1
|
Hashemi P, Moloudi MR, Rahmani H, Hassanzadeh K, Vahabzadeh Z, Izadpanah E. Alpha-Pinene Ameliorates Memory Deficits in 3-Nitropropionic Acid-Induced Rat Model of Huntington's Disease. Neurochem Res 2025; 50:144. [PMID: 40237934 DOI: 10.1007/s11064-025-04393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Memory impairment is one of the cognitive symptoms in Huntington's disease (HD) which appears before motor dysfunction in patients. Various molecular mechanisms, including disruptions in neurotrophins levels, are involved in the occurrence of memory problems in HD. Alpha-pinene (APN), a member of the monoterpene family, exhibited beneficial effects in animal models of neurodegenerative disorders. As a result, this study assessed the impact of APN on memory in the 3-nitropropionic acid (3-NP) induced model of HD in rats. Male Wistar rats received saline, 3-NP to model HD, or APN (1, 5, or 10 mg/kg) plus 3-NP for 21 days to assess APN's effects. Working and spatial memory were examined by the Y-maze and Morris-water-maze (MWM) tests. The mRNA levels of neurotrophins and their receptors in the brain cortex and hippocampus of the rats were quantitatively assessed through Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) analysis. The results showed that APN, at all three doses, significantly prevented the disease phenotype induced by 3-NP administration. In addition, APN treatment elevated the gene expression levels of BDNF, TrkA, TrkB, and CREB, while significantly decreasing P75 NTR showing a dose-dependent effect in the brain cortex and hippocampus, compared to the 3-NP group. These findings suggest that APN alleviates 3-NP-induced memory deficits by enhancing neurotrophins and their receptor levels in an animal model of HD.
Collapse
Affiliation(s)
- Paria Hashemi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Helia Rahmani
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Katayoun Hassanzadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Kovacevic D, Velikic G, Maric DM, Maric DL, Puletic M, Gvozdenovic L, Vojvodic D, Supic G. Parkinson's Spectrum Mechanisms in Pregnancy: Exploring Hypothetical Scenarios for MSA in the Era of ART. Int J Mol Sci 2025; 26:3348. [PMID: 40244235 PMCID: PMC11989403 DOI: 10.3390/ijms26073348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Multiple System Atrophy (MSA) is a rare, rapidly progressive neurodegenerative disorder marked by autonomic dysfunction, parkinsonism, and cerebellar ataxia. While predominantly affecting individuals in their fifth or sixth decade, advancements in assisted reproductive technologies (ART) have created new clinical scenarios involving pregnancies in women within MSA's typical onset range. Given the scarcity of documented MSA pregnancies, this review leverages insights from related Parkinson's spectrum mechanisms to explore hypothetical scenarios for how pregnancy-induced physiological changes might influence MSA progression. Pregnancy-induced hormonal fluctuations, including elevated estrogen and progesterone levels, may modulate α-synuclein aggregation and neuroinflammatory pathways. Immune adaptations, such as fetal microchimerism and Th2-biased immune profiles, introduce additional complexities, particularly in donor embryo pregnancies involving complex microchimerism. Metabolic demands and oxidative stress further intersect with these mechanisms, potentially accelerating disease progression. We analyze existing literature and theoretical models, emphasizing the need for interdisciplinary research. Clinical implications are discussed to propose evidence-based strategies for optimizing maternal-fetal outcomes. This paper identifies critical knowledge gaps and proposes avenues for future investigation to optimize maternal-fetal outcomes in this unique and underexplored clinical intersection.
Collapse
Affiliation(s)
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia
| | - Ljiljana Gvozdenovic
- Department of Anesthesia, and Intensive Care, Clinical Center Vojvodina, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Khatoon R. Unlocking the Potential of Vitamin D: A Comprehensive Exploration of Its Role in Neurological Health and Diseases. BIOLOGY 2025; 14:280. [PMID: 40136536 PMCID: PMC11940008 DOI: 10.3390/biology14030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Vitamin D (VD), an indispensable micronutrient renowned for its pivotal role in bone health, is increasingly recognized as a frontline therapy for bone-related disorders owing to its involvement in maintaining calcium/phosphorus levels. Beyond these benefits, VD exhibits a modulatory impact on redox imbalance, inflammation, and anti-apoptotic pathways implicated in brain-related disorders. Recent findings reveal a notable decrease in VD and its receptor expression in the cerebrospinal fluid of individuals with brain diseases, indicating a positive association between VD levels and normal brain function. Moreover, emerging reports underscore VD's potential in mitigating the pathophysiology of neurodegenerative diseases, including memory and motor impairments, mitochondrial dysfunction, and neuronal loss. Extensive in vitro and in vivo studies elucidate VD's multifaceted neuroprotective mechanisms, effectively mitigating neuronal damage and ATP deprivation, thus reducing mortality and morbidity. This review comprehensively examines VD's diverse attributes, encompassing antioxidative, anti-inflammatory, anti-apoptotic, and neurogenic effects. It provides contemporary insights into VD's efficacious actions at appropriate doses and exposures across diverse neurological experimental models. Furthermore, the clinical relevance of VD in treating patients with neurological diseases is explored. Overall, this review contributes to the exploration of potential neuroprotective agents and holds promise for improving human health outcomes in the future.
Collapse
Affiliation(s)
- Rehana Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Prajapati C, Rai SN, Singh AK, Chopade BA, Singh Y, Singh SK, Haque S, Prieto MA, Ashraf GM. An Update of Fungal Endophyte Diversity and Strategies for Augmenting Therapeutic Potential of their Potent Metabolites: Recent Advancement. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05098-9. [PMID: 39907846 DOI: 10.1007/s12010-024-05098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
Endophytic fungi represent a significant renewable resource for the discovery of pharmaceutically important compounds, offering substantial potential for new drug development. Their ability to address the growing issue of drug resistance has drawn attention from researchers seeking novel, nature-derived lead molecules that can be produced on a large scale to meet global demand. Recent advancements in genomics, metabolomics, bioinformatics, and improved cultivation techniques have significantly aided the identification and characterization of fungal endophytes and their metabolites. Current estimates suggest there are approximately 1.20 million fungal endophytes globally, yet only around 16% (190,000) have been identified and studied in detail. This underscores the vast untapped potential of fungal endophytes in pharmaceutical research. Research has increasingly focused on the transformation of bioactive compounds by fungal endophytes through chemical and enzymatic processes. A notable example is the anthraquinone derivative 6-O-methylalaternin, whose cytotoxic potential is enhanced by the addition of a hydroxyl group, sharing structural similarities with its parent compound macrosporin. These structure-bioactivity studies open up new avenues for developing safer and more effective therapeutic agents by synthesizing targeted derivatives. Despite the immense promise, challenges remain, particularly in the large-scale cultivation of fungal endophytes and in understanding the complexities of their biosynthetic pathways. Additionally, the genetic manipulation of endophytes for optimized metabolite production is still in its infancy. Future research should aim to overcome these limitations by focusing on more efficient cultivation methods and deeper exploration of fungal endophytes' genetic and metabolic capabilities to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Chandrabhan Prajapati
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Yashveer Singh
- Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004, Ourense, Spain.
| | - Ghulam Md Ashraf
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai road, SIP, Jiangsu Province, Suzhou, 215123, P. R. China.
| |
Collapse
|
5
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
6
|
Kunwar OK, Singh S. Neuroinflammation and neurodegeneration in Huntington's disease: genetic hallmarks, role of metals and organophosphates. Neurogenetics 2025; 26:21. [PMID: 39820855 DOI: 10.1007/s10048-025-00801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Huntington's disease (HDs) is a fatal, autosomal dominant, and hereditary neurodegenerative disorder characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. HD is well linked to mutation in the HTT gene, which leads to an abnormal expansion of trinucleotide CAG repeats, resulting in the production of the mHTT protein and responsible for abnormally long poly-Q tract. These abnormal proteins disrupt cellular processes, including neuroinflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction, ultimately leading to selective neuronal loss in the brain. Epidemiological studies reveal significant regional variability in HDs prevalence, with the highest rates observed in North America and the lowest in Africa. In addition to genetic factors, environmental influences such as exposure to metals, and chemicals, and lifestyle factors like alcohol and tobacco use may exacerbate disease progression. This review explores the molecular mechanisms underlying HDs and emphasize the role of neuroinflammatory mediators and environmental factors, in HD research. Understanding these complex interactions is crucial for developing targeted interventions that can slow or halt the progression of this devastating disease.
Collapse
Affiliation(s)
- Omkar Kumar Kunwar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
7
|
Gaba A. Nutrition and Huntington's Disease- A Review of Current Practice and Theory. Curr Nutr Rep 2025; 14:18. [PMID: 39821731 PMCID: PMC11739192 DOI: 10.1007/s13668-025-00610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Nutition has long been of importance in the care of Huntington's disease (HD). The purpose of this review is to summarize recent research relevant to HD nutrition, and to describe some emerging theoretical approaches to research in this area. RECENT FINDINGS Clinical studies have identified swallowing problems and fear of choking as major impediments to maintaining nutritional status with HD. Tube feeding is associated with co-morbidities, and provides limited benefits. Non-human models of HD have been utilized to study diets and supplements. Application of findings from these models to humans has not been shown to be of comparable benefit. While studies of nutritional factors in non-human models of HD have shown some promising results, trials in humans have found little efficacy for diets or supplements. The complexity of human metabolic pathways may require a more sophisticated omics approach to identify and study more beneficial interventions.
