1
|
Goyal A, Afzal M, Khan NH, Goyal K, Srinivasamurthy SK, Gupta G, Benod Kumar K, Ali H, Rana M, Wong LS, Kumarasamy V, Subramaniyan V. Targeting p53-p21 signaling to enhance mesenchymal stem cell regenerative potential. Regen Ther 2025; 29:352-363. [PMID: 40248767 PMCID: PMC12004386 DOI: 10.1016/j.reth.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are properties of self-renewal and differentiation potentials and thus are very appealing to regenerative medicine. Nevertheless, their therapeutic potential is frequently constrained by senescence, limited proliferation, and stress-induced apoptosis. The key role of the p53-p21 biology in MSC biology resides in safeguarding genomic stability while promoting senescence and limiting regenerative capacity upon over-activation demonstrated. This pathway is a key point for improving MSC function and exploiting the inherent limitations. Recent advances indicate that senescence can be delayed by targeting the p53-p21 signaling and improved MSC proliferation and differentiation capacity. PFT-α pharmacological agents transiently inhibit p53 from increasing proliferation and lineage-specific differentiation, while antioxidants such as hydrogen-rich saline and epigallocatechin 3 gallate (EGCG) suppress oxidative stress and attenuate p53 p21 signaling. Genetic tools like CRISPR-Cas9 and RNA interference also precisely modulate TP53 and CDKN1A expression to optimize MSC functionality. The interplay of p53-p21 with pathways like Wnt/β-catenin and MAPK further highlights opportunities for combinatorial therapies to enhance MSC resilience and regenerative outcomes. This review aims to offer a holistic view of how p53-p21 targeting can further the regenerative potential of MSCs, resolving senescence, proliferation, and stress resilience towards advanced therapeutics built on MSCs.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - K. Benod Kumar
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Gupta H, Gupta A. Post-translational modifications of epigenetic modifier TIP60: their role in cellular functions and cancer. Epigenetics Chromatin 2025; 18:18. [PMID: 40186325 PMCID: PMC11969907 DOI: 10.1186/s13072-025-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 04/07/2025] Open
Abstract
TIP60 is a crucial lysine acetyltransferase protein that catalyzes the acetylation of histone and non-histone proteins. This enzyme plays a crucial role in maintaining genomic integrity, by participating in DNA damage repair, ensuring accurate chromosomal segregation, and regulating a myriad of cellular processes such as apoptosis, autophagy, and wound-induced cell migration. One of the primary mechanisms through which TIP60 executes these diverse cellular functions is via post-translational modifications (PTMs). Over the years, extensive studies have demonstrated the importance of PTMs in controlling protein functions. This review aims to summarize the findings on PTMs occurring on the TIP60 protein and their functional implications. We also discuss previously uncharacterized PTM sites identified on TIP60 and examine their relationship with cancer-associated mutations, with a particular focus on residues potentially modified by various PTMs, to understand the cause of deregulation of TIP60 in various cancers.
Collapse
Affiliation(s)
- Himanshu Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India.
| |
Collapse
|
3
|
Geng J, Lu W, Kong Q, Lv J, Liu Y, Zu G, Chen Y, Jiang C, You Z, Nie Z. Validation of selective catalytic BmCBP inhibitors that regulate the Bm30K-24 protein expression in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2025; 34:322-334. [PMID: 39513476 DOI: 10.1111/imb.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The cAMP response element binding protein (CREB)-binding protein (CBP) is a histone acetyltransferase that plays an indispensable role in regulating the acetylation of histone and non-histone proteins. Recently, it has been discovered that chemical inhibitors A485 and C646 can bind to Bombyx mori's CBP (BmCBP) and inhibit its acetyltransferase activity. Notably, the binding ability of A485 with BmCBP showed a very low Kd value of 48 nM by surface plasmon resonance (SPR) test. Further identification showed that both A485 and C646 can decrease the acetylation level of known substrate H3K27 and only 1 μM of A485 can almost completely inhibit the acetylation of H3K27, suggesting that A485 is an effective inhibitor of BmCBP's acetyltransferase activity. Moreover, it was confirmed that A485 could downregulate the expression of acetylated Bm30K-24 protein at a post-translational level through acetylation modification by BmCBP. Additionally, it was found that A485 can downregulate the stability of Bm30K-24 and improve its ubiquitination level, suggesting that the acetylation modification by BmCBP could compete with ubiquitination modification at the same lysine site on Bm30K-24, thereby affecting its protein stability. Here, we predict that A485 may be a potent CBP acetyltransferase inhibitor which could be utilized to inhibit acetyltransferase activity in insects, including silkworms.
Collapse
Affiliation(s)
- Jiasheng Geng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weina Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qinglong Kong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Liu
- School of Food and Health, Zhejiang Institute of Economics and Trade, Hangzhou, China
| | - Guowei Zu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanmei Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Chen A, Hart SL, Lannon M, Hawkins C, Reddy KKV, Lu JQ. Meningiomas in Rubinstein-Taybi syndrome: A case report and comprehensive review. J Neuropathol Exp Neurol 2025; 84:329-336. [PMID: 39740655 PMCID: PMC11923739 DOI: 10.1093/jnen/nlae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a congenital disorder with characteristic clinical manifestations. In the vast majority of cases, it is caused by mutations of the gene encoding the transcriptional co-activator cAMP-response element binding protein (CBP)-binding protein (CREBBP). It has been thought to be a tumor predisposition syndrome as RTS patients have an increased risk of developing tumors including meningiomas. However, RTS-associated meningiomas are rarely reported. We report a unique RTS-associated meningioma in which an oncogenic CREBBP mutation is identified. We also comprehensively review the reported RTS-associated meningiomas, from epidemiology and pathogenesis to clinicopathological characteristics and treatment. All RTS patients with meningiomas are female and have the exclusive mutations of CREBBP. In population-based studies RTS-associated meningiomas seem to develop at younger ages. Their pathogenesis may be driven by the CREBBP/CBP alterations resulting in aberrant signal transduction in the CBP-mediated signaling pathways. Meningiomas in RTS patients have common clinicopathological characteristics including comorbidity with other tumors, radiologically intra-osseous growth, and uncommon histopathology such as ossifying and secretory features. Given the genetic nature and rarity of RTS-associated meningiomas, further investigation of their characteristics may define molecular targets for improved therapeutic options for RTS patients.
