1
|
Zoheir KMA, Ali NI, Ashour AE, Kishta MS, Othman SI, Rudayni HA, Rashad AA, Allam AA. Lipoic acid improves wound healing through its immunomodulatory and anti-inflammatory effects in a diabetic mouse model. J Diabetes Metab Disord 2025; 24:56. [PMID: 39868353 PMCID: PMC11759746 DOI: 10.1007/s40200-025-01559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/28/2024] [Indexed: 01/28/2025]
Abstract
Objectives Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections. The present study aimed to investigate the effect of lipoic acid (LA) on the key mediators involved in the wound healing process, specifically CD4 + CD25 + T cell subsets, CD4 + CD25 + Foxp3 + regulatory T (Treg) cells, T-helper-17 (Th17) cells that generate IL-17 A, glucocorticoid-induced tumor necrosis factor receptor (GITR) expressing cells, as well as cytokines such as IL-2, IL-1β, IL-6, and TNF-α and IFN-γ. These mediators play crucial roles in epidermal and dermal proliferation, hypertrophy, and cell migration. Methods We divided mice into 5 groups: the non-diabetic (normal control; NC), wounded non-diabetic mice (N + W), wounded diabetic mice (D + W), wounded diabetic mice treated with 50 mg/kg lipoic acid (D + W + L50) for 14 days, and wounded diabetic mice treated with 100 mg/kg lipoic acid (D + W + L100) for 14 days. Results Flow cytometric analysis indicated that lipoic acid-treated mice exhibited a significant decrease in the frequency of intracellular cytokines (IL-17 A, TNF-α and IFN-γ) in CD4 + T cells, as well as a reduction in the number of GITR-expressing cells. Conversely, a significant upregulation in the number CD4+, CD25+, FOXp3 + and CD4 + CD25 + Foxp3 + regulatory T (Treg) cells was observed in this group compared to both the normal + wounded (N + W) and diabetic + wounded (D + W) groups. Additionally, the mRNA Levels of inflammatory mediators (IL-2, IL-1β, IL-6, and TNF-α) were downregulated in lipoic acid-treated mice compared to other groups. T thereby he histological findings of diabetic skin wounds treated with lipoic acid showed well-healed surgical wounds. Conclusions These findings support the beneficial role of lipoic acid in fine-tuning the balance between anti-inflammatory and pro-inflammatory cytokines, influencing both their release and gene expression.
Collapse
Affiliation(s)
- Khairy M. A. Zoheir
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622 Egypt
| | - Neama I. Ali
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622 Egypt
| | - Abdelkader E. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai Egypt
| | - Mohamed S. Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Sarah I. Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, 11671 Riyadh, Saudi Arabia
| | - Hassan A. Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia
| | - Ahmed A. Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829 Egypt
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia
| |
Collapse
|
2
|
Razavi A, Mahalleh M, Vanaki A, Fallah A, Bahanesteh A, Ahmadi A, Yarmohammadi H, Solati Kooshkqazi M, Soltanipur M. Lymphatic complication in open venous harvesting versus endoscopic venous harvesting: a systematic review and meta-analysis. Gen Thorac Cardiovasc Surg 2025; 73:297-311. [PMID: 39962020 DOI: 10.1007/s11748-025-02126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/25/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND The methods for saphenous vein (SV) harvesting include bridging vein harvesting (BVH), open vein harvesting (OVH), and endoscopic vein harvesting (EVH). Lymphatic complications, such as lymphatic leak, lymphedema, lymphangitis, and lymphocele, can arise following SV-harvesting surgery. This study aims to compare the incidence of lymphatic complications in SV harvesting using the OVH surgical method versus EVH. METHODS We have systematically searched databases including Scopus, PubMed, and Web of Science until April 2024. Studies were considered eligible for inclusion if they performed SV harvesting and compared lymphatic complications in the EVH with OVH or BVH. Various lymphatic complications and follow-up periods were extracted. A meta-analysis was conducted comparing the relative risk (RR) of lymphatic complications in the EVH group versus the OVH group. RESULTS Twelve studies were included. A total of 1934 patients were involved and the majority were male. Follow-up times were from 6 days to 34 months. Results of the meta-analysis showed that the pooled lymphatic complications, lymphatic leak, and lymphedema are significantly higher in OVH versus EVH (RR = 6.78, p value < 0.01; RR = 17.33, p value < 0.01; RR = 8.88, p value < 0.01, respectively). No significant differences in lymphocele rates between the two methods (RR = 1.2, p value = 0.77). Both short-term and long-term follow-ups showed elevated lymphatic complication risks in OVH relative to EVH (RR = 4.91, p value < 0.01; RR = 30.27, p value = 0.03, respectively). CONCLUSION EVH is linked to reduced rates of lymphatic complications. Also, OVH had a higher risk of lymphatic complications in the short and long term compared to EVH.
Collapse
Affiliation(s)
- Alireza Razavi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mahalleh
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirparsa Vanaki
- Medical Students Research Committee, Shahed University, Tehran, Iran
| | | | | | - Ali Ahmadi
- Medical Students Research Committee, Shahed University, Tehran, Iran
| | - Hossein Yarmohammadi
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Masood Soltanipur
- Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- General Practitioner (GP), Ebne-sina Medical Center (EMC), Tehran, Iran.
| |
Collapse
|
3
|
Vasan A, Kim S, Davis E, Roh DS, Eyckmans J. Advances in Designer Materials for Chronic Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40306934 DOI: 10.1089/wound.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Significance: Nonhealing or chronic wounds represent a significant and growing global health concern, imposing substantial burdens on individuals, health care systems, and economies worldwide. Although the standard-of-care treatment involves the application of wound dressings, most dressing materials are not specifically designed to address the pathological processes underlying chronic wounds. This review highlights recent advances in biomaterial design tailored to chronic wound healing. Recent Advances: Chronic wounds are characterized by persistent inflammation, impaired granulation tissue formation, and delayed re-epithelialization. Newly developed designer materials aim to manage reactive oxygen species and extracellular matrix degradation to suppress inflammation while promoting vascularization, cell proliferation, and epithelial migration to accelerate tissue repair. Critical Issues: Designing optimal materials for chronic wounds remains challenging due to the diverse etiology and a multitude of pathological mechanisms underlying chronic wound healing. While designer materials can target specific aberrations, designing a materials approach that restores all aberrant wound-healing processes remains the Holy Grail. Addressing these issues requires a deep understanding of how cells interact with the materials and the complex etiology of chronic wounds. Future Directions: New material approaches that target wound mechanics and senescence to improve chronic wound closure are under development. Layered materials combining the best properties of the approaches discussed in this review will pave the way for designer materials optimized for chronic wound healing.
Collapse
Affiliation(s)
- Anish Vasan
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Suntae Kim
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Emily Davis
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel S Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Jiang M, Nie R, Kang J, Li P, Dong A. Mild Phototherapy Strategies for Preventing Pathogen Infection and Enhancing Cell Proliferation in Diabetic Wound. Adv Healthc Mater 2025:e2500862. [PMID: 40289488 DOI: 10.1002/adhm.202500862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Excessive inflammation, bacterial infection, and impaired cell proliferation posed significant challenges to diabetic wound healing. There is an urgent need for an effective method that can simultaneously provide antibacterial activity and promote cell proliferation to facilitate the healing of bacteria-infected diabetic wounds. In this study, a novel nanoplatform, GDYO-VPIM-Au is designed, by co-decorating 1-vinyl-3-pentylimidazolium bromide ([VPIM]Br) and gold nanorods (Au NRs) on graphdiyne oxide (GDYO) nanosheets. GDYO-VPIM-Au exhibited excellent antibacterial properties against drug-resistant bacteria through reactive oxygen species (ROS) generation and electrostatic interactions. Moreover, GDYO-VPIM-Au with the synergistic effect of mild phototherapy therapy (mPTT) produced by Au NRs can promote efficient cell proliferation and significantly accelerate the healing of infected diabetic wounds. This work represented a promising therapeutic strategy for addressing drug-resistant bacterial infections and enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Mingji Jiang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, P. R. China
| | - Renhao Nie
- State Key Laboratory of Flexible Electronics (LoFE), Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, P. R. China
| | - Peng Li
- State Key Laboratory of Flexible Electronics (LoFE), Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, P. R. China
| |
Collapse
|
5
|
Ezzat MI, Abdelhafez MM, Al-Mokaddem AK, Ezzat SM. Targeting TGF-β/VEGF/NF-κB inflammatory pathway using the Polyphenols of Echinacea purpurea (L.) Moench to enhance wound healing in a rat model. Inflammopharmacology 2025; 33:2151-2164. [PMID: 40053247 PMCID: PMC11991979 DOI: 10.1007/s10787-025-01681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
The present study explores the metabolic profiling and molecular wound-healing mechanisms of Echinacea purpurea (L.) Moench (EP) flowers aqueous (AE) and ethanol (EE) extracts in an excision wound-healing model. Metabolic profiling of the extracts was investigated using UHPLC-ESI-TOF-MS and molecular networking. Antioxidant activity was carried out using the DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and FRAP (ferric reducing antioxidant power). Carboxy methylcellulose gels of 5 and 10% of both aqueous (AE) and ethanol (EE) extracts were prepared. The wounds were explored macroscopically, histologically, and immunohistochemically. The UHPLC-ESI-TOF-MS method enabled the identification of 3 organic acids, 14 phenolic acids, 3 phenylethanoid glycosides, and 11 flavonoids from EP extracts. EE had significant antioxidant activity compared to AE. The EP treated wounds healed faster. The EE succeeded in improving healing properties and controlling the inflammatory response by reducing IL-6 and increasing IL-10 expression and enhancing angiogenesis and remodeling via increased NF-κB, TGF-β, VEGF, CD31 expression and α-SMA and collagen deposition. It is worth mentioning that the EE groups also showed improvement in the histopathological examination in a dose-dependent manner. The effectiveness of EE in wound-healing may be attributed to its higher content of polyphenols which also made the antioxidant potential of the EE and its capacity to donate electrons higher than that of AE. This study scientifically enables the understanding of the molecular mechanisms Echinacea purpurea extract in wound healing via modulating skin inflammatory response and indicates the potential usefulness of EP ethanol extract for wound healing.
Collapse
Affiliation(s)
- Marwa I Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Mai M Abdelhafez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6Th October, 12451, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6Th October, 12451, Egypt
| |
Collapse
|
6
|
Qi H, Zhang B, Lian F. 3D-printed bioceramic scaffolds for bone defect repair: bone aging and immune regulation. Front Bioeng Biotechnol 2025; 13:1557203. [PMID: 40242352 PMCID: PMC12000889 DOI: 10.3389/fbioe.2025.1557203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
The management of bone defects, particularly in aging populations, remains a major clinical challenge. The immune microenvironment plays an important role in the repair of bone defects and a favorable immune environment can effectively promote the repair of bone defects. However, aging is closely associated with chronic low-grade systemic inflammation, which adversely affects bone healing. Persistent low-grade systemic inflammation critically regulates bone repair through all stages. This review explores the potential of 3D-printed bioceramic scaffolds in bone defect repair, focusing on their capacity to modulate the immune microenvironment and counteract the effects of bone aging. The scaffolds not only provide structural support for bone regeneration but also serve as effective carriers for anti-osteoporosis drugs, offering a novel therapeutic strategy for treating osteoporotic bone defects. By regulating inflammation and improving the immune response, 3D-printed bioceramic scaffolds may significantly enhance bone repair, particularly in the context of age-related bone degeneration. This approach underscores the potential of advanced biomaterials in addressing the dual challenges of bone aging and immune dysregulation, offering promising avenues for the development of effective treatments for bone defects in the elderly. We hope the concepts discussed in this review could offer novel therapeutic strategies for bone defect repair, and suggest promising avenues for the future development and optimization of bioceramic scaffolds.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Lian
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| |
Collapse
|
7
|
Ju R, Li Y, Sui D, Xu FJ. Polyaminoglycoside nanosystem expressing antimicrobial peptides for multistage chronic wound management. J Control Release 2025; 382:113657. [PMID: 40122239 DOI: 10.1016/j.jconrel.2025.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Chronic wounds are difficult to heal due to pathogenic microbial colonization and dysregulation of healing cascades, necessitating novel therapeutic strategies. This study developed a multifunctional nanosystem by integrating the antimicrobial peptide LL37 with cationic polyaminoglycoside (SS-HPT), constructing a self-sustaining "AMP factory" to achieve multi-stage modulation of the wound healing. Validation through cell-level experiments and in vivo dual models (mechanical injury and bacterial infection) in immunocompromised rats demonstrated the system's unique dual intracellular-extracellular pathogen-killing capability, significantly accelerating the wound healing process. Transcriptomic analysis revealed that its mechanism involves the dual effects of suppressing pro-inflammatory factor expression and activating tissue repair pathways. Histological evidence confirmed that the system promotes angiogenesis, enhances re-epithelialization rates, and guides orderly collagen fiber deposition. This nanosystem, combining efficient AMP delivery and integrated therapeutic strategies, achieves three-dimensional synergy in microbial clearance, immune microenvironment regulation, and tissue matrix remodeling, providing theoretical and technical foundations for a paradigm shift in chronic wound treatment.