Collapse
Affiliation(s)
- Ann Gaba
- City University of New York Graduate School of Public Health and Health Policy, 55 West 125th Street, New York, NY, 10027, USA.
| |
Collapse
|
8
|
Noriega-Juárez AD, Meza-Espinoza L, García-Magaña MDL, Ortiz-Basurto RI, Chacón-López MA, Anaya-Esparza LM, Montalvo-González E. Aguamiel, a Traditional Mexican Beverage: A Review of Its Nutritional Composition, Health Effects and Conservation. Foods 2025; 14:134. [PMID: 39796424 PMCID: PMC11719483 DOI: 10.3390/foods14010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Aguamiel is the sap extracted from various species of maguey (Agave spp.). This liquid is highly prized in central Mexico for its pleasing sensory qualities and nutritional value. Understanding the composition of aguamiel is crucial as it may offer beneficial effects for human health. Reports have indicated its significance as a source of essential amino acids, vitamins, minerals, and fructooligosaccharides with prebiotic potential. Additionally, aguamiel can harbor diverse microorganisms, including lactic acid bacteria (Lactococcus and Leuconostoc spp.) and yeasts, contributing antioxidant, nutritional, prebiotic, and probiotic properties. However, aguamiel is prone to rapid fermentation due to its nature, which can alter its sensory and nutritional characteristics. This review provides insight into the broad nutritional composition, microbial diversity, and metabolites beneficial to the human health of fresh aguamiel. At the same time, it reviews the technologies applied to aguamiel to preserve its nutritional properties and functional metabolites and extend its shelf life. Thus, the data included in this document may lead to greater beverage consumption and further research to find new conservation alternatives that change its organoleptic and functional properties as little as possible.
Collapse
Affiliation(s)
- Alma Delia Noriega-Juárez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Libier Meza-Espinoza
- Dirección de Ciencias Agropecuarias, Universidad Tecnológica de la Costa, Santiago Ixcuintla 63300, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Martina Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico;
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (A.D.N.-J.); (M.d.L.G.-M.); (R.I.O.-B.); (M.A.C.-L.)
| |
Collapse
|
9
|
Nguyen NL, Hoang TX, Kim JY. All-Trans Retinoic Acid-Induced Cell Surface Heat Shock Protein 90 Mediates Tau Protein Internalization and Degradation in Human Microglia. Mol Neurobiol 2025; 62:742-755. [PMID: 38900367 PMCID: PMC11711573 DOI: 10.1007/s12035-024-04295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
This study investigates the role of all-trans retinoic acid (ATRA) in modulating the expression of heat shock protein 90 (Hsp90) and its influence on the uptake and degradation of tau proteins in immortalized human microglia cells. We demonstrate that ATRA significantly upregulates Hsp90 expression in a concentration-dependent manner, enhancing both extracellular and intracellular Hsp90 levels. Our results show that ATRA-treated cells exhibit increased tau protein uptake via caveolae/raft-dependent endocytosis pathways. This uptake is mediated by surface Hsp90, as evidenced by the inhibition of tau internalization using an extracellular Hsp90-selective inhibitor. Further, we establish that the exogenously added full-sized monomeric tau proteins bind to Hsp90. The study also reveals that ATRA-enhanced tau uptake is followed by effective degradation through both lysosomal and proteasomal pathways. We observed a significant reduction in intracellular tau levels in ATRA-treated cells, which was reversed by lysosome or proteasome inhibitors, suggesting the involvement of both degradation pathways. Our findings highlight the potential therapeutic role of ATRA in Alzheimer's disease and related tauopathies. By enhancing Hsp90 expression and facilitating tau degradation, ATRA could contribute to the clearance of pathological tau proteins, offering a promising strategy for mitigating neurodegeneration. This research underscores the need for further exploration into the molecular mechanisms of tau protein internalization and degradation, which could provide valuable insights into the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ngoc Lan Nguyen
- Department of Life Science, Gachon University, Kyeonggi-Do 13120, Seongnam, Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Kyeonggi-Do 13120, Seongnam, Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Kyeonggi-Do 13120, Seongnam, Korea.
| |
Collapse
|
10
|
Changkakoti L, Rajabalaya R, David SR, Balaraman AK, Sivasubramanian H, Mukherjee AK, Bala A. Exploration of the Role of Vitamins in Preventing Neurodegenerative Diseases: Comprehensive Review on Preclinical and Clinical Findings. Curr Neuropharmacol 2025; 23:547-563. [PMID: 39572918 DOI: 10.2174/011570159x327677240902105443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 04/11/2025] Open
Abstract
Neurodegenerative diseases (NDDs) are a multifaceted and heterogeneous group of complex diseases. Unfortunately, a cure for these conditions has yet to be found, but there are ways to reduce the risk of developing them. Studies have shown that specific vitamins regulate the brain molecules and signaling pathways, which may help prevent degeneration. This review focuses on examining the role of vitamins in preventing five significant types of neurodegenerative diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS). This review also highlights promising and controversial findings about the potential impact of vitamins on this group of diseases. Several developed countries standardize daily dietary vitamin intake to meet nutrient requirements, improve health, and prevent chronic diseases like NDDs. However, more research is necessary to gain a more comprehensive understanding of their therapeutic benefits, including studies exploring different drug-dose paradigms, diverse humanized animal models, and clinical trials conducted in various locations.
Collapse
Affiliation(s)
- Liza Changkakoti
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, PIN-781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh PIN-201002, India
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE 1410 Bandar Seri Begawan, Brunei Darussalam
| | - Sheba R David
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Ashok Kumar Balaraman
- Research Management Unit, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Hemalatha Sivasubramanian
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, PIN-781035, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati, PIN-781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh PIN-201002, India
| |
Collapse
|
11
|
Balamurugan BS, Marimuthu MMC, Sundaram VA, Saravanan B, Chandrababu P, Chopra H, Malik T. Micro nutrients as immunomodulators in the ageing population: a focus on inflammation and autoimmunity. Immun Ageing 2024; 21:88. [PMID: 39731136 DOI: 10.1186/s12979-024-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Immunosenescence, the slow degradation of immune function over time that is a hallmark and driver of aging, makes older people much more likely to be killed by common infections (such as flu) than young adults, but it also contributes greatly to rates of chronic inflammation in later life. Such micro nutrients are crucial for modulating effective immune responses and their deficiencies have been associated with dysfunctional immunity in the elderly. In this review, we specifically focused on the contribution of major micro nutrients (Vitamins A, D and E, Vitamin C; Zinc and Selenium) as immunomodulators in ageing population especially related to inflame-ageing process including autoimmunity. This review will cover these hologenomic interactions, including how micro nutrients can modulate immune cell function and/or cytokine production to benefit their hosts with healthy mucous-associated immunity along with a sustainable immunologic homeostasis. For example, it points out the modulatory effects of vitamin D on both innate and adaptive immunity, with a specific focus on its ability to suppress pro-inflammatory cytokines synthesis while enhancing regulatory T-cell function. In the same context, also zinc is described as important nutrient for thymic function and T-cell differentiation but exhibits immunomodulatory functions by decreasing inflammation. In addition, the review will go over how micro nutrient deficiencies increase systemic chronic low-grade inflammation and, inflammaging as well as actually enhance autoimmune pathologies in old age. It assesses the potential role of additional targeted nutritional supplementation with micro nutrients to counteract these effects, promoting wider immune resilience in older adults. This review collates the current evidence and highlights the role of adequate micro nutrient intake on inflammation and autoimmunity during ageing, providing plausible origins for nutritional interventions to promote healthy immune aging.
Collapse
Affiliation(s)
- Bhavani Sowndharya Balamurugan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Vickram Agaram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Bharath Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prasanth Chandrababu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Oromia, Ethiopia.
- Division of Research & Development, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
12
|
Rekik A, Santoro C, Poplawska-Domaszewicz K, Qamar MA, Batzu L, Landolfo S, Rota S, Falup-Pecurariu C, Murasan I, Chaudhuri KR. Parkinson's disease and vitamins: a focus on vitamin B12. J Neural Transm (Vienna) 2024; 131:1495-1509. [PMID: 38602571 PMCID: PMC11608379 DOI: 10.1007/s00702-024-02769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Parkinson's disease (PD) has been linked to a vast array of vitamins among which vitamin B12 (Vit B12) is the most relevant and often investigated specially in the context of intrajejunal levodopa infusion therapy. Vit B12 deficiency, itself, has been reported to cause acute parkinsonism. Nevertheless, concrete mechanisms through which B12 deficiency interacts with PD in terms of pathophysiology, clinical manifestation and progression remains unclear. Recent studies have suggested that Vit B12 deficiency along with the induced hyperhomocysteinemia are correlated with specific PD phenotypes characterized with early postural instability and falls and more rapid motor progression, cognitive impairment, visual hallucinations and autonomic dysfunction. Specific clinical features such as polyneuropathy have also been linked to Vit B12 deficiency specifically in context of intrajejunal levodopa therapy. In this review, we explore the link between Vit B12 and PD in terms of physiopathology regarding dysfunctional neural pathways, neuropathological processes as well as reviewing the major clinical traits of Vit B12 deficiency in PD and Levodopa-mediated neuropathy. Finally, we provide an overview of the therapeutic effect of Vit B12 supplementation in PD and posit a practical guideline for Vit B12 testing and supplementation.
Collapse
Affiliation(s)
- Arwa Rekik
- Department of Neurology of Sahloul Hospital, Sousse, Tunisia.