Collapse
Affiliation(s)
- Andrea Chen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shannon Louise Hart
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Lannon
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kesava K V Reddy
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Alanazi ST, Salama SA, Althobaiti MM, Bakhsh A, Aljehani NM, Alanazi E, Alanazi MT, Musa A. Theaflavin alleviates cisplatin-induced nephrotoxicity: Targeting SIRT1/p53/FOXO3a/Nrf2 signaling and the NF-kB inflammatory cascade. Food Chem Toxicol 2025; 198:115334. [PMID: 39978533 DOI: 10.1016/j.fct.2025.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Cisplatin is a widely used chemotherapeutic agent. Nevertheless, a significant fraction of cisplatin-treated patients develops nephrotoxicity which limits cisplatin therapeutic implementation. The current work was devoted to investigate the potential nephroprotective impact of theaflavin against the cisplatin-induced nephrotoxicity using male Wistar rats as a mammalian model. The results indicated that theaflavin significantly improved the renal histopathological picture and glomerular filtration rate, along with reduced renal injury marker KIM-1, urinary albumin/creatinine ratio, serum creatinine, and urea. Mechanistically, theaflavin upregulated protein level of SIRT1 and downregulated the acetylated forms of the inflammatory transcription factor (TF) NF-kB, the antioxidant TF FOXO3a, and the pro-apoptotic TF p53 in the cisplatin-treated rats. Additionally, it upregulated the antioxidant TF Nrf2. In the same context, it suppressed the inflammatory responses, oxidative stress, and apoptosis. NF-kB nuclear translocation and levels of its responsive gene products IL-6 and TNF-α were suppressed. Lipids and DNA oxidation were reduced, and level of the antioxidant GSH and activity of the antioxidant enzymes SOD, GPx, and CAT were increased. The apoptotic markers caspase-3, BAX, and Bcl2 were modulated. Collectively, these findings highlight the nephroprotective competency of theaflavin against cisplatin-induced nephrotoxicity and underscore modulations of SIRT1, p53, FOXO3a, Nrf2, and NF-kB as potential targets.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Musaad M Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Afnan Bakhsh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Najla M Aljehani
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 13316, Saudi Arabia
| | - Ebtisam Alanazi
- Cardiac Center King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Maha T Alanazi
- Medical Imaging, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| |
Collapse
|
6
|
Alshammari QA, Alshammari SO, Alshammari A, Alfarhan M, Baali FH. Unraveling the mechanisms of glioblastoma's resistance: investigating the influence of tumor suppressor p53 and non-coding RNAs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2569-2585. [PMID: 39476245 DOI: 10.1007/s00210-024-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma (GB) is one of the most fatal CNS malignancies, and its high resistance to therapy and poor outcomes have made it one of the primary challenges in oncology. Resistance to standard therapy, i.e., radio-chemotherapy with temozolomide, is one of the principal causes of the poor prognostic outcomes of GB. Finding the molecular basis of GB resistance to therapy is key to creating effective solution approaches. The general problem of GB resistance is supervised by cancer suppressive protein, p53, and has become a very special interest in molecular research in recent decades. The principal aim of this manuscript is to perform a comprehensive survey on the complex network of interactions developed by p53 with non-coding RNAs (ncRNA) in the context of GB resistance. The present article details the functional aspects of p53 as a cellular stress response protein, including its roles in apoptosis, cell cycle regulation, and DNA repair in glioblastoma (GB), along with the disruption of p53 and its involvement in chemoresistance (CR). It also highlights several classes of ncRNAs, namely microRNAs, long ncRNAs, and circular RNAs, that manipulate p53 signaling in GB-CR. The article likewise explains how disruption in the expression of these ncRNAs can promote GB-CR and how it interacts with essential cellular functions, such as proliferation, apoptosis, and DNA repair. The manuscript also describes the potential of targeting p53 and ncRNAs with their diagnostic and prognostic potential as novel promising therapeutics for GB. Nevertheless, ncRNA-based biomarkers still present challenges for their suitability in GB resistance. However, modern research continues to discover novel prediction targets, potentially enhancing patient outcomes and therapeutic options. Therefore, the neutralization of this intricate regulatory network of GB resistance might have a primary clinical effect in fighting GB resistance therapy and thus might lead to a substantial increase in patient survival and quality of life.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, College of Pharmacy, Northern Border University, 76321, Rafha, Saudi Arabia
| | - Abdulkarim Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Moaddey Alfarhan
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Jizan, Saudi Arabia
| | - Fahad Hassan Baali
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Mullick Chowdhury S, Hong F, Rolfo C, Li Z, He K, Wesolowski R, Mortazavi A, Meng L. CNPY2 in Solid Tumors: Mechanisms, Biomarker Potential, and Therapeutic Implications. BIOLOGY 2025; 14:214. [PMID: 40001982 PMCID: PMC11851889 DOI: 10.3390/biology14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Canopy FGF signaling regulator 2 (CNPY2) has emerged as a crucial player in cancer development by promoting cell proliferation, tissue repair, and angiogenesis. This review synthesizes the current understanding of CNPY2's role in solid tumors, particularly renal cell carcinoma, prostate cancer, hepatocellular carcinoma, and non-small-cell lung cancer. CNPY2 modulates key pathways such as p53, MYLIP, NF-κB, and AKT/GSK3β, thereby driving tumor growth and progression. In renal cell carcinoma, CNPY2 paradoxically promotes tumor growth through p53 upregulation, while in hepatocellular carcinoma, CNPY2 drives cell cycle progression via p53 destabilization. In prostate cancer, it enhances tumor progression by stabilizing androgen receptors through MYLIP interaction, and in non-small-cell lung cancer, it contributes to chemoresistance and metastasis through NF-κB and AKT/GSK3β signaling. Additionally, CNPY2 influences the tumor microenvironment, impacting immune function and metastatic potential. As a potential biomarker, CNPY2 shows promise for cancer detection and prognosis, particularly when used in combination with other markers. Early therapeutic strategies, including siRNA and miRNA approaches, are under exploration, though challenges remain due to CNPY2's expression in normal tissues and potential off-target effects. This review underscores the need for further research to fully elucidate CNPY2's oncogenic mechanisms and develop targeted therapies. Improved understanding of CNPY2's diverse roles may lead to novel diagnostic and therapeutic approaches in solid tumors.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Feng Hong
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Christian Rolfo
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| |
Collapse
|
8
|
Westerveld M, Besermenji K, Aidukas D, Ostrovitsa N, Petracca R. Cracking Lysine Crotonylation (Kcr): Enlightening a Promising Post-Translational Modification. Chembiochem 2025; 26:e202400639. [PMID: 39462860 PMCID: PMC11776371 DOI: 10.1002/cbic.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Lysine crotonylation (Kcr) is a recently discovered post-translational modification (PTM). Both histone and non-histone Kcr-proteins have been associated with numerous diseases including cancer, acute kidney injury, HIV latency, and cardiovascular disease. Histone Kcr enhances gene expression to a larger extend than the extensively studied lysine acetylation (Kac), suggesting Kcr as a novel potential therapeutic target. Although numerous scientific reports on crotonylation were published in the last years, relevant knowledge gaps concerning this PTM and its regulation still remain. To date, only few selective Kcr-interacting proteins have been identified and selective methods for the enrichment of Kcr-proteins in chemical proteomics analysis are still lacking. The development of new techniques to study this underexplored PTM could then clarify its function in health and disease and hopefully accelerate the development of new therapeutics for Kcr-related disease. Herein we briefly review what is known about the regulation mechanisms of Kcr and the current methods used to identify Kcr-proteins and their interacting partners. This report aims to highlight the significant potential of Kcr as a therapeutic target and to identify the existing scientific gaps that new research must address.
Collapse
Affiliation(s)
- Marinda Westerveld
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Kosta Besermenji
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - David Aidukas
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute (TBSI)Trinity College Dublin (TCD)152-160 Pearse St.DublinD02 R590Ireland
| | - Rita Petracca
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| |
Collapse
|
9
|
Dyson HJ, Wright PE. How does p53 work? Regulation by the intrinsically disordered domains. Trends Biochem Sci 2025; 50:9-17. [PMID: 39578215 PMCID: PMC11698644 DOI: 10.1016/j.tibs.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Defects in the tumor suppressor protein p53 are found in the majority of cancers. The p53 protein (393 amino acids long) contains the folded DNA-binding domain (DBD) and tetramerization domain (TET), with the remainder of the sequence being intrinsically disordered. Since cancer-causing mutations occur primarily in the DBD, this has been the focus of most of the research on p53. However, recent reports show that the disordered N-terminal activation domain (NTAD) and C-terminal regulatory domain (CTD) function synergistically with the DBD to regulate p53 activity. We propose a mechanistic model in which intermolecular and intramolecular interactions of the disordered regions, modulated by post-translational modifications, perform a central role in the regulation and activation of p53 in response to cellular stress.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Gong L, Xu D, Ni K, Li J, Mao W, Zhang B, Pu Z, Fang X, Yin Y, Ji L, Wang J, Hu Y, Meng J, Zhang R, Jiao J, Zou J. Smad1 Promotes Tumorigenicity and Chemoresistance of Glioblastoma by Sequestering p300 From p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402258. [PMID: 39629919 PMCID: PMC11789598 DOI: 10.1002/advs.202402258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Indexed: 01/30/2025]
Abstract
Acetylation is critically required for p53 activation, though it remains poorly understood how p53 acetylation is regulated in glioblastoma (GBM). This study reveals that p53 acetylation is a favorable prognostic marker for GBM, regardless of p53 status, and that Smad1, a key negative regulator of p53 acetylation, is involved in this process. Smad1 forms a complex with p53 and p300, inhibiting p300's interaction with p53 and leading to reduced p53 acetylation and increased Smad1 acetylation in GBM. This results in enhanced tumor growth and resistance to chemotherapy, particularly in tumors with missense mutant p53. Acetylation of K373 is found to be essential for Smad1's oncogenic function but does not confer chemoresistance in the absence of p53. Through molecular docking, it is discovered that Smad1 and p53 both interact with the acetyltransferase domain of p300, but at different amino acid sites. Disturbing the interface of Smad1 through amino acid mutations abolishes the Smad1-p300 complex and promotes p53 acetylation. Therefore, a small molecule is identified through virtual screening that specifically disrupts the Smad1-p300 interaction, offering a promising strategy for inhibiting GBM and increasing chemosensitivity by inhibiting Smad1 acetylation and restoring p53 acetylation.