Collapse
Affiliation(s)
- Rui Ju
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Lim BY, Azmi F, Ng SF. Activated carbon-chitosan hydrogel dressing loaded with LL37 microspheres for the treatment of infected wounds: In vivo antimicrobial and antitoxin assessment. Drug Deliv Transl Res 2025:10.1007/s13346-025-01835-7. [PMID: 40120022 DOI: 10.1007/s13346-025-01835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Wound healing is a complex process which is crucial for recovery. Delayed wound healing which is caused by the presence of pathogens has posed significant clinical implications affecting millions of patients globally. Wounds infection caused by Pseudomonas aeruginosa present significant challenges due to their resistance to multiple antimicrobial drugs. The Gram-negative bacteria secretes endotoxin lipopolysaccharide (LPS), which impede wound healing and may lead to severe complications, including life-threatening sepsis. Previously, our laboratory has successfully developed a new hydrogel containing a synthetic antimicrobial peptide as an alternative therapy to conventional antibiotics. This hydrogel contains LL37 microspheres embedded into activated carbon-chitosan hydrogel (LL37-AC-CS). LL37-AC-CS has shown desirable physicochemical properties as well as promising antimicrobial and antitoxin activities in vitro. This current study has two main objectives. The first is to evaluate the in vivo antimicrobial efficacy of LL37-AC-CS hydrogel in full-thickness rat wounds infected with P. aeruginosa. The second objective is to investigate the antitoxin efficacy on the rat wound models treated with E. coli endotoxins LPS. The wound healing efficacy was assessed in terms of the macroscopic appearance, wound contraction rate, histology, and wound tissue biochemical markers. As a result, the LL37-AC-CS hydrogel exhibited remarkable antimicrobial and antitoxin efficacy as compared to the controls. The wound healing efficacy was evident in increased wound closure rate and decrease in bacterial bioburden, and favourable changes in wound healing biomarkers namely the myeloperoxidase, interleukin-6 and tumour necrosis factor α. The elevation of hydroxyproline levels in the LPS-treated wound model indicates there was collagen synthesis. In conclusion, the results presented in this study have significantly enhanced our comprehension of the LL37-AC-CS hydrogel's potential in wound healing. Specifically, the research highlights its effectiveness in eliminating endotoxins and preventing bacterial growth.
Collapse
Affiliation(s)
- Bee-Yee Lim
- National Pharmaceutical Regulatory Agency, 36, Jalan Profesor Diraja Ungku Aziz, PJS 13, 46200, Petaling Jaya, Selangor, Malaysia
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Naik K, Tripathi S, Ranjan R, Agrawal S, Singh S, Dhar P, Singh K, Tiwari V, Parmar AS. Conductive Hybrid Hydrogel of Carbon Nanotubes-Protein-Cellulose: In Vivo Treatment of Diabetic Wound via Photothermal Therapy and Tracking Real-Time Wound Assessment via Photoacoustic Imaging. ACS APPLIED BIO MATERIALS 2025; 8:2229-2241. [PMID: 39968957 DOI: 10.1021/acsabm.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Diabetic wounds pose significant challenges in healthcare due to their slow healing rates and susceptibility to infections, leading to severe complications. In this study, we developed a carbon nanotube-based conductive protein-cellulose hydrogel designed to enhance wound healing through photothermal therapy. The hydrogel's unique properties, including high electrical conductivity and biocompatibility, were assessed in vitro for cell viability, hemolysis, and histological evaluations. In vivo studies on diabetic rats revealed that the hydrogel significantly improved wound healing, with faster wound closure rates. These results were supported by noticeable reductions in inflammatory markers and enhanced blood vessel formation, as observed through immunohistochemical analysis. Additionally, photoacoustic imaging offered real-time data on blood flow and tissue oxygen levels, showing positive trends in the healing process. Overall, these findings point to the potential of this conductive hydrogel, especially when paired with photothermal therapy, to serve as an effective treatment for diabetic wounds, offering promising possibilities in wound care strategies.
Collapse
Affiliation(s)
- Kaustubh Naik
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
- Proamyloidocare Pt. Ltd., Varanasi, Uttar Pradesh 221005, India
| | - Shikha Tripathi
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rahul Ranjan
- Department of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Somesh Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shweta Singh
- Dr Shayama Prasad Mukherjee Government Degree College, Bhadohi, Uttar Pradesh 221401, India
| | - Prodyut Dhar
- Department of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Kanhaiya Singh
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avanish Singh Parmar
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
- Proamyloidocare Pt. Ltd., Varanasi, Uttar Pradesh 221005, India
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
10
|
Beneat A, Rueda V, Patel H, Brune Z, Sherry B, Shih A, Kaplan S, Rao A, Lee A, Varghese A, Oropallo A, Barnes BJ. Elevation of Plasma IL-15 and RANTES as Potential Biomarkers of Healing in Chronic Venous Ulcerations: A Pilot Study. Biomolecules 2025; 15:395. [PMID: 40149931 PMCID: PMC11940644 DOI: 10.3390/biom15030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic wounds present a large burden to our healthcare system and are typically marked by a failure to transition out of the inflammatory phase of wound healing. Venous leg ulcers (VLUs) represent the largest portion of chronic wounds. A pilot study of eleven (11) patients with VLUs seen over a 12-week period was undertaken utilizing RNA sequencing of wound biopsies and plasma cytokine levels to determine if biomarkers could be identified that would distinguish between wounds which heal versus those that do not. Chronic wounds were found to have increased expression of genes relating to epithelial-to-mesenchymal transition (EMT), cartilage and bone formation, and regulation of apical junction. Plasma cytokine levels showed predictive potential for IL-15 and RANTES, which were found to increase over time in patients with healed wounds. Further research is needed to validate these biomarkers as well as additional study of other chronic wound models, such as diabetic foot ulcers (DFUs).
Collapse
Affiliation(s)
- Amanda Beneat
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Vikki Rueda
- Drexel University College of Medicine, Philadelphia, PA 19104, USA;
| | - Hardik Patel
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Zarina Brune
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Andrew Shih
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Sally Kaplan
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Amit Rao
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Annette Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Asha Varghese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alisha Oropallo
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Betsy J. Barnes
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
11
|
Zhou Q, Zhou M, Yang G, Sui X, Li C, Xu H, Liu Y, Wei X. Enhancing Diabetic Oral Wound Healing with miR-132 Delivered Through Tetrahedral DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411353. [PMID: 39853932 DOI: 10.1002/smll.202411353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Oral mucosal injuries are commonly caused by factors such as trauma, infection, or inflammation, especially in diabetic patients where healing is difficult and significantly affects quality of life. In this study, a nanocarrier system based on DNA tetrahedrons (TDN) is developed, which serve as ideal vectors due to their excellent intracellular uptake and drug delivery capabilities. By efficiently delivering miR132 into cells, the proliferation and migration of human oral mucosal fibroblasts (HOMFs) and human umbilical vein endothelial cells (HUVECs) are regulated, along with the modulation of inflammation and antioxidant processes. In the oral wound model of diabetic rats, the miR@TDN system effectively and stably delivers miR132 to the injured mucosa. By regulating the inflammatory response, promoting blood vessel regeneration, and enhancing antioxidant defense mechanisms, significant improvement in cellular repair function and acceleration of the wound healing process are observed. These findings provide a new strategy and experimental basis for the clinical treatment of oral mucosal injuries.
Collapse
Affiliation(s)
- Qiangqiang Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Mengqi Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Guofeng Yang
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Xin Sui
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Changyi Li
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Huaxing Xu
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Yuehua Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Xiaoling Wei
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| |
Collapse
|
12
|
Huang C, Liang Y, Jiang A, Chen L, Sun C, Luo D, Xia Z, Li L, Jiang Y. Dynamic proteome and phosphoproteome profiling reveals regulatory mechanisms in LPS-stimulated macrophage inflammatory responses. Biochem Biophys Res Commun 2025; 750:151341. [PMID: 39889628 DOI: 10.1016/j.bbrc.2025.151341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Macrophage-mediated acute inflammation is crucial for pathogen clearance and tissue repair, yet the underlying molecular mechanisms remain inadequately understood. The present study focused on the dynamic profiles of the proteome and phosphoproteome of macrophages exposed to lipopolysaccharide within 1 h. Gene Set Enrichment Analysis (GSEA) identified significantly enriched pathways in fatty acid metabolism and translation during the early inflammatory phase. Further trend analysis of the differentially expressed proteins revealed patterns associated with translation regulation such as translation initiation. Importantly, the nascent chain experiment demonstrated no significant changes in overall gene translation levels during this phase. These data indicate that macrophages maintain intracellular protein homeostasis through translational regulation, with post-translational modifications (PTMs) playing a crucial role in the rapid cellular response to pathogen invasion. Phosphorylation is a key PTM that regulates protein functions in almost all cellular processes. Time-resolved phosphoproteome analysis identified 367 differentially expressed phosphopeptides involved in immune-related pathways that resist infection. Additionally, weighted gene co-expression network analysis (WGCNA) discovered core modules that regulate translation-related processes such as RNA export from nucleus. Moreover, conjoint analysis of the proteome and phosphoproteome identified the hub protein EF1B that exhibited the largest fold change and is also involved in translation. Our data not only provide a more comprehensive understanding of the dynamic molecular networks of acute macrophage inflammation but also provide a systematic proteomic resource for further studies.