- Faculty of Medicine of Sousse, Sousse, Tunisia.
| | - Carlo Santoro
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Karolina Poplawska-Domaszewicz
- Department of Neurology, Poznan University of Medical Sciences, 60-355, Poznan, Poland
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
| | - Mubasher Ahmad Qamar
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| | - Lucia Batzu
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| | - Salvatore Landolfo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Silvia Rota
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Brasov, 500036, Brasov, Romania
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Iulia Murasan
- Faculty of Medicine, Transilvania University of Brasov, 500036, Brasov, Romania
| | - Kallol Ray Chaudhuri
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| |
Collapse
|
13
|
Subin JA, Shrestha RLS. Computational Assessment of the Phytochemicals of Panax ginseng C.A. Meyer Against Dopamine Receptor D1 for Early Huntington's Disease Prophylactics. Cell Biochem Biophys 2024; 82:3413-3423. [PMID: 39046621 DOI: 10.1007/s12013-024-01426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
A herb, Panax ginseng C.A. Meyer has been used traditionally for the treatment of various diseases. In this work, its chemical components have been explored by computational methods for the possibility of therapeutic potential against early Huntington's disease. The molecular docking calculations against dopamine receptor D1 (PDB ID: 7X2F) involved in pathogenesis of early Huntington's disease gave the binding affinities (kcal/mol) of schizandrin (-10.530), ergosterol (-10.124), protopanaxadiol (-9.650), panaxydol (-9.399), diphenhydramine (-9.358), and panasenoside (-9.358). The values for native ligand (-7.748) and some selected drugs, Nefazodone (-9.880), Risperidone (-9.752), and Haloperidol (-9.712) were higher revealing weaker interactions. The stability assessment of top protein-ligand adducts in terms of various geometrical and thermodynamical parameters extracted from 200 ns molecular dynamics simulations pointed to schizandrin, protopanaxadiol, and panasenoside as hit molecules. The minimal translational and rotational motion of the docked ligands at orthosteric pocket of the receptor at near physiological conditions hinted at the probability of it restricting or inhibiting over-activation of DRD1. The sustained thermodynamic spontaneity of complex formation reaction augmented the inferences derived from spatial results. The phytochemicals from Panax ginseng could be used in the prophylactics of early Huntington's disease and recommendation is made for further evaluation by experimental work.
Collapse
Affiliation(s)
- Jhashanath Adhikari Subin
- Bioinformatics and Cheminformatics Division, Scientific Research and Training Nepal P. Ltd., Kaushaltar, Bhaktapur, 44800, Nepal
| | - Ram Lal Swagat Shrestha
- Bioinformatics and Cheminformatics Division, Scientific Research and Training Nepal P. Ltd., Kaushaltar, Bhaktapur, 44800, Nepal.
- Department of Chemistry, Amrit Campus, Tribhuvan University, Thamel, Kathmandu, 44600, Nepal.
| |
Collapse
|
14
|
Samad N, Hameed A, Manzoor N, Shoukat S, Irfan A, Shazly GA, Khalid A, Ejaz U, Khaliq S, Mateev E, Bin Jardan YA. Antioxidant and neuro-modulatory effects of niacin prevent D-galactose-induced behavioral deficits and memory impairment. Exp Gerontol 2024; 198:112624. [PMID: 39490558 DOI: 10.1016/j.exger.2024.112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Aging is an invincible phenomenon that is a risk factor for the development of neurological disorders such as anxiety, depression, and memory decline that are prominent in aging. The present study aims to evaluate the effect of Niacin (Nn) on D-galactose (D-Gal)-induced behavioral deficits and memory impairment in rats. In the experiment, forty-eight male albino Sprague dwaley rats were divided on a random basis into six groups (n = 8): Veh + Veh, Veh + Nn (low dose), Veh + Nn (high dose), Veh + D-Gal, D-Gal+Nn (low dose), D-Gal+Nn (high dose). 300 mg/kg/mL drug doses of D-Gal, while low doses (25 mg/kg/mL) and high doses (50 mg/kg/mL) of Nn were used in this study. Animals received their respective treatment for 14 days (intraperitoneally, once daily). After 14 days, animals were subjected to different behavioral tests including light-dark box activity, elevated plus maze test (for anxiety), and tail suspension test (for depression). A Morris water maze test was performed to evaluate short-term and long-term memory performance. After behavioral tests, decapitation was performed and brains were collected and stored for biochemical and neurochemical analysis. Behavioral analysis revealed that Nn alleviated the anxiety and depression-like symptoms and memory decline induced by D-Gal. D-Gal-induced decreased antioxidant enzymes, and acetylcholine levels, while increased oxidative stress markers, neuro-inflammatory cytokines, serotonin metabolism, and acetylcholinesterase (AChE) activity were prevented by Nn administration at both doses. In-silico studies showed that Nn has a potential to inhibit AChE activity with a binding affinity of -5.0 kcal/mol. In conclusion, Nn as an antioxidant and neuromodulator could be helpful for treating aging and associated psychiatric illnesses.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Aqsa Hameed
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Sadia Shoukat
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Arslan Khalid
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Umer Ejaz
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, 75270 Karachi, Pakistan.
| | - Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
15
|
Silvia Aparecida FP, Carlos Henrique Ferreira C, Marise Bueno Z, Pessoa Renata R, Renato Puppi M, Hélio Afonso Ghizoni T. Static posturography analysis for postural instability in patients with Parkinson's disease. Int J Neurosci 2024; 134:1551-1563. [PMID: 37873603 DOI: 10.1080/00207454.2023.2273765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is initially characterized by a rigid-akinetic syndrome and later by the development of postural instability. This condition often leads to balance impairments, potentially resulting in postural deformities and foot asymmetry. This study aimed to assess balance changes in PD patients. METHODS We evaluated 56 PD patients and 30 controls using static posturography. The variables examined included foot type, the primary region of body weight distribution on the plantar surface, statokinesigram (center of pressure [COP]), and stabilogram (COP in the X- and Y-axes). RESULTS PD patients exhibited a high prevalence of pes cavus (92.8%) (p < 0.001) and greater weight distribution toward the hindfoot. In all assessments, COP sway areas were significantly larger in PD patients (p < 0.001). The total COP area increased in the non-fall group during the foot parallel assessment and in the X-axis in the fall group with eyes open (p = 0.046) and closed (p = 0.023). Significant correlations between body weight discharge on the plantar area and COP sway were observed, particularly in the non-postural instability group in the COP X-axis with feet parallel and eyes open on the more rigid limb and in the postural instability group in the Y-axis with feet parallel and eyes open on the more rigid limb and with eyes closed bilaterally. CONCLUSION Progressive rigidity may disrupt compensatory mechanisms, altering foot morphology, shifting body weight discharge posteriorly, and increasing COP sway. This cascade of events results in impaired balance and an elevated risk of falls.
Collapse
Affiliation(s)
- Ferreira-Peruzzo Silvia Aparecida
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- School of Health Sciences, Autonomous University of Brazil, Curitiba, Brazil
- Ergonomics Laboratory, Federal University of Technology of Paraná, Curitiba, Brazil
| | - Camargo Carlos Henrique Ferreira
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Zonta Marise Bueno
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Curitiba, Brazil
| | | | - Munhoz Renato Puppi
- Gloria and Morton Shulman Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Teive Hélio Afonso Ghizoni
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Curitiba, Brazil
| |
Collapse
|
16
|
Sánchez-Camacho JV, Gómez-Chavarín M, Galindo-Solano N, Padilla-Cortés P, Maldonado-García JL, Pérez-Sánchez G, Pavón L, Ramírez-Santos J, Roldán Roldán G, Gómez-López M, Gutierrez-Ospina G. Non-Categorical Analyses Identify Rotenone-Induced 'Parkinsonian' Rats Benefiting from Nano-Emulsified Punicic Acid (Nano-PSO) in a Phenotypically Diverse Population: Implications for Translational Neurodegenerative Therapies. Int J Mol Sci 2024; 25:12635. [PMID: 39684350 PMCID: PMC11640963 DOI: 10.3390/ijms252312635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024] Open
Abstract
The pursuit of nutraceuticals to improve the quality of life for patients with neurodegenerative conditions is a dynamic field within neuropharmacology. Unfortunately, many nutraceuticals that show promise in preclinical studies fail to demonstrate significant clinical benefits in human trials, leading to their exclusion as therapeutic options. This discrepancy may stem from the categorical interpretation of preclinical and clinical results. Basic researchers often assume that non-human experimental animals exhibit less phenotypic variability than humans. This belief overlooks interindividual phenotype variation, thereby leading to categorical conclusions being drawn from experiments. Consequently, when human clinical trials are conducted, the researchers expect similarly conclusive results. If these results are not achieved, the nutraceutical is deemed ineffective for clinical use, even if numerous individuals might benefit. In our study, we evaluated whether analyzing phenotype variability and similarity through non-categorical methods could help identify rotenone (ROT)-treated rats that might benefit from consuming nano-emulsified punicic acid (Nano-PSO), even if the prevention of "parkinsonism" or the restoration of neurometabolic function is inconsistent across individuals. Our findings supported this hypothesis. The benefits of Nano-PSO were not categorical; however, analyzing phenotype variance allowed us to identify ROT rats with varying degrees of benefit from Nano-PSO consumption. Hence, the translational potential of results from basic science studies testing nutraceuticals as pharmaceutical products against neurodegeneration may improve if researchers also interpret their results using non-categorical methods of data analysis for population screening, even if the overall therapeutic outcomes for the entire population show internal inconsistencies.
Collapse
Affiliation(s)
| | - Margarita Gómez-Chavarín
- Laboratorio de Medicina Regenerativa y Canales Iónicos, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Nuria Galindo-Solano
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.G.-S.); (J.R.-S.)
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Patricia Padilla-Cortés
- Unidad de Cromatografía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Ciudad de México 14370, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Ciudad de México 14370, Mexico
| | - Jesús Ramírez-Santos
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.G.-S.); (J.R.-S.)
| | - Gabriel Roldán Roldán
- Laboratorio de Neurología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Modesto Gómez-López
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Gabriel Gutierrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.G.-S.); (J.R.-S.)
- Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
17
|
Kuchmerovska T, Tykhonenko T, Yanitska L, Savosko S, Pryvrotska I. Nicotinamide and Nicotinoyl-Gamma-Aminobutyric Acid as Neuroprotective Agents Against Type 1 Diabetes-Induced Nervous System Impairments in Rats. Neurochem Res 2024; 50:1. [PMID: 39527359 DOI: 10.1007/s11064-024-04257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Diabetes is a multifunctional chronic disease that affects both the central and/or peripheral nervous systems. This study assessed whether nicotinamide (NAm) or conjugate of nicotinic acid with gamma-aminobutyric acid (N-GABA) could be potential neuroprotective agents against type 1 diabetes (T1D)-induced nervous system impairments in rats. After six weeks of T1D, induced by streptozotocin, nonlinear male Wistar rats were treated for two weeks with NAm (100 mg/kg, i. p.) or N-GABA (55 mg/kg, i. p.). Expression levels of myelin basic protein (MBP) were analyzed by immunoblotting. Polyol pathway parameters of the sciatic nerves were assessed spectrophotometrically, and their structure was examined histologically. NAm had no effect on blood glucose or body weight in T1D, while N-GABA reduced glucose by 1.5-fold. N-GABA also increased MBP expression by 1.48-fold, enhancing neuronal myelination, while NAm showed no such effect. Activation of the polyol pathway was observed in the T1D sciatic nerves. Both compounds decreased sorbitol content and aldose reductase activity, thereby alleviating changes similar to primary degeneration in the sciatic nerves and preventing peripheral neuropathy development. These results demonstrate that NAm and, more notably, N-GABA may exert neuroprotective effects against T1D-induced nervous system impairments by increasing MBP expression levels, improving myelination processes in the brain, inhibiting the polyol pathway, and partially restoring morphometric parameters in the sciatic nerves. This suggests their potential therapeutic efficacy as promising agents for the prevention of T1D-induced nervous system alterations.
Collapse
Affiliation(s)
- Tamara Kuchmerovska
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Tetiana Tykhonenko
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lesya Yanitska
- Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Serhiy Savosko
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Iryna Pryvrotska
- I. Horbachevsky Ternopil National Medical University, Ministry of Health of Ukraine, Ternopil, Ukraine
| |
Collapse
|
18
|
Ekundayo BE, Adewale OB, Obafemi BA, Afolabi OB, Obafemi TO. Management of Alzheimer's disease and related neurotoxic pathologies: Role of thiamine, pyridoxine and cobalamin. Eur J Pharmacol 2024; 982:176958. [PMID: 39209095 DOI: 10.1016/j.ejphar.2024.176958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) remains one of the most debilitating disease and most common neurological disorder in the world at large. However, with many years of multiple research and billions of dollars invested for the purpose of research, not many therapeutic options exist for the management of this disease. As at 2023, the number has only increased to 7, one of which is a combination of two existing therapies. However, research has continued still in the search for a cure. The roles and functions of thiamine, pyridoxine and cobalamin in the proper function of the nervous system has been well researched over time and their role in the management of neurological diseases have been of interest in the last decade. This review describes the roles of the aforementioned chemicals in the management of different models of AD and AD-like pathologies as mono-therapeutic agents and prospective adjuvant for combination therapy.
Collapse
Affiliation(s)
| | | | - Blessing Ariyo Obafemi
- Department of Medical Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
| | | | - Tajudeen Olabisi Obafemi
- Department of Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Florida Park, Roodepoort, 1709, Johannesburg, South Africa
| |
Collapse
|
19
|
Daniel M, Smith EL. Promising Roles of Phytocompounds and Nutrients in Interventions to Mitigate Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2024; 40:151713. [PMID: 39147680 DOI: 10.1016/j.soncn.2024.151713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Provide an overview of scientific reports and literature related to the role(s) of phytocompounds and nutrients in neuroprotection. Discuss how these properties may inform nutrition- and dietary interventions to mitigate chemotherapy-induced peripheral neuropathy (CIPN), for which there are no effective treatments. METHODS A literature search (2010-2023) was conducted in PubMed and Google Scholar where search terms-diet, nutrition, neuroprotection, neurodegenerative diseases, and social determinants of health-were used to narrow articles. From this search, manuscripts were reviewed to provide an overview of the neuroprotective properties of various phytocompounds and nutrients and their observed effects in neurodegenerative conditions and CIPN. Social determinant of health factors (SDOH) related to economic stability and access to nutritious foods were also reviewed as potential barriers to dietary interventions. RESULTS Twenty-eight publications were included in this literature review. Phytocompounds found in green tea (EGCG), turmeric (curcumin), cruciferous vegetables (sulforaphane), as well as certain vitamins, are promising, targeted interventions to mitigate CIPN. SDOH factors such as economic instability and limited access to nutritious foods may act as barriers to dietary interventions and limit their generalizability. CONCLUSION Dietary interventions focused on the use of phytocompounds and vitamins with known antioxidant, anti-inflammatory, and neuroprotective properties, hold promise and may provide patients with natural, non-pharmacological therapeutics for the management and/or prevention of CIPN. However, rigorous clinical trial research is needed to explore these effects in humans. IMPLICATIONS FOR NURSING PRACTICE Nurses support cancer survivors at the point-of-care, particularly during and after neurotoxic chemotherapy treatments. If future research supports dietary interventions to mitigate CIPN, nurses will ultimately be positioned to help translate this knowledge into clinical practice through educating patients on how to infuse nutrient-rich foods into their diets. Further, nurses will need to be conscious of SDOH factors that may impede access to these foods.
Collapse
Affiliation(s)
- Michael Daniel
- School of Nursing, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
20
|
Zhu J, Xu P, Yan W, Hu Y, Guo H, Chen F, Bigambo FM, Wang X. The influence of multivitamins on neurological and growth disorders: a cross-sectional study. Front Nutr 2024; 11:1465875. [PMID: 39385784 PMCID: PMC11463060 DOI: 10.3389/fnut.2024.1465875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Background While vitamin deficiencies can pose serious health consequences for the body, excessive intake of vitamins can also lead to health risks. However, there is limited data about the impact of multivitamins on neurological and growth disorders. This study aimed to investigate the relationship between multivitamins and neurological and growth disorders. Methods A cross-sectional study was conducted with 16,921 subjects who visited the Children's Hospital of Nanjing Medical University from 2019 to 2021. The subjects were categorized into two groups based on their health status including 9,368 cases (4,484 with neurological disorders and 4,884 with growth disorders) and 7,553 healthy controls. Statistical tests including the T-test, Wilcoxon Rank Sum test, and Chi-Square test were employed to compare the groups, and logistic regression and Weighted Quantile Sum (WQS) regression were used to identify associations. Results In the adjusted logistic regression, serum 25 hydroxyvitamin D [25(OH)D], vitamin B2, and vitamin B9 were associated with decreasing risks of neurological disorders, whereas vitamin A, vitamin B1, and vitamin B12 were associated with increasing risks of neurological disorders. Nevertheless, vitamin A and vitamin B2 were associated with increasing risks of growth disorders. In the WQS model, nine multivitamins were positively associated with risks of neurological disorders, and Vitamins D and C were weighted the most. In addition, the inverse association but not statistically significant was observed between multivitamins and growth disorders, particularly growth retardation revealed a negative association, and some individual growth disorders revealed positive associations including obesity and malnutrition. Conclusion In general, the study observed that multivitamins may be associated with neurological and growth disorders either positive or negative depending on the type of disorder.
Collapse
Affiliation(s)
- Jiaxiao Zhu
- Department of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Penghong Xu
- Department of Emergency, Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Yan
- Clinical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yahui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongli Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | | | - Xu Wang
- Clinical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Pooshani S, Azadmehr A, Saadat P, Sepidarkish M, Daraei A. Regulatory miR-SNP rs4636297A > G in miR-126 is linked to increased risk of rigidity feature in patients with Parkinson's disease. Int J Neurosci 2024:1-10. [PMID: 39207776 DOI: 10.1080/00207454.2024.2398571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION A growing body of strong evidence shows that the dysfunction of miRNAs plays key roles in the development and progression of Parkinson's disease (PD), however, little data has been reported on the association of their SNPs with PD susceptibility. In this study, we investigated the association of regulatory miR-SNP rs4636297A > G with a functional effect on the expression of miRNA-126, as a key dysregulated miRNA in the PD, with the susceptibility and clinical features of the PD. METHODS AND MATERIALS In current study, we included a population consisting of 120 patients with PD and 120 clinically healthy individuals, and their blood samples were taken. After extracting the DNAs, the genotyping of the miR-SNP rs4636297A > G was done through RFLP-PCR technique. Finally, the association of this SNP with the risk and clinical features of PD was determined. RESULTS Although the results showed that the two groups did not differ significantly in terms of allelic and genotype frequencies, it was clinically found that individuals with genotypes carrying the minor allele G (AG and GG genotypes) of the miR-SNP rs4636297A > G had an increased risk of developing rigidity feature in the PD compared to its homozygous major AA genotype (GG genotype; OR = 5.14, p = 0.038 & GA genotype; OR = 4.32, p = 0.032). CONCLUSION We report for the first time a significant association of functional regulatory SNP rs4636297A > G in the miR-126 with the Parkinson's clinicopathology. Therefore, this miR-SNP can have a potential predictive biomarker capacity for rigidity in PD, although this hypothesis needs further investigation in the future.
