1
|
Dissanayake IH, Tabassum W, Alsherbiny M, Chang D, Li CG, Bhuyan DJ. Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: A comprehensive review. Food Res Int 2025; 209:116283. [PMID: 40253191 DOI: 10.1016/j.foodres.2025.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/21/2025]
Abstract
Fruits and vegetables (FVs) are rich sources of macro and micro-nutrients crucial for a healthy diet. In addition to these nutrients, FVs also contain fibre and phytochemicals known for their antioxidant properties. Despite the growing evidence of the disease-preventive role of antioxidants in FVs, their bioavailability and bioaccessibility vary significantly and have not been adequately explored. Lactic acid bacterial (LAB) fermentation is considered the most appropriate and accessible biotechnological approach to maintain and enhance the safety, nutritional, sensory and shelf-life properties of perishable foods such as FVs. This review critically assesses how LAB fermentation could be utilised as a promising biotransformation strategy to enhance the bioavailability of antioxidants in FVs. Furthermore, it discusses the potential use of uniquely nutritious Australian native fruits as suitable candidates for LAB fermentation. Further research is essential to identify the beneficial properties of bioactive compounds and effective LAB-based biotransformation strategies to improve the bioavailability and bioaccessibility of antioxidants in FVs.
Collapse
Affiliation(s)
| | - Wahida Tabassum
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Muhammad Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Freedman Foundation Metabolomics Facility, Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
Thakur R, Kaur S. Use of postbiotics and parabiotics from lactobacilli in the treatment of infectious diarrhea. Microb Pathog 2025; 204:107580. [PMID: 40222563 DOI: 10.1016/j.micpath.2025.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/30/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Probiotics are effective in the treatment of diarrheal disease which is the second leading cause of death in children below the age of five years via the production of antimicrobial peptides and lactic acid. These live bacteria are known to benefit the host by modulating their gut microbiome and competitively excluding pathogens from the gut. As probiotics are live microbial cells, their safety evaluation is a concern that shifts the focus from the usage of live cells to parabiotics and postbiotics. In recent years attempts have been made to study the efficacy of postbiotics and parabiotics against enteric pathogens. Enteric pathogens are the major cause of diarrhea resulting in watery stools and electrolyte imbalance. Among various gastrointestinal illnesses, 30 % are caused by bacteria. These gastrointestinal infections in adults have usually mild to moderate symptoms that disappear spontaneously but, in some cases, they can cause chronic diseases such as typhoid, irritable bowel syndrome, ulcerative colitis and bacteremia. The extensive use of antibiotics for the treatment of bacterial-infection-induced diarrhea has led to the emergence of drug resistance among these enteric pathogens. Drug resistance poses a major threat in the treatment of various other diseases as well. Further, the use of antibiotics is known to disrupt the homeostasis of the gut by killing the normal gut flora thereby worsening the situation. Therefore, the urgent need for new interventions to combat these enteric pathogens along with restoration of gut barrier. Lactobacillus-derived parabiotics and postbiotics have emerged as promising approaches for managing and treating diarrheal diseases. Therefore, our research is focused on studying the efficacy and underlying mechanisms of Lactobacillus spp.-derived postbiotics and parabiotics against enteric pathogens. Understanding these mechanisms helps in combatting diarrhea associated with enteric pathogens and results in reducing the morbidity and mortality rates associated with infectious diarrhea and its complications.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Sciences, Lovely Professional University, Punjab, 144411, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Punjab, 144411, India.
| |
Collapse
|
3
|
Costa RJS, Gaskell SK, Henningsen K, Jeacocke NA, Martinez IG, Mika A, Scheer V, Scrivin R, Snipe RMJ, Wallett AM, Young P. Sports Dietitians Australia and Ultra Sports Science Foundation Joint Position Statement: A Practitioner Guide to the Prevention and Management of Exercise-Associated Gastrointestinal Perturbations and Symptoms. Sports Med 2025:10.1007/s40279-025-02186-6. [PMID: 40195264 DOI: 10.1007/s40279-025-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
It is now well-established that exercise can disturb various aspects of gastrointestinal integrity and function. The pathophysiology of these perturbations, termed "exercise-induced gastrointestinal syndrome (EIGS)," can lead to exercise-associated gastrointestinal symptom (Ex-GIS) inconveniences. EIGS outcomes can impact physical performance and may lead to clinical manifestation warranting medical intervention, as well as systemic responses leading to fatality. Athlete support practitioners seek prevention and management strategies for EIGS and Ex-GIS. This current position statement aimed to critically appraise the role of EIGS and Ex-GIS prevention and management strategies to inform effective evidence-based practice and establish translational application. Intervention strategies with mostly consistent beneficial outcomes include macronutrient (i.e., carbohydrate and protein) intake and euhydration before and during exercise, dietary manipulation of fermentable oligo-, di-, and mono-saccharides and polyols (FODMAP), and gut training or feeding tolerance adjustments for the specific management of Ex-GIS from gastrointestinal functional issues. Strategies that may provide benefit and/or promising outcomes, but warrant further explorations include heat mitigating strategies and certain nutritional supplementation (i.e., prebiotics and phenols). Interventions that have reported negative outcomes included low-carbohydrate high-fat diets, probiotic supplementation, pharmaceutical administration, and feeding intolerances. Owing to individual variability in EIGS and Ex-GIS outcomes, athletes suffering from EIGS and/or support practitioners that guide athletes through managing EIGS, are encouraged to undertake gastrointestinal assessment during exercise to identify underlying causal and exacerbation factor/s, and adopt evidence-based strategies that provide individualized beneficial outcomes. In addition, abstaining from prevention and management strategies that present unclear and/or adverse outcomes is recommended.
Collapse
Affiliation(s)
- Ricardo J S Costa
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia.
| | - Stephanie K Gaskell
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Kayla Henningsen
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | | | - Isabel G Martinez
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Alice Mika
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Volker Scheer
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Rachel Scrivin
- University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - Rhiannon M J Snipe
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | - Pascale Young
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| |
Collapse
|
4
|
Mosiej W, Długosz E, Kruk M, Zielińska D. Immunomodulatory Properties of Live and Thermally-Inactivated Food-Origin Lactic Acid Bacteria-In Vitro Studies. Mol Nutr Food Res 2025:e70047. [PMID: 40166824 DOI: 10.1002/mnfr.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
The study investigates the strain-specific immunomodulatory properties of live and thermally-inactivated (TI) lactic acid bacteria (LAB) derived from traditional Polish fermented foods, focusing on their potential as probiotics and postbiotics. LAB strains, known for their role in food fermentation, were assessed for their ability to influence cytokine production in THP-1 macrophages, maintain intestinal epithelial barrier integrity in Caco-2 monolayers, exhibit antioxidant activity, and produce specific organic acids and sugars. The research demonstrated that live LAB strains significantly upregulated the anti-inflammatory cytokine IL-10, particularly under inflammatory conditions, while TI strains exhibited notable antioxidant and anti-inflammatory properties. TI strains showed a greater ability to protect epithelial barrier function and reduce pro-inflammatory cytokine secretion than live strains, suggesting a promising role for postbiotics. The findings underscore the potential of LAB from fermented foods, demonstrating that postbiotic derivatives can differently influence inflammation compared to live bacteria, highlighting their potential as immune-enhancing agents, capable of modulating immune responses and offering therapeutic benefits against inflammation-related disorders. However, the limitations of in vitro models highlight the need for further in vivo and clinical studies to validate these effects and fully uncover the health benefits of these LAB strains for humans.
Collapse
Affiliation(s)
- Wioletta Mosiej
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Warsaw, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Science - SGGW, Warsaw, Poland
| | - Marcin Kruk
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Warsaw, Poland
| |
Collapse
|
5
|
Hosseinzadeh N, Asqardokht-Aliabadi A, Sarabi-Aghdam V, Hashemi N, Dogahi PR, Sarraf-Ov N, Homayouni-Rad A. Antioxidant Properties of Postbiotics: An Overview on the Analysis and Evaluation Methods. Probiotics Antimicrob Proteins 2025; 17:606-624. [PMID: 39395091 DOI: 10.1007/s12602-024-10372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Antioxidants found naturally in foods have a significant effect on preventing several human diseases. However, the use of synthetic antioxidants in studies has raised concerns about their potential link to liver disease and cancer. The findings show that postbiotics have the potential to act as a suitable alternative to chemical antioxidants in the food and pharmaceutical sectors. Postbiotics are bioactive compounds generated by probiotic bacteria as they ferment prebiotic fibers in the gut. These compounds can also be produced from a variety of substrates, including non-prebiotic carbohydrates such as starches and sugars, as well as proteins and organic acids, all of which probiotics utilize during the fermentation process. These are known for their antioxidant, antibacterial, anti-inflammatory, and anti-cancer properties that help improve human health. Various methodologies have been suggested to assess the antioxidant characteristics of postbiotics. While there are several techniques to evaluate the antioxidant properties of foods and their bioactive compounds, the absence of a convenient and uncomplicated method is remarkable. However, cell-based assays have become increasingly important as an intermediate method that bridges the gap between chemical experiments and in vivo research due to the limitations of in vitro and in vivo assays. This review highlights the necessity of transitioning towards more biologically relevant cell-based assays to effectively evaluate the antioxidant activity of postbiotics. These experiments are crucial for assessing the biological efficacy of dietary antioxidants. This review focuses on the latest applications of the Caco-2 cell line in the assessment of cellular antioxidant activity (CAA) and bioavailability. Understanding the impact of processing processes on the biological properties of postbiotic antioxidants can facilitate the development of new food and pharmaceutical products.
Collapse
Affiliation(s)
- Negin Hosseinzadeh
- Student Research Committee, Department of Food Science and Technology, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hashemi
- University of Applied Science & Technology, Center of Pardisan Hospitality & Tourism Management, Mashhad, Iran
| | - Parisa Rahimi Dogahi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Narges Sarraf-Ov
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Ozma MA, Fadaee M, Hosseini HM, Ataee MH, Mirhosseini SA. A Critical Review of Postbiotics as Promising Novel Therapeutic Agents for Clostridial Infections. Probiotics Antimicrob Proteins 2025; 17:656-667. [PMID: 39546182 DOI: 10.1007/s12602-024-10406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Clostridial infections, known for their severity and rapid progression, present significant challenges in both clinical and veterinary fields. These bacteria, which can survive without oxygen and produce protective spores, cause many diseases, ranging from simple gastrointestinal disorders to severe and potentially fatal infections including botulism, tetanus, and gas gangrene. The rising occurrence of antibiotic-resistant strains and the repetitive character of some Clostridial illnesses, including Clostridioides difficile infections (CDI), highlight the immediate need for alternate treatment approaches. Postbiotics, which are metabolites derived from probiotics, are showing great potential as effective agents against these diseases. The current study offers a comprehensive investigation of the potential of postbiotics as therapeutic agents for treating Clostridial infections, including C. difficile, Clostridium perfringens, Clostridium botulinum, and Clostridium tetani. It also examines the processes by which postbiotics exert their effects. Preliminary investigations have shown that postbiotics have promising antibacterial and antibiofilm properties, indicating their potential as adjunct agents in methods for controlling microbial growth. Nevertheless, more study is required to thoroughly demonstrate their medicinal uses.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ataee
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Saravanan T, Dasgupta S, Noor A, Sheela A. Explorations on Antioxidant, Enzyme Inhibitory, and Calf Thymus DNA Interaction Studies of Dioxomolybdenum(VI) Organo Complexes. Chem Biodivers 2025:e202500051. [PMID: 40143598 DOI: 10.1002/cbdv.202500051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 03/28/2025]
Abstract
Since time immemorial, it has been well established that reactive oxygen species play a key role in the pathogenesis of various cancer types and metabolic diseases like diabetes. Hence, the control of free radical generation is considered one of the viable strategies to combat the onset of diabetes and cancer progression. In this context, we have synthesized and characterized two salen-type ligands and their corresponding dioxomolybdenum(VI) complexes. The complexes are evaluated for antioxidant efficacy, α-amylase inhibitory potential, DNA-binding ability, and cytotoxicity studies. The optimized geometry of the complexes based on electron density distributions of the frontier molecular orbitals is ascertained using DFT studies. The DPPH and H2O2 assays show comparable antioxidant efficacies for both the complexes, comparable to that of the standard. Similarly, the complexes show comparable α-amylase inhibitory activities, showcasing higher activity than acarbose. Furthermore, the DNA interaction study reveals a higher binding affinity for ligand 2 and complex 2 as observed by their binding constant values. The ligands and the complexes have shown a hyperchromic effect, indicating preferential binding to the grooves of the double helix of DNA. The MTT assay against MCF-7 cancer cell lines reveals that complex 1 shows an excellent cytotoxic effect, higher than cisplatin.
Collapse
Affiliation(s)
- Tharani Saravanan
- Department of Chemistry, School of Advanced Sciences, Vellore, India
| | - Sukanya Dasgupta
- Centre for Bio-Separation and Technology, Vellore Institute of Technology, Vellore, India
| | - Ayesha Noor
- Centre for Bio-Separation and Technology, Vellore Institute of Technology, Vellore, India
| | - Angappan Sheela
- Department of Chemistry, School of Advanced Sciences, Vellore, India
| |
Collapse
|
8
|
Sornsenee P, Kooltheat N, Wongprot D, Suksabay P, Nam TG, Permpoon U, Saengsuwan P, Romyasamit C. Antibacterial, Antioxidant, and Anti-inflammatory Activities of Lacticaseibacillus paracasei Lysates Isolated from Fermented Palm Sap. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10521-6. [PMID: 40120070 DOI: 10.1007/s12602-025-10521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Paraprobiotics are inactivated microbial cells or cell fractions that confer health benefits to the consumer, and possess the ability to regulate both the adaptive and innate immune systems. They exhibit anti-inflammatory, antiproliferative, antioxidant properties, and antimicrobial activities. The aim of this study is to evaluate these activities of Lacticaseibacillus paracasei lysates isolated from fermented palm sap. The bacterial cell lysates were prepared via sonication, and their antibacterial activity was assessed against three pathogens using agar well diffusion assay. Antioxidant activity was evaluated using DPPH and ABTS radical scavenging assays. Cytotoxicity and anti-inflammatory activity were determined in LPS-stimulated RAW 264.7 cells by measuring nitric oxide production, secretion, and mRNA level of cytokines (IL-1β, IL-6, and IL-10). Among the lysates, L. paracasei T1901 demonstrated the strongest antibacterial activity against Escherichia coli, Bacillus cereus, and Acinetobacter baumannii. Most lysates exhibited potent antioxidant activity, especially T0601 that showed the highest DPPH and ABTS radical scavenging activities. In LPS-stimulated RAW 264.7 cells, the lysates effectively reduced nitric oxide levels and suppressed the production of pro-inflammatory cytokines (IL-1β and IL-6); simultaneously, the lysates enhanced immunosuppressive cytokine IL-10 secretion. Furthermore, no cytotoxic effect was observed in the lysate-treated RAW 264.7 cells. The study highlights the potential of L. paracasei lysates as multifunctional agents with antibacterial, antioxidant, and anti-inflammatory properties. These findings support their application in developing functional foods or therapeutic agents for managing oxidative stress and inflammatory diseases.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Dechawat Wongprot
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Pinkanok Suksabay
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Tae-Gyu Nam
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Uttapol Permpoon
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Phanvasri Saengsuwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Thasala District, Nakhon Si Thammarat, Thailand.
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
9
|
Molina D, Marinas IC, Angamarca E, Hanganu A, Stan M, Chifiriuc MC, Tenea GN. Postbiotic-Based Extracts from Native Probiotic Strains: A Promising Strategy for Food Preservation and Antimicrobial Defense. Antibiotics (Basel) 2025; 14:318. [PMID: 40149128 PMCID: PMC11939163 DOI: 10.3390/antibiotics14030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The deterioration of food quality and safety is often linked to the presence of pathogenic and spoilage microorganisms. Postbiotics, including organic acids, enzymes, and bacteriocins produced by lactic acid bacteria (LAB), have emerged as promising next-generation food preservatives. This study investigates the biological and physicochemical properties of several postbiotic-based extracts (PBEs) comprising cell-free supernatant (CFS) and exopolysaccharide (EPS) fractions derived from three native probiotic strains: Lactiplantibacillus plantarum UTNGt2, Lactococcus lactis UTNGt28, and Weissella cibaria UTNGt21O. Methods: The antibacterial activity of these PBEs was assessed against multidrug-resistant Escherichia coli L1PEag1. Moreover, the antioxidant capacity and cytotoxicity along with the characterization of these formulations was assessed. Results: FU6 (CFS UTNGt28: EPS UTNGt2) and FU13 (CFS UTNGt21O) were found as the most potent formulations. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed dose- and time-dependent damage to the bacterial membrane and cell wall. FU6 exhibited superior antioxidant activity and lacked hemolytic effects, whereas both FU6 and FU13 induced cell-specific responses in HEK293 (human kidney) and HT-29 (intestinal mucus-producing) cell lines. Furthermore, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy identified characteristic absorption bands corresponding to proteins, lipids, carbohydrates, and nucleic acids, while proton nuclear magnetic resonance (1H-NMR) spectroscopy revealed key monosaccharides, amino acids, and metabolites such as lactate and acetate within the extracts. Conclusions: FU6 and FU13 demonstrate potential as safe and effective postbiotic formulations at non-concentrated doses. However, further research is required to elucidate their molecular composition comprehensively and evaluate their applicability for broader and long-term use in food preservation and pharmaceutical development.
Collapse
Affiliation(s)
- Diana Molina
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| | - Ioana C. Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Evelyn Angamarca
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| | - Anamaria Hanganu
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
- “C. D. Nenitzescu” Institute of Organic, Supramolecular Chemistry of the Romanian Academy, 060023 Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Mariana C. Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095 Bucharest, Romania; (I.C.M.); (M.S.); (M.C.C.)
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21 y José María Córdova, Ibarra 100150, Ecuador
| |
Collapse
|
10
|
Wu J, Li Z, Zhang Z, Zhang J, Hu H, Lan H, Hong W, Yang Z. Characterization of a postbiotic exopolysaccharide produced by Lacticaseibacillus paracasei ET-22 with antioxidant and anti-inflammatory efficacy. Int J Biol Macromol 2025; 306:141608. [PMID: 40037455 DOI: 10.1016/j.ijbiomac.2025.141608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria have been extensively studied, but the EPSs as postbiotics are much less investigated. In this study, the EPS, designated as ET22-EPS, was extracted and purified from the culture broth of Lacticaseibacillus paracasei ET-22 previously characterized with strong postbiotic activities. ET22-EPS was determined with a molecular weight of 5.12 × 105 Da, and a monosaccharide composition of mannose, galactose, glucose, and N-acetylglucosamine in a molar ratio of 0.662:0.103:0.095:0.026. ET22-EPS exhibited a sheet-like and fibrous stacking morphology with a networked structure. ET22-EPS also showed high thermal stability with a degradation temperature of 295.33 °C. ET22-EPS was identified to consist of an octasaccharide repeating unit with a backbone structure of four consecutively linked →2)-α-D-Manp (1 → together with →2,6)-α-D-Manp(1 → 2)-α-D-Glcp(1→, and a branch chain of α-D-Galp(1 → 6)-α-D-Manp(1→. The in vitro bioassay indicated that ET22-EPS effectively scavenged the free radicals of diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate), 1,1-diphenyl-2-picrylhydrazyl, hydroxyls, and superoxide anion. ET22-EPS showed strong anti-inflammatory effects by reducing cell phagocytosis, nitric oxide production, pro-inflammatory cytokine secretion, and the TNF-α/IL-10 ratio in a RAW264.7 cell model. Therefore, ET-22-EPS shows good prospects as potential postbiotics in the development of health foods.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Zhihui Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Zhuoting Zhang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Zhang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Hangyu Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Hanglian Lan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Weilian Hong
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
11
|
Bashir B, Gulati M, Vishwas S, Gupta G, Dhanasekaran M, Paudel KR, Chellappan DK, Anand K, Negi P, Singh PK, Rajput A, Dua K, Singh SK. Bridging gