used for birth control and offer benefits such as menstrual cycle regulation and reduced menstrual pain. However, they have also been associated with an increased risk of cancer and reduced bone mass density.Gap Statement. While the gut microbiome is known to interact with endocrine factors, the impact of hormonal OCs on its composition and function remains underexplored. Additionally, we explore the relationship of OC use and the microbiome to gas production, which can cause symptoms and be indicative of poor health.Aim. This study investigates the effects of OCs on the diversity and composition of the gut microbiome and its association with breath hydrogen (H2) and methane (CH4) levels.Methodology. We utilized 16S rRNA gene sequencing to analyse faecal samples from 65 women, comparing OC users with non-users at two menstrual cycle time points. Breath tests measured hydrogen and CH4 production. Data were analysed for microbial diversity, community composition and correlation with gas production.Results. There were no differences in overall microbial diversity between OC users and non-users in samples collected on day 2 of the menstrual cycle. However, on day 21, we found a significant difference in microbial richness, suggesting a cycle-dependent effect of OCs on gut microbiota species richness but not composition. We found a strong correlation between H2 and CH4 concentrations and an interaction between OC use and the menstrual cycle on H2 and CH4 production. We also identified several taxa associated with both high levels of H2 and CH4 production and OC use.Conclusion. Our study highlights the intricate relationships among hormonal contraceptives, the gut microbiota and gas production and connects shifts in the microbiome composition to gastrointestinal symptoms (e.g. gas production) that can impact overall health. This underscores the need for further research on the long-term effects of OCs and for the development of precise therapeutic strategies to address potential adverse effects. Our findings offer new perspectives on the microbiome-hormone-gas production nexus, potentially broadening our understanding of the systemic implications of OCs.
Collapse
Affiliation(s)
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, USA
| | - Taylor DeMasi
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Kristine Giltvedt
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Michelle Tsang
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Kaelyn Nannini
- Department of Biology, San Diego State University, San Diego, USA
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| |
Collapse
|
10
|
Bibi A, Zhang F, Shen J, Din AU, Xu Y. Behavioral alterations in antibiotic-treated mice associated with gut microbiota dysbiosis: insights from 16S rRNA and metabolomics. Front Neurosci 2025; 19:1478304. [PMID: 40092066 PMCID: PMC11906700 DOI: 10.3389/fnins.2025.1478304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The gut and brain interact through various metabolic and signaling pathways, each of which influences mental health. Gut dysbiosis caused by antibiotics is a well-known phenomenon that has serious implications for gut microbiota-brain interactions. Although antibiotics disrupt the gut microbiota's fundamental structure, the mechanisms that modulate the response and their impact on brain function are still unclear. It is imperative to comprehend and investigate crucial regulators and factors that play important roles. We aimed to study the effect of long-term antibiotic-induced disruption of gut microbiota, host metabolomes, and brain function and, particularly, to determine the basic interactions between them by treating the C57BL/6 mice with two different, most commonly used antibiotics, ciprofloxacin and amoxicillin. Anxiety-like behavior was confirmed by the elevated plus-maze test and open field test. Gut microbes and their metabolite profiles in fecal, serum, and brain samples were determined by 16S rRNA sequencing and untargeted metabolomics. In our study, long-term antibiotic treatment exerted anxiety-like effects. The fecal microbiota and metabolite status revealed that the top five genera found were Lactobacillus, Bacteroides, Akkermansia, Ruminococcus_gnavus_group, and unclassified norank_f_Muribaculaceae. The concentration of serotonin, L-Tyrosine, 5-Hydroxy-L-tryptophan, L-Glutamic acid, L-Glutamate, 5-Hydroxyindole acetic acid, and dopaminergic synapsis was comparatively low, while adenosine was high in antibiotic-treated mice. The KEGG enrichment analysis of serum and brain samples showed that amino acid metabolism pathways, such as tryptophan metabolism, threonine metabolism, serotonergic synapsis, methionine metabolism, and neuroactive ligand-receptor interaction, were significantly decreased in antibiotic-treated mice. Our study demonstrates that long-term antibiotic use induces gut dysbiosis and alters metabolic responses, leading to the dysregulation of brain signaling molecules and anxiety-like behavior. These findings highlight the complex interactions between gut microbiota and metabolic functions, providing new insights into the influence of microbial communities on gut-brain communication.
Collapse
Affiliation(s)
- Asma Bibi
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Famin Zhang
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ahmad Ud Din
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Yuanhong Xu
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Dos Santos TG, Dos Santos KAG, de Oliveira EJF, Brenig B, Paulo EM, Marques PH, Cardoso VN, Aburjaile FF, Soares SC, da Silva WM, Azevedo V, Carvalho RDDO. Genomic Scale Analysis Foresees Enteroprotective and Butyrogenic Properties in Brazilian Isolates of Lactiplantibacillus plantarum. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10495-5. [PMID: 40009329 DOI: 10.1007/s12602-025-10495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Probiogenomics offers a rapid and comprehensive approach to characterizing the beneficial properties of microorganisms, allowing the identification and selection of specific strains for improving human health. The species Lactiplantibacillus plantarum is highly ubiquitous and presents great genetic diversity making it difficult to conduct massive screening of probiotic strains when using conventional methods. Hence, this work aimed to taxonomically and functionally characterize the complete genomes of six novel L. plantarum strains isolated in Brazil through high-standard NGS. The taxonomy of strains E6, E10, E14, E18, Lpl2, and Lpl4 was investigated through average nucleotide identity analysis using the genome of L. plantarum SK151 from the GENBANK database as a reference. Moreover, multilocus phylogenetic analyses were performed to investigate their genetic relatedness to probiotic L. plantarum strains using a total of 225 complete genomes from the same database. To investigate specific health-promoting and safety properties, the isolates from Brazil were analyzed using several bioinformatic tools to predict antimicrobials and anti-inflammatory biomolecules and potential risk factors including drug resistance, virulence genes, and genetic mobility elements. The results confirmed that all six isolates belong to the species L. plantarum and the phylogenetic analysis suggests high proximity to known probiotics and strains that have demonstrated protective effects against inflammation and pathogens. Several bacteriocin genes were identified in the Brazilian isolates, mostly plantaricins, suggesting antimicrobial properties, especially in the strain E14 that presented 9 bacteriocins genes. Furthermore, the study revealed the potential capacity of these strains to produce anti-inflammatory compounds including metabolites such as butyrate through the fermentation of fructan sugars, and IL-10 stimulation activity mediated by adhesin proteins from the bacterial cell wall. The lpl4 strain glutamate decarboxylase (GADB) gene showed a high degree of genetic and structural conservation prediction and increased stabilization of the predicted protein compared to a functional homologous GADB from L. plantarum Taj-Apis362, suggesting lpl4 potential for the modulation of the gut-brain axis functions by the production of GABA. Regarding the presence of virulence and resistance genes, only one resistance island was observed in strain E6 genome. In conclusion, it is possible to suggest that most of the evaluated strains are safe and we highlight the strains Lpl4 and E14 for presenting outstanding enteroprotective properties such as the potential production of GABA and several bacteriocins.
Collapse
Affiliation(s)
- Thayra Gomes Dos Santos
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Elinalva Maciel Paulo
- Laboratory of Applied Microbiology and Public Health, State University of Feira de Santana, Feira de Santana, Brazil
| | - Pedro Henrique Marques
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Laboratory of Radioisotopes, Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Siomar Castro Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Hassan HM, Abou-Hany HO, Shata A, Hellal D, El-Baz AM, ElSaid ZH, Haleem AA, Morsy NE, Abozied RM, Elbrolosy BM, Negm S, El-Kott AF, AlShehri MA, Khasawneh MA, Saifeldeen ER, Mahfouz MM. Vinpocetine and Lactobacillus Attenuated Rotenone-Induced Parkinson's Disease and Restored Dopamine Synthesis in Rats through Modulation of Oxidative Stress, Neuroinflammation, and Lewy Bodies Inclusion. J Neuroimmune Pharmacol 2025; 20:22. [PMID: 39954133 DOI: 10.1007/s11481-025-10176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is the main neurodegenerative disorder affecting motor activity, there are different pathophysiological pathways contributing to its development including oxidative stress, neuroinflammation, Lewy's bodies accumulation, and impaired autophagy. Vinpocetine is an herbal extract with antioxidant and anti-inflammatory activities that may counteract pathophysiologic neurodegeneration pathways. Moreover, Lactobacillus is a probiotic that can modulate the gut-brain axis and provide the body with the needed precursors of antioxidants and anti-inflammatory mediators. In the current study PD was induced experimentally in Sprague Dawley rats with rotenone (2.5 mg/kg, i.p, daily) for 60 days, vinpocetine; Vinpo (20 mg/kg, orally, daily) and Lactobacillus; Lacto (2.7 × 108 CFU/ml, orally, daily) were applied as protective treatment. Vinpocetine and Lactobacillus treatment significantly ameliorated motor function by increasing distance traveled and rearing frequency in the open field test with a concomitant increase in falling time from both the accelerating rotarod and the wire screen test. Moreover, vinpocetine and Lactobacillus treatment upregulates tyrosine hydroxylase expression (the rate-limiting enzyme in dopamine synthesis), leading to enhanced dopamine synthesis and improved dopaminergic function with regression of histopathological hallmarks. Antioxidant GSH levels were significantly increased after vinpocetine and Lactobacillus treatment with a significant decrease in MDA content in brain homogenates. Furthermore, vinpocetine and Lactobacillus treatment significantly decreased striatal inflammatory markers; nitrite, IL-1β and TNF-α. Proteinopathies were regressed with a substantial decrease in striatal α-synuclein and tau content. In conclusion, vinpocetine and Lactobacillus treatment reduced rotenone neurotoxicity with improved dopamine release and motor activity with correction of oxidative burden, neuro-inflammation, and proteinopathy.
Collapse
Affiliation(s)
- Hanan M Hassan
- Pharmacology and Biochemistry department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Hadeer O Abou-Hany
- Pharmacology and Biochemistry department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Ahmed Shata
- Clinical pharmacology department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Clinical Pharmacology department, Faculty of Medicine, Horus University-Egypt, 34518, New Damietta, Egypt
| | - Doaa Hellal
- Clinical pharmacology department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed M El-Baz
- Microbiology and Immunology department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Zeinab H ElSaid
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amira A Haleem
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nesreen Elsayed Morsy
- Pulmonary Medicine Department, Faculty of Medicine, Mansoura University Sleep Center, Mansoura University, Mansoura, 35516, Egypt
| | - Rawan M Abozied
- Clinical pharmacy department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Bassant M Elbrolosy
- Clinical pharmacy department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Sally Negm
- Applied College, Health Specialties, Basic Sciences and Their Applications Unit, Mahayil Asir, King Khalid University, Abha, 62529, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamad A Khasawneh
- Department of Special Education, Faculty of Education, King Khalid University, Abha, Saudi Arabia
| | - Eman R Saifeldeen
- Department of hematology and immunology, faculty of medicine, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Marwa M Mahfouz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Menoufia University, Menoufia, 32951, Egypt
| |
Collapse
|
14
|
Bertollo AG, Santos CF, Bagatini MD, Ignácio ZM. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Front Neurosci 2025; 19:1541075. [PMID: 39981404 PMCID: PMC11839829 DOI: 10.3389/fnins.2025.1541075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) and gut-brain axes are vital biological pathways in depression. The HPA axis regulates the body's stress response, and chronic stress can lead to overactivation of the HPA axis, resulting in elevated cortisol levels that contribute to neuronal damage, particularly in regions such as the hippocampus and prefrontal cortex, both of which are involved in mood regulation and mental disorders. In parallel, the gut-brain axis, a bidirectional communication network between the gut microbiota and the central nervous system, influences emotional and cognitive functions. Imbalances in gut microbiota can affect the HPA axis, promoting inflammation and increasing gut permeability. This allows endotoxins to enter the bloodstream, contributing to neuroinflammation and altering neurotransmitter production, including serotonin. Since the majority of serotonin is produced in the gut, disruptions in this pathway may be linked to depressive symptoms. This review explores the interplay between the HPA axis and the gut-brain axis in the context of depression.
Collapse
|
15
|
Sołek P, Stępniowska A, Koszła O, Jankowski J, Ognik K. Antibiotics/coccidiostat exposure induces gut-brain axis remodeling for Akt/mTOR activation and BDNF-mediated neuroprotection in APEC-infected turkeys. Poult Sci 2025; 104:104636. [PMID: 39721265 PMCID: PMC11732450 DOI: 10.1016/j.psj.2024.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
The poultry industry relies extensively on antibiotics and coccidiostats as essential tools for disease management and productivity enhancement. However, increasing concerns about antimicrobial resistance (AMR) and the toxicological safety of these substances have prompted a deeper examination of their broader impacts on animal and human health. This study investigates the toxicological effects of antibiotics and coccidiostats on the gut-brain axis and microbiota in turkeys, with a particular focus on molecular mechanisms that may influence neurochemical and inflammatory responses. Our findings reveal that enrofloxacin exposure leads to the upregulation of BDNF, suggesting a neuroprotective effect, while monensin treatment significantly increased eEF2 kinase expression, indicative enhanced neuronal activity. In turkeys infected with Avian Pathogenic Escherichia coli (APEC), early administration of doxycycline and monensin significantly upregulated the mTOR/BDNF and Akt/mTOR pathways, along with elevated histamine levels, underscoring their role in inflammatory responses modulation. However, treatments administered at 50 days post-hatch did not significantly alter protein levels, though both enrofloxacin and monensin increased serotonin and dopamine levels, suggesting potential neurotoxicological impacts on mood and cognitive functions. These results highlight the complex interactions between antibiotic use, gut microbiota alterations, and neurochemical pathways, with toxicological implications for environmental pollution and public health. This research provides critical insights into the potential toxic effects of prolonged antibiotic and coccidiostat exposure in poultry production, emphasizing the need for responsible use to mitigate risks to ecosystems and human health.
Collapse
Affiliation(s)
- Przemysław Sołek
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland; Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Anna Stępniowska
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Jan Jankowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
16
|
Rojo-Marticella M, Arija V, Canals-Sans J. Effect of Probiotics on the Symptomatology of Autism Spectrum Disorder and/or Attention Deficit/Hyperactivity Disorder in Children and Adolescents: Pilot Study. Res Child Adolesc Psychopathol 2025; 53:163-178. [PMID: 39798036 PMCID: PMC11845535 DOI: 10.1007/s10802-024-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
The aim of this study is to investigate the impact of using probiotics with strains related to dopamine and gamma-aminobutyric acid production on clinical features of autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). This randomized, controlled trial involved 38 children with ADHD and 42 children with ASD, aged 5-16 years, who received probiotics (Lactiplantibacillus plantarum and Levilactobacillus brevis 109/cfu/daily) or placebo for 12 weeks. Parent-reported symptoms were assessed using Conners' 3rd-Ed and the Social Responsiveness Scale Test, 2nd-Ed (SRS-2), and children completed the Conners Continuous Performance Test, 3rd-Ed (CPT 3) or Conners Kiddie CPT, 2nd-Ed (K-CPT 2). Executive functions, quality of life and sleep patterns were also parent-assessed. Intention-to-treat analyses, controlling for sociodemographic and nutritional covariates, revealed no significant inter-group differences in parent-reported or neuropsychological data after the probiotic intervention. However, age-stratified analyses showed improved hyperactivity-impulsivity symptoms in younger children with ASD (Cohen's d = 1.245) and ADHD (Cohen's d = 0.692). Intra-group analyses supported these findings in the aforementioned age and intervention group for both diagnoses. An improvement in impulsivity for children with ASD was also observed in the intra-group analysis of the CPT commissions scores (probiotic: p = 0.001, Cohen's d = -1.216; placebo: p = 0.013, Cohen's d = -0.721). A better comfort score (quality of life) was shown in children with ASD (probiotic: p = 0.010, Cohen's d = 0.722; placebo: p = 0.099, Cohen's d = 0.456). The probiotics used, may improve hyperactivity-impulsivity in children with ASD or/and ADHD and quality of life in children with ASD. Further research is warranted to explore probiotics as an adjunctive therapeutic intervention for NDs.Trial registration: clinicaltrials.gov Identifier: NCT05167110.
Collapse
Affiliation(s)
- Meritxell Rojo-Marticella
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira I Virgili (URV), Carretera de Valls, S/N, 43007, Tarragona, Spain
- Department of Psychology, Research Center for Behavioral Assessment (CRAMC), Universitat Rovira I Virgili (URV), Tarragona, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira I Virgili (URV), Reus, Spain
| | - Victoria Arija
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira I Virgili (URV), Carretera de Valls, S/N, 43007, Tarragona, Spain
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira I Virgili (URV), Reus, Spain
| | - Josefa Canals-Sans
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira I Virgili (URV), Carretera de Valls, S/N, 43007, Tarragona, Spain.
- Department of Psychology, Research Center for Behavioral Assessment (CRAMC), Universitat Rovira I Virgili (URV), Tarragona, Spain.
- Pere Virgili Institute for Health Research (IISPV), Universitat Rovira I Virgili (URV), Reus, Spain.
| |
Collapse
|
17
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [PMID: 39839986 PMCID: PMC11745983 DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder characterized by a variety of symptoms broadly categorized into positive, negative, and cognitive domains. Its etiology is multifactorial, involving a complex interplay of genetic, neurobiological, and environmental factors, and its neurobiology is associated with abnormalities in different neurotransmitter systems. Due to this multifactorial etiology and neurobiology, leading to a wide heterogeneity of symptoms and clinical presentations, current antipsychotic treatments face challenges, underscoring the need for novel therapeutic approaches. Recent studies have revealed differences in the gut microbiome of individuals with schizophrenia compared to healthy controls, establishing an intricate link between this disorder and gastrointestinal health, and suggesting that microbiota-targeted interventions could help alleviate clinical symptoms. Therefore, this meta-analysis investigates whether gut microbiota manipulation can ameliorate psychotic outcomes in patients with schizophrenia receiving pharmacological treatment. Nine studies (n = 417 participants) were selected from 81 records, comprising seven randomized controlled trials and two open-label studies, all with a low risk of bias, included in this systematic review and meta-analysis. The overall combined effect size indicated significant symptom improvement following microbiota treatment (Hedges' g = 0.48, 95% CI = 0.09 to 0.88, p = 0.004, I2 = 62.35%). However, according to Hedges' g criteria, the effect size was small (approaching moderate), and study heterogeneity was moderate based on I2 criteria. This review also discusses clinical and preclinical studies to elucidate the neural, immune, and metabolic pathways by which microbiota manipulation, particularly with Lactobacillus and Bifidobacterium genera, may exert beneficial effects on schizophrenia symptoms via the gut-brain axis. Finally, we address the main confounding factors identified in our systematic review, highlight key limitations, and offer recommendations to guide future high-quality trials with larger participant cohorts to explore microbiome-based therapies as a primary or adjunctive treatment for schizophrenia.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Kanashiro
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sayuri Higa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alceu Afonso Jordão
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
18
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
19
|
Mabry SJ, Cao X, Zhu Y, Rowe C, Patel S, González-Arancibia C, Romanazzi T, Saleeby DP, Elam A, Lee HT, Turkmen S, Lauzon SN, Hernandez CE, Sun H, Wu H, Carter AM, Galli A. Fusobacterium nucleatum determines the expression of amphetamine-induced behavioral responses through an epigenetic phenomenon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633210. [PMID: 39868090 PMCID: PMC11761806 DOI: 10.1101/2025.01.15.633210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD. However, the mechanistic roles of microbes in AUD are unknown. Fusobacterium nucleatum (Fn) is a bacterium that increases in abundance in both rats and humans upon AMPH exposure. Fn releases short-chain fatty acids (SCFAs), bacterial byproducts thought to play a fundamental role in the gut-brain axis as well as the pathogenesis of AUD. We demonstrate that in gnotobiotic Drosophila melanogaster, colonization with Fn or dietary supplementation of the SCFA butyrate, a potent inhibitor of histone deacetylases (HDACs), enhances the psychomotor and rewarding properties of AMPH as well as its ability to promote male sexual motivation. Furthermore, solely HDAC1 RNAi targeted inhibition recapitulates these enhancements, pointing to a specific process underlying this Fn phenomenon. Of note is that the expression of these AMPH behaviors is determined by the increase in extracellular dopamine (DA) levels that result from AMPH-induced reversal of DA transporter (DAT) function, termed non-vesicular DA release (NVDR). The magnitude of AMPH-induced NVDR is dictated, at least in part, by DAT expression levels. Consistent with our behavioral data, we show that Fn, butyrate, and HDAC1 inhibition enhance NVDR by elevating DAT expression. Thus, the participation of Fn in AUD stems from its ability to release butyrate and inhibit HDAC1. These data offer a microbial target and probiotic interventions for AUD treatment.
Collapse
Affiliation(s)
- Samuel J Mabry
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Xixi Cao
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Yanqi Zhu
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Caleb Rowe
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Shalin Patel
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | | | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - David P Saleeby
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Anna Elam
- University of Alabama Birmingham, Department of Psychiatry, Birmingham, Alabama
| | - Hui-Ting Lee
- University of Alabama Birmingham, Department of Chemistry, Birmingham, Alabama
| | - Serhat Turkmen
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Shelby N Lauzon
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Cesar E Hernandez
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - HaoSheng Sun
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Hui Wu
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Angela M Carter
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| | - Aurelio Galli
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| |
Collapse
|
20
|
Vocca C, Abrego-Guandique DM, Cione E, Rania V, Marcianò G, Palleria C, Catarisano L, Colosimo M, La Cava G, Palumbo IM, De Sarro G, Ceccato T, Botti S, Cai T, Palmieri A, Gallelli L. Probiotics in the Management of Chronic Bacterial Prostatitis Patients: A Randomized, Double-Blind Trial to Evaluate a Possible Link Between Gut Microbiota Restoring and Symptom Relief. Microorganisms 2025; 13:130. [PMID: 39858898 PMCID: PMC11767496 DOI: 10.3390/microorganisms13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Several studies have suggested that probiotics could play a role in the management of patients with chronic bacterial prostatitis (CBP). In this randomized, placebo-controlled clinical study, we evaluated the efficacy and safety of consumption of probiotics containing human Lactobacillus casei DG® as an add-on treatment in patients with clinical recurrences of CBP, through gut microbiota modification analysis. Enrolled patients with CBP were randomized to receive for 3 months probiotics containing human Lactobacillus casei DG® or placebo following 1 month treatment with ciprofloxacin. During the enrollment and follow-ups, urological examinations analyzed symptoms and quality of life, while microbiological tests analyzed gut and seminal microbiota. During the study, the development of adverse drug reactions was evaluated through the Naranjo scale. Twenty-four patients with CBP were recruited and treated for 3 months with placebo (n. 12) or with Lactobacillus casei DG® (n. 12). Lactobacillus casei DG® induced a significantly (p < 0.01) faster recovery of symptoms than placebo (2 days vs. 8 days) and an increased time free from symptoms (86 days vs. 42 days) without the occurrence of adverse events. In the probiotic group, the appearance of Lactobacilli after 30 days (T1) was higher vs. the placebo group, and a significant reduction in Corynebacterium, Peptoniphilus, Pseudomonas, Veillonella, Staphylococcus, and Streptococcus was also observed. These preliminary data suggest that in patients with CBP, the use of Lactobacillus casei DG after an antimicrobial treatment improves the days free of symptoms and the quality of life, without the development of adverse drug reactions.
Collapse
Affiliation(s)
- Cristina Vocca
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Diana Marisol Abrego-Guandique
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Vincenzo Rania
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Gianmarco Marcianò
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Luca Catarisano
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Manuela Colosimo
- Operative Unit of Microbiology and Virology, AOU Dulbecco, 88100 Catanzaro, Italy;
| | - Gregorio La Cava
- Urology Division Azienda Sanitaria Provinciale, Department of Primary Care, 88100 Catanzaro, Italy;
| | - Italo Michele Palumbo
- Department of Urology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Giovambattista De Sarro
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Tommaso Ceccato
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Simone Botti
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Alessandro Palmieri
- Department of Urology, Federico II University of Naples, 80138 Naples, Italy;
| | - Luca Gallelli
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Medifarmagen, University of Catanzaro and Renato Dulbecco Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
21
|
Gabriel-Segard T, Boltri M, Barrau M, Massoubre C, Paul S, Roblin X. Avolition Characterizes the Chronic Fatigue Experienced in Quiescent Inflammatory Bowel Disease. Biomedicines 2025; 13:125. [PMID: 39857709 PMCID: PMC11761293 DOI: 10.3390/biomedicines13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background and Aims: Avolition is a symptom responsible for a high burden in patients suffering from psychiatric diseases. It refers to a motivation loss for initiating and maintaining goal-directed activities, often called fatigue by patients. Fatigue is a widespread complaint of patients suffering from inflammatory bowel disease (IBD), significantly impacting patients' well-being, even during the quiescent stage of the disease. We here address the hypothesis that fatigue experienced by IBD patients is associated with motivational impairment. Methods: Patients presenting IBD (n = 110) in a quiescent stage of Crohn's disease (CD) (n = 60) and ulcerative colitis (UC) (n = 50) were enrolled and classified following their declared experience of fatigue (n = 58) or not (n = 52). Patients were phenotyped using self-administered scales for fatigue experience, bowel disease disability, quality of life and mental health symptoms. Results: The self-administered negative symptoms scale scores identified avolition as a specific feature of fatigue experience: fatigued vs. no-fatigue in the CD group (3.806 vs. 2.103; p = 0.003) and in the UC group (2.815 vs. 1.174; p = 0.003). This difference is independent of current depressive disorder and previous history of depressive disorder. Avolition associates and correlates with the experience of fatigue (r = 0.49) in multivariate analysis. Conclusions: To tackle the question of fatigue in IBD, research should consider investigating the biological mechanisms implicating intestinal physiopathology of IBD in the impairment of brain structure involved in motivation. This may open new fields for treatment in targeting structures of the brain reward system.