Collapse
Affiliation(s)
- Sheyda Pooshani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
22
|
Talebi S, Khodagholi F, Bahaeddin Z, Ansari Dezfouli M, Zeinaddini-Meymand A, Berchi Kankam S, Foolad F, Alijaniha F, Fayazi Piranghar F. Does hazelnut consumption affect brain health and function against neurodegenerative diseases? Nutr Neurosci 2024; 27:1008-1024. [PMID: 38151890 DOI: 10.1080/1028415x.2023.2296164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
INTRODUCTION A healthy daily diet and consuming certain nutrients, such as polyphenols, vitamins, and unsaturated fatty acids, may help neuronal health maintenance. Polyphenolic chemicals, which have antioxidant and anti-inflammatory properties, are involved in the neuroprotective pathway. Because of their nutritional value, nuts have been shown in recent research to be helpful in neuroprotection. OBJECTIVE Hazelnut is often consumed worldwide in various items, including processed foods, particularly in bakery, chocolate, and confectionery products. This nut is an excellent source of vitamins, amino acids, tocopherols, phytosterols, polyphenols, minerals, and unsaturated fatty acids. Consuming hazelnut may attenuate the risk of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease due to its anti-inflammatory and anti-oxidant qualities. RESULTS Many documents introduce hazelnut as an excellent choice to provide neuroprotection against neurodegenerative disorders and there is some direct proof of its neuroprotective effects. DISCUSSION So hazelnut consumption in daily diet may reduce neurodegenerative disease risk and be advantageous in reducing the imposed costs of dealing with neurodegenerative diseases.
Collapse
Affiliation(s)
- Shadi Talebi
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahaeddin
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Mitra Ansari Dezfouli
- Faculty of Medicine, Department of Neurology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Forough Foolad
- Faculty of Medical Sciences, Department of Physiology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Alijaniha
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
- School of Persian Medicine, Department of Traditional Persian Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
23
|
Pyo Y, Kwon KH, Jung YJ. Anticancer Potential of Flavonoids: Their Role in Cancer Prevention and Health Benefits. Foods 2024; 13:2253. [PMID: 39063337 PMCID: PMC11276387 DOI: 10.3390/foods13142253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The term "flavonoid" encompasses a group of plant compounds, predominantly flavonoids, present in fruits, vegetables, and other plant-based foods. These compounds deliver significant health benefits, including potent antioxidant properties that protect cells from free radicals, thereby mitigating aging and disease. We assessed study quality and bias using the Cochrane Risk of Bias tool and the Newcastle-Ottawa Scale. Inclusion criteria specified that the studies must examine a natural flavonoid from fruits, must involve animal or human trials, must be original studies, and must be English articles on the flavonoid's health and cancer-prevention effects, excluding conference abstracts and single-case studies. We conducted a comprehensive search of major databases including PubMed, Web of Science, Embase, SCOPUS, and Google Scholar, reviewing six clinical trials with total sample sizes of over 50 to 1500 participants. The results indicate that consuming flavonoid-rich fruits can aid in cancer prevention by targeting angiogenic and cancer-protective pathways. We specifically selected tomatoes, mulberries, Amazon grapes, apples, and citrus fruits due to their well-documented high levels of flavonoids and the robust clinical evidence supporting their physiological effects. In particular, citrus fruits contain additional beneficial phytochemicals that complement the action of flavonoids, enhancing their overall health effects. The anti-cancer mechanisms of flavonoids are not well-defined in the scientific literature, suggesting a gap that this study aims to address. Our study provides novel contributions by demonstrating how flavonoid supplementation induces anti-cancer effects through angiogenesis, anti-inflammatory actions, antioxidant-induced apoptosis, and modulation of pathways like PI3K/Akt and MAPK. These effects were particularly notable in the prevention and progression of breast, colon, liver, and lung cancers, with statistical significance (p < 0.05). By elucidating specific mechanisms and pathways, this study contributes to the understanding of flavonoids' role in cancer prevention and underscores the potential for developing natural anti-cancer therapeutics through the inclusion of flavonoid-rich fruits in the diet. Future research should focus on randomized controlled trials assessing long-term effects of flavonoid supplementation in diverse populations, exploring optimal dosages, and understanding interactions with conventional cancer therapies to provide comprehensive evidence for clinical applications.
Collapse
Affiliation(s)
- Yeonhee Pyo
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Yeon Ja Jung
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
24
|
Golabi M, Kazemi D, Chadeganipour AS, Fouladseresht H, Sullman MJM, Ghezelbash B, Dastgerdi AY, Eskandari N. The Role of Cobalamin in Multiple Sclerosis: An Update. Inflammation 2024:10.1007/s10753-024-02075-6. [PMID: 38902541 DOI: 10.1007/s10753-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition that results in axonal and permanent damage to the central nervous system, necessitating healing owing to autoimmune reactions and persistent neuroinflammation. Antioxidant and anti-inflammatory drugs are essential for the management of oxidative stress and neuroinflammation. Additionally, multivitamin supplementation, particularly vitamin B12 (cobalamin), may be beneficial for neuronal protection. Although there is no documented connection between vitamin B12 deficiency and MS, researchers have explored its potential as a metabolic cause. This review highlights the therapeutic benefits of cobalamin (Cbl) in patients with MS.
Collapse
Affiliation(s)
- Marjan Golabi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Yeganegi Dastgerdi
- Department of Cell and Molecular Biology, Falavarjan Branch, Islamic Azad University of Science, Isfahan, Iran
| | - Nahid Eskandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
25
|
Kaszyńska AA. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:813. [PMID: 38931480 PMCID: PMC11207064 DOI: 10.3390/ph17060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis. This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer's Disease, multiple sclerosis, or Parkinson's disease. The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis. The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.
Collapse
Affiliation(s)
- Anna Aleksandra Kaszyńska
- The Centre of Neurocognitive Research, Institute of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warszawa, Poland
| |
Collapse
|
26
|
Xia M, Zhou Q. Correlation between 25-hydroxy-vitamin D and Parkinson's disease. IBRO Neurosci Rep 2024; 16:162-167. [PMID: 38318343 PMCID: PMC10839133 DOI: 10.1016/j.ibneur.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 02/07/2024] Open
Abstract
Background Previous cross-sectional studies have shown that Parkinson's disease (PD) patients have lower serum 25-hydroxyvitamin D (25(OH)D) concentrations than controls. Other studies have not yet tested whether research findings from other regions are generalizable to Chinese populations. In this case-control study, we examined the correlation between 25-hydroxyvitamin D and Parkinson's disease. Methods We established an association between 25-hydroxyvitamin D deficiency and PD in a case-control study of 100 PD patients and 100 control subjects free of neurological disease at the First Affiliated Hospital of Xinjiang Medical University. Results Total 25-hydroxyvitamin D levels were deficient in 21 % of patients with PD compared with 4 % of controls. In univariate analyses, plasma levels of 25-hydroxyvitamin D were associated with PD (p < 0.001). In multivariate analyses, vitamin D deficiency (25(OH)D < 20 ng/mL) was significantly associated with PD (p = 0.008, Odds Ratio =17.13, 95 % CI= 2.082-141.075). Individuals with 25(OH)D levels in the lowest quartile had the highest prevalence of PD (p = 0.026, OR=11.786, 95 % CI =1.342-103.51 compared to individuals with values in the highest quartile). Conclusions Our study reveals an association between 25-hydroxyvitamin D and PD. Patients with incident PD had significantly lower serum 25(OH)D concentrations than age-matched controls. High-risk PD patients with vitamin D deficiency who have not yet developed exercise impairment should undergo vitamin D measurement and any necessary treatment as soon as possible. Limitations of the study: the study needs further assessment of populations with low vitamin D levels in other regions of China; further assessment of the effect of different sources of vitamin D on PD; further study of longitudinal cohorts at different time points.