Collapse
Affiliation(s)
- Chenyang Huang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuying Liang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Aolin Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Chang Sun
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dongrong Luo
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaofan Xia
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Lei Li
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China; Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Antiviral Drugs, Henan Key Laboratory of Critical Care Medicine, Henan International Joint Laboratory of Infection and Immunology, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China; Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China; Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China.
| |
Collapse
|
13
|
Sousa P, Moreira A, Lopes B, Sousa AC, Coelho A, Rêma A, Balça M, Atayde L, Mendonça C, da Silva LP, Costa C, Marques AP, Amorim I, Alvites R, Batista F, Mata F, Transmontano J, Maurício AC. Honey, Gellan Gum, and Hyaluronic Acid as Therapeutic Approaches for Skin Regeneration. Biomedicines 2025; 13:508. [PMID: 40002923 PMCID: PMC11853393 DOI: 10.3390/biomedicines13020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Chronic wounds pose a significant health concern, with their prevalence increasing due to various etiologies. The global aging population further contributes to this rise, placing a substantial burden on healthcare systems in developed countries. This work aimed to develop new therapeutic options in the form of creams and dressings based on honey, gellan gum, and hyaluronic acid for preventing and treating chronic wounds across all stages. Methods: To address this, after the formulations were developed, in vitro cytocompatibility was determined. To confirm biocompatibility, an ovine wound model was used: full-thickness excisional wounds were treated with three formulations, namely gellan gum and honey sponges (GG-HNY), gellan gum, honey and hyaluronic acid sponges (GG-HA-HNY) and a honey-based cream (cream FB002). Daily assessments, including visual evaluation and wound scoring, were conducted for 30 days. Following the study period, tissues were collected for histological analyses. Results: The macroscopic examination revealed that all therapeutic groups facilitated lesion closure. Lesion size reduction, granulation tissue disappearance, and scar tissue development were consistent across all groups, with the group receiving cream demonstrating an advanced stage of healing. All groups achieved substantial wound closure by day 30, with no significant differences. Histopathological analysis following ISO standards revealed that GG-HA-HNY had the lowest ISO score, indicating minimal reactivity and inflammation, which corroborated the cytocompatibility. Conclusions: Combining these insights with previous findings enhances our understanding of wound regeneration dynamics and contributes to refining therapeutic strategies for chronic wounds. The formulations were designed to balance therapeutic efficacy with cost-effectiveness, leveraging low-cost raw materials and straightforward production methods.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alicia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Balça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Carla Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Lucília P. da Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
- ICVS/3B’s—PT Government Associated Laboratory, 4805-017 Guimarães, Portugal
| | - Cristiana Costa
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
- ICVS/3B’s—PT Government Associated Laboratory, 4805-017 Guimarães, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
- ICVS/3B’s—PT Government Associated Laboratory, 4805-017 Guimarães, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Filipa Batista
- Finao Biotech Lda, Campus Politécnico 10, BioBIP, 7300-555 Portalegre, Portugal; (F.B.); (F.M.); (J.T.)
| | - Filipa Mata
- Finao Biotech Lda, Campus Politécnico 10, BioBIP, 7300-555 Portalegre, Portugal; (F.B.); (F.M.); (J.T.)
| | - João Transmontano
- Finao Biotech Lda, Campus Politécnico 10, BioBIP, 7300-555 Portalegre, Portugal; (F.B.); (F.M.); (J.T.)
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
| |
Collapse
|
14
|
Balavigneswaran CK, Sundaram MK, Ramya V, Prakash Shyam K, Saravanakumar I, Kadalmani B, Ramkumar S, Selvaraj S, Thangavel P, Muthuvijayan V. Polysaccharide-Based Self-Healing Hydrogel for pH-Induced Smart Release of Lauric Acid to Accelerate Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:1343-1361. [PMID: 39903677 DOI: 10.1021/acsabm.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
It is highly desirable yet significantly challenging to fabricate an injectable, self-healing, controlled-release wound dressing that is responsive to the alkaline pH of the wounds. Herein, we propose a facile approach to prepare pH-responsive chitosan-oxidized carboxymethyl cellulose (CS-o-CMC) hydrogel constructs in which gelation was achieved via electrostatic and Schiff base formation. Importantly, the Schiff base was formed in acidic medium and the final pH of pregel solution was intrinsically raised to 7.0-7.4 due to the cross-linking by β-glycerol phosphate. The self-healing behavior of the hydrogel was an enthalpy-driven process and efficient in alkaline compared to acidic pH. The pH responsiveness offered a controlled release of lauric acid (LA) from CS-o-CMC/LA hydrogel and regulated the M2 polarization. Overall, reduction in inflammation led to rapid vascularization, reepithelialization, and significantly accelerated wound healing in rats. Our findings demonstrate a promising strategy for developing injectable, immunomodulatory wound dressings tailored to the challenging environment of wounds.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Manoj Kumar Sundaram
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Venkatesan Ramya
- Cancer Biology and Reproductive Endocrinology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Karuppiah Prakash Shyam
- Research and Development Division, V.V.D. and Sons Private Limited, Thoothukudi 628003, Tamil Nadu, India
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Balamuthu Kadalmani
- Cancer Biology and Reproductive Endocrinology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Sharanya Ramkumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Sowmya Selvaraj
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
15
|
Li X, Wang X, Chen G, Tian B. Application trends of hydrogen-generating nanomaterials for the treatment of ROS-related diseases. Biomater Sci 2025; 13:896-912. [PMID: 39807026 DOI: 10.1039/d4bm01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis. Hydrogen gas effectively removes ROS from the body due to its good antioxidant properties, and hydrogen therapy has become a promising gas therapy strategy due to its inherent safety and stability. The combination of nanomaterials can achieve targeted delivery and effective accumulation of hydrogen, and has some ameliorating effects on diseases. Herein, we summarize the use of hydrogen-producing nanomaterials for the treatment of ROS-related diseases and talk about the prospects for the treatment of other ROS-induced disease models, such as acute kidney injury.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xuezhu Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
16
|
Jia M, Lu R, Li P, Liao X, Tan Y, Zhang S. Inflammation-reducing thermosensitive hydrogel with photothermal conversion for skin cancer therapy. J Control Release 2025; 378:377-389. [PMID: 39701451 DOI: 10.1016/j.jconrel.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Photothermal therapy (PTT) has widely been utilized for postoperative treatment of skin cancer, while high temperature, usually >50 °C, would induce damage to healthy tissue and increased wound inflammation. Herein, we developed an "all in one" hydrogel to enhance mild PTT for postoperative skin cancer treatment while circumventing photothermo-induced inflammation by loading quercetin (Que)-coated tannin‑iron (TA-Fe) nanoparticles with poly (N-acrylylglycine) amine (PNAGA) hydrogel (Que@TA-Fe@PNAGA). Exposure to near-infrared light, Que.@TA-Fe@PNAGA occurred a mild temperature increase (∼47 °C), which induces local mild PTT and disrupts the hydrogen bonds within the hydrogel, triggering a gel-to-sol phase transition and the release of Que.@TA-Fe nanoparticles. These released nanoparticles inhibit the expression of heat shock proteins in tumor cells by producing reactive oxygen species and enter inflammatory cells to release TA and Que. via acid hydrolysis, reducing tumor necrosis factor-α expression by 66.6 % and promoting M1-to-M2 macrophage conversion. Based on this integrated functionality, Que.@TA-Fe@PNAGA hydrogel achieves over 99.4 % tumor inhibition rate, effectively avoids photothermo-induced damage in normal tissue and inflammation, and thus represents a new approach for postoperative photothermal therapy in skin cancer treatment.
Collapse
Affiliation(s)
- Mengqi Jia
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; School of Basic Medical Science, Henan University, Zhengzhou 450046, China
| | - Ruilin Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaoming Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yanfei Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
17
|
Huang K, Mi B, Xiong Y, Fu Z, Zhou W, Liu W, Liu G, Dai G. Angiogenesis during diabetic wound repair: from mechanism to therapy opportunity. BURNS & TRAUMA 2025; 13:tkae052. [PMID: 39927093 PMCID: PMC11802347 DOI: 10.1093/burnst/tkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 02/11/2025]
Abstract
Diabetes mellitus, a pervasive chronic metabolic disorder, is often associated with complications such as impaired wound healing. Various factors, most notably vascular deficiency, govern the wound repair process in diabetic patients, significantly impeding diabetic wound healing; therefore, angiogenesis and its role in diabetic wound repair have emerged as important areas of research. This review aims to delve into the mechanisms of angiogenesis, the effects of diabetes on angiogenesis, and the association between angiogenesis and diabetic wound repair. This will ultimately offer valuable guidance regarding the ideal timing of diabetic wound treatment in a clinical setting.
Collapse
Affiliation(s)
- Kang Huang
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Bobin Mi
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Yuan Xiong
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Zicai Fu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wenyun Zhou
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Wanjun Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guohui Liu
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| | - Guandong Dai
- Department of Orthopedics, Southern Medical University Pingshan Hospital, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
- Department of Orthopedics, Pingshan District Peoples’Hospital of Shenzhen, No. 19 Renmin Street, Pingshan District, Shenzhen City, Guangdong Province, 518118, P.R. China
| |
Collapse
|
18
|
Barathan M, Ham KJ, Wong HY, Law JX. The Role of Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in Modulating Dermal Fibroblast Activity: A Pathway to Enhanced Tissue Regeneration. BIOLOGY 2025; 14:150. [PMID: 40001918 PMCID: PMC11852171 DOI: 10.3390/biology14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) secreted by umbilical cord-derived mesenchymal stem cells (UC-MSCs) hold significant promise as therapeutic agents in regenerative medicine. This study investigates the effects of UC-MSC-derived EVs on dermal fibroblast function, and their potential in wound healing applications. EVs were characterized by nanoparticle tracking analysis and transmission electron microscopy, revealing a mean size of 118.6 nm, consistent with exosomal properties. Dermal fibroblasts were treated with varying concentrations of EVs (25-100 µg/mL), and their impacts on cellular metabolism, mitochondrial activity, reactive oxygen species (ROS) production, wound closure, inflammatory cytokine secretion, growth factor production, and extracellular matrix (ECM) gene expression were evaluated. At lower concentrations (25-50 µg/mL), EVs significantly enhanced fibroblast metabolic and mitochondrial activity. However, higher concentrations (≥75 µg/mL) increased ROS levels, suggesting potential hormetic effects. EVs also modulated inflammation by reducing pro-inflammatory cytokines (IL-6, TNF-α) while promoting pro-regenerative cytokines (IL-33, TGF-β). Treatment with 50 µg/mL of EVs optimally stimulated wound closure and growth factor secretion (VEGF, BDNF, KGF, IGF), and upregulated ECM-related gene expression (type I and III collagen, fibronectin). These findings demonstrate that UC-MSC-derived EVs exert multifaceted effects on dermal fibroblast function, including enhanced cellular energetics, stimulation of cell migration, regulation of inflammation, promotion of growth factor production, and increased ECM synthesis. This study highlights the potential of EVs as a novel therapeutic strategy for wound healing and tissue regeneration, emphasizing the importance of optimizing EV concentration for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Kow Jack Ham
- Humanrace Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia; (K.J.H.); (H.Y.W.)
- Nexus Scientific Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia
| | - Hui Yin Wong
- Humanrace Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia; (K.J.H.); (H.Y.W.)
- Nexus Scientific Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
19
|
Anwar MA, El Gedaily RA, Salama A, Aboulthana WM, Kandil ZA, Abdel-Dayem SIA. Phytochemical analysis and wound healing properties of Malva parviflora L. ethanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118983. [PMID: 39490430 DOI: 10.1016/j.jep.2024.118983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scientific publications documented the use of plants from Genus Malva to treat inflammatory diseases and skin disorders by our ancestors. Malva parviflora L. has reported benefits for wound healing in traditional medicine; however, there is a lack of experimental study to validate these claims. AIM We initiated this study to explore the metabolites and verify the wound healing properties of M. parviflora using in vivo and in vitro models. MATERIALS AND METHODS Liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was used to identify the ethanolic extract different metabolites. Additionally, total phenolic content was determined using Folin-Ciocalteu reagent. To verify the extract wound healing potential, an in vivo rat wound excision model was employed. Round wounds (5 mm in diameter) were created by a sterile biopsy punch needle. The wounds were treated with plant extracts (2.5% and 5%) as well as a commercially available wound healing product (Mebo®) for 10 days. The results were assessed as follows: 1) Measuring the reduction% in wound area compared to the original wound size. 2) Evaluation of the levels of wound healing biomarkers, namely collagen type I (Col-1), alpha smooth muscle actin (α-SMA), extracellular signal-regulated kinases-1 (ERK1), and matrix metalloproteinase-9 (MMP9) levels. 3) Performing histopathological examination of the wound tissue. The antioxidant properties of the M. parviflora leaves ethanolic extract were investigated using various assays: total antioxidant capacity (TAC), iron reducing power (IRP), 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals scavenging assays. Furthermore, the anti-inflammatory activity was confirmed by calculating the inhibition percentages of protein denaturation and the activity of the proteinase enzyme. RESULTS Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis revealed the presence of various secondary metabolites in M. parviflora ethanolic extract, including phenolic acids (cinnamic and ferulic acids), flavonoids (quercetin and "iso"rhamnetin monoglucuronides), fatty acids (hydroxy-octadecatrienoic and oxo-octadecatrienoic acids), in addition to chlorophyll derivatives and carotenoids (pheophorbide-a and lutein, respectively). Malva extracts significantly reduced wound size compared to untreated control group. The extracts also promoted wound healing by upregulating collagen I, α-SMA, and ERK1 levels, while downregulating MMP9 expression. Notably, the effect of 2.5% and 5% extracts was similar or exceeds those of Mebo®, supported by histopathological results. Finally, M. parviflora ethanolic extract exhibited antioxidant and anti-inflammatory potentials comparable to the used standards. CONCLUSION Our study provides evidence-based support for the wound healing properties of M. parviflora L. leaves ethanolic extract. This is further strengthened by the fact that many of the identified metabolites possess wound healing, antioxidant, and/or anti-inflammatory activities.
Collapse
Affiliation(s)
- Mohamed A Anwar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Rania A El Gedaily
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Zeinab A Kandil
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
20
|
Liu T, Xie F, Geng L, He R, Sun M, Ni T, Xu P, Xing C, Peng Y, Chen K, Fang Y. Micro-Electro Nanofibrous Dressings Based on PVDF-AgNPs as Wound Healing Materials to Promote Healing in Active Areas. Int J Nanomedicine 2025; 20:771-789. [PMID: 39845769 PMCID: PMC11752925 DOI: 10.2147/ijn.s506489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Purpose The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility. Methods Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs). The optimized PVDF-AgNPs Nanofiber dressings exhibited strong piezoelectric effects suitable for joint wounds. Results In vitro experiments demonstrated that the dressing effectively promoted fibroblast migration and collagen synthesis. In vivo, the dressing exhibited a trend of rapid healing in infected wounds within 12 days while modulating macrophage differentiation toward the anti-inflammatory M2 phenotype. Additionally, the incorporation of antimicrobial nanosilver effectively controlled local infections, further facilitating the healing process. Conclusion To sum up, by harnessing the piezoelectric effect to stimulate endogenous healing mechanisms without restricting joint mobility, the developed PVDF-AgNPs Nanofiber dressings represent a transformative approach for the treatment of wounds in highly mobile body areas.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Feifei Xie
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lele Geng
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ruizhe He
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mengzhe Sun
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tao Ni
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Peng Xu
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chao Xing
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ke Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
21
|
Pastor-Orduña MI, Palomar-Llatas F, Palomar-Albert D, Murillo-Llorente MT, Ventura I, Tomás-Aguirre F, Pérez-Bermejo M. Relationship Between Perilesional Skin Condition and Survival in Terminally Ill Patients with Pressure Ulcers. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:147. [PMID: 39859129 PMCID: PMC11767001 DOI: 10.3390/medicina61010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: In the context of palliative care, the aim is to alleviate suffering and improve quality of life, with particular attention to PUs, which have a significant impact on quality of life and survival. This study examines the relationship between perilesional skin condition and survival in terminally ill patients with pressure ulcers (PUs). Materials and Methods: A descriptive and observational study was conducted in two hospitals in Valencia with a sample of 100 terminally ill patients. Sociodemographic, clinical and PPU-specific variables were assessed using validated scales such as FEDPALLA-II and the Barthel Index. Results: Although it is a study of an observational nature, which may preclude establishing causality, the results showed that functional capacity, perilesional tissue epithelialization, and albumin levels were significant predictors of survival, while the number and location of PUs had no direct impact. Perilesional tissue epithelialization was highlighted as a critical indicator reflecting the systemic stability of the patient. Conclusions: The study highlights the importance of a comprehensive approach to palliative care that addresses both the local aspects of the lesions and the patient's systemic and functional status. These findings support the implementation of therapeutic interventions based on a structured perilesional tissue assessment to improve quality of life and prolong survival in terminally ill patients. In addition, a positive correlation was found between Barthel Score and survival, suggesting that patients with greater functional independence have a longer life expectancy. On the other hand, the negative correlation between total lymphocyte count and survival suggests that lymphocytopenia may be a marker of adaptive immunosuppression. Perilesional tissue epithelialization, overall functionality and serum albumin levels are key factors in predicting survival, highlighting the need for a comprehensive palliative care approach to optimize quality of life and prolong survival in terminally ill patients with PUs.
Collapse
Affiliation(s)
| | - Federico Palomar-Llatas
- Chair of Integrity and Skin Care, Integrity and Skin Care Research Group, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.P.-L.); (D.P.-A.)
| | - David Palomar-Albert
- Chair of Integrity and Skin Care, Integrity and Skin Care Research Group, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.P.-L.); (D.P.-A.)
| | - María Teresa Murillo-Llorente
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.T.M.-L.); (F.T.-A.)
| | - Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Francisco Tomás-Aguirre
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.T.M.-L.); (F.T.-A.)
| | - Marcelino Pérez-Bermejo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.T.M.-L.); (F.T.-A.)
| |
Collapse
|
22
|
Lu J, Gao Z, He W, Lu Y. Harnessing the potential of hyaluronic acid methacrylate (HAMA) hydrogel for clinical applications in orthopaedic diseases. J Orthop Translat 2025; 50:111-128. [PMID: 39886531 PMCID: PMC11779684 DOI: 10.1016/j.jot.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 02/01/2025] Open
Abstract
The treatment of orthopaedic diseases, such as fractures and osteoarthritis, remains a significant challenge due to the complex requirements for mechanical strength and tissue repair. Hydrogels based on hyaluronic acid methacrylate (HAMA) show promise as tissue engineering materials for these conditions. Hyaluronic acid (HA) is a natural component of the extracellular matrix, known for its good compatibility. The mechanical strength of HAMA-based hydrogels can be adjusted through crosslinking and by combining them with other materials. This review provides an overview of recent research on HAMA-based hydrogels for tissue engineering applications in orthopaedic diseases. First, we summarize the techniques for the preparation and characterization of HAMA hydrogels. Next, we offer a detailed review of the use of HAMA-based hydrogels in treating conditions such as cartilage injuries, bone defects, and meniscus injuries. Additionally, we discuss the applications of HAMA-based hydrogels in other diseases related to orthopaedics. Finally, we point out the challenges and propose future directions for the clinical translation of HAMA-based hydrogels. Translational potential statement HAMA-based hydrogels show strong translational potential in orthopaedics due to their biocompatibility, adjustable mechanical properties, and regenerative capabilities. With ongoing research, these hydrogels are well-positioned for clinical applications, particularly in cartilage repair, meniscus injuries, and osteoarthritis treatment.
Collapse
Affiliation(s)
- Junliang Lu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, 16 West Huangjiahu Road, Wuhan, Hubei, 430061, China
| | - Zhifei Gao
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 51282, China
| | - Wei He
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, 16 West Huangjiahu Road, Wuhan, Hubei, 430061, China
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Road, Wuhan, Hubei, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, 856 Luoyu Road, Wuhan, Hubei, 430061, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 51282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 51282, China
| |
Collapse
|
23
|
Delgado-Enciso I, Aurelien-Cabezas NS, Meza-Robles C, Walle-Guillen M, Hernandez-Fuentes GA, Cabrera-Licona A, Hernandez-Rangel AE, Delgado-Machuca M, Rodriguez-Hernandez A, Beas-Guzman OF, Cardenas-Aguilar CB, Rodriguez-Sanchez IP, Martinez-Fierro ML, Chaviano-Conesa D, Paz-Michel BA. Efficacy of neutral electrolyzed water vs. common topical antiseptics in the healing of full‑thickness burn: Preclinical trial in a mouse model. Biomed Rep 2024; 21:189. [PMID: 39479362 PMCID: PMC11522847 DOI: 10.3892/br.2024.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Burn injuries impose challenges such as infection risk, pain management, fluid loss, electrolyte imbalance and psychological and emotional impact, on healthcare professionals, requiring effective treatments to enhance wound healing. The present study evaluated the efficacy superoxidized electrolyzed solution (SES), with low (SES-low) or high (SES-high) concentrations of active species, alone or in combination with a formulation in gel (G), in comparison with commonly prescribed treatments for burn injury, including nitrofurazone (NF) and silver sulfadiazine (S); normal saline was used as placebo (PI). A scald burn model was established in BALB/c mice. Measurements of the burned area and histological parameters such as inflammatory infiltration state, epithelial regeneration and collagen fibers were evaluated on days 3, 6, 9, 18 and 32 to assess healing score and status. All treatments achieved wound closure at day 32; histopathological parameters indicated that SES-low and SES-low + G performed better than the Pl and S groups (P<0.05). All treatments showed a lower count of inflammatory cells compared with S (P<0.05); for collagen deposition and orientation, SES-low + G showed a more uniform horizontal orientation compared with Pl, SES-high + G, NF and S groups (P<0.05). SES-Low was the most effective substance to induce favorable and organized healing, while S was the worst, inducing disorganized closure of the wound due to a pro-inflammatory effect.
Collapse
Affiliation(s)
- Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR Colima), Colima 28085, Mexico
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | | | - Carmen Meza-Robles
- Department of Research, State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR Colima), Colima 28085, Mexico
| | - Mireya Walle-Guillen
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | | | | | - Marina Delgado-Machuca
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | - Oscar F. Beas-Guzman
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, México
| | - Daniel Chaviano-Conesa
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | |
Collapse
|
24
|
Coman CG, Anisiei A, Cibotaru S, Ailincai D, Pasca SA, Chabot C, Gardikiotis I, Mititelu-Tartau L. Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model. Int J Mol Sci 2024; 25:12709. [PMID: 39684419 DOI: 10.3390/ijms252312709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the impact of chitosan-based nanofibers on burn wound healing in a rat model. Two formulations of chitosan nanofibers were prepared through electrospinning. The formulations were then incorporated with different amounts of norfloxacin and underwent surface modifications with 2-formylphenylboronic acid. The burn model was applied to Wistar male rats by the contact method, using a heated steel rod attached to a thermocouple. The effectiveness of the nanofibers was tested against a negative control group and a standard commercial dressing (Atrauman Ag) on the described model and evaluated by wound diameter, histological analysis and biochemical profiling of systemic inflammatory markers. The results showed that chitosan-based dressings significantly accelerated burn healing compared to the control treatments. The high-concentration norfloxacin-infused chitosan coated with 2-formylphenylboronic acid' groups exhibited significant improvements in wound closure and reduced inflammation compared to the other groups; antioxidant enzymes SOD and GPx expression was significantly higher, p < 0.05, whereas pro-oxidative markers such as cortisol were lower (p < 0.05). Macroscopically, the wound area itself was significantly diminished in the chitosan-treated groups (p < 0.05). Furthermore, a histological evaluation indicated enhanced epithelialization and granulation tissue formation within the experiment time frame, while the biochemical panel revealed lower levels of inflammatory cytokines and lower leukocyte counts in the treated groups. These findings highlight the potential of the studied chitosan nanofibers as novel nanosystems for next-generation wound therapies, as well as the clinical utility of the novel chitosan fibers obtained by electrospinning technique.