Collapse
Affiliation(s)
- Tristan Gabriel-Segard
- Service de Psychiatrie Transversale, Centre Hospitalo-Universitaire de Saint Etienne, Hôpital Nord, 42055 Saint Etienne, France
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint Etienne, France
| | - Margherita Boltri
- I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, 28824 Piancavallo, Italy
| | - Mathilde Barrau
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint Etienne, France
- Service de Gastroentérologie, Centre Hospitalo-Universitaire de Saint Etienne, Hôpital Nord, 42055 Saint Etienne Cedex 2, France
| | - Catherine Massoubre
- Service de Psychiatrie Transversale, Centre Hospitalo-Universitaire de Saint Etienne, Hôpital Nord, 42055 Saint Etienne, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint Etienne, France
| | - Xavier Roblin
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint Etienne, France
- Service de Gastroentérologie, Centre Hospitalo-Universitaire de Saint Etienne, Hôpital Nord, 42055 Saint Etienne Cedex 2, France
| |
Collapse
|
22
|
Winters AD, Francescutti DM, Kracht DJ, Chaudhari DS, Zagorac B, Angoa-Perez M. The Gut Microbiome Regulates the Psychomotor Effects and Context-Dependent Rewarding Responses to Cocaine in Germ-Free and Antibiotic-Treated Animal Models. Microorganisms 2025; 13:77. [PMID: 39858845 PMCID: PMC11767876 DOI: 10.3390/microorganisms13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation (p = 0.013), which was restored after conventionalization. GF mice also showed reduced cocaine-conditioned place preference (CPP) (p = 0.002), which normalized after conventionalization. Dopaminergic function, critical for psychomotor responses and reward, was microbiome-dependent, with increased dopamine levels (p = 0.009) and normalized turnover ratios after conventionalization. In the ABX model, microbiome depletion reduced both cocaine-induced locomotion and CPP responses (p ≤ 0.009), further supporting the role of gut microbes in modulating psychomotor and reward behaviors. ABX-treated mice also showed significant declines in microbial diversity, shifts in bacterial structure, and dysregulation in metabolic, immune, and neurotransmitter pathways (p ≤ 0.0001), including alterations in short-chain fatty acids and gamma-aminobutyric acid metabolism. These findings highlight the gut microbiome's critical role in regulating cocaine's psychomotor and rewarding effects, offering insights into potential therapeutic strategies for cocaine use disorder.
Collapse
Affiliation(s)
- Andrew D. Winters
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Dina M. Francescutti
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - David J. Kracht
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Diptaraj S. Chaudhari
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Branislava Zagorac
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Mariana Angoa-Perez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| |
Collapse
|
23
|
Crespo MT, Trebucq LL, Senna CA, Hokama G, Paladino N, Agostino PV, Chiesa JJ. Circadian disruption of feeding-fasting rhythm and its consequences for metabolic, immune, cancer, and cognitive processes. Biomed J 2025:100827. [PMID: 39756653 DOI: 10.1016/j.bj.2025.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc. Indeed, the risk of health alterations increase when these phase relationships are chronically changed prompting circadian disruption (CD), as occurring after sudden LD cycle changes (so-called jet-lag), or due to changes of activity/feeding-rest/fasting rhythm with respect to LD cycles (as humans subjected to nightwork, or restricting food access at rest in mice). Typical pathologies observed in animal models of CD and epidemiological studies include metabolic syndrome, type-2 diabetes, obesity, chronic inflammation, cancer, sleep disruption, decrease in physical and cognitive performance, and mood, among others. The present review discusses different aspects of such physiological dysregulations observed in animal models of CD having altered feeding-fasting rhythms, with potential translation to human health.
Collapse
Affiliation(s)
- Manuel Tomás Crespo
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Laura Lucía Trebucq
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Camila Agustina Senna
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Guido Hokama
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Natalia Paladino
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Patricia Verónica Agostino
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina
| | - Juan José Chiesa
- ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina.
| |
Collapse
|
24
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
25
|
Li M, Tong F, Wu B, Dong X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut-Brain Axis Therapies. Brain Sci 2024; 14:1295. [PMID: 39766494 PMCID: PMC11674909 DOI: 10.3390/brainsci14121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus. With increasing survival rates among oncology patients, evaluating post-treatment quality of life has become crucial in assessing the benefits of radiation therapy. Consequently, it is imperative to investigate therapeutic strategies to mitigate cerebral complications from radiation exposure. Current management of radiation-induced cerebral damage involves corticosteroids and bevacizumab, with preclinical research on antioxidants and thalidomide. Despite these efforts, an optimal treatment remains elusive. Recent studies suggest the gut microbiota's involvement in neurologic pathologies. This review aims to discuss the causes and existing treatments for radiation-induced cerebral injury and explore gut microbiota modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mengting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
26
|
Sugden SG, Merlo G. Using lifestyle interventions and the gut microbiota to improve PTSD symptoms. Front Neurosci 2024; 18:1488841. [PMID: 39691626 PMCID: PMC11649671 DOI: 10.3389/fnins.2024.1488841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
Posttraumatic stress disorder is part of a spectrum of psychological symptoms that are frequently linked with a single defining traumatic experience. Symptoms can vary over the lifespan in intensity based on additional life stressors, individual stability, and connectedness to purpose. Historically, treatment has centered on psychotropic agents and individual and group therapy to increase the individual's window of tolerance, improve emotional dysregulation, and strengthen relationships. Unfortunately, there is a growing segment of individuals with posttraumatic stress disorder who do not respond to these traditional treatments, perhaps because they do not address the multidirectional relationships between chronic cortisol, changes in the brain gut microbiota system, neuroinflammation, and posttraumatic symptoms. We will review the literature and explain how trauma impacts the neuroendocrine and neuroimmunology within the brain, how these processes influence the brain gut microbiota system, and provide a mechanism for the development of posttraumatic stress disorder symptoms. Finally, we will show how the lifestyle psychiatry model provides symptom amelioration.
Collapse
Affiliation(s)
- Steven G. Sugden
- Department of Psychiatry, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Gia Merlo
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
27
|
Rout M, Kar DM, Dubey D, Kispotta S, Sarangi P, Prusty SK. Neuroprotective effect of Bacillus subtilis in haloperidol induced rat model, targeting the microbiota-gut-brain axis. J Mol Histol 2024; 56:18. [PMID: 39625518 DOI: 10.1007/s10735-024-10307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/04/2024] [Indexed: 02/07/2025]
Abstract
Functional microbes regulate Parkinson's disease (PD), according to contemporary research. The mechanism by which probiotics (PBT) improve PD was not fully explored yet. We examined the antioxidant impact and mechanism of PBT (Bacillus subtilis) on PD using gut-brain axis regulation. To establish a model of PD, rats were given haloperidol (HAL) intraperitoneally (i.p.) in this study. The standard group received L-DOPA for 21 days. After that, the motor function was assessed using different neurobehavioral tests. Further estimation comprehends the build up of alpha-synuclein, the manifestation of monoamine oxidase-B (MAO-B) activity, the deterioration of dopaminergic neurons and the induction of an oxidative stress reaction. In addition, the concentration of intestinal microbes was measured. These findings demonstrated that the administration of PBT in combination with L-dopa could alleviate motor impairments caused by HAL, the deterioration of dopaminergic neurons, and the build up of α-synuclein. Furthermore, the levels of superoxide dismutase (SOD) and dopamine were considerably raised by co-administration of L-dopa and PBT in the case of HAL-treated rats, whereas the levels of alpha-synuclein, MAO-B, and malondialdehyde (MDA) were reduced. Particularly, PBT administration reduced the gut microbial dysbiosis, which in turn raised the concentration of good bacteria i.e., Bifidobacterium and reduced the concentration of E. coli in experimental animals. These findings indicated that PBT might represent a promising candidate to inhibit the progression of Parkinson's disease by targeting the gut-brain axis.