Collapse
Affiliation(s)
- Lingli Gong
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Daxing Xu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Kaixiang Ni
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jie Li
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Wei Mao
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zhening Pu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jingjing Wang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jiao Meng
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
11
|
Grigoreva TA, Romanova AA, Tribulovich VG, Pestov NB, Oganov RA, Kovaleva DK, Korneenko TV, Barlev NA. p53: The Multifaceted Roles of Covalent Modifications in Cancer. Pharmaceuticals (Basel) 2024; 17:1682. [PMID: 39770524 PMCID: PMC11677429 DOI: 10.3390/ph17121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The p53 protein has attracted huge research interest over several decades due to its role as one of the most important tumor suppressors in mammals, which orchestrates a synchronous response from normal cells in the body to various forms of stress. The diverse cellular activities of the p53 protein are regulated mainly via its post-translational modifications (PTMs). PTMs affect p53 on several levels: at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes, at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes; at the level of proteolysis in the absence of stress; and on the contrary, at the level of augmented protein stability in response to stress signals. Disruptions in these regulatory mechanisms can lead to deviations from normal cellular function, boosting tumor initiation and progression. Conversely, targeted interventions in these pathways could prove beneficial for the development of antitumor therapies. Advancing our understanding of p53 modifiers and the proteins involved in its regulation equips researchers with an expanded toolkit for studying cellular processes and for developing biologically active molecules that influence p53-mediated responses.
Collapse
Affiliation(s)
- Tatiana A. Grigoreva
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Angelina A. Romanova
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Vyacheslav G. Tribulovich
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Ruslan A. Oganov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Diana K. Kovaleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Tatyana V. Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg 194064, Russia
- Department of Biomedicine, School of Medicine, Nazarbayev University, Astana 02000, Kazakhstan
| |
Collapse
|
12
|
WU S, LI Q, ZHU X, ZHANG T. 2-hydroxy-3-methyl anthraquinone promotes apoptosis and inhibits invasion of human hepatocellular carcinoma cells by targeting nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-1/cellular tumor antigen p53 signaling pathway. J TRADIT CHIN MED 2024; 44:1104-1110. [PMID: 39617695 PMCID: PMC11589549 DOI: 10.19852/j.cnki.jtcm.20230904.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/23/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the anti-liver cancer effect of 2-hydroxy-3-methyl anthraquinone (HMA) and the specific mechanism based on nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-1 (SIRT1)/cellular tumor antigen p53 (p53) pathway. METHODS Cell counting kit-8 method was used to observe the effect of HMA on the activity of human hepatocellular carcinoma cells (HepG2) cells. At 72 h and 80 μL HMA, the apoptosis rate of HepG2 cells in each group was measured by flow cytometry. Transwell was used to assay for cell invasion. The protein expression levels of SIRT1, p53, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), caspase-9 (CASP9) and caspase-3 (CASP3) were detected by Western Blot. RESULTS HMA significantly inhibited the proliferation of HepG2 cells, The half inhibiting concentration (IC50) of the HMA at 24, 48 and 72 h were examined and it were 126.3, 98.6, and 80.55 μM, respectively. Compared with the control group, the apoptosis rate of HMA, Selisistat (EX527), and HMA+ EX527 groups enhanced, while the apoptosis rate of SRT1720 diminished, demonstrating that inhibition of SIRT1 can lead to apoptosis of HepG2 cells. HMA+ EX527 group had the highest apoptosis rate, the lowest expression of SIRT1 and Bcl-2, and the highest expression of p53, Bax, CASP9 and CASP3. The number of invasions of HepG2 was significantly reduced after HMA and EX527 intervened. Western blot shows HMA could inhibit SIRT1, promote the expression of p53, and decrease the ratio of Bcl-2/Bax. CONCLUSIONS HMA induced apoptosis in HepG2 cells, while inhibiting proliferation and invasion. The mechanism of HMA against HCC may be related to the SIRT1/p53 pathway.
Collapse
Affiliation(s)
- Shuang WU
- 1 Clinical Laboratory, Affiliated Children Hospital of Xi’an Jiaotong University, Xian 710003, China
| | - Qiao LI
- 1 Clinical Laboratory, Affiliated Children Hospital of Xi’an Jiaotong University, Xian 710003, China
| | - Xieying ZHU
- 1 Clinical Laboratory, Affiliated Children Hospital of Xi’an Jiaotong University, Xian 710003, China
| | - Taoyuan ZHANG
- 2 Department of Anesthesiology, Rizhao International Heart Hospital, Rizhao 276800, China
| |
Collapse
|
13
|
Pathikonda S, Amirmahani F, Mathew D, Muthukrishnan SD. Histone acetyltransferases as promising therapeutic targets in glioblastoma resistance. Cancer Lett 2024; 604:217269. [PMID: 39326554 DOI: 10.1016/j.canlet.2024.217269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is a fatal adult brain tumor with an extremely poor prognosis. GBM poses significant challenges for targeted therapies due to its intra- and inter-tumoral heterogeneity, a highly immunosuppressive microenvironment, diffuse infiltration into normal brain parenchyma, protection by the blood-brain barrier and acquisition of therapeutic resistance. Recent studies have implicated epigenetic modifiers as key players driving tumorigenesis, resistance, and progression of GBM. While the vast majority of GBM research on epigenetic modifiers thus far has focused predominantly on elucidating the functional roles and targeting of DNA methyltransferases and histone deacetylases, emerging evidence indicates that histone acetyltransferases (HATs) also play a key role in mediating plasticity and therapeutic resistance in GBM. Here, we will provide an overview of HATs, their dual roles and functions in cancer as both tumor suppressors and oncogenes and focus specifically on their implications in GBM resistance. We also discuss the technical challenges in developing selective HAT inhibitors and highlight their promise as potential anti-cancer therapeutics for treating intractable cancers such as GBM.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Farzaneh Amirmahani
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Diya Mathew
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Sree Deepthi Muthukrishnan
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| |
Collapse
|
14
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
15
|
Gharib A, Marquez C, Meseguer-Beltran M, Sanchez-Sarasua S, Sanchez-Perez AM. Abscisic acid, an evolutionary conserved hormone: Biosynthesis, therapeutic and diagnostic applications in mammals. Biochem Pharmacol 2024; 229:116521. [PMID: 39251140 DOI: 10.1016/j.bcp.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Abscisic acid (ABA), a phytohormone traditionally recognized for its role in plant stress responses, has recently emerged as a significant player in mammalian defense mechanisms. Like plants, various mammalian cell types synthesize ABA in response to specific health challenges, although the precise pathways remain not fully elucidated. ABA is associated with the regulation of inflammation and insulin signaling, prompting extensive research into its potential as a therapeutic agent for various diseases. ABA exerts its effects through its receptors, particularly PPAR-γ and LANCL-2, which serve as signaling hubs regulating numerous pathways. Through these interactions, ABA profoundly impacts mammalian health, and new ABA targets continue to be identified. Numerous studies in animal models demonstrate ABA's benefit in managing conditions such as neurological and psychiatric disorders, cancer, and malaria infections, all of which involve significant inflammatory dysregulation. In this manuscript we review the studies covering ABA synthesis and release in cell cultures, the signaling pathways regulated by ABA, and how these impact health in preclinical models. Furthermore, we highlight recent research suggesting that measuring ABA levels in human body fluids could serve as a useful biomarker for pathological conditions, providing insights into disease progression and treatment efficacy. This comprehensive review outlines the current understanding of ABA in mammalian pathophysiology, identifying gaps in knowledge, particularly concerning ABA biosynthesis and metabolism in mammals. In addition, this study emphasizes the need for clinical trials to validate the effectiveness of ABA-based therapies and its reliability as a biomarker for various diseases.