Collapse
Affiliation(s)
- Corneliu-George Coman
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Faculté de Médecine, Pharmacie et Sciences Biomédicales, Université de Mons, 7000 Mons, Belgium
| | - Alexandru Anisiei
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sandu Cibotaru
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Daniela Ailincai
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sorin Aurelian Pasca
- Pathology Department, University of Agricultural Sciences and Veterinary Medicine 'Ion Ionescu de la Brad', 700490 Iasi, Romania
| | - Caroline Chabot
- Department de Radiologie, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Ioannis Gardikiotis
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Surgery Department, Advanced Research and Development Center for Experimental Medicine ''Prof. Ostin C. Mungiu'', University of Medicine and Pharmacy ''Grigore T. Popa'' of Iasi, 700115 Iasi, Romania
| | - Liliana Mititelu-Tartau
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
| |
Collapse
|
25
|
Jiang J, Man T, Kirsch M, Knoedler S, Andersen K, Reiser J, Werner J, Trautz B, Cong X, Forster S, Alageel S, Dornseifer U, Schilling AF, Machens HG, Kükrek H, Moog P. Hypoxia Preconditioned Serum Hydrogel (HPS-H) Accelerates Dermal Regeneration in a Porcine Wound Model. Gels 2024; 10:748. [PMID: 39590104 PMCID: PMC11593443 DOI: 10.3390/gels10110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Harnessing the body's intrinsic resources for wound healing is becoming a rapidly advancing field in regenerative medicine research. This study investigates the effects of the topical application of a novel porcine Hypoxia Preconditioned Serum Hydrogel (HPS-H) on wound healing using a minipig model over a 21-day period. Porcine HPS exhibited up to 2.8× elevated levels of key angiogenic growth factors (VEGF-A, PDGF-BB, and bFGF) and demonstrated a superior angiogenic effect in a tube formation assay with human umbilical endothelial cells (HUVECs) in comparison to porcine normal serum (NS). Incorporating HPS into a hydrogel carrier matrix (HPS-H) facilitated the sustained release of growth factors for up to 5 days. In the in vivo experiment, wounds treated with HPS-H were compared to those treated with normal serum hydrogel (NS-H), hydrogel only (H), and no treatment (NT). At day 10 post-wounding, the HPS-H group was observed to promote up to 1.7× faster wound closure as a result of accelerated epithelialization and wound contraction. Hyperspectral imaging revealed up to 12.9% higher superficial tissue oxygenation and deep perfusion in HPS-H-treated wounds at day 10. The immunohistochemical staining of wound biopsies detected increased formation of blood vessels (CD31), lymphatic vessels (LYVE-1), and myofibroblasts (alpha-SMA) in the HPS-H group. These findings suggest that the topical application of HPS-H can significantly accelerate dermal wound healing in an autologous porcine model.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Tanita Man
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Manuela Kirsch
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Samuel Knoedler
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Kirstin Andersen
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Judith Reiser
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Julia Werner
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Benjamin Trautz
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Selma Forster
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sarah Alageel
- Cellular Therapy and Immunobiology, Research and Innovation, King Faisal Specialist Hospital & Research Center, Al Mathar Ash Shamali, Riyadh 11564, Saudi Arabia
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, 80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Haydar Kükrek
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
26
|
Williams-Reid H, Johannesson A, Buis A. Wound management, healing, and early prosthetic rehabilitation: Part 1 - A scoping review of healing and non-healing definitions. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43715. [PMID: 39990241 PMCID: PMC11844765 DOI: 10.33137/cpoj.v7i2.43715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Following lower limb amputation, timely prosthetic fitting enhances mobility and quality of life. However, inconsistent definitions of surgical site healing complicate prosthesis readiness assessment and highlight the need for objective wound management measures. OBJECTIVE This review aimed to compile definitions of healing and non-healing provided in the literature investigating biomarkers of healing of the tissues and structures found in the residual limbs of adults with amputation. METHODOLOGY A scoping review was conducted following JBI and PRISMA-ScR guidance. Searches using "biomarkers," "wound healing," and "amputation" were performed on May 6, 2023, on Web of Science, Ovid MEDLINE, Ovid Embase, Scopus, Cochrane, PubMed, and CINAHL databases. Inclusion criteria were: 1) References to biomarkers and healing; 2) Residuum tissue healing; 3) Clear methodology with ethical approval; 4) Published from 2017 onwards. Articles were assessed for quality (QualSyst tool) and evidence level (JBI system). FINDINGS Of 3,306 articles screened, 219 met the inclusion criteria and are reviewed in this article, with 77% rated strong quality. 43% of all included sources did not define healing, while the remainder used specific criteria including epithelialization (14%), wound size reduction (28%), gradings scales (3%), scarring (1%), absence of wound complications (2%), hydroxyproline levels (0.5%), no amputation (0.5%), or neovascularization (0.5%). 84% of included sources did not provide definitions of non-healing. Studies defining non-healing used criteria like wound complications (4%), the need for operative interventions (4%), or lack of wound size reduction (1%). For 10% of included sources, healing and non-healing definitions were considered not applicable given the research content. Total percentages exceed 100% for both healing and non-healing definitions because some sources used two definition classifications, such as epithelialization and wound size reduction. The findings indicate a lack of standardized definitions irrespective of study type. CONCLUSION This review reveals significant gaps in current definitions of healing and non-healing, often based on superficial assessments that overlook deeper tissue healing and mechanical properties essential for prosthesis use. It emphasizes the need for comprehensive definitions incorporating biomarkers and psychosocial factors to improve wound management and post-amputation recovery.
Collapse
Affiliation(s)
- H Williams-Reid
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | | | - A Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
27
|
Mendes C, Zaccaron RP, Casagrande LDR, Venturini LM, da Costa C, Lima IR, Wermuth TB, Arcaro S, Feuser PE, Lock Silveira PC. Green synthesis of gold nanoparticles in an animal model of chronic wound induced with Resiquimod. J Drug Target 2024; 32:1086-1100. [PMID: 38980282 DOI: 10.1080/1061186x.2024.2373304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/10/2024]
Abstract
Cost-effective strategies for the treatment of chronic wounds must be developed. The green synthesis of gold nanoparticles (GNPs) it is possible to guarantee a lower toxicity in biological tissues and greater safety of applicability, in addition to adding the effects of nanoparticles (NPs) to those of extracts. The objective of this study was to evaluate the effects of treatment with biosynthesized GNPs in a chronic wound model. Wistar rats were distributed into 7 groups: Acute Wound (AW); Chronic wound (CW); CW + GNPs-Açaí; CW + GNPs-DB; CW + AV-GNPs; CW + SafGel®; CW + 660 nm laser. The chronic injury model was induced with topically applied Resiquimod for 6 days. Treatments were then initated on the fourteenth day after the last application of Resiquimod and carried out daily for ten days. The proposed therapies with GNPs were able to significantly reduce the inflammatory score and increase the rate of wound contraction. In histology, there was a reduction in the inflammatory infiltrate and increased gene expression of fibronectin and type III collagen, mainly in the CW + AV-GNPs group. The therapies were able to reduce pro-inflammatory cytokines, increase anti-inflammatory cytokines, and reduce oxidative stress. The results demonstrated that the effects of GNPs appear to complement those of the extracts, thereby enhancing the tissue repair process.
Collapse
Affiliation(s)
- Carolini Mendes
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Camila da Costa
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Igor Ramos Lima
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Tiago Bender Wermuth
- Biomaterials and Nanostructured Materials Research Group, Postgraduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense, UNESC, Criciúma, Santa Catarina, Brazil
| | - Sabrina Arcaro
- Biomaterials and Nanostructured Materials Research Group, Postgraduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense, UNESC, Criciúma, Santa Catarina, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
28
|
Jin YX, Ngoc Chien P, Thi Nga P, Zhang XR, Ngan Giang N, Thi Thuy Le L, Trinh TTT, Zhou SY, Nam SY, Heo CY. Enhancing wound healing through innovative technologies: microneedle patches and iontophoresis. Front Bioeng Biotechnol 2024; 12:1468423. [PMID: 39530061 PMCID: PMC11550992 DOI: 10.3389/fbioe.2024.1468423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Wound healing is a complex process involving multiple stages, including inflammation, proliferation, and remodeling. Effective wound management strategies are essential for accelerating healing and improving outcomes. The CELLADEEP patch, incorporating iontophoresis therapy and microneedle technology, was evaluated for its potential to enhance the wound healing process. Methods This study utilized a full-thickness skin defect model in Sprague-Dawley rats, researchers compared wound healing outcomes between rats treated with the CELLADEEP Patch and those left untreated. Various histological staining techniques were employed to examine and assess the wound healing process, such as H&E, MT and immunofluorescence staining. Furthermore, the anti-inflammatory and proliferative capabilities were further investigated using biochemical assays. Results Macroscopic and microscopic analyses revealed that the CELLADEEP patch significantly accelerated wound closure, reduced wound width, and increased epidermal thickness and collagen deposition compared to an untreated group. The CELLADEEP patch decreased nitric oxide and reactive oxygen species levels, as well as pro-inflammatory cytokines IL-6 and TNF-α, indicating effective modulation of the inflammatory response. Immunofluorescence staining showed reduced markers of macrophage activity (CD68, F4/80, MCP-1) in the patch group, suggesting a controlled inflammation process. Increased levels of vimentin, α-SMA, VEGF, collagen I, and TGF-β1 were observed, indicating enhanced fibroblast activity, angiogenesis, and extracellular matrix production. Discussion The CELLADEEP patch demonstrated potential in promoting effective wound healing by accelerating wound closure, modulating the inflammatory response, and enhancing tissue proliferation and remodeling. The CELLADEEP patch offers a promising non-invasive treatment option for improving wound healing outcomes.
Collapse
Affiliation(s)
- Yong Xun Jin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Wang L, Ding X, He X, Tian N, Ding P, Guo W, Okoro OV, Sun Y, Jiang G, Liu Z, Shavandi A, Nie L. Fabrication and Properties of Hydrogel Dressings Based on Genipin Crosslinked Chondroitin Sulfate and Chitosan. Polymers (Basel) 2024; 16:2876. [PMID: 39458704 PMCID: PMC11511540 DOI: 10.3390/polym16202876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Multifunctional hydrogel dressings remain highly sought after for the promotion of skin wound regeneration. In the present study, multifunctional CHS-DA/HACC (CH) hydrogels with an interpenetrated network were constructed using hydroxypropyl trimethyl ammonium chloride modified chitosan (HACC) and dopamine-modified chondroitin sulfate (CHS-DA), using genipin as crosslinker. The synthesis of HACC and CHS-DA was effectively confirmed using Fourier transform infrared (FT-IR) analysis and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The prepared CH hydrogels exhibited a network of interconnected pores within the microstructure. Furthermore, rheological testing demonstrated that CH hydrogels exhibited strong mechanical properties, stability, and injectability. Further characterization investigations showed that the CH hydrogels showed favorable self-healing and self-adhesion properties. It was also shown that increasing HACC concentration ratio was positively correlated with the antibacterial activity of CH hydrogels, as evidenced by their resistance to Escherichia coli and Staphylococcus aureus. Additionally, Cell Counting Kit-8 (CCK-8) tests, fluorescent images, and a cell scratch assay demonstrated that CH hydrogels had good biocompatibility and cell migration ability. The multifunctional interpenetrated network hydrogels were shown to have good antibacterial properties, antioxidant properties, stable storage modulus and loss modulus, injectable properties, self-healing properties, and biocompatibility, highlighting their potential as wound dressings in wound healing applications.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (L.W.); (X.D.); (X.H.); (N.T.); (P.D.); (W.G.)
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (L.W.); (X.D.); (X.H.); (N.T.); (P.D.); (W.G.)
| | - Xiaorui He
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (L.W.); (X.D.); (X.H.); (N.T.); (P.D.); (W.G.)
| | - Ning Tian
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (L.W.); (X.D.); (X.H.); (N.T.); (P.D.); (W.G.)
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (L.W.); (X.D.); (X.H.); (N.T.); (P.D.); (W.G.)
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (L.W.); (X.D.); (X.H.); (N.T.); (P.D.); (W.G.)
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (A.S.)
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Armin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (A.S.)