Collapse
Affiliation(s)
- Monalisa Rout
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Durga Madhab Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Debasmita Dubey
- Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Prerna Sarangi
- Centre for Biotechnology, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Shakti Ketan Prusty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India.
| |
Collapse
|
28
|
Nagamine T. The Role of the Gut Microbiota in Individuals with Irritable Bowel Syndrome: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1895. [PMID: 39597080 PMCID: PMC11596400 DOI: 10.3390/medicina60111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Irritable bowel syndrome (IBS) represents the most prevalent disorder of brain-gut interaction, affecting approximately 10% of the global population. The objective of this study was to examine the mechanisms by which the gut microbiota contributes to the development of IBS. To this end, a review of articles that examined the gut microbiota of IBS patients was conducted. A search was conducted using PubMed and J-STAGE for articles published over the past five years that relate to the gut microbiota in patients with IBS. Individuals diagnosed with IBS display a reduction in alpha diversity and a decline in butyrate-producing bacteria, which collectively indicate a state of dysbiosis within their gut microbiota. Butyrate plays a dual role in the body, acting as a source of nutrition for the intestinal epithelium while also regulating the expression of dopamine transporters and D2 receptors in the central nervous system through epigenetic mechanisms. These characteristics may be linked to dysfunction of the central dopamine D2 pathway and play a role in the formation of various symptoms in IBS.
Collapse
Affiliation(s)
- Takahiko Nagamine
- Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu 7470066, Japan; ; Fax: +81-835-25-6610
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyou 1138510, Japan
| |
Collapse
|
29
|
Alam M, Abbas K, Mustafa M, Usmani N, Habib S. Microbiome-based therapies for Parkinson's disease. Front Nutr 2024; 11:1496616. [PMID: 39568727 PMCID: PMC11576319 DOI: 10.3389/fnut.2024.1496616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
The human gut microbiome dysbiosis plays an important role in the pathogenesis of Parkinson's disease (PD). The bidirectional relationship between the enteric nervous system (ENS) and central nervous system (CNS) under the mediation of the gut-brain axis control the gastrointestinal functioning. This review article discusses key mechanisms by which modifications in the composition and function of the gut microbiota (GM) influence PD progression and motor control loss. Increased intestinal permeability, chronic inflammation, oxidative stress, α-synuclein aggregation, and neurotransmitter imbalances are some key factors that govern gastrointestinal pathology and PD progression. The bacterial taxa of the gut associated with PD development are discussed with emphasis on the enteric nervous system (ENS), as well as the impact of gut bacteria on dopamine production and levodopa metabolism. The pathophysiology and course of the disease are associated with several inflammatory markers, including TNF-α, IL-1β, and IL-6. Emerging therapeutic strategies targeting the gut microbiome include probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). The article explored how dietary changes may affect the gut microbiota (GM) and the ways that can affect Parkinson's disease (PD), with a focus on nutrition-based, Mediterranean, and ketogenic diets. This comprehensive review synthesizes current evidence on the role of the gut microbiome in PD pathogenesis and explores its potential as a therapeutic target. Understanding these complex interactions may assist in the development of novel diagnostic tools and treatment options for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Mudassir Alam
- Indian Biological Sciences and Research Institute (IBRI), Noida, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
30
|
Langmajerová M, Ježková J, Kreisinger J, Semerád J, Titov I, Procházková P, Cajthaml T, Jiřička V, Vevera J, Roubalová R. Gut Microbiome in Impulsively Violent Female Convicts. Neuropsychobiology 2024; 84:1-14. [PMID: 39496242 PMCID: PMC11797940 DOI: 10.1159/000542220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
INTRODUCTION Impulsivity and aggression are often interlinked behavioral traits that have major implications for our society. Therefore, the study of this phenomenon and derivative interventions that could lead to better control of impulsive aggression are of interest. METHODS We analyzed the composition and diversity of the gut bacterial microbiome of 33 impulsively violent female convicts with dissocial personality disorder and 20 non-impulsive age-matched women. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFAs) were analyzed in serum and stool samples. We also assessed all participants using a battery of psychological questionnaires and tested possible correlations between the collected clinical data and the composition and diversity of their microbiomes and metabolites. RESULTS We identified four bacterial amplicon sequencing variants that were differentially abundant in non-impulsive versus impulsive women - the genera Bacteroides, Barnesiella, and the order Rhodospirillales were more abundant in impulsive women. In contrast, the genus Catenisphaera was more abundant in non-impulsive women. Fecal tryptophan levels were significantly higher in impulsive women. Association analysis revealed a strong positive intercorrelation between most fecal SCFAs in the entire dataset. CONCLUSIONS Our study demonstrated possible associations between gut microbiomes and their metabolites and impulsive behavior in a unique cohort of prisoners convicted of violent assaults and a matched group of non-impulsive women from the same prison. Genus Bacteroides, which was differentially abundant in the two groups, encoded enzymes that affect serotonin pathways and could contribute to this maladaptive behavior. Similarly, increased fecal tryptophan levels in impulsive individuals could affect neuronal circuits in the brain. INTRODUCTION Impulsivity and aggression are often interlinked behavioral traits that have major implications for our society. Therefore, the study of this phenomenon and derivative interventions that could lead to better control of impulsive aggression are of interest. METHODS We analyzed the composition and diversity of the gut bacterial microbiome of 33 impulsively violent female convicts with dissocial personality disorder and 20 non-impulsive age-matched women. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFAs) were analyzed in serum and stool samples. We also assessed all participants using a battery of psychological questionnaires and tested possible correlations between the collected clinical data and the composition and diversity of their microbiomes and metabolites. RESULTS We identified four bacterial amplicon sequencing variants that were differentially abundant in non-impulsive versus impulsive women - the genera Bacteroides, Barnesiella, and the order Rhodospirillales were more abundant in impulsive women. In contrast, the genus Catenisphaera was more abundant in non-impulsive women. Fecal tryptophan levels were significantly higher in impulsive women. Association analysis revealed a strong positive intercorrelation between most fecal SCFAs in the entire dataset. CONCLUSIONS Our study demonstrated possible associations between gut microbiomes and their metabolites and impulsive behavior in a unique cohort of prisoners convicted of violent assaults and a matched group of non-impulsive women from the same prison. Genus Bacteroides, which was differentially abundant in the two groups, encoded enzymes that affect serotonin pathways and could contribute to this maladaptive behavior. Similarly, increased fecal tryptophan levels in impulsive individuals could affect neuronal circuits in the brain.
Collapse
Affiliation(s)
- Michaela Langmajerová
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Janet Ježková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivan Titov
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Procházková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Jiřička
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Psychology, Prison Service of the Czech Republic, Prague, Czech Republic
| | - Jan Vevera
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Psychiatry, University Hospital Pilsen, Pilsen, Czech Republic
| | - Radka Roubalová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
31
|
Agusti A, Molina-Mendoza GV, Tamayo M, Rossini V, Cenit MC, Frances-Cuesta C, Tolosa-Enguis V, Gómez Del Pulgar EM, Flor-Duro A, Sanz Y. Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress. Biomed Pharmacother 2024; 180:117377. [PMID: 39316970 DOI: 10.1016/j.biopha.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Psychological stress during early development and adolescence may increase the risk of psychiatric and cardiometabolic comorbidities in adulthood. The gut microbiota has been associated with mental health problems such as depression and anxiety and with cardiometabolic disease, but the potential role of the gut microbiota in their comorbidity is not well understood. We investigated the effects and mode of action of the intestinal bacterium Christensenella minuta DSM 32891 on stress-induced mental health and cardiometabolic disturbances in a mouse model of social defeat stress. We demonstrate that administered C. minuta alleviates chronic stress-induced depressive, anxiogenic and antisocial behavior. These effects are attributed to the bacterium's ability to modulate the hypothalamic-pituitary-adrenal axis, which mediates the stress response. This included the oversecretion of corticosterone and the overexpression of its receptors, as well as the metabolism of dopamine (DA) and the expression of its receptors (D1, D2L and D2S). Additionally, C. minuta administration reduced chronically induced inflammation in plasma, spleen and some brain areas, which likely contribute to the recovery of physical and behavioral function. Furthermore, C. minuta administration prevented chronic stress-induced cardiovascular damage by regulating key enzymes mediating liver fibrosis and oxidative stress. Finally, C. minuta increased the abundance of bacteria associated with mental health. Overall, our study highlights the potential of microbiota-directed interventions to alleviate both the physical and mental effects of chronic stress.
Collapse
Affiliation(s)
- A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M C Cenit
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - V Tolosa-Enguis
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - E M Gómez Del Pulgar
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - A Flor-Duro
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| |
Collapse
|
32
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
33
|
Liu T, Ji H, Li Z, Luan Y, Zhu C, Li D, Gao Y, Yan Z. Gut microbiota causally impacts adrenal function: a two-sample mendelian randomization study. Sci Rep 2024; 14:23338. [PMID: 39375408 PMCID: PMC11458771 DOI: 10.1038/s41598-024-73420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Some studies have reported that the gut microbiota can influence adrenal-related hormone levels. However, the causal effects of the gut microbiota on adrenal function remain unknown. Therefore, we employed a two-sample Mendelian randomization (MR) study to systematically investigate the impact of gut microbiota on the function of different regions of the adrenal gland. The summary statistics for gut microbiota and adrenal-related hormones used in the two-sample MR analysis were derived from publicly available genome-wide association studies (GWAS). In the MR analysis, inverse variance weighting (IVW) was used as the primary method, with MR-Egger, weighted median, and cML-MA serving as supplementary methods for causal inference. Sensitivity analyses such as the MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were used to assess pleiotropy and heterogeneity. We identified 27 causal relationships between 23 gut microbiota and adrenal function using the IVW method. Among these, Sellimonas enhanced the function of the adrenal cortex reticularis zone (beta = 0.008, 95% CI: 0.002-0.013, P = 0.0057). The cML-MA method supported our estimate (beta = 0.009, 95% CI: 0.004-0.013, P = 2 × 10- 4). Parasutterella, Sutterella, and Anaerofilum affect the functioning of different regions of the adrenal gland. Notably, pleiotropy was not observed. Our findings revealed that the gut microbiota is causally associated with adrenal function. This enhances our understanding of the gut-microbiota-brain axis and provides assistance in the early diagnosis and treatment of adrenal-related diseases in clinical practice.
Collapse
Affiliation(s)
- Tonghu Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongfei Ji
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhiyuan Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yongkun Luan
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Congcong Zhu
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dongxiao Li
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Yukui Gao
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, Anhui, People's Republic of China.
| | - Zechen Yan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Engineering Research Center of Tumor Molecular diagnosis and treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
34
|
Al-Akayleh F, Agha ASAA, Al-Remawi M, Al-Adham ISI, Daadoue S, Alsisan A, Khattab D, Malath D, Salameh H, Al-Betar M, AlSakka M, Collier PJ. What We Know About the Actual Role of Traditional Probiotics in Health and Disease. Probiotics Antimicrob Proteins 2024; 16:1836-1856. [PMID: 38700762 DOI: 10.1007/s12602-024-10275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/02/2024]
Abstract
The complex relationship between probiotics and human health goes beyond their traditional function in gut health, generating considerable interest for their broad potential in disease treatment. This review explores the various functions of probiotics, highlighting their impact on the immune system, their benefits for gut and oral health, their effects on metabolic and neurological disorders, and their emerging potential in cancer therapy. We give significant importance to studying the effects of probiotics on the gut-brain axis, revealing new and non-invasive therapeutic approaches for complex neurological disorders. In addition, we expand the discussion to encompass the impact of probiotics on the gut-liver and gut-lung axes, recognizing their systemic effects and potential in treating respiratory and hepatic conditions. The use of probiotic "cocktails" to improve cancer immunotherapy outcomes indicates a revolutionary approach to oncological treatments. The review explores the specific benefits associated with various strains and the genetic mechanisms that underlie them. This study sets the stage for precision medicine, where probiotic treatments can be tailored to meet the unique needs of each patient. Recent developments in delivery technologies, including microencapsulation and nanotechnology, hold great potential for enhancing the effectiveness and accuracy of probiotic applications in therapeutic settings. This study provides a strong basis for future scientific research and clinical use, promoting the incorporation of probiotics into treatment plans for a wide range of diseases. This expands our understanding of the potential benefits of probiotics in modern medicine.
Collapse
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
- Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Saifeddin Daadoue
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Anagheem Alsisan
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Dana Khattab
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Doha Malath
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Haneen Salameh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Maya Al-Betar
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Motaz AlSakka
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
35
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
36
|
Cho H, Park Y. Synergistic Antidepressant-like Effects of Biotics and n-3 Polyunsaturated Fatty Acids on Dopaminergic Pathway through the Brain-Gut Axis in Rats Exposed to Chronic Mild Stress. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10332-1. [PMID: 39243350 DOI: 10.1007/s12602-024-10332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Probiotics, postbiotics, and n-3 polyunsaturated fatty acids (PUFA) have antidepressant-like effects. However, the underlying mechanisms of the dopaminergic pathway are unclear. The present study investigated the hypothesis that probiotics and postbiotics combined with n-3 PUFA synergistically improve depression by modulating the dopaminergic pathway through the brain-gut axis. Rats were randomly divided into seven groups: non-chronic mild stress (CMS) with n-6 PUFA, and CMS with n-6 PUFA, n-3 PUFA, probiotics, postbiotics, probiotics combined with n-3 PUFA, and postbiotics combined with n-3 PUFA. Probiotics, postbiotics, and n-3 PUFA improved depressive behaviors, decreased blood concentrations of interferon-γ, and interleukin-1β, and increased the brain and gut concentrations of short chain fatty acids and dopamine. Moreover, probiotics, postbiotics, and n-3 PUFA increased the brain and gut expression of glucocorticoid receptor and tyrosine hydroxylase; brain expression of l-type amino acid transporter 1 and dopamine receptor (DR) D1; and gut expression of DRD2. The expression of phosphorylated protein kinase A/protein kinase A and phosphorylated cAMP response element-binding protein/cAMP response element-binding protein increased in the brain, however, decreased in the gut by the supplementation of probiotics, postbiotics, and n-3 PUFA. There was synergistic effect of probiotics and postbiotics combined with n-3 PUFA on the depressive behaviors and dopaminergic pathway in blood, brain, and gut. Moreover, no significant difference in the dopaminergic pathways between the probiotics and postbiotics was observed. In conclusion, probiotics and postbiotics, combined with n-3 PUFA have synergistic antidepressant-like effects on the dopaminergic pathway through the brain-gut axis in rats exposed to CMS.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
37
|
Zheng LM, Li Y. Modifications in the Composition of the Gut Microbiota in Rats Induced by Chronic Sleep Deprivation: Potential Relation to Mental Disorders. Nat Sci Sleep 2024; 16:1313-1325. [PMID: 39247907 PMCID: PMC11380879 DOI: 10.2147/nss.s476691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Sleep deprivation(SD) has numerous negative effects on mental health. A growing body of research has confirmed the implication of gut microbiota in mental disorders. However, the specific modifications in mammalian gut microbiota following SD exhibit variations across different studies. Methods Male specific-pathogen-free Wistar rats were given a modified multiple-platform exposure for 7 days of SD. Fecal samples were obtained from the control and SD groups both at baseline and after 7 days of SD. We utilized 16S rDNA gene sequencing to investigate the gut microbial composition and functional pathways in rats. Results Analysis of the microbiota composition revealed a significant change in gut microbial composition after chronic SD, especially at the phylum level. The relative abundances of p_Firmicutes, g_Romboutsia, and g_Enterococcus increased, whereas those of p_Bacteroidetes, p_Verrucomicrobia, p_Fusobacteria, g_Akkermansia, and g_Cetobacterium decreased in animals after chronic SD compared with controls or animals before SD. The ratio of Firmicutes to Bacteroidetes exhibited an increase following SD. The relative abundance of gut microbiota related to the functional pathways of GABAergic and glutamatergic synapses was observed to be diminished in rats following SD compared to pre-SD. Conclusion Collectively, these findings suggest that chronic SD causes significant alterations in both the structural composition and functional pathways of the gut microbiome. Further researches are necessary to investigate the chronological and causal connections among SD, the gut microbiota and mental disorders.