Collapse
Affiliation(s)
- Amir Gharib
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Carlee Marquez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Maria Meseguer-Beltran
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Sandra Sanchez-Sarasua
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; CNRS UMR 5293, Institut Des Maladies Neurodégénératives, Centre Paul Broca-Nouvelle Aquitaine, University of Bordeaux, Bordeaux, France.
| | - Ana M Sanchez-Perez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain.
| |
Collapse
|
16
|
Lu D, Faizi M, Drown B, Simerzin A, François J, Bradshaw G, Kelleher N, Jambhekar A, Gunawardena J, Lahav G. Temporal regulation of gene expression through integration of p53 dynamics and modifications. SCIENCE ADVANCES 2024; 10:eadp2229. [PMID: 39454005 PMCID: PMC11506164 DOI: 10.1126/sciadv.adp2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The master regulator of the DNA damage response, the transcription factor p53, orchestrates multiple downstream responses and coordinates repair processes. In response to double-strand DNA breaks, p53 exhibits pulses of expression, but how it achieves temporal coordination of downstream responses remains unclear. Here, we show that p53's posttranslational modification state is altered between its first and second pulses of expression. We show that acetylations at two sites, K373 and K382, were reduced in the second pulse, and these acetylations differentially affected p53 target genes, resulting in changes in gene expression programs over time. This interplay between dynamics and modification may offer a strategy for cellular hubs like p53 to temporally organize multiple processes in individual cells.
Collapse
Affiliation(s)
- Dan Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Marjan Faizi
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Bryon Drown
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Alina Simerzin
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joshua François
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Neil Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Zhu L, Liu YP, Huang YT, Zhou ZJ, Liu JF, Yu LM, Wang HS. Cellular and molecular biology of posttranslational modifications in cardiovascular disease. Biomed Pharmacother 2024; 179:117374. [PMID: 39217836 DOI: 10.1016/j.biopha.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) has now become the leading cause of death worldwide, and its high morbidity and mortality rates pose a great threat to society. Although numerous studies have reported the pathophysiology of CVD, the exact pathogenesis of all types of CVD is not fully understood. Therefore, much more research is still needed to explore the pathogenesis of CVD. With the development of proteomics, many studies have successfully identified the role of posttranslational modifications in the pathogenesis of CVD, including key processes such as apoptosis, cell metabolism, and oxidative stress. In this review, we summarize the progress in the understanding of posttranslational modifications in cardiovascular diseases, including novel protein posttranslational modifications such as succinylation and nitrosylation. Furthermore, we summarize the currently identified histone deacetylase (HDAC) inhibitors used to treat CVD, providing new perspectives on CVD treatment modalities. We critically analyze the roles of posttranslational modifications in the pathogenesis of CVD-related diseases and explore future research directions related to posttranslational modifications in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zi-Jun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| | - Hui-Shan Wang
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| |
Collapse
|
18
|
Shenk T, Kulp III JL, Chiang LW. Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity. Pharmaceuticals (Basel) 2024; 17:1298. [PMID: 39458938 PMCID: PMC11510315 DOI: 10.3390/ph17101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
Direct-acting anti-infective drugs target pathogen-coded gene products and are a highly successful therapeutic paradigm. However, they generally target a single pathogen or family of pathogens, and the targeted organisms can readily evolve resistance. Host-targeted agents can overcome these limitations. One family of host-targeted, anti-infective agents modulate human sirtuin 2 (SIRT2) enzyme activity. SIRT2 is one of seven human sirtuins, a family of NAD+-dependent protein deacylases. It is the only sirtuin that is found predominantly in the cytoplasm. Multiple, structurally distinct SIRT2-targeted, small molecules have been shown to inhibit the replication of both RNA and DNA viruses, as well as intracellular bacterial pathogens, in cell culture and in animal models of disease. Biochemical and X-ray structural studies indicate that most, and probably all, of these compounds act as allosteric modulators. These compounds appear to impact the replication cycles of intracellular pathogens at multiple levels to antagonize their replication and spread. Here, we review SIRT2 modulators reported to exhibit anti-infective activity, exploring their pharmacological action as anti-infectives and identifying questions in need of additional study as this family of anti-infective agents advances to the clinic.
Collapse
Affiliation(s)
- Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L. Kulp III
- Conifer Point Pharmaceuticals, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| | - Lillian W. Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| |
Collapse
|
19
|
Chen LY, Singha Roy SJ, Jadhav AM, Wang WW, Chen PH, Bishop T, Erb MA, Parker CG. Functional Investigations of p53 Acetylation Enabled by Heterobifunctional Molecules. ACS Chem Biol 2024; 19:1918-1929. [PMID: 39250704 PMCID: PMC11421428 DOI: 10.1021/acschembio.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation. We recently developed a heterobifunctional small molecule system, AceTAG, to direct the acetyltransferase p300/CBP for targeted protein acetylation in cells. Here, we expand AceTAG to leverage the acetyltransferase PCAF/GCN5 and apply these tools to investigate the functional consequences of targeted p53 acetylation in human cancer cells. We demonstrate that the recruitment of p300/CBP or PCAF/GCN5 to p53 results in distinct acetylation events and differentiated transcriptional activities. Further, we show that chemically induced acetylation of multiple hotspot p53 mutants results in increased stabilization and enhancement of transcriptional activity. Collectively, these studies demonstrate the utility of AceTAG for functional investigations of protein acetylation.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Soumya Jyoti Singha Roy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wesley W. Wang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
21
|
Verdina A, Garufi A, D’Orazi V, D’Orazi G. HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies. Int J Mol Sci 2024; 25:7678. [PMID: 39062921 PMCID: PMC11277226 DOI: 10.3390/ijms25147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a "bona fide" oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor-host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
22
|
Tompa M, Galik B, Urban P, Kajtar BI, Kraboth Z, Gyenesei A, Miseta A, Kalman B. On the Boundary of Exploratory Genomics and Translation in Sequential Glioblastoma. Int J Mol Sci 2024; 25:7564. [PMID: 39062807 PMCID: PMC11277311 DOI: 10.3390/ijms25147564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
OMICS methods brought significant advancements to the understanding of tumor cell biology, which transformed the treatment and prognosis of several cancers. Clinical practice and outcomes, however, changed significantly less in the case of glioblastoma (GBM). In this study, we aimed to assess the utility of whole exome (WES) sequencing in the clinical setting. Ten pairs of formalin-fixed, paraffin-embedded (FFPE) GBM specimens were obtained at onset (GBM-P) and at recurrence (GBM-R). Histopathological and molecular features of all samples supported the diagnosis of GBM based on WHO CNS5. WES data were filtered, applying a strict and custom-made pipeline, and occurrence of oncogenic and likely oncogenic variants in GBM-P, GBM-R or both were identified by using the VarSeq program version 2.5.0 (Golden Helix, Inc.). Characteristics and recurrence of the variants were analyzed in our own cohort and were also compared to those available in the COSMIC database. The lists of oncogenic and likely oncogenic variants corresponded to those identified in other studies. The average number of these variants were 4 and 5 out of all detected 24 and 34 variants in GBM-P and GBM-R samples, respectively. On average, one shared oncogenic/likely oncogenic variant was found in the pairs. We assessed the identified variants' therapeutic significance, also taking into consideration the guidelines by the Association for Molecular Pathology (AMP). Our data support that a thorough WES analysis is suitable for identifying oncogenic and likely oncogenic variants in an individual clinical sample or a small cohort of FFPE glioma specimens, which concur with those of comprehensive research studies. Such analyses also allow us to monitor molecular dynamics of sequential GBM. In addition, careful evaluation of data according to the AMP guideline reveal that though therapeutic applicability of the variants is generally limited in the clinic, such information may be valuable in selected cases, and can support innovative preclinical and clinical trials.