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (L.W.); (X.D.); (X.H.); (N.T.); (P.D.); (W.G.)
| |
Collapse
|
30
|
Liu D, Chen J, Gao L, Chen X, Lin L, Wei X, Liu Y, Cheng H. Injectable Photothermal PDA/Chitosan/β-Glycerophosphate Thermosensitive Hydrogels for Antibacterial and Wound Healing Promotion. Macromol Biosci 2024; 24:e2400080. [PMID: 38752628 DOI: 10.1002/mabi.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Controlling infections while reducing the use of antibiotics is what doctors as well as researchers are looking for. As innovative smart materials, photothermal materials can achieve localized heating under light excitation for broad-spectrum bacterial inhibition. A polydopamine/chitosan/β-glycerophosphate temperature-sensitive hydrogel with excellent antibacterial ability is synthesized here. Initially, the hydrogel has good biocompatibility. In vitro experiments reveal its noncytotoxic property when cocultured with gingival fibroblasts and nonhemolytic capability. Concurrently, the in vivo biocompatibility is confirmed through liver and kidney blood markers and staining of key organs. Crucially, the hydrogel has excellent photothermal conversion performance, which can realize the photothermal conversion of hydrogel up to 3 mm thickness. When excited by near-infrared light, localized heating is attainable, resulting in clear inhibition impacts on both Staphylococcus aureus and Escherichia coli, with the inhibition rates of 91.22% and 96.69%, respectively. During studies on mice's infected wounds, it is observed that the hydrogel can decrease S. aureus' presence in the affected area when exposed to near-infrared light, and also lessen initial inflammation and apoptosis, hastening tissue healing. These findings provide valuable insights into the design of antibiotic-free novel biomaterials with good potential for clinical applications.
Collapse
Affiliation(s)
- Dingkun Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jinbing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Linjuan Gao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Liujun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xia Wei
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Yuan Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China
| |
Collapse
|
31
|
Kim SH, Shin HL, Son TH, Lim SA, Kim D, Yoon JH, Choi H, Kim HG, Choi SW. Quercus glauca Acorn Seed Coat Extract Promotes Wound Re-Epithelialization by Facilitating Fibroblast Migration and Inhibiting Dermal Inflammation. BIOLOGY 2024; 13:775. [PMID: 39452084 PMCID: PMC11505045 DOI: 10.3390/biology13100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The skin, recognized as the largest organ in the human body, serves a vital function in safeguarding against external threats. Severe damage to the skin can pose significant risks to human health. There is an urgent requirement for safe and effective therapies for wound healing. While phytotherapy has been widely utilized for various health conditions, the potential of Quercus glauca in promoting wound healing has not been thoroughly explored. Q. glauca is a cultivated crop known for its abundance of bioactive compounds. This study examined the wound-healing properties of Quercus glauca acorn seed coat water extract (QGASE). The findings from the study suggest that QGASE promotes wound closure in HF cells by upregulating essential markers related to the wound-healing process. Additionally, QGASE demonstrates antioxidant effects, mitigating oxidative stress and aiding in recovery from injuries induced by H2O2. In vivo experiments provide additional substantiation supporting the efficacy of QGASE in enhancing wound healing. The collective results indicate that QGASE may be a promising candidate for the development of innovative therapeutic strategies aimed at enhancing skin wound repair.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Tae Hyun Son
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - So-An Lim
- Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Dongsoo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Jun-Hyuck Yoon
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| | - Hyunmo Choi
- Department of Forest Bioresources, National Institute of Forest Science (NIFoS), Suwon 16631, Republic of Korea;
| | - Hwan-Gyu Kim
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (T.H.S.); (D.K.); (J.-H.Y.)
| |
Collapse
|
32
|
Liu YS, Lai MC, Hong TY, Liu IM. Exploring the Wound Healing Potential of Hispidin. Nutrients 2024; 16:3161. [PMID: 39339761 PMCID: PMC11434842 DOI: 10.3390/nu16183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Hispidin, a polyphenol component mainly derived from the medicinal mushroom species Phellinus and Inonotus, shows promise for biomedical applications, yet its potential in wound healing remains largely unexplored. This research investigates the wound healing effects of hispidin through in vitro and in vivo experiments, while also evaluating its antimicrobial properties and safety profile. METHODS In vitro scratch assays were conducted to evaluate the impact of hispidin on the migration of NIH-3T3 cells. The wound healing potential of hispidin was assessed in rats using excision wounds, dead space wounds, and linear incisions, treated with various topical ointments including a simple ointment, 2.5% (w/w) and a 5% (w/w) hispidin ointment, and a 0.2% (w/w) nitrofurazone ointment, administered at 0.2 g daily for 14 days. RESULTS Hispidin demonstrated antimicrobial properties and was particularly effective against Staphylococcus epidermidis. Hispidin enhanced NIH-3T3 cell viability, and promoted wound closure in scratch assays, correlating with increased levels of FGF21, TGF-β1, EGF, and VEGF. In excision wound models, the 5% (w/w) hispidin ointment improved wound contraction, epithelialization, tissue regeneration, fibroblast activity, and angiogenesis. In the granulation tissue from dead space wound models, hispidin reduced pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and lipid peroxidation, while increasing anti-inflammatory cytokines (IL-10) and antioxidant activities (SOD, GPx, CAT), along with connective tissue markers like hydroxyproline, hexosamine, and hexuronic acid. Hispidin also enhanced wound breaking strength in incision models. Acute dermal toxicity studies indicated no adverse effects at 2000 mg/kg. CONCLUSIONS These findings highlight hispidin's potential in wound care, demonstrating its antimicrobial, regenerative, and safety properties.
Collapse
Affiliation(s)
- Yi-Shan Liu
- Department of Dermatology, E-Da Hospital, I-Shou University, Kaohsiung City 84001, Taiwan
- School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung City 84001, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Yanpu Township, Pingtung County 90741, Taiwan
| | - Mei-Chou Lai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Yanpu Township, Pingtung County 90741, Taiwan
| | - Tang-Yao Hong
- Department of Environmental Science and Occupational Safety and Hygiene, Graduate School of Environmental Management, College of Pharmacy and Health Care, Tajen University, Yanpu Township, Pingtung County 90741, Taiwan
| | - I-Min Liu
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Yanpu Township, Pingtung County 90741, Taiwan
| |
Collapse
|
33
|
Li HF, Feng H, Wang Y, Pan ZC, Yin L, Qiu HL, Qiao H, Zhao JQ, Xia XY, Hou JC, Wang RX. Evaluation of hemostatic, anti-inflammatory, wound healing, skin irritation and allergy, and antimicrobial properties of active fraction from the ethanol extract of Chromolaena odorata (L.) R.M. King & H. Rob. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118330. [PMID: 38740109 DOI: 10.1016/j.jep.2024.118330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chromolaenaodorata (L.) R.M. King & H. Rob, a perennial herb, has been traditionally utilized as a herbal remedy for treating leech bites, soft tissue wounds, burn wounds, skin infections, and dento-alveolitis in tropical and subtropical regions. AIM OF THE STUDY The present study was to analyze the active fraction of C. odorata ethanol extract and investigate its hemostatic, anti-inflammatory, wound healing, and antimicrobial properties. Additionally, the safety of the active fraction as an external preparation was assessed through skin irritation and allergy tests. MATERIALS AND METHODS The leaves and stems of C. odorata were initially extracted with ethanol, followed by purification through AB-8 macroporous adsorption resin column chromatography to yield different fractions. These fractions were then screened for hemostatic activity in mice and rabbits to identify the active fraction. Subsequently, the hemostatic effect of the active fraction was assessed through the bleeding time of the rabbit ear artery in vivo and the coagulant time of rabbit blood in vitro. The anti-inflammatory activity of the active fraction was tested on mice ear edema induced by xylene and rat paw edema induced by carrageenin. Furthermore, the active fraction's promotion effect on wound healing was evaluated using a rat skin injury model, and skin safety tests were conducted on rabbits and guinea pigs. Lastly, antimicrobial activities against two Gram-positive bacteria (G+, Staphylococcus aureus and S. epidermidis) and three Gram-negative bacteria (G-, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were determined using the plate dilution method. RESULTS The ethanol extract of C. odorata leaves and stems was fractionated into 30%, 60%, and 90% ethanol eluate fractions. These fractions demonstrated hemostatic activity, with the 30% ethanol eluate fraction (30% EEF) showing the strongest effect, significantly reducing bleeding time (P < 0.05). A concentration of 1.0 g/mL of the 30% EEF accelerated cutaneous wound healing in rats on the 3rd, 6th, and 9th day post-operation, with the healing effect increasing over time. No irritation or allergy reactions were observed in rabbits and guinea pigs exposed to the 30% EEF. Additionally, the 30% EEF exhibited mild inhibitory effect on mice ear and rat paw edema, as well as antimicrobial activity against tested bacteria, with varying minimal inhibitory concentration (MIC) values. CONCLUSIONS The 30% EEF demonstrated a clear hemostatic effect on rabbit bleeding time, a slight inhibitory effect on mice ear edema and rat paw edema, significant wound healing activity in rats, and no observed irritation or allergic reactions. Antibacterial activity was observed against certain clinically isolated bacteria, particularly the G- bacteria. This study lays the groundwork for the potential development and application of C. odorata in wound treatment.
Collapse
Affiliation(s)
- Hong-Fu Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China.
| | - Han Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China.
| | - Yong Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Zhang-Chao Pan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Liang Yin
- Lingyuan Prison Administration Sub-Bureau Central Hospital of Liaoning Province, Lingyuan, 122508, China.
| | - Hai-Long Qiu
- Lingyuan Prison Administration Sub-Bureau Central Hospital of Liaoning Province, Lingyuan, 122508, China.
| | - Hong Qiao
- HauoLily-MEDICAL Co., Ltd., Tokyo, 110-0003, Japan.
| | - Jin-Qiu Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China.
| | - Xin-Yu Xia
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China.
| | - Jing-Chen Hou
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China.
| | - Rui-Xin Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
34
|
Zhang X, Hu F, Li J, Chen L, Mao YF, Li QB, Nie CY, Lin C, Xiao J. IGF-1 inhibits inflammation and accelerates angiogenesis via Ras/PI3K/IKK/NF-κB signaling pathways to promote wound healing. Eur J Pharm Sci 2024; 200:106847. [PMID: 38972611 DOI: 10.1016/j.ejps.2024.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Exogenous insulin-like growth factor-1 (IGF-1) has been reported to promote wound healing through regulation of vascular endothelial cells (VECs). Despite the existing studies of IGF-1 on VEC and its role in angiogenesis, the mechanisms regarding anti-inflammatory and angiogenetic effects of IGF-1 remain unclear. In this study, we investigated the wound-healing process and the related signaling pathway of IGF-1 using an inflammation model induced by IFN-γ. The results demonstrated that IGF-1 can increase cell proliferation, suppress inflammation in VECs, and promote angiogenesis. In vivo studies further confirmed that IGF-1 can reduce inflammation, enhance vascular regeneration, and improve re-epithelialization and collagen deposition in acute wounds. Importantly, the Ras/PI3K/IKK/NF-κB signaling pathways was identified as the mechanisms through which IGF-1 exerts its anti-inflammatory and pro-angiogenic effects. These findings contribute to the understanding of IGF-1's role in wound healing and may have implications for the development of new wound treatment approaches.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang 325000, China
| | - Fei Hu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jie Li
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Lin Chen
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yu-Fei Mao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Qiu-Bo Li
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang 325000, China
| | - Chen-Yao Nie
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Cai Lin
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang 325000, China.
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
35
|
Alves LGS, Vila Nova BG, Assunção RG, da Silva LCT, Sá GC, Silva LDS, Silva MA, de Santana AVS, de Jesus TR, Lucena FRC, da Silva MADS, da Silva LCN, Serra ICPB, Abreu AG. Melaleuca alternifolia essential oil in a natural product-based formulation: Antimicrobial and healing effects in Staphylococcus aureus-infected wounds. Eur J Pharm Biopharm 2024; 202:114416. [PMID: 39013494 DOI: 10.1016/j.ejpb.2024.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Owing to its exposed nature, the skin can be injured by various factors, including by Staphylococcus aureus, which inhabits its innate microbiota. Treatment of infected wounds presents an important challenge, making it imperative to develop new treatment options. Plant-derived formulations, such as those containing Melaleuca alternifolia essential oil (MaEO), are used for wound treatment because of their healing, anti-inflammatory, and antimicrobial properties. This study presents a cream containing 2% MaEO (2% CMa) and evaluates its effects in an S. aureus-infected wound murine model. The 2% CMa was subjected to quality control testing and pH and analysis of density, organoleptic characteristics, and microbiological effects. The quality control parameters all revealed the good stability of the 2% CMa. The formulation strongly reduced the S. aureus ATCC 6538 colony-forming unit (CFU) count in an ex vivo porcine skin model. In the murine model, daily topical application of 2% CMa reduced the severity and size of S. aureus-infected wounds and the bacterial load. These effects may be due to the presence of terpinen-4-ol, which exhibits anti-inflammatory activity. Based on these findings, the formulation exhibits good quality and safety. We suggest the topical application of this formulation, which exhibited an antimicrobial effect, as an interesting treatment strategy for wound healing.
Collapse
Affiliation(s)
- Lully Gabrielly Silva Alves
- Microbial Pathogenicity Laboratory, CEUMA University, São Luís, MA, Brazil; Pharmacy Laboratory, CEUMA University, São Luís, MA, Brazil
| | | | - Raissa Guará Assunção
- Microbial Pathogenicity Laboratory, CEUMA University, São Luís, MA, Brazil; Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Afonso Gomes Abreu
- Microbial Pathogenicity Laboratory, CEUMA University, São Luís, MA, Brazil; Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil.
| |
Collapse
|
36
|
Varga A, Matrai AA, Bedocs-Barath B, Fazekas LA, Brasil FS, Mehta A, Vanyolos E, Deak A, Lesznyak T, Peto K, Nemeth N. Local and Systemic Micro-Rheological Changes during Intestinal Anastomosis Operation: A Metabolic Dependence in an Experimental Model. Metabolites 2024; 14:458. [PMID: 39195554 DOI: 10.3390/metabo14080458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Hemorheological factors may show arterio-venous differences. Alterations in acid-base and metabolic parameters may also influence these factors. However, little is known about changes in micro-rheological parameters during abdominal surgery, influencing splanchnic circulation. In anesthetized pigs, the external jugular vein, femoral artery and vein were cannulated unilaterally, and paramedian laparotomy was performed. In the anastomosis group, after resecting a bowel segment, end-to-end jejuno-jejunostomy was completed. Blood samples (from cannulas and by puncturing the portal vein) were taken before and after the intervention. Hematological, acid-base and blood gas parameters, metabolites, red blood cell (RBC) deformability and aggregation were determined. The highest hematocrit was found in portal blood, increasing further by the end of operation. A significant pH decrease was seen, and portal blood showed the highest lactate and creatinine concentration. The highest RBC aggregation values were found in arterial, the lowest in renal venous blood. The RBC aggregation increased with higher lactate concentration and lower pH. Osmotic gradient deformability declined, with the lowest values in portal and renal venous samples. In conclusion, micro-rheological parameters showed arterio-venous and porto-renal venous differences, influenced by oxygenation level, pH and lactate concentration. The intestinal anastomosis operation caused an immediate micro-rheological deterioration with portal venous dominancy in this experiment.
Collapse
Affiliation(s)
- Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Barbara Bedocs-Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Felipe Salignac Brasil
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Aashna Mehta
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Tamas Lesznyak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| |
Collapse
|
37
|
Wicaksono S, Nur'aeny N, Susanto H, Nugraha AP, Ernawati DS. Dampened inflammatory response in oral ulcer after topical therapy of adipose mesenchymal stem cell secretome. J Taibah Univ Med Sci 2024; 19:847-855. [PMID: 39247448 PMCID: PMC11378901 DOI: 10.1016/j.jtumed.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Objectives Research has demonstrated that modulating inflammation can significantly accelerate the healing of oral ulcers. Our study focused on the adipose mesenchymal stem cell secretome (AdMSCS), which is rich in immunoregulatory molecules capable of dampening the immune response and interfering with inflammatory pathways. We assessed both inflammatory pathway expression and macrophage phenotypes at the sites of oral ulcers. Methods We induced oral ulcers in the inferior fornix mucosa of 20 healthy male Wistar rats (Rattus norvegicus). These subjects were treated topically with adipose MSC metabolite (AdMSCM) oral gel three times daily, for durations of 3 and 7 days. We performed immunohistochemical analyses to evaluate the expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) p65 at the ulcer sites. Additionally, we assessed macrophage polarization by examining the ratio of M2/M1 macrophages, identified through CD68+Φ (M1) and CD163+Φ (M2) cells. Data were analyzed using one-way analysis of variance, followed by post-hoc Tukey's Honestly Significantly Difference test. Results Application of AdMSCM oral gel significantly reduced the expression of TLR4 and NF-κB p65. This treatment also enhanced macrophage polarization towards the anti-inflammatory M2 phenotype at the ulcer sites (p < 0.05). Conclusion The topical application of AdMSCM oral gel effectively modulates the inflammatory response, enhancing healing processes in the oral ulcer rat model. This suggests its potential utility as a therapeutic agent in managing oral ulcers.
Collapse
Affiliation(s)
- Satutya Wicaksono
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nanan Nur'aeny
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Hendri Susanto
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alexander P Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah S Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
38
|
Courvan EMC, Parker RR. Hypoxia and inflammation induce synergistic transcriptome turnover in macrophages. Cell Rep 2024; 43:114452. [PMID: 38968068 DOI: 10.1016/j.celrep.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/24/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are effector immune cells that experience substantial changes to oxygenation when transiting through tissues, especially when entering tumors or infected wounds. How hypoxia alters gene expression and macrophage effector function at the post-transcriptional level remains poorly understood. Here, we use TimeLapse-seq to measure how inflammatory activation modifies the hypoxic response in primary macrophages. Nucleoside recoding sequencing allows the derivation of steady-state transcript levels, degradation rates, and transcriptional synthesis rates from the same dataset. We find that hypoxia produces distinct responses from resting and inflammatory macrophages. Hypoxia induces destabilization of mRNA transcripts, though inflammatory macrophages substantially increase mRNA degradation compared to resting macrophages. Increased RNA turnover results in the upregulation of ribosomal protein genes and downregulation of extracellular matrix components in inflammatory macrophages. Pathways regulated by mRNA decay in vitro are differentially regulated in tumor-associated macrophages implying that mixed stimuli could induce post-transcriptional regulation of macrophage function in solid tumors.
Collapse
Affiliation(s)
- Edward M C Courvan
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| | - Roy R Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
39
|
Bhowmik S, Baral B, Rit T, Jha HC, Das AK. Design and synthesis of a nucleobase functionalized peptide hydrogel: in vitro assessment of anti-inflammatory and wound healing effects. NANOSCALE 2024; 16:13613-13626. [PMID: 38958597 DOI: 10.1039/d4nr01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
40
|
Dietrich-Zagonel F, Alim MA, Beckman LB, Eliasson P. Dexamethasone treatment influences tendon healing through altered resolution and a direct effect on tendon cells. Sci Rep 2024; 14:15304. [PMID: 38961188 PMCID: PMC11222440 DOI: 10.1038/s41598-024-66038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.
Collapse
Affiliation(s)
- Franciele Dietrich-Zagonel
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
| | - Md Abdul Alim
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Leo Bon Beckman
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden.
- Department of Orthopaedics, Sahlgrenska University Hospital, Länsmansgatan 28, 431 80, Mölndal, Sweden.
| |
Collapse
|
41
|
Pignet AL, Schellnegger M, Hecker A, Kamolz LP, Kotzbeck P. Modeling Wound Chronicity In Vivo: The Translational Challenge to Capture the Complexity of Chronic Wounds. J Invest Dermatol 2024; 144:1454-1470. [PMID: 38483357 DOI: 10.1016/j.jid.2023.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 06/24/2024]
Abstract
In an aging society with common lifestyle-associated health issues such as obesity and diabetes, chronic wounds pose a frequent challenge that physicians face in everyday clinical practice. Therefore, nonhealing wounds have attracted much scientific attention. Several in vitro and in vivo models have been introduced to deepen our understanding of chronic wound pathogenesis and amplify therapeutic strategies. Understanding how wounds become chronic will provide insights to reverse or avoid chronicity. Although choosing a suitable model is of utmost importance to receive valuable outcomes, an ideal in vivo model capturing the complexity of chronic wounds is still missing and remains a translational challenge. This review discusses the most relevant mammalian models for wound healing studies and provides guidance on how to implement the hallmarks of chronic wounds. It highlights the benefits and pitfalls of established models and maps out future avenues for research.
Collapse
Affiliation(s)
- Anna-Lisa Pignet
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria.
| | - Andrzej Hecker
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| |
Collapse
|
42
|
Duan W, Zhao J, Gao Y, Xu K, Huang S, Zeng L, Shen JW, Zheng Y, Wu J. Porous silicon-based sensing and delivery platforms for wound management applications. J Control Release 2024; 371:530-554. [PMID: 38857787 DOI: 10.1016/j.jconrel.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Wound management remains a great challenge for clinicians due to the complex physiological process of wound healing. Porous silicon (PSi) with controlled pore morphology, abundant surface chemistry, unique photonic properties, good biocompatibility, easy biodegradation and potential bioactivity represent an exciting class of materials for various biomedical applications. In this review, we focus on the recent progress of PSi in the design of advanced sensing and delivery systems for wound management applications. Firstly, we comprehensively introduce the common type, normal healing process, delaying factors and therapeutic drugs of wound healing. Subsequently, the typical fabrication, functionalization and key characteristics of PSi have been summarized because they provide the basis for further use as biosensing and delivery materials in wound management. Depending on these properties, the rise of PSi materials is evidenced by the examples in literature in recent years, which has emphasized the robust potential of PSi for wound monitoring, treatment and theranostics. Finally, challenges and opportunities for the future development of PSi-based sensors and delivery systems for wound management applications are proposed and summarized. We hope that this review will help readers to better understand current achievements and future prospects on PSi-based sensing and delivery systems for advanced wound management.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Longhuan Zeng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yongke Zheng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China.
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
43
|
Aldaghi N, kamalabadi-Farahani M, Alizadeh M, Alizadeh A, Salehi M. Enhancing pressure ulcer healing and tissue regeneration by using N-acetyl-cysteine loaded carboxymethyl cellulose/gelatin/sodium alginate hydrogel. Biomed Eng Lett 2024; 14:833-845. [PMID: 38946815 PMCID: PMC11208367 DOI: 10.1007/s13534-024-00378-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 07/02/2024] Open
Abstract
Prolonged pressure on the skin can result in pressure ulcers, which may lead to serious complications, such as infection and tissue damage. In this study, we evaluated the effect of a carboxymethyl cellulose/gelatin/sodium alginate (CMC/Gel/Alg) hydrogel containing N-acetyl-cysteine (NAC) on the healing of pressure ulcers. Pressure ulcers were induced by applying a magnet to the dorsum of rat skin. The wounds were then treated with sterile gauze, ChitoHeal Gel®, and CMC/Gel/Alg hydrogel dressings with or without NAC for the other groups. We evaluated the morphology, weight loss, swelling, rheology, blood compatibility, cytocompatibility, antioxidant capacity, and wound scratch of the prepared hydrogel. MTT assay revealed that the optimum concentration of NAC was 5 mg/ml, which induced higher cell proliferation and viability. Results of the histopathological evaluation showed increased wound closure, and complete re-epithelialization in the hydrogel-containing NAC group compared to the other groups. The CMC/Gel/Alg/5 mg/ml NAC hydrogel dressing showed 84% wound closure at 14 days after treatment. Immunohistochemical results showed a decrease in the level of TNF-α on day 14 compared day 7. Results of the qPCR assay revealed that NAC hydrogel increased the expression of Collagen type I and TGF-β1 and decreased MMP2 and MMP9 mRNA on the 14th day. The results suggest that the CMC/Gel/Alg/5 mg/ml NAC hydrogel with antioxidant properties is an appropriate dressing for wound healing.
Collapse
Affiliation(s)
- Niloofar Aldaghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
44
|
Metzger M, Manhartseder S, Krausgruber L, Scholze L, Fuchs D, Wagner C, Stainer M, Grillari J, Kubin A, Wightman L, Dungel P. The Multifaceted Actions of PVP-Curcumin for Treating Infections. Int J Mol Sci 2024; 25:6140. [PMID: 38892328 PMCID: PMC11172534 DOI: 10.3390/ijms25116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.
Collapse
Affiliation(s)
- Magdalena Metzger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Stefan Manhartseder
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Leonie Krausgruber
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Lea Scholze
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - David Fuchs
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Carina Wagner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Michaela Stainer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Andreas Kubin
- Planta Naturstoffe Vertriebs GmbH, 1230 Vienna, Austria
| | | | - Peter Dungel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
45
|
Zhou Q, Dai H, Yan Y, Qin Z, Zhou M, Zhang W, Zhang G, Guo R, Wei X. From Short Circuit to Completed Circuit: Conductive Hydrogel Facilitating Oral Wound Healing. Adv Healthc Mater 2024; 13:e2303143. [PMID: 38306368 DOI: 10.1002/adhm.202303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The primary challenges posed by oral mucosal diseases are their high incidence and the difficulty in managing symptoms. Inspired by the ability of bioelectricity to activate cells, accelerate metabolism, and enhance immunity, a conductive polyacrylamide/sodium alginate crosslinked hydrogel composite containing reduced graphene oxide (PAA-SA@rGO) is developed. This composite possesses antibacterial, anti-inflammatory, and antioxidant properties, serving as a bridge to turn the "short circuit" of the injured site into a "completed circuit," thereby prompting fibroblasts in proximity to the wound site to secrete growth factors and expedite tissue regeneration. Simultaneously, the PAA-SA@rGO hydrogel effectively seals wounds to form a barrier, exhibits antibacterial and anti-inflammatory properties, and prevents foreign bacterial invasion. As the electric field of the wound is rebuilt and repaired by the PAA-SA@rGO hydrogel, a 5 × 5 mm2 wound in the full-thickness buccal mucosa of rats can be expeditiously mended within mere 7 days. The theoretical calculations indicate that the PAA-SA@rGO hydrogel can aggregate and express SOX2, PITX1, and PITX2 at the wound site, which has a promoting effect on rapid wound healing. Importantly, this PAA-SA@rGO hydrogel has a fast curative effect and only needs to be applied for the first three days, which significantly improves patient satisfaction during treatment.
Collapse
Affiliation(s)
- Qiangqiang Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Hanqing Dai
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yukun Yan
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Zhiming Qin
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Mengqi Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Guoqi Zhang
- Electronic Components Technology and Materials, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Ruiqian Guo
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Xiaoling Wei
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| |
Collapse
|
46
|
Lai‐Foenander AS, Kuppusamy G, Manogoran J, Xu T, Chen Y, Tang SY, Ser H, Yow Y, Goh KW, Ming LC, Chuah L, Yap W, Goh B. Black soldier fly ( Hermetia illucens L.): A potential small mighty giant in the field of cosmeceuticals. Health Sci Rep 2024; 7:e2120. [PMID: 38831777 PMCID: PMC11144625 DOI: 10.1002/hsr2.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background and Aims Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.
Collapse
Affiliation(s)
- Ashley Sean Lai‐Foenander
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Giva Kuppusamy
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Janaranjani Manogoran
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of EngineeringMonash University Malaysia, Bandar SunwaySelangor Darul EhsanMalaysia
| | - Hooi‐Leng Ser
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Yoon‐Yen Yow
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information TechnologyINTI International UniversityNilaiMalaysia
| | - Long Chiau Ming
- Department of Medical SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Lay‐Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Wei‐Hsum Yap
- School of BiosciencesTaylor's University, Subang JayaSelangorMalaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP)Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang JayaSelangorMalaysia
| | - Bey‐Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Sunway Biofunctional Molecules Discovery Centre (SBMDC)School of Medical and Life Sciences, Sunway UniversitySunwayMalaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
47
|
Chai G, Wang N, Xu M, Ma L, Liu X, Ding Q, Zhang S, Li A, Xia G, Zhao Y, Liu W, Liang D, Ding C. Poly (vinyl alcohol)/sodium alginate/carboxymethyl chitosan multifunctional hydrogel loading HKUST-1 nanoenzymes for diabetic wound healing. Int J Biol Macromol 2024; 268:131670. [PMID: 38643919 DOI: 10.1016/j.ijbiomac.2024.131670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Bacterial infection, hyperinflammation and hypoxia, which can lead to amputation in severe cases, are frequently observed in diabetic wounds, and this has been a critical issue facing the repair of chronic skin injuries. In this study, a copper-based MOF (TAX@HKUST-1) highly loaded with taxifolin (TAX) with a drug loading of 41.94 ± 2.60 % was prepared. In addition, it has excellent catalase activity, and by constructing an oxygen-releasing hydrogel (PTH) system with calcium peroxide (CaO2), it can be used as a nano-enzyme to promote the generation of oxygen from hydrogen peroxide (H2O2) to provide sufficient oxygen to the wound, and at the same time, solve the problem of the oxidative stress damage caused by excess H2O2 to the cells during the oxygen-releasing process. On the other hand, TAX and HKUST-1 in PTH synergistically promoted antimicrobial and anti-oxidative stress properties, and the bacterial inhibition rate against Staphylococcus aureus and Escherichia coli reached 90 %. In vivo experiments have shown that PTH hydrogel is able to treat diabetic skin repair by inhibiting the expression of inflammation-related proteins and promoting epidermal neogenesis, angiogenesis and collagen deposition.
Collapse
Affiliation(s)
- Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Meiling Xu
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Lina Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian 133000, China
| | - Guofeng Xia
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian 133000, China
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| | - Dadong Liang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China.
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| |
Collapse
|
48
|
Chen Z, Yuan M, Li H, Li L, Luo B, Lu L, Xiang Q, Ding S. Succinylated chitosan derivative restore HUVEC cells function damaged by TNF-α and high glucose in vitro and enhanced wound healing. Int J Biol Macromol 2024; 265:130825. [PMID: 38492705 DOI: 10.1016/j.ijbiomac.2024.130825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The inflammation of chronic wounds plays a key hindering role in the wound healing process. Slowing down the inflammatory response is significant for the repair of chronic wounds. Studies have revealed that succinate can inactivate gastrin D (GSDMD) and prevent cell pyroptosis. Chitosan has anti-inflammatory properties and is commonly used as wound healing material. Therefore, we used succinic anhydride to modify chitosan and found that N-succinylated chitosan (NSC) was more effective in inhibiting inflammation. The results showed that the stimulation of TNF-α and high glucose induces overexpression of capase-1 and TNF-α in human umbilical vein endothelial cells (HUVEC), and down-expression of CD31. However, the expression of capase-1 and TNF-α decreased, while the expression of CD31, VEGF and IL-10 was up-regulated significantly in dysfunctional HUVEC cells after treated by NSC. Moreover, NSC can speed wound healing, histological examination results showed that wounds treated with NSC exhibited faster epithelial tissue regeneration and thicker collagen deposition. Overall, this study results suggested that NSC has the function of restoring the physiological functions of dysfunctional HUVEC cells induced by high glucose and TNF-α, and can accelerate wound healing, indicating that NSC has good potential to be applied in inflammatory chronic wounds such as diabetic foot.
Collapse
Affiliation(s)
- Zhiwan Chen
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Mengfei Yuan
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Haojing Li
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Lihua Li
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Binghong Luo
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Lu Lu
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, PR China
| | - Shan Ding
- Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China.
| |
Collapse
|
49
|
Ruan L, Pan C, Ran X, Wen Y, Lang R, Peng M, Cao J, Yang J. Dual-Delivery Temperature-Sensitive Hydrogel with Antimicrobial and Anti-Inflammatory Brevilin A and Nitric Oxide for Wound Healing in Bacterial Infection. Gels 2024; 10:219. [PMID: 38667638 PMCID: PMC11049419 DOI: 10.3390/gels10040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial infections impede the wound healing process and can trigger local or systemic inflammatory responses. Therefore, there is an urgent need to develop a dressing with antimicrobial and anti-inflammatory properties to promote the healing of infected wounds. In this study, BA/COs/NO-PL/AL hydrogels were obtained by adding brevilin A (BA) camellia oil (CO) submicron emulsion and nitric oxide (NO) to hydrogels consisting of sodium alginate (AL) and Pluronic F127 (PL). The hydrogels were characterized through dynamic viscosity analysis, differential scanning calorimetry, and rheology. They were evaluated through anti-inflammatory, antimicrobial, and wound healing property analyses. The results showed that BA/COs/NO-PL/AL hydrogels were thermo-responsive and had good ex vivo and in vivo anti-inflammatory activity, and they also exhibited strong antimicrobial activity against methicillin-resistant Staphylococcus aureus Pseudomonas aeruginosa (MRPA) and methicillin-resistant Staphylococcus aureus (MRSA). They were able to effectively promote healing of the infected wound model and reduce inflammation and bacterial burden. H&E and Masson's staining showed that BA/COs/NO-PL/AL hydrogels promoted normal epithelial formation and collagen deposition. In conclusion, BA/COs/NO-PL/AL hydrogels are promising candidates for promoting the healing of infected wounds.
Collapse
Affiliation(s)
- Linghui Ruan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Chengfeng Pan
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Xianting Ran
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Yonglan Wen
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Rui Lang
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Mei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| | - Jiafu Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
| | - Juan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.R.); (M.P.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; (C.P.); (X.R.); (Y.W.); (R.L.)
| |
Collapse
|
50
|
Rezaei S, Imani R. Highly Absorbent Egg White/Carbomer-940 Hydrofilm as a Potential Diabetic Wound Dressing. Macromol Biosci 2024; 24:e2300353. [PMID: 37939368 DOI: 10.1002/mabi.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Diabetic foot ulcer (DFU) is the most critical problem in diabetic patients. Managing exudate in this kind of wound presents significant challenges in clinics. Advanced wound dressings serve as the most effective approach to managing DFU. Herein, a highly absorbent hydrofilm is presented through a combination of egg white (EW) and Carbomer-940, benefiting from the bioactivity of the EW component and superabsorption capacity of Carbomer-940. The crystallinity of samples rises due to the presence of Carbomer-940. Regarding the high water absorption capacity of Carbomer-940, the swelling ratio and water-holding capacity of samples are also improved via its incorporation of up to 1005%. In contrast, the transmission of water vapor and in vitro degradation rate decreases as Carbomer-940 powers the crystallinity of hydrofilms. Carbomer-940 incorporation in the EW structure accelerates protein release during the time, while this acceleration is partially compensated by the crystallization effect. The cell viability assay demonstrates no toxicity as well as high human foreskin fibroblast cell proliferation for the hybrid hydrofilm sample, where the cell migration is positively affected in the presence of the bioactive components extracted from the dressing. Taken together, the optimized hybrid hydrofilm could be suggested as a promising wound dressing for managing DFUs.
Collapse
Affiliation(s)
- Soheila Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| |
Collapse
|