Collapse
Affiliation(s)
- Li-Ming Zheng
- Department of Psychology and Sleep Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Yan Li
- Department of Psychology and Sleep Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
38
|
Techaniyom P, Korsirikoon C, Rungruang T, Pakaprot N, Prombutara P, Mukda S, Kettawan AK, Kettawan A. Cold-pressed perilla seed oil: Investigating its protective influence on the gut-brain axis in mice with rotenone-induced Parkinson's disease. Food Sci Nutr 2024; 12:6259-6283. [PMID: 39554352 PMCID: PMC11561828 DOI: 10.1002/fsn3.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Perilla seed oil, derived from a regional plant native to northern Thailand, undergoes cold-pressing to analyze its bioactive components, notably alpha-linolenic acid (ALA). ALA, constituting approximately 61% of the oil, serves as a precursor for therapeutic omega-3 fatty acids, EPA and DHA, with neurodegenerative disease benefits and anti-inflammatory responses. This study administered different concentrations of perilla seed oil to male C57BL/6 mice, categorized as low dose (LP 5% w/w), middle dose (MP 10% w/w), and high dose (HP 20% w/w), along with a fish oil (FP 10% w/w) diet. An experimental group received soybean oil (5% w/w). Over 42 days, these diets were administered while inducing Parkinson's disease (PD) with rotenone injections. Mice on a high perilla seed oil dose exhibited decreased Cox-2 expression in the colon, suppressed Iba-1 microglia activation, reduced alpha-synuclein accumulation in the colon and hippocampus, prevented dopaminergic cell death in the substantia nigra, and improved motor and non-motor symptoms. Mice on a middle dose showed maintenance of diverse gut microbiota, with an increased abundance of short-chain fatty acid (SCFA)-producing bacteria (Bifidobacteria, Lactobacillus, and Faecalibacteria). A reduction in bacteria correlated with PD (Turicibacter, Ruminococcus, and Akkermansia) was observed. Results suggest the potential therapeutic efficacy of high perilla seed oil doses in mitigating both intestinal and neurological aspects linked to the gut-brain axis in PD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Mod Gut Co., Ltd.BangkokThailand
| | - Sujira Mukda
- Research Center for NeuroscienceInstitute of Molecular Biosciences, Mahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
39
|
Li M, Wang L, Lin D, Liu Z, Wang H, Yang Y, Sun C, Ye J, Liu Y. Advanced Bioinspired Multifunctional Platforms Focusing on Gut Microbiota Regulation. ACS NANO 2024; 18:20886-20933. [PMID: 39080827 DOI: 10.1021/acsnano.4c05013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Gut microbiota plays a crucial role in maintaining host homeostasis, impacting the progression and therapeutic outcomes of diseases, including inflammatory bowel disease, cancer, hepatic conditions, obesity, cardiovascular pathologies, and neurologic disorders, via immune, neural, and metabolic mechanisms. Hence, the gut microbiota is a promising target for disease therapy. The safety and precision of traditional microbiota regulation methods remain a challenge, which limits their widespread clinical application. This limitation has catalyzed a shift toward the development of multifunctional delivery systems that are predicated on microbiota modulation. Guided by bioinspired strategies, an extensive variety of naturally occurring materials and mechanisms have been emulated and harnessed for the construction of platforms aimed at the monitoring and modulation of gut microbiota. This review outlines the strategies and advantages of utilizing bioinspired principles in the design of gut microbiota intervention systems based on traditional regulation methods. Representative studies on the development of bioinspired therapeutic platforms are summarized, which are based on gut microbiota modulation to confer multiple pharmacological benefits for the synergistic management of diseases. The prospective avenues and inherent challenges associated with the adoption of bioinspired strategies in the refinement of gut microbiota modulation platforms are proposed to augment the efficacy of disease treatment.
Collapse
Affiliation(s)
- Muqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - LuLu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Demin Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Chunmeng Sun
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
40
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
41
|
Zhang F, Pan L, Lian C, Xu Z, Chen H, Lai W, Liang X, Liu Q, Wu H, Wang Y, Zhang P, Zhang G, Liu Z. ICAM-1 may promote the loss of dopaminergic neurons by regulating inflammation in MPTP-induced Parkinson's disease mouse models. Brain Res Bull 2024; 214:110989. [PMID: 38825252 DOI: 10.1016/j.brainresbull.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Lixin Pan
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Changlin Lian
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhifeng Xu
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hongda Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjie Lai
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Xiaojue Liang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Qiyuan Liu
- Shantou University, Chaoshan, Guangdong, China
| | - Haomin Wu
- Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yukai Wang
- Department of Neurology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Pande Zhang
- Department of Rehabilitation Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China.
| | - Guohua Zhang
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China.
| | - Zhen Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
42
|
Botti G, Pavan B, Bianchi A, Ferraro L, Beggiato S, Brugnoli F, Bertagnolo V, Dalpiaz A. Chlorogenic acid permeation across intestinal cell monolayers: Influence by circadian rhythms in the presence of other natural polyphenols and by dopaminergic neuronal-like cells. J Funct Foods 2024; 119:106331. [DOI: 10.1016/j.jff.2024.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
43
|
Deng Z, Li L, Jing Z, Luo X, Yu F, Zeng W, Bi W, Zou J. Association between environmental phthalates exposure and gut microbiota and metabolome in dementia with Lewy bodies. ENVIRONMENT INTERNATIONAL 2024; 190:108806. [PMID: 38908272 DOI: 10.1016/j.envint.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Emerging evidence has shown the potential involvement of phthalates (PAEs) exposure in the development of dementia with Lewy bodies (DLB). Metabolomics can reflect endogenous metabolites variation in the progress of disease after chemicals exposure. However, little is known about the association between PAEs, gut microbiota and metabolome in DLB. OBJECTIVE We aim to explore the intricate relationship among urinary PAEs metabolites (mPAEs), dysbiosis of gut bacteria, and metabolite profiles in DLB. METHODS A total of 43 DLB patients and 45 normal subjects were included in this study. Liquid chromatography was used to analyze the levels of mPAEs in the urine of the two populations. High-throughput sequencing and liquid chromatography-mass spectrometry were used to analyze gut microbiota and the profile of gut metabolome, respectively. The fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of mPAEs on gut dysbiosis contribute to aggravating cognitive dysfunction in α-synuclein tg DLB/PD mice. RESULTS The DLB patients had higher DEHP metabolites (MEOHP, MEHHP and MEHP), MMP and MnBP, lower MBP and MBzP than the control group and different microbiota. A significantly higher abundance of Ruminococcus gnavus and lower Prevotella copri, Prevotella stercorea and Bifidobacterium were observed in DLB. Higher 3 DEHP metabolites, MMP, MnBP and lower MBP and MBzP were significantly negatively associated with Prevotella copri, Prevotella stercorea and Bifidobacterium. Additionally, using metabolomics, we found that altered bile acids, short-chain fatty acids and amino acids metabolism are linked to these mPAEs. We further found that FMT of fecal microbiota from highest DEHP metabolites donors significantly impaired cognitive function in the germ-free DLB/PD mice. CONCLUSION Our study suggested that PAEs exposure may alter the microbiota-gut-brain axis and providing novel insights into the interactions among environmental perturbations and microbiome-host in pathogenesis of DLB.
Collapse
Affiliation(s)
- Zhe Deng
- Department of Rheumatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, PR China
| | - Ling Li
- Department of Neurology, Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518040, PR China
| | - Zhen Jing
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, PR China
| | - Xi Luo
- School of Medicine, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Fang Yu
- Department of Neurology, Westchester Medical Center, Valhalla NY 10595, United States
| | - Wenshuang Zeng
- Department of Neurology, Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518040, PR China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, PR China.
| | - Jing Zou
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, PR China.
| |
Collapse
|
44
|
Kiełbik P, Witkowska-Piłaszewicz O. The Relationship between Canine Behavioral Disorders and Gut Microbiome and Future Therapeutic Perspectives. Animals (Basel) 2024; 14:2048. [PMID: 39061510 PMCID: PMC11273744 DOI: 10.3390/ani14142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Canine behavioral disorders have become one of the most common concerns and challenging issues among dog owners. Thus, there is a great demand for knowledge about various factors affecting dogs' emotions and well-being. Among them, the gut-brain axis seems to be particularly interesting, especially since in many instances the standard treatment or behavioral therapies insufficiently improve animal behavior. Therefore, to face this challenge, the search for novel therapeutic methods is highly required. Existing data show that mammals' gut microbiome, immune system, and nervous system are in continuous communication and influence animal physiology and behavior. This review aimed to summarize and discuss the most important scientific evidence on the relationship between mental disorders and gut microbiota in dogs, simultaneously presenting comparable outcomes in humans and rodent models. A comprehensive overview of crucial mechanisms of the gut-brain axis is included. This refers especially to the neurotransmitters crucial for animal behavior, which are regulated by the gut microbiome, and to the main microbial metabolites-short-chain fatty acids (SCFAs). This review presents summarized data on gut dysbiosis in relation to the inflammation process within the organism, as well as the activation of the hypothalamic-pituitary-adrenal (HPA) axis. All of the above mechanisms are presented in this review in strict correlation with brain and/or behavioral changes in the animal. Additionally, according to human and laboratory animal studies, the gut microbiome appears to be altered in individuals with mental disorders; thus, various strategies to manipulate the gut microbiota are implemented. This refers also to the fecal microbiome transplantation (FMT) method, based on transferring the fecal matter from a donor into the gastrointestinal tract of a recipient in order to modulate the gut microbiota. In this review, the possible effects of the FMT procedure on animal behavioral disorders are discussed.
Collapse
Affiliation(s)
- Paula Kiełbik
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | |
Collapse
|
45
|
Wang S, Liu Y, Tam WH, Ching JYL, Xu W, Yan S, Qin B, Lin L, Peng Y, Zhu J, Cheung CP, Ip KL, Wong YM, Cheong PK, Yeung YL, Kan WHB, Leung TF, Leung TY, Chang EB, Rubin DT, Claud EC, Wu WKK, Tun HM, Chan FKL, Ng SC, Zhang L. Maternal gestational diabetes mellitus associates with altered gut microbiome composition and head circumference abnormalities in male offspring. Cell Host Microbe 2024; 32:1192-1206.e5. [PMID: 38955186 DOI: 10.1016/j.chom.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The impact of gestational diabetes mellitus (GDM) on maternal or infant microbiome trajectory remains poorly understood. Utilizing large-scale longitudinal fecal samples from 264 mother-baby dyads, we present the gut microbiome trajectory of the mothers throughout pregnancy and infants during the first year of life. GDM mothers had a distinct microbiome diversity and composition during the gestation period. GDM leaves fingerprints on the infant's gut microbiome, which are confounded by delivery mode. Further, Clostridium species positively correlate with a larger head circumference at month 12 in male offspring but not females. The gut microbiome of GDM mothers with male fetuses displays depleted gut-brain modules, including acetate synthesis I and degradation and glutamate synthesis II. The gut microbiome of female infants of GDM mothers has higher histamine degradation and dopamine degradation. Together, our integrative analysis indicates that GDM affects maternal and infant gut composition, which is associated with sexually dimorphic infant head growth.
Collapse
Affiliation(s)
- Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Yan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Biyan Qin
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Ling Lin
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Ye Peng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Long Ip
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuen Man Wong
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuk Ling Yeung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Him Betty Kan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - David T Rubin
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Erika C Claud
- Departments of Pediatrics and Medicine, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China; JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Digestive Disease Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Zimmermann-Rösner A, Prehn-Kristensen A. The Microbiome in Child and Adolescent Psychiatry. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2024; 52:213-226. [PMID: 38240707 DOI: 10.1024/1422-4917/a000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Recent research has increasingly emphasized the function of the microbiome in human health. The gut microbiome is essential for digesting food and seems to play a vital role in mental health as well. This review briefly overviews the gut microbiome and its interplay with the central nervous system. We then summarize some of the latest findings on the possible role of the microbiome in psychiatric disorders in children and adolescents. In particular, we focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, anorexia nervosa, bipolar disorder, and major depressive disorder. Although the role of microbiota in mental development and health still needs to be researched intensively, it has become increasingly apparent that the impact of microbiota must be considered to better understand psychiatric disorders.
Collapse
Affiliation(s)
| | - Alexander Prehn-Kristensen
- Institute for Child and Adolescent Psychiatry, Center of Integrative Psychiatry GmbH, Kiel, Germany
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| |
Collapse
|
47
|
Xin M, Wang Y, Yang X, Li L, Wang C, Gu Y, Zhang C, Huang G, Zhou Y, Liu J. Exploring the nigrostriatal and digestive interplays in Parkinson's disease using dynamic total-body [ 11C]CFT PET/CT. Eur J Nucl Med Mol Imaging 2024; 51:2271-2282. [PMID: 38393375 DOI: 10.1007/s00259-024-06638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Dynamic total-body imaging enables new perspectives to investigate the potential relationship between the central and peripheral regions. Employing uEXPLORER dynamic [11C]CFT PET/CT imaging with voxel-wise simplified reference tissue model (SRTM) kinetic modeling and semi-quantitative measures, we explored how the correlation pattern between nigrostriatal and digestive regions differed between the healthy participants as controls (HC) and patients with Parkinson's disease (PD). METHODS Eleven participants (six HCs and five PDs) underwent 75-min dynamic [11C]CFT scans on a total-body PET/CT scanner (uEXPLORER, United Imaging Healthcare) were retrospectively enrolled. Time activity curves for four nigrostriatal nuclei (caudate, putamen, pallidum, and substantia nigra) and three digestive organs (pancreas, stomach, and duodenum) were obtained. Total-body parametric images of relative transporter rate constant (R1) and distribution volume ratio (DVR) were generated using the SRTM with occipital lobe as the reference tissue and a linear regression with spatial-constraint algorithm. Standardized uptake value ratio (SUVR) at early (1-3 min, SUVREP) and late (60-75 min, SUVRLP) phases were calculated as the semi-quantitative substitutes for R1 and DVR, respectively. RESULTS Significant differences in estimates between the HC and PD groups were identified in DVR and SUVRLP of putamen (DVR: 4.82 ± 1.58 vs. 2.58 ± 0.53; SUVRLP: 4.65 ± 1.36 vs. 2.84 ± 0.67; for HC and PD, respectively, both p < 0.05) and SUVREP of stomach (1.12 ± 0.27 vs. 2.27 ± 0.65 for HC and PD, respectively; p < 0.01). In the HC group, negative correlations were observed between stomach and substantia nigra in both the R1 and SUVREP values (r=-0.83, p < 0.05 for R1; r=-0.94, p < 0.01 for SUVREP). Positive correlations were identified between pancreas and putamen in both DVR and SUVRLP values (r = 0.94, p < 0.01 for DVR; r = 1.00, p < 0.001 for SUVRLP). By contrast, in the PD group, no correlations were found between the aforementioned target nigrostriatal and digestive areas. CONCLUSIONS The parametric images of R1 and DVR generated from the SRTM model, along with SUVREP and SUVRLP, were proposed to quantify dynamic total-body [11C]CFT PET/CT in HC and PD groups. The distinction in correlation patterns of nigrostriatal and digestive regions between HC and PD groups identified by R1 and DVR, or SUVRs, may provide new insights into the disease mechanism.
Collapse
Affiliation(s)
- Mei Xin
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yihan Wang
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, 2258 Chengbei Road, Shanghai, 201807, China
| | - Xinlan Yang
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, 2258 Chengbei Road, Shanghai, 201807, China
| | - Lianghua Li
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yue Gu
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, 2258 Chengbei Road, Shanghai, 201807, China
| | - Chenpeng Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, 2258 Chengbei Road, Shanghai, 201807, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
48
|
Martin-Grau M, Monleón D. The Role of Microbiota-Related Co-Metabolites in MASLD Progression: A Narrative Review. Curr Issues Mol Biol 2024; 46:6377-6389. [PMID: 39057023 PMCID: PMC11276081 DOI: 10.3390/cimb46070381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a growing health concern due to its increasing prevalence worldwide. Metabolic homeostasis encompasses the stable internal conditions vital for efficient metabolism. This equilibrium extends to the intestinal microbiota, whose metabolic activities profoundly influence overall metabolic balance and organ health. The metabolites derived from the gut microbiota metabolism can be defined as microbiota-related co-metabolites. They serve as mediators between the gut microbiota and the host, influencing various physiological processes. The recent redefinition of the term MASLD has highlighted the metabolic dysfunction that characterize the disease. Metabolic dysfunction encompasses a spectrum of abnormalities, including impaired glucose regulation, dyslipidemia, mitochondrial dysfunction, inflammation, and accumulation of toxic byproducts. In addition, MASLD progression has been linked to dysregulation in the gut microbiota and associated co-metabolites. Short-chain fatty acids (SCFAs), hippurate, indole derivatives, branched-chain amino acids (BCAAs), and bile acids (BAs) are among the key co-metabolites implicated in MASLD progression. In this review, we will unravel the relationship between the microbiota-related metabolites which have been associated with MASLD and that could play an important role for developing effective therapeutic interventions for MASLD and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| |
Collapse
|
49
|
Simpson JB, Walker ME, Sekela JJ, Ivey SM, Jariwala PB, Storch CM, Kowalewski ME, Graboski AL, Lietzan AD, Walton WG, Davis KA, Cloer EW, Borlandelli V, Hsiao YC, Roberts LR, Perlman DH, Liang X, Overkleeft HS, Bhatt AP, Lu K, Redinbo MR. Gut microbial β-glucuronidases influence endobiotic homeostasis and are modulated by diverse therapeutics. Cell Host Microbe 2024; 32:925-944.e10. [PMID: 38754417 PMCID: PMC11176022 DOI: 10.1016/j.chom.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial β-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan E Walker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua J Sekela
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha M Ivey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron M Storch
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kacey A Davis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee R Roberts
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - David H Perlman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
50
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|