Collapse
Affiliation(s)
- Marton Tompa
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
- Department of Molecular Medicine, Markusovszky University Teaching Hospital, 5. Markusovszky Street, 9700 Szombathely, Hungary
| | - Bence Galik
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
| | - Peter Urban
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
| | - Bela Istvan Kajtar
- Department of Pathology, School of Medicine, University of Pecs, 12. Szigeti Street, 7624 Pecs, Hungary; (B.I.K.); (Z.K.)
| | - Zoltan Kraboth
- Department of Pathology, School of Medicine, University of Pecs, 12. Szigeti Street, 7624 Pecs, Hungary; (B.I.K.); (Z.K.)
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
| | - Attila Miseta
- Office of the Dean, School of Medicine, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary;
| | - Bernadette Kalman
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
- Department of Molecular Medicine, Markusovszky University Teaching Hospital, 5. Markusovszky Street, 9700 Szombathely, Hungary
- Office of the Dean, School of Medicine, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary;
| |
Collapse
|
23
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
24
|
Kim G, Bhattarai PY, Lim SC, Lee KY, Choi HS. Sirtuin 5-mediated deacetylation of TAZ at K54 promotes melanoma development. Cell Oncol (Dordr) 2024; 47:967-985. [PMID: 38112979 DOI: 10.1007/s13402-023-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE Nuclear accumulation of YAP/TAZ promotes tumorigenesis in several cancers, including melanoma. Although the mechanisms underlying the nuclear retention of YAP are known, those underlying the retention of TAZ remain unclear. Our study investigates a novel acetylation/deacetylation switch in TAZ, governing its subcellular localization in melanoma tumorigenesis. METHODS Immunoprecipitation/Western blot assessed TAZ protein interactions and acetylation. SIRT5 activity was quantified with enzyme-linked immunosorbent assay. Immunofluorescence indicated TAZ nuclear localization. TEAD transcriptional activity was measured through luciferase reporter assays. ChIP detected TAZ binding to the CTGF promoter. Transwell and wound healing assays quantified melanoma cell invasiveness and migration. Metastasis was evaluated using a mouse model via tail vein injections. Clinical relevance was explored via immunohistochemical staining of patient tumors. RESULTS CBP facilitated TAZ acetylation at K54 in response to epidermal growth factor stimulation, while SIRT5 mediated deacetylation. Acetylation correlated with phosphorylation, regulating TAZ's binding with LATS2 or TEAD. TAZ K54 acetylation enhanced its S89 phosphorylation, promoting cytosolic retention via LATS2 interaction. SIRT5-mediated deacetylation enhanced TAZ-TEAD interaction and nuclear retention. Chromatin IP showed SIRT5-deacetylated TAZ recruited to CTGF promoter, boosting transcriptional activity. In a mouse model, SIRT5 overexpression induced melanoma metastasis to lung tissue following the injection of B16F10 melanocytes via the tail vein, and this effect was prevented by verteporfin treatment. CONCLUSIONS Our study revealed a novel mechanism of TAZ nuclear retention regulated by SIRT5-mediated K54 deacetylation and demonstrated the significance of TAZ deacetylation in CTGF expression. This study highlights the potential implications of the SIRT5/TAZ axis for treating metastatic melanoma.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Poshan Yugal Bhattarai
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
25
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
26
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
27
|
Naik L, Patel S, Kumar A, Ghosh A, Mishra A, Das M, Nayak DK, Saha S, Mishra A, Singh R, Behura A, Dhiman R. 4-(Benzyloxy)phenol-induced p53 exhibits antimycobacterial response triggering phagosome-lysosome fusion through ROS-dependent intracellular Ca 2+ pathway in THP-1 cells. Microbiol Res 2024; 282:127664. [PMID: 38422860 DOI: 10.1016/j.micres.2024.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 μM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.
Collapse
Affiliation(s)
- Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abhirupa Ghosh
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudipto Saha
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurugram Expressway, 3rd Milestone, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
28
|
Basha NJ, Mohan RM. Insight on Heterocycles as p53‐MDM2 Protein‐Protein Interaction Inhibitors: Molecular Mechanism for p53 Activation. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 01/03/2025]
Abstract
AbstractTranscription factor p53, also known as tumor suppressor protein. Encoded by the TP53 gene, the guardian of genome p53 regulates many gene pathways. Nevertheless, the molecular mechanisms of p53 functioning have been known for a few decades, and the exact role of p53 in cancer therapy is unclear. Also, comprehensive literature on heterocycles as p53‐MDM2 protein‐protein interaction inhibitors is limited. This review covers the molecular mechanism for the p53‐MDM2 interaction and its inhibition by the heterocyclic small molecules. We hope the present comprehensive study will help to develop heterocycles as anticancer drugs that induce apoptosis in tumor cells.
Collapse
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| | - R. M. Mohan
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| |
Collapse
|
29
|
Li HW, Zhang HH. The Protein Acetylation after Traumatic Spinal Cord Injury: Mechanisms and Therapeutic Opportunities. Int J Med Sci 2024; 21:725-731. [PMID: 38464830 PMCID: PMC10920853 DOI: 10.7150/ijms.92222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.
Collapse
Affiliation(s)
| | - Hai-hong Zhang
- Department of Spine Surgery, Lanzhou University Second Hospital; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
30
|
Rani N, Sahu M, Ambasta RK, Kumar P. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases. Ageing Res Rev 2024; 94:102174. [PMID: 38135008 DOI: 10.1016/j.arr.2023.102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, present challenges in healthcare because of their complicated etiologies and absence of healing remedies. Lately, the emerging role of post-translational modifications (PTMs), in the context of cell cycle regulators, has garnered big interest as a potential avenue for therapeutic intervention. The review explores the problematic panorama of PTMs on cell cycle regulators and their implications in neurodegenerative diseases. We delve into the dynamic phosphorylation, acetylation, ubiquitination, SUMOylation, Glycation, and Neddylation that modulate the key cell cycle regulators, consisting of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors. The dysregulation of these PTMs is related to aberrant cell cycle in neurons, which is one of the factors involved in neurodegenerative pathologies. Moreover, the effect of exogenous activation of CDKs and CDK inhibitors through PTMs on the signaling cascade was studied in postmitotic conditions of NDDs. Furthermore, the therapeutic implications of CDK inhibitors and associated alteration in PTMs were discussed. Lastly, we explored the putative mechanism of PTMs to restore normal neuronal function that might reverse NDDs.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042.
| |
Collapse
|
31
|
Najjar RS, Roy RK, Stern JE, Feresin RG. Raspberry polyphenols target molecular pathways of heart failure. J Nutr Biochem 2024; 124:109535. [PMID: 37984734 DOI: 10.1016/j.jnutbio.2023.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Approximately 650,000 new cases of heart failure (HF) are diagnosed annually with a 50% five-year mortality rate. HF is characterized by reduced left ventricular (LV) ejection fraction and hypertrophy of the LV wall. The pathophysiological remodeling of the heart is mediated by increased oxidative stress and inflammation. Raspberries are rich in polyphenols which may favorably impact enzymes involved in redox homeostasis while also targeting inflammatory signaling. Thus, the objective of this study was to investigate whether raspberry polyphenols could attenuate HF. Sprague Dawley rats consumed a 10% (w/w) raspberry diet for 7 weeks. At week 3, HF was surgically induced via coronary artery ligation. Hemodynamics and morphology of the heart were assessed. Expression of cardiac proteins involved in oxidative stress, inflammation, apoptosis, and remodeling were examined, and histological analysis was conducted. Additionally, human cardiomyocytes were treated with raspberry polyphenol extract (RBPE) followed by CoCl2 to chemically induce hypoxia. Redox status, apoptosis, and mitochondrial dysfunction were measured. Raspberries attenuated reductions in cardiac function and reduced morphological changes which coincided with reduced toll-like receptor (TLR)4 signaling. Reductions in oxidative stress, apoptosis, and remodeling occurred in vivo. Incubation of cardiomyocytes with RBPE attenuated CoCl2-induced oxidative stress and apoptosis despite pronounced hypoxia-inducible factor (HIF)-1α expression. These data indicate that consumption of raspberries can reduce the underlying molecular drivers of HF; thus, leading to the observed improvements in cardiac functional capacity and morphology. This dietary strategy may be an effective alternative strategy for treating HF. However, further investigation into alternative models of HF is warranted.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA; Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Ranjan K Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Department of Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Department of Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA; Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Department of Neuroscience, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
32
|
Ionescu CM, Jones MA, Wagle SR, Kovacevic B, Foster T, Mikov M, Mooranian A, Al-Salami H. Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review. Curr Drug Targets 2024; 25:158-170. [PMID: 38192136 DOI: 10.2174/0113894501278292231223035733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6009, Western Australia, Australia
| |
Collapse
|
33
|
Wu YQ, Zhang CS, Xiong J, Cai DQ, Wang CZ, Wang Y, Liu YH, Wang Y, Li Y, Wu J, Wu J, Lan B, Wang X, Chen S, Cao X, Wei X, Hu HH, Guo H, Yu Y, Ghafoor A, Xie C, Wu Y, Xu Z, Zhang C, Zhu M, Huang X, Sun X, Lin SY, Piao HL, Zhou J, Lin SC. Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate. Cell Res 2023; 33:835-850. [PMID: 37726403 PMCID: PMC10624847 DOI: 10.1038/s41422-023-00874-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.