Collapse
Affiliation(s)
- Ming Xia
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Qingjiu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
27
|
Katariya R, Mishra K, Sammeta S, Umekar M, Kotagale N, Taksande B. Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington's disease in rats. Neurotoxicology 2024; 102:12-28. [PMID: 38453033 DOI: 10.1016/j.neuro.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition characterized by a severe motor incoordination, cognitive decline, and psychiatric complications. However, a definitive cure for this devastating disorder remains elusive. Agmatine, a biogenic amine, has gain attention for its reported neuromodulatory and neuroprotective properties. The present study was designed to examine the influence of agmatine on the behavioral, biochemical, and molecular aspects of HD in an animal model. A mitochondrial toxin, 3-nitro propionic acid (3-NP), was used to induce HD phenotype and similar symptoms such as motor incoordination, memory impairment, neuro-inflammation, and depressive-like behavior in rats. Rats were pre-treated with 3-NP (10 mg/kg, i.p.) on days 1, 3, 5, 7, and 9 and then continued on agmatine treatment (5 - 20 µg/rat, i.c.v.) from day-8 to day-27 of the treatment protocol. 3-NP-induced cognitive impairment was associated with declined in agmatine levels within prefrontal cortex, striatum, and hippocampus. Further, the 3-NP-treated rats showed an increase in IL-6 and TNF-α and a reduction in BDNF immunocontent within these brain areas. Agmatine treatment not only improved the 3-NP-induced motor incoordination, depression-like behavior, rota-rod performance, and learning and memory impairment but also normalized the GABA/glutamate, BDNF, IL-6, and TNF-α levels in discrete brain areas. Similarly, various agmatine modulators, which increase the endogenous agmatine levels in the brain, such as L-arginine (biosynthetic precursor), aminoguanidine (diamine oxidase inhibitor), and arcaine (agmatinase inhibitor) also demonstrated similar effects exhibiting the importance of endogenous agmatinergic pathway in the pathogenesis of 3-NP-induced HD like symptoms. The present study proposed the possible role of agmatine in the pathogenesis and treatment of HD associated motor incoordination, and psychiatric and cognitive complications.
Collapse
Affiliation(s)
- Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Kartikey Mishra
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
28
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
29
|
Tavili E, Aziziyan F, Khajeh K. Inhibitors of amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:291-340. [PMID: 38811084 DOI: 10.1016/bs.pmbts.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Many diseases are caused by misfolded and denatured proteins, leading to neurodegenerative diseases. In recent decades researchers have developed a variety of compounds, including polymeric inhibitors and natural compounds, antibodies, and chaperones, to inhibit protein aggregation, decrease the toxic effects of amyloid fibrils, and facilitate refolding proteins. The causes and mechanisms of amyloid formation are still unclear, and there are no effective treatments for Amyloid diseases. This section describes research and achievements in the field of inhibiting amyloid accumulation and also discusses the importance of various strategies in facilitating the removal of aggregates species (refolding) in the treatment of neurological diseases such as chemical methods like as, small molecules, metal chelators, polymeric inhibitors, and nanomaterials, as well as the use of biomolecules (peptide and, protein, nucleic acid, and saccharide) as amyloid inhibitors, are also highlighted.
Collapse
Affiliation(s)
- Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
30
|
Hemandhar Kumar S, Tapken I, Kuhn D, Claus P, Jung K. bootGSEA: a bootstrap and rank aggregation pipeline for multi-study and multi-omics enrichment analyses. FRONTIERS IN BIOINFORMATICS 2024; 4:1380928. [PMID: 38633435 PMCID: PMC11021641 DOI: 10.3389/fbinf.2024.1380928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: Gene set enrichment analysis (GSEA) subsequent to differential expression analysis is a standard step in transcriptomics and proteomics data analysis. Although many tools for this step are available, the results are often difficult to reproduce because set annotations can change in the databases, that is, new features can be added or existing features can be removed. Finally, such changes in set compositions can have an impact on biological interpretation. Methods: We present bootGSEA, a novel computational pipeline, to study the robustness of GSEA. By repeating GSEA based on bootstrap samples, the variability and robustness of results can be studied. In our pipeline, not all genes or proteins are involved in the different bootstrap replicates of the analyses. Finally, we aggregate the ranks from the bootstrap replicates to obtain a score per gene set that shows whether it gains or loses evidence compared to the ranking of the standard GSEA. Rank aggregation is also used to combine GSEA results from different omics levels or from multiple independent studies at the same omics level. Results: By applying our approach to six independent cancer transcriptomics datasets, we showed that bootstrap GSEA can aid in the selection of more robust enriched gene sets. Additionally, we applied our approach to paired transcriptomics and proteomics data obtained from a mouse model of spinal muscular atrophy (SMA), a neurodegenerative and neurodevelopmental disease associated with multi-system involvement. After obtaining a robust ranking at both omics levels, both ranking lists were combined to aggregate the findings from the transcriptomics and proteomics results. Furthermore, we constructed the new R-package "bootGSEA," which implements the proposed methods and provides graphical views of the findings. Bootstrap-based GSEA was able in the example datasets to identify gene or protein sets that were less robust when the set composition changed during bootstrap analysis. Discussion: The rank aggregation step was useful for combining bootstrap results and making them comparable to the original findings on the single-omics level or for combining findings from multiple different omics levels.
Collapse
Affiliation(s)
- Shamini Hemandhar Kumar
- Institute for Animal Genomics, University of Veterinary Medicine, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Ines Tapken
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Daniela Kuhn
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
- Clinic for Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Genomics, University of Veterinary Medicine, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
| |
Collapse
|
31
|
Bali P, Lal P, Sivapuram MS, Kutikuppala LVS, Avti P, Chanana A, Kumar S, Anand A. Mind over Microbes: Investigating the Interplay between Lifestyle Factors, Gut Microbiota, and Brain Health. Neuroepidemiology 2024; 58:426-448. [PMID: 38531341 DOI: 10.1159/000538416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.
Collapse
Affiliation(s)
- Parul Bali
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Parth Lal
- Advance Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Peda Avutapalli, India
| | | | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Saurabh Kumar
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Centre for Cognitive Science and Phenomenology, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
33
|
Fukuda N, Toriuchi K, Mimoto R, Aoki H, Kakita H, Suzuki Y, Takeshita S, Tamura T, Yamamura H, Inoue Y, Hayashi H, Yamada Y, Aoyama M. Hypothermia Attenuates Neurotoxic Microglial Activation via TRPV4. Neurochem Res 2024; 49:800-813. [PMID: 38112974 DOI: 10.1007/s11064-023-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.
Collapse
Affiliation(s)
- Naoya Fukuda
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Rina Mimoto
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Satoru Takeshita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Tamura
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
34
|
Sultana OF, Hia RA, Reddy PH. A Combinational Therapy for Preventing and Delaying the Onset of Alzheimer's Disease: A Focus on Probiotic and Vitamin Co-Supplementation. Antioxidants (Basel) 2024; 13:202. [PMID: 38397800 PMCID: PMC10886126 DOI: 10.3390/antiox13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder with a complex etiology, and effective interventions to prevent or delay its onset remain a global health challenge. In recent years, there has been growing interest in the potential role of probiotic and vitamin supplementation as complementary strategies for Alzheimer's disease prevention. This review paper explores the current scientific literature on the use of probiotics and vitamins, particularly vitamin A, D, E, K, and B-complex vitamins, in the context of Alzheimer's disease prevention and management. We delve into the mechanisms through which probiotics may modulate gut-brain interactions and neuroinflammation while vitamins play crucial roles in neuronal health and cognitive function. The paper also examines the collective impact of this combinational therapy on reducing the risk factors associated with Alzheimer's disease, such as oxidative stress, inflammation, and gut dysbiosis. By providing a comprehensive overview of the existing evidence and potential mechanisms, this review aims to shed light on the promise of probiotic and vitamin co-supplementation as a multifaceted approach to combat Alzheimer's disease, offering insights into possible avenues for future research and clinical application.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Raksa Andalib Hia
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
35
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
36
|
Hao X, Li H, Li Q, Gao D, Wang X, Wu C, Wang Q, Zhu M. Dietary vitamin E intake and risk of Parkinson's disease: a cross-sectional study. Front Nutr 2024; 10:1289238. [PMID: 38249609 PMCID: PMC10799344 DOI: 10.3389/fnut.2023.1289238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Objective Current evidence on the association between dietary vitamin E intake and the risk of Parkinson's disease (PD) is limited. The aim of the study was to explore the association of dietary vitamin E intake with PD in the United States among adults over 40 years. Methods We conducted a cross-sectional study with data collected from National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018. A total of the sample of 13,340 participants were included. To identify the different characteristics of the participants, we utilized propensity score matching (PSM) to reduce the effects of selection bias and confounding variables. Weighted univariate and multivariable logistic regression were used to examine the association between dietary vitamin E intake and PD before and after matching. Then, restricted cubic spline (RCS) was used to visually describe the possible non-linear relationships. Finally, we employed the subgroup analysis to further investigate the relationship between dietary vitamin E intake and PD. Results According to the weighted univariate and multivariable logistic regression analysis, vitamin E intake was inversely associated with the risk of PD before and after matching. The results of RCS analysis revealed no non-linear inverse relationship between vitamin E intake and PD before and after matching. The subgroup analysis showed that age may influence the negative association between vitamin E and PD (P < 0.05 for interaction). Conclusion Among participants over 40 years of age, vitamin E intake was negatively associated with the risk of PD. Our data may support the supplementation of vitamin E to be used as an intervention strategy for the occurrence of PD.
Collapse
Affiliation(s)
- Xiaoqian Hao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiyan Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Qinglian Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Da Gao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Xiaoling Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Qizhang Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Zhang MZ, Sun Y, Chen YM, Guo F, Gao PY, Tan L, Tan MS. Associations of Multimorbidity with Cerebrospinal Fluid Biomarkers for Neurodegenerative Disorders in Early Parkinson's Disease: A Crosssectional and Longitudinal Study. Curr Alzheimer Res 2024; 21:201-213. [PMID: 39041277 DOI: 10.2174/0115672050314397240708060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 07/24/2024]
Abstract
OBJECT The study aims to determine whether multimorbidity status is associated with cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders. METHODS A total of 827 patients were enrolled from the Parkinson's Progression Markers Initiative (PPMI) database, including 638 patients with early-stage Parkinson's disease (PD) and 189 healthy controls (HCs). Multimorbidity status was evaluated based on the count of long-term conditions (LTCs) and the multimorbidity pattern. Using linear regression models, cross-sectional and longitudinal analyses were conducted to assess the associations of multimorbidity status with CSF biomarkers for neurodegenerative disorders, including α-synuclein (αSyn), amyloid-β42 (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), glial fibrillary acidic protein (GFAP), and neurofilament light chain protein (NfL). RESULTS At baseline, the CSF t-tau (p = 0.010), p-tau (p = 0.034), and NfL (p = 0.049) levels showed significant differences across the three categories of LTC counts. In the longitudinal analysis, the presence of LTCs was associated with lower Aβ42 (β < -0.001, p = 0.020), and higher t-tau (β = 0.007, p = 0.026), GFAP (β = 0.013, p = 0.022) and NfL (β = 0.020, p = 0.012); Participants with tumor/musculoskeletal/mental disorders showed higher CSF levels of t-tau (β = 0.016, p = 0.011) and p-tau (β = 0.032, p = 0.044) than those without multimorbidity. CONCLUSION Multimorbidity, especially severe multimorbidity and the pattern of mental/musculoskeletal/ tumor disorders, was associated with CSF biomarkers for neurodegenerative disorders in early-stage PD patients, suggesting that multimorbidity might play a crucial role in aggravating neuronal damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Zhan Zhang
- School of Clinical Medicine, Shandong Second Medical University (formerly Weifang Medical University), Weifang 261000, Shandong, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Ming Chen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fan Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Shandong Second Medical University (formerly Weifang Medical University), Weifang 261000, Shandong, China
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
38
|
Huang G, Qiu Y, Fan Y, Liu J. METTL3-deficiency Suppresses Neural Apoptosis to Induce Protective Effects in Cerebral I/R Injury via Inhibiting RNA m6A Modifications: A Pre-clinical and Pilot Study. Neurochem Res 2024; 49:85-98. [PMID: 37610605 DOI: 10.1007/s11064-023-04015-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
N6-Methyladenosine (m6A) RNA methylation involves in regulating the initiation, progression and aggravation of cerebral ischemia-reperfusion (I/R) injury, however, the detailed functions and mechanisms by which m6A drives cerebral I/R injury are not fully understood. This study found that methyltransferase-like 3 (METTL3) m6A-dependently regulated cerebral I/R injury trough regulating a novel LncRNA ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α axis. Specifically, the middle cerebral artery occlusion (MCAO)/reperfusion mice models and glucose deprivation (OGD)/reoxygenation (RX) astrocyte cell models were respectively established, and we verified that METTL3, ABHD11-AS1 and HIF1AN were upregulated, whereas miR-1301-3p and HIF-1α were downregulated in both MCAO/reperfusion mice tissues and OGD/RX astrocytes. Mechanical experiments confirmed that METTL3 m6A dependently increased stability and expression levels of ABHD11-AS1, and elevated ABHD11-AS1 sponged miR-1301-3p to upregulate HIF1AN, resulting in the downregulation of HIF-1α. Moreover, silencing of METTL3 rescued MCAO/reperfusion and OGD/RX-induced oxidative stress-associated cell apoptosis and cell cycle arrest in both mice brain tissues in vivo and the mouse primary astrocytes in vitro, which were abrogated by overexpressing ABHD11-AS1 and downregulating miR-1301-3p. Taken together, our study firstly reported a novel METTL3/m6A/ ABHD11-AS1/miR-1301-3p/HIF1AN/HIF-1α signaling cascade in regulating the progression of cerebral I/R injury, and future work will focus on investigating whether the above genes can be used as biomarkers for the treatment of cerebral I/R injury by performing clinical studies.
Collapse
Affiliation(s)
- Gang Huang
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China
| | - Yuda Qiu
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China
| | - Yafei Fan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China
| | - Jianfeng Liu
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
39
|
Orticello M, Cavallaro RA, Antinori D, Raia T, Lucarelli M, Fuso A. Amyloidogenic and Neuroinflammatory Molecular Pathways Are Contrasted Using Menaquinone 4 (MK4) and Reduced Menaquinone 7 (MK7R) in Association with Increased DNA Methylation in SK-N-BE Neuroblastoma Cell Line. Cells 2023; 13:58. [PMID: 38201262 PMCID: PMC10778373 DOI: 10.3390/cells13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Besides its role in coagulation, vitamin K seems to be involved in various other mechanisms, including inflammation and age-related diseases, also at the level of gene expression. This work examined the roles of two vitamin K2 (menaquinones) vitamers, namely, menaquinone-4 (MK4) and reduced menaquinone-7 (MK7R), as gene modulator compounds, as well as their potential role in the epigenetic regulation of genes involved in amyloidogenesis and neuroinflammation. The SK-N-BE human neuroblastoma cells provided a "first-line" model for screening the neuroinflammatory and neurodegenerative molecular pathways. MK7R, being a new vitamin K form, was first tested in terms of solubilization, uptake and cell viability, together with MK4 as an endogenous control. We assessed the expression of key factors in amyloidogenesis and neuroinflammation, observing that the MK7R treatment was associated with the downregulation of neurodegeneration- (PSEN1 and BACE1) and neuroinflammation- (IL-1β and IL-6) associated genes, whereas genes retaining protective roles toward amiloidogenesis were upregulated (ADAM10 and ADAM17). By profiling the DNA methylation patterns of genes known to be epigenetically regulated, we observed a correlation between hypermethylation and the downregulation of PSEN1, IL-1β and IL-6. These results suggest a possible role of MK7R in the treatment of cognitive impairment, giving a possible base for further preclinical experiments in animal models of neurodegenerative disease.
Collapse
Affiliation(s)
- Michela Orticello
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| | | | - Daniele Antinori
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| | - Tiziana Raia
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| |
Collapse
|
40
|
Prajapat M, Kaur G, Choudhary G, Pahwa P, Bansal S, Joshi R, Batra G, Mishra A, Singla R, Kaur H, Prabha PK, Patel AP, Medhi B. A systematic review for the development of Alzheimer's disease in in vitro models: a focus on different inducing agents. Front Aging Neurosci 2023; 15:1296919. [PMID: 38173557 PMCID: PMC10761490 DOI: 10.3389/fnagi.2023.1296919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and is associated with dementia. Presently, various chemical and environmental agents are used to induce in-vitro models of Alzheimer disease to investigate the efficacy of different therapeutic drugs. We screened literature from databases such as PubMed, ScienceDirect, and Google scholar, emphasizing the diverse targeting mechanisms of neuro degeneration explored in in-vitro models. The results revealed studies in which different types of chemicals and environmental agents were used for in-vitro development of Alzheimer-targeting mechanisms of neurodegeneration. Studies using chemically induced in-vitro AD models included in this systematic review will contribute to a deeper understanding of AD. However, none of these models can reproduce all the characteristics of disease progression seen in the majority of Alzheimer's disease subtypes. Additional modifications would be required to replicate the complex conditions of human AD in an exact manner. In-vitro models of Alzheimer's disease developed using chemicals and environmental agents are instrumental in providing insights into the disease's pathophysiology; therefore, chemical-induced in-vitro AD models will continue to play vital role in future AD research. This systematic screening revealed the pivotal role of chemical-induced in-vitro AD models in advancing our understanding of AD pathophysiology and is therefore important to understand the potential of these chemicals in AD pathogenesis.
Collapse
Affiliation(s)
| | - Gurjeet Kaur
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Paras Pahwa
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Seema Bansal
- MM College of Pharmacy, Maharishi Markandeshwar (DU) University, Mullana, Ambala, India
| | - Rupa Joshi
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Gitika Batra
- Department of Neurology, PGIMER, Chandigarh, India
| | - Abhishek Mishra
- Department of Biomedical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Rubal Singla
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | | | | | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
41
|
Wang Y, Cui L, Zhao H, He H, Chen L, Song X, Liu D, Qiu J, Sun Y. Exploring the Connectivity of Neurodegenerative Diseases: Microglia as the Center. J Inflamm Res 2023; 16:6107-6121. [PMID: 38107384 PMCID: PMC10725686 DOI: 10.2147/jir.s440377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Degenerative diseases affect people's life and health and cause a severe social burden. Relevant mechanisms of microglia have been studied, aiming to control and reduce degenerative disease occurrence effectively. This review discussed the specific mechanisms underlying microglia in neurodegenerative diseases, age-related hearing loss, Alzheimer's disease, Parkinson's disease, and peripheral nervous system (PNS) degenerative diseases. It also reviewed the studies of microglia inhibitors (PLX3397/PLX5622) and activators (lipopolysaccharide), and suggested that reducing microglia can effectively curb the genesis and progression of degenerative diseases. Finally, microglial cells' anti-inflammatory and pro-inflammatory dual role was considered the critical communication point in central and peripheral degenerative diseases. Although it is difficult to describe the complex morphological structure of microglia in a unified manner, this does not prevent them from being a target for future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Limei Cui
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - He Zhao
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Huhuifen He
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Liang Chen
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Xicheng Song
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Dawei Liu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Jingjing Qiu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| | - Yan Sun
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, People’s Republic of China
| |
Collapse
|
42
|
Wang Y, Sun S, Zhai J, Liu Y, Song C, Sun C, Li Q, Liu J, Jiang H, Liu Y. scAAV9-VEGF alleviates symptoms of amyotrophic lateral sclerosis (ALS) mice through regulating aromatase. Exp Brain Res 2023; 241:2817-2827. [PMID: 37882882 DOI: 10.1007/s00221-023-06721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, chronic, progressive, and fatal neurodegenerative disease that leads to progressive atrophy and weakness of the muscles throughout the body. Herein, we found that the intrathecal injection of adeno-associated virus (AAV)-delivered VEGF in SOD1-G93A transgenic mice, as well as ALS mice, could significantly delay disease onset and preserve motor functions and neurological functions, thus prolonging the survival of mice models. Moreover, we found that VEGF treatment could induce the elevated expression of aromatase, which is a key enzyme in estrogen synthesis, in neurons but not in astrocytes. On the other hand, the changes in the expression of oxidative stress-related factors HO-1 and GCLM and autophagy-related proteins p62 and LC3II upon the administration of VEGF revealed the involvement of oxidative stress and autophagy underlying the downstream of the VEGF-induced mitigation of ALS. In conclusion, this study proved the protective effects of VEGF in the onset and development of ALS and revealed the involvement of estrogen, oxidative stress and autophagy in the VEGF-induced alleviation of ALS. Our results highlighted the potential of VEGF as a promising therapeutic agent in the treatment of ALS.
Collapse
Affiliation(s)
- Ying Wang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Shuo Sun
- Department of Neurosurgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jingxu Zhai
- The Third Department of Pediatrics, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei, People's Republic of China
| | - Yuanyuan Liu
- General practice department, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, Hebei, People's Republic of China
| | - Chaoyuan Song
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Cuimei Sun
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Qiang Li
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jianqiang Liu
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Hong Jiang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
43
|
Doskas T, Dardiotis E, Vavougios GD, Ntoskas KT, Sionidou P, Vadikolias K. Stroke risk in multiple sclerosis: a critical appraisal of the literature. Int J Neurosci 2023; 133:1132-1152. [PMID: 35369835 DOI: 10.1080/00207454.2022.2056459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Observational studies suggest that the occurrence of stroke on multiple sclerosis (MS) patients is higher compared to the general population. MS is a heterogeneous disease that involves an interplay of genetic, environmental and immune factors. The occurrence of stroke is subject to a wide range of both modifiable and non-modifiable, short- and long-term risk factors. Both MS and stroke share common risk factors. The immune mechanisms that underlie stroke are similar to neurodegenerative diseases and are attributed to neuroinflammation. The inflammation in autoimmune diseases may, therefore, predispose to an increased risk for stroke or potentiate the effect of conventional stroke risk factors. There are, however, additional determinants that contribute to a higher risk and incidence of stroke in MS. Due to the challenges that are associated with their differential diagnosis, the objective is to present an overview of the factors that may contribute to increased susceptibility or occurrence of stroke in MSpatients by performing a review of the available to date literature. As both MS and stroke can individually detrimentally affect the quality of life of afflicted patients, the identification of factors that contribute to an increased risk for stroke in MS is crucial for the prompt implementation of preventative therapeutic measures to limit the additive burden that stroke imposes.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | |
Collapse
|
44
|
Lahoda Brodska H, Klempir J, Zavora J, Kohout P. The Role of Micronutrients in Neurological Disorders. Nutrients 2023; 15:4129. [PMID: 37836413 PMCID: PMC10574090 DOI: 10.3390/nu15194129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Trace elements and vitamins, collectively known as micronutrients, are essential for basic metabolic reactions in the human body. Their deficiency or, on the contrary, an increased amount can lead to serious disorders. Research in recent years has shown that long-term abnormal levels of micronutrients may be involved in the etiopathogenesis of some neurological diseases. Acute and chronic alterations in micronutrient levels may cause other serious complications in neurological diseases. Our aim was to summarize the knowledge about micronutrients in relation to selected neurological diseases and comment on their importance and the possibilities of therapeutic intervention in clinical practice.
Collapse
Affiliation(s)
- Helena Lahoda Brodska
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic; (H.L.B.); (J.Z.)
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 30, 120 00 Prague, Czech Republic
| | - Jan Zavora
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic; (H.L.B.); (J.Z.)
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Pavel Kohout
- Clinic of Internal Medicine, 3rd Faculty Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| |
Collapse
|
45
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
46
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
47
|
Kolko M, Mouhammad ZA, Cvenkel B. Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma. Pharmacol Ther 2023; 245:108412. [PMID: 37037408 DOI: 10.1016/j.pharmthera.2023.108412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Glaucoma is characterized by a continuous loss of retinal ganglion cells. The cause of glaucoma is associated with an increase in intraocular pressure (IOP), but the underlying pathophysiology is diverse and, in most cases, unknown. There is an indisputable unmet need to identify new pathways involved in glaucoma pathogenesis. Increasing evidence suggests that bioactive lipids may be critical in the development and progression of glaucoma. Preclinical and clinical bioactive lipid targets exist and are being developed. In this review, we aim to shed light on the potential of bioactive lipids for the prevention, diagnosis, prognosis, and treatment of glaucoma by asking the question "is fat the future for saving sight".
Collapse
Affiliation(s)
- Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | | | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
48
|
Lee Y, Park HR, Lee JY, Kim J, Yang S, Lee C, Kim K, Kim HS, Chang SC, Lee J. Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice. Arch Pharm Res 2023; 46:423-437. [PMID: 36947339 DOI: 10.1007/s12272-023-01440-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Adult neurogenesis generates new functional neurons from adult neural stem cells in various regions, including the subventricular zone (SVZ) of the lateral ventricles and subgranular zone (SGZ) of hippocampal dentate gyrus (DG). Available evidence shows hippocampal neurogenesis can be negatively or positively regulated by dietary components. In a previous study, we reported that curcumin (diferuloylmethane; a polyphenolic found in curry spice) stimulates the proliferation of embryonic neural stem cells (NSCs) by activating adaptive cellular stress responses. Here, we investigated whether subchronic administration of curcumin (once daily at 0.4, 2, or 10 mg/kg for 14 days) promotes hippocampal neurogenesis and neurocognitive function in young (5-week-old) mice. Oral administration of low-dose curcumin (0.4 mg/kg) increased the proliferation and survival of newly generated cells in hippocampus, but surprisingly, high-dose curcumin (10 mg/kg) did not effectively upregulate the proliferation or survival of newborn cells. Furthermore, hippocampal BDNF levels and phosphorylated CREB activity were elevated in only low-dose curcumin-treated mice. Passive avoidance testing revealed that low-dose curcumin increased cross-over latency times, indicating enhanced memory retention, and an in vitro study showed that low-concentration curcumin increased the proliferative activity of neural progenitor cells (NPCs) by upregulating NF1X levels. Collectively, our findings suggest that low-dose curcumin has neurogenic effects and that it may prevent age and neurodegenerative disease-related cognitive deficits.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Hee Ra Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Department of KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Joo Yeon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
49
|
Kodam P, Sai Swaroop R, Pradhan SS, Sivaramakrishnan V, Vadrevu R. Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets. Sci Rep 2023; 13:3695. [PMID: 36879094 PMCID: PMC9986671 DOI: 10.1038/s41598-023-30892-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid plaques implicated in neuronal death. Genetics, age, and sex are the risk factors attributed to AD. Though omics studies have helped to identify pathways associated with AD, an integrated systems analysis with the available data could help to understand mechanisms, potential biomarkers, and therapeutic targets. Analysis of transcriptomic data sets from the GEO database, and proteomic and metabolomic data sets from literature was performed to identify deregulated pathways and commonality analysis identified overlapping pathways among the data sets. The deregulated pathways included those of neurotransmitter synapses, oxidative stress, inflammation, vitamins, complement, and coagulation pathways. Cell type analysis of GEO data sets showed microglia, endothelial, myeloid, and lymphoid cells are affected. Microglia are associated with inflammation and pruning of synapses with implications for memory and cognition. Analysis of the protein-cofactor network of B2, B6, and pantothenate shows metabolic pathways modulated by these vitamins which overlap with the deregulated pathways from the multi-omics analysis. Overall, the integrated analysis identified the molecular signature associated with AD. Treatment with anti-oxidants, B2, B6, and pantothenate in genetically susceptible individuals in the pre-symptomatic stage might help in better management of the disease.
Collapse
Affiliation(s)
- Pradeep Kodam
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - R Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India.
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
50
|
Association between Edinburgh Postnatal Depression Scale and Serum Levels of Ketone Bodies and Vitamin D, Thyroid Function, and Iron Metabolism. Nutrients 2023; 15:nu15030768. [PMID: 36771476 PMCID: PMC9920872 DOI: 10.3390/nu15030768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Suicide due to postpartum depression is the most common perinatal-related death and is a social concern in Japan. Nutritional deficiencies during pregnancy may contribute to postpartum depression; therefore, we investigated the relationship between postpartum depression and nutritional status during pregnancy and postpartum. We focused specifically on ketone bodies because they are known to protect brain cells. The relationship between the Edinburgh Postnatal Depression Scale (EPDS) scores and the serum levels of ketone bodies and vitamin D, thyroid function, and iron metabolism was examined. Overall, 126 pregnant women were identified for the study, and 99 were eventually included in the analysis. We defined an EPDS score of ≥9 as being positive for postpartum depression, and serum ketone levels were found to be higher in the group with an EPDS score of ≥9 during the second trimester; however, there were no other significant findings. We may be able to predict postpartum depression from a pregnant woman's serum ketone levels in the second trimester. There was a positive correlation between the EPDS scores at 3 days and 1 month postpartum (r = 0.534, p < 0.001). EPDS scores assessed in the early postpartum period may be useful for the timely detection of postpartum depression.
Collapse
|