Collapse
Affiliation(s)
- Yu-Qing Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dong-Qi Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Zhe Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yiming Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Xuefeng Wang
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Siwei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xianglei Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui-Hui Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
34
|
Pienkowski T, Kowalczyk T, Cysewski D, Kretowski A, Ciborowski M. Glioma and post-translational modifications: A complex relationship. Biochim Biophys Acta Rev Cancer 2023; 1878:189009. [PMID: 37913943 DOI: 10.1016/j.bbcan.2023.189009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Post-translational modifications (PTMs) are common covalent processes in biochemical pathways that alter protein function and activity. These modifications occur through proteolytic cleavage or attachment of modifying groups, such as phosphoryl, methyl, glycosyl, or acetyl groups, with one or more amino acid residues of a single protein. Some PTMs also present crosstalk abilities that affect both protein functionality and structure, creating new proteoforms. Any alteration in organism homeostasis may be a cancer hallmark. Cataloging PTMs and consequently, emerging proteoforms, present new therapeutic targets, approaches, and opportunities to discover additional discriminatory biomarkers in disease diagnostics. In this review, we focus on experimentally confirmed PTMs and their potential crosstalk in glioma research to introduce new opportunities for this tumor type, which emerge within the PTMomics area.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| |
Collapse
|
35
|
Hu J, Leisegang MS, Looso M, Drekolia MK, Wittig J, Mettner J, Karantanou C, Kyselova A, Dumbovic G, Li X, Li Y, Guenther S, John D, Siragusa M, Zukunft S, Oo JA, Wittig I, Hille S, Weigert A, Knapp S, Brandes RP, Müller OJ, Papapetropoulos A, Sigala F, Dobreva G, Kojonazarov B, Fleming I, Bibli SI. Disrupted Binding of Cystathionine γ-Lyase to p53 Promotes Endothelial Senescence. Circ Res 2023; 133:842-857. [PMID: 37800327 DOI: 10.1161/circresaha.123.323084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.
Collapse
Affiliation(s)
- Jiong Hu
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Looso
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Maria-Kyriaki Drekolia
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Mettner
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christina Karantanou
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gabrjela Dumbovic
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.D.)
| | - Xiaoming Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yuanyuan Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan Guenther
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - David John
- Institute of Cardiovascular Regeneration (D.J.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Functional Proteomics, Institute for Cardiovascular Physiology (I.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
| | - Andreas Weigert
- Institute of Biochemistry I (A.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (F.S.), National and Kapodistrian University of Athens, Greece
| | - Gergana Dobreva
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (G.D.)
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH) (B.K.), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI) (B.K.), Justus Liebig University, Giessen, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| |
Collapse
|
36
|
Yu L, Qiu W, Gao Y, Sun M, Chen L, Cui Z, Zhu D, Guo P, Tang H, Luo H. JNK1 activated pRb/E2F1 and inhibited p53/p21 signaling pathway is involved in hydroquinone-induced pathway malignant transformation of TK6 cells by accelerating the cell cycle progression. ENVIRONMENTAL TOXICOLOGY 2023; 38:2344-2351. [PMID: 37347496 DOI: 10.1002/tox.23870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Hydroquinone (HQ) is an important metabolites of benzene in the body, and it has been found to result in cellular DNA damage, mutation, cell cycle imbalance, and malignant transformation. The JNK1 signaling pathway plays an important role in DNA damage repair. In this study, we focused on whether the JNK1 signaling pathway is involved in the HQ-induced cell cycle abnormalities and the underlying mechanism. The results showed that HQ induced abnormal progression of the cell cycle and initiated the JNK1 signaling pathway. We further confirmed that JNK1 suppression decelerated the cell cycle progression through inhibiting pRb/E2F1 signaling pathway and triggering p53/p21 pathway. Therefore, we concluded that JNK1 might be involved in HQ-induced malignant transformation associated with activating pRb/E2F1 and inhibiting p53/p21 signaling pathway which resulting in accelerating the cell cycle progression.
Collapse
Affiliation(s)
- Lingxue Yu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Gao
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingwei Sun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- Faculty of Medicine, Macau University of Science and Technology, Macao, China
| | - Lin Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Delong Zhu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Pu Guo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
37
|
Voigt E, Quelle DE. FOXM1, MEK, and CDK4/6: New Targets for Malignant Peripheral Nerve Sheath Tumor Therapy. Int J Mol Sci 2023; 24:13596. [PMID: 37686402 PMCID: PMC10487994 DOI: 10.3390/ijms241713596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are deadly sarcomas, which desperately need effective therapies. Half of all MPNSTs arise in patients with neurofibromatosis type I (NF1), a common inherited disease. NF1 patients can develop benign lesions called plexiform neurofibromas (PNFs), often in adolescence, and over time, some PNFs, but not all, will transform into MPNSTs. A deeper understanding of the molecular and genetic alterations driving PNF-MPNST transformation will guide development of more targeted and effective treatments for these patients. This review focuses on an oncogenic transcription factor, FOXM1, which is a powerful oncogene in other cancers but little studied in MPNSTs. Elevated expression of FOXM1 was seen in patient MPNSTs and correlated with poor survival, but otherwise, its role in the disease is unknown. We discuss what is known about FOXM1 in MPNSTs relative to other cancers and how FOXM1 may be regulated by and/or regulate the most commonly altered players in MPNSTs, particularly in the MEK and CDK4/6 kinase pathways. We conclude by considering FOXM1, MEK, and CDK4/6 as new, clinically relevant targets for MPNST therapy.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Jang SY, Kim J, Hong E, Lee K, Na Y, Yeom CH, Park S. Curcumin inhibits human cancer cell growth and migration through downregulation of SVCT2. Cell Biochem Funct 2023; 41:696-703. [PMID: 37322603 DOI: 10.1002/cbf.3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Curcumin is a natural polyphenol that is extracted from the rhizomes of the turmeric plant (Curcuma longa), a member of the ginger family. It has been used for centuries in traditional Indian and Chinese medicine for its medicinal properties, including anti-inflammatory, antioxidant and antitumor effects. SVCT2 (Solute Carrier Family 23 Member 2, also known as SLC23A2) is a protein that plays a role in the transport of Vitamin C (Ascorbic Acid) into cells. SVCT2 plays an important role in tumor progression and metastasis, however, the molecular mechanisms of curcumin on SVCT2 have not been studied to date. Curcumin treatment inhibited proliferation and migration of cancer cells in a dose dependent manner. We found that curcumin reduced the expression of SVCT2 in cancer cells with a wild type p53, but not in those with a mutant type of p53. SVCT2 downregulation also reduced the MMP2 activity. Taken together, our results indicate that curcumin inhibited human cancer cell growth and migration by regulating SVCT2 through a downregulating p53. These findings provide new insights into the molecular mechanisms of curcumin's anticancer effects and potential therapeutic strategies for the treatment of metastatic migration.
Collapse
Affiliation(s)
- Soon Young Jang
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
- Rappeler Company, Anyang, Gyeonggi-do, Korea
| | - Jiyun Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Eunbi Hong
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Kyuri Lee
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Yuran Na
- Rappeler Company, Anyang, Gyeonggi-do, Korea
| | | | - Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
39
|
Xu D, Qian W, Yang Z, Zhang Z, Sun P, Wan Q, Yin Y, Hu Y, Gong L, Zhang B, Yang X, Pu Z, Lu P, Zou J. Acetylation halts missense mutant p53 aggregation and rescues tumor suppression in non-small cell lung cancers. iScience 2023; 26:107003. [PMID: 37534137 PMCID: PMC10391690 DOI: 10.1016/j.isci.2023.107003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
TP53 mutations are ubiquitous with tumorigenesis in non-small cell lung cancers (NSCLC). By analyzing the TCGA database, we reported that TP53 missense mutations are correlated with chromosomal instability and tumor mutation burden in NSCLC. The inability of wild-type nor mutant p53 expression can't predict survival in lung cancer cohorts, however, an examination of primary NSCLC tissues found that acetylated p53 did yield an association with improved survival outcomes. Molecularly, we demonstrated that acetylation drove the ubiquitination and degradation of mutant p53 but enhanced stability of wild-type p53. Moreover, acetylation of a missense p53 mutation prevented the gain of oncogenic function observed in typical TP53 mutant-expressing cells and enhanced tumor suppressor functions. Consequently, acetylation inducer targeting of missense mutant p53 may be a viable therapeutic goal for NSCLC treatment and may improve the accuracy of current efforts to utilize p53 mutations in a prognostic manner.
Collapse
Affiliation(s)
- Daxing Xu
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Wei Qian
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhenhao Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi, Jiangsu 214023, China
| | - Quan Wan
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214023, China
| | - Ying Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yaling Hu
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Lingli Gong
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Bo Zhang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xusheng Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhening Pu
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Peihua Lu
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Department of Medical Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| |
Collapse
|
40
|
Mitobe Y, Suzuki S, Nakagawa-Saito Y, Togashi K, Sugai A, Sonoda Y, Kitanaka C, Okada M. The Novel MDM4 Inhibitor CEP-1347 Activates the p53 Pathway and Blocks Malignant Meningioma Growth In Vitro and In Vivo. Biomedicines 2023; 11:1967. [PMID: 37509605 PMCID: PMC10377688 DOI: 10.3390/biomedicines11071967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this study, we aimed to determine the in vitro and in vivo effects of CEP-1347, a small-molecule inhibitor of MDM4 with known safety in humans. The effects of CEP-1347 and MDM4 knockdown on the p53 pathway in human meningioma cell lines with and without p53 mutation were examined by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 were examined in vitro and in a mouse xenograft model of meningioma. In vitro, CEP-1347 at clinically relevant concentrations inhibited MDM4 expression, activated the p53 pathway in malignant meningioma cells with wild-type p53, and exhibited preferential growth inhibitory effects on cells expressing wild-type p53, which was mostly mimicked by MDM4 knockdown. CEP-1347 effectively inhibited the growth of malignant meningioma xenografts at a dose that was far lower than the maximum dose that could be safely given to humans. Our findings suggest targeting the p53 pathway with CEP-1347 represents a novel and viable approach to treating aggressive meningiomas.
Collapse
Affiliation(s)
- Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| |
Collapse
|
41
|
Wen J, Yao H, Cao Z, Wang D. Alternatively mechanistic insights into acetylation in p53-mediated transcriptional regulation of cancer cell-intrinsic PD-1. FUNDAMENTAL RESEARCH 2023; 3:647-654. [PMID: 38933547 PMCID: PMC11197762 DOI: 10.1016/j.fmre.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
Since the recent discovery of cancer cell-intrinsic programmed cell death protein-1 (PD-1), the mechanisms that manipulate PD-1 functions in tumor development beyond its immune checkpoint roles have become attractive research topics in oncology. Our previous study validated that PD-1 exists in lung cancer cells and is directly transactivated by p53 in a DNA-binding domain (DBD) acetylation-dependent manner. Here, we report that the carboxyl-terminal domain (CTD) of p53 likewise participates in PD-1 transcriptional regulation in cancer cells under different regulatory mechanisms. By mutating the lysine residues within the CTD to mimic either acetylation-deficient or fully acetylated status, we proved that acetylated CTD dramatically impeded p53-mediated transactivation of PD-1. Furthermore, we identified bromodomain-containing protein 4 (BRD4) as a transcriptional coactivator of p53 that facilitates p53-mediated PD-1 transcription. Mechanistically, BRD4 specifically bound to the unacetylated CTD of p53, while CTD acetylation almost completely destroyed the BRD4-p53 interaction and thus led to compromised PD-1 expression. Collectively, this study unveils an alternative mechanism of p53 acetylation-directed PD-1 transcriptional regulation, which would broaden our current understanding of the molecular regulatory network of cancer cell-intrinsic PD-1.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhijie Cao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
42
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
43
|
Zhen AX, Piao MJ, Kang KA, Fernando PDSM, Herath HMUL, Cho SJ, Hyun JW. 3-Bromo-4,5-dihydroxybenzaldehyde Protects Keratinocytes from Particulate Matter 2.5-Induced Damages. Antioxidants (Basel) 2023; 12:1307. [PMID: 37372037 DOI: 10.3390/antiox12061307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence can be activated by several stimuli, including ultraviolet radiation and air pollutants. This study aimed to evaluate the protective effect of marine algae compound 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on particulate matter 2.5 (PM2.5)-induced skin cell damage in vitro and in vivo. The human HaCaT keratinocyte was pre-treated with 3-BDB and then with PM2.5. PM2.5-induced reactive oxygen species (ROS) generation, lipid peroxidation, mitochondrial dysfunction, DNA damage, cell cycle arrest, apoptotic protein expression, and cellular senescence were measured using confocal microscopy, flow cytometry, and Western blot. The present study exhibited PM2.5-generated ROS, DNA damage, inflammation, and senescence. However, 3-BDB ameliorated PM2.5-induced ROS generation, mitochondria dysfunction, and DNA damage. Furthermore, 3-BDB reversed the PM2.5-induced cell cycle arrest and apoptosis, reduced cellular inflammation, and mitigated cellular senescence in vitro and in vivo. Moreover, the mitogen-activated protein kinase signaling pathway and activator protein 1 activated by PM2.5 were inhibited by 3-BDB. Thus, 3-BDB suppressed skin damage induced by PM2.5.
Collapse
Affiliation(s)
- Ao-Xuan Zhen
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei-Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung-Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Suk-Ju Cho
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin-Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
44
|
Yang F, Mahaman YAR, Zhang B, Wang JZ, Liu R, Liu F, Wang X. C9orf72 poly-PR helps p53 escape from the ubiquitin-proteasome system and promotes its stability. J Neurochem 2023. [PMID: 37319115 DOI: 10.1111/jnc.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
C9orf72-derived dipeptide repeats (DPRs) proteins have been regarded as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). As the most toxic DPRs in C9-ALS/FTD, poly-proline-arginine (poly-PR) is associated with the stability and accumulation of p53, which consequently induces neurodegeneration. However, the exact molecular mechanism via which C9orf72 poly-PR stabilizes p53 remains unclear. In this study, we showed that C9orf72 poly-PR induces not only neuronal damage but also p53 accumulation and p53 downstream gene activation in primary neurons. C9orf72 (PR)50 also slows down p53 protein turnover without affecting the p53 transcription level and thus promotes its stability in N2a cells. Interestingly, the ubiquitin-proteasome system but not the autophagy function was impaired in (PR)50 transfected N2a cells, resulting in defective p53 degradation. Moreover, we found that (PR)50 induces mdm2 mistranslocation from the nucleus to the cytoplasm and competitively binds to p53, reducing mdm2-p53 interactions in the nucleus in two different (PR)50 transfected cells. Our data strongly indicate that (PR)50 reduces mdm2-p53 interactions and causes p53 to escape from the ubiquitin-proteasome system, promoting its stability and accumulation. Inhibiting or at least downregulating (PR)50 binding with p53 may be therapeutically exploited for the treatment of C9-ALS/FTD.
Collapse
Affiliation(s)
- Fumin Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
45
|
Batsukh S, Oh S, Rheu K, Lee BJ, Choi CH, Son KH, Byun K. Rice Germ Attenuates Chronic Unpredictable Mild Stress-Induced Muscle Atrophy. Nutrients 2023; 15:2719. [PMID: 37375622 DOI: 10.3390/nu15122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic stress leads to hypothalamic-pituitary-adrenal axis dysfunction, increasing cortisol levels. Glucocorticoids (GCs) promote muscle degradation and inhibit muscle synthesis, eventually causing muscle atrophy. In this study, we aimed to evaluate whether rice germ supplemented with 30% γ-aminobutyric acid (RG) attenuates muscle atrophy in an animal model of chronic unpredictable mild stress (CUMS). We observed that CUMS raised the adrenal gland weight and serum adrenocorticotropic hormone (ACTH) and cortisol levels, and these effects were reversed by RG. CUMS also enhanced the expression of the GC receptor (GR) and GC-GR binding in the gastrocnemius muscle, which were attenuated by RG. The expression levels of muscle degradation-related signaling pathways, such as the Klf15, Redd-1, FoxO3a, Atrogin-1, and MuRF1 pathways, were enhanced by CUMS and attenuated by RG. Muscle synthesis-related signaling pathways, such as the IGF-1/AKT/mTOR/s6k/4E-BP1 pathway, were reduced by CUMS and enhanced by RG. Moreover, CUMS raised oxidative stress by enhancing the levels of iNOS and acetylated p53, which are involved in cell cycle arrest, whereas RG attenuated both iNOS and acetylated p53 levels. Cell proliferation in the gastrocnemius muscle was reduced by CUMS and enhanced by RG. The muscle weight, muscle fiber cross-sectional area, and grip strength were reduced by CUMS and enhanced by RG. Therefore, RG attenuated ACTH levels and cortisol-related muscle atrophy in CUMS animals.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kyoungmin Rheu
- Marine Bioprocess Co., Ltd., Smart Marine BioCenter, Busan 46048, Republic of Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Smart Marine BioCenter, Busan 46048, Republic of Korea
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
46
|
Nelson TJ, Xu Y. Sting and p53 DNA repair pathways are compromised in Alzheimer's disease. Sci Rep 2023; 13:8304. [PMID: 37221295 PMCID: PMC10206146 DOI: 10.1038/s41598-023-35533-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A common finding in AD is DNA damage. Double-strand DNA breaks (DSBs) are particularly hazardous to neurons because their post-mitotic state forces neurons to rely on error-prone and potentially mutagenic mechanisms to repair DNA breaks. However, it remains unclear whether DNA damage results from increased DNA damage or failure of DNA repair. Oligomerization of the tumor suppressor protein p53 is an essential part of DSB repair, and p53 phosphorylated on S15 is an indicator of DNA damage. We report that the monomer:dimer ratio of phosphorylated (S15) p53 is increased by 2.86-fold in temporal lobes of AD patients compared to age-matched controls, indicating that p53 oligomerization is compromised in AD. In vitro oxidation of p53 with 100 nM H2O2 produced a similar shift in the monomer:dimer ratio. A COMET test showed a higher level of DNA degradation in AD consistent with double-strand DNA damage or inhibition of repair. Protein carbonylation was also elevated (190% of control), indicating elevated oxidative stress in AD patients. Levels of the DNA repair support protein 14-3-3σ, γ-H2AX, a phosphorylated histone marking double strand DNA breaks, and phosphorylated ataxia telangiectasia mutated (ATM) protein were all increased. cGAS-STING-interferon signaling was impaired in AD and was accompanied by a depletion of STING protein from Golgi and a failure to elevate interferon despite the presence of DSBs. The results suggest that oxidation of p53 by ROS could inhibit the DDR and decrease its ability to orchestrate DSB repair by altering the oligomerization state of p53. The failure of immune-stimulated DNA repair may contribute to cell loss in AD and suggests new therapeutic targets for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA.
| | - Yunhui Xu
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA
| |
Collapse
|
47
|
Gao N, Tang AL, Liu XY, Chen J, Zhang GQ. p53-Dependent ferroptosis pathways in sepsis. Int Immunopharmacol 2023; 118:110083. [PMID: 37028271 DOI: 10.1016/j.intimp.2023.110083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Sepsis is caused by complex infections, trauma, and major surgery that results in high morbidity and mortality. As one of the leading causes of death in the intensive care unit (ICU), sepsis causes organ dysfunction and death via a vicious cycle of uncontrolled inflammatory responses and immunosuppression. Ferroptosis is an iron-dependent cellular death pathway driven by the accumulation of lipid peroxides, which occurs in sepsis. p53 is an important regulator of ferroptosis. Under intracellular/extracellular stimulation and pressure, p53 acts as a transcription factor to regulate the expression of downstream genes, which help cells/bodies to resist stimuli. p53 can also function independently as an important mediator. The understanding of key cellular and molecular mechanisms of ferroptosis facilitates the prognosis of sepsis. This article describes the molecular mechanism and role of p53 in sepsis-induced ferroptosis, and introduces some potential therapeutic targets for sepsis-induced ferroptosis, which highlights the dominant and potential therapeutic role of p53 in sepsis. Keywords: p53, acetylation, Sirt3, ferroptosis, sepsis, therapy.
Collapse
Affiliation(s)
- Nan Gao
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - A-Ling Tang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Yu Liu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - Jie Chen
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China.
| |
Collapse
|
48
|
Zhu Y, Zhao Y, Wen J, Liu S, Huang T, Hatial I, Peng X, Janabi HA, Huang G, Mittlesteadt J, Cheng M, Bhardwaj A, Ashfeld BL, Kao KR, Maeda DY, Dai X, Wiest O, Blagg BS, Lu X, Cheng L, Wan J, Lu X. Targeting the chromatin effector Pygo2 promotes cytotoxic T cell responses and overcomes immunotherapy resistance in prostate cancer. Sci Immunol 2023; 8:eade4656. [PMID: 36897957 PMCID: PMC10336890 DOI: 10.1126/sciimmunol.ade4656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The noninflamed microenvironment in prostate cancer represents a barrier to immunotherapy. Genetic alterations underlying cancer cell-intrinsic oncogenic signaling are increasingly appreciated for their role in shaping the immune landscape. Recently, we identified Pygopus 2 (PYGO2) as the driver oncogene for the amplicon at 1q21.3 in prostate cancer. Here, using transgenic mouse models of metastatic prostate adenocarcinoma, we found that Pygo2 deletion decelerated tumor progression, diminished metastases, and extended survival. Pygo2 loss augmented the activation and infiltration of cytotoxic T lymphocytes (CTLs) and sensitized tumor cells to T cell killing. Mechanistically, Pygo2 orchestrated a p53/Sp1/Kit/Ido1 signaling network to foster a microenvironment hostile to CTLs. Genetic or pharmacological inhibition of Pygo2 enhanced the antitumor efficacy of immunotherapies using immune checkpoint blockade (ICB), adoptive cell transfer, or agents inhibiting myeloid-derived suppressor cells. In human prostate cancer samples, Pygo2 expression was inversely correlated with the infiltration of CD8+ T cells. Analysis of the ICB clinical data showed association between high PYGO2 level and worse outcome. Together, our results highlight a potential path to improve immunotherapy using Pygo2-targeted therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yun Zhao
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jiling Wen
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tianhe Huang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ishita Hatial
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaoxia Peng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hawraa Al Janabi
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gang Huang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jackson Mittlesteadt
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael Cheng
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Atul Bhardwaj
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kenneth R. Kao
- Terry Fox Cancer Research Labs, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s Campus, NL A1B 3V6, Canada
| | | | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S.J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Informatics and Computing, Indiana University - Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
49
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
50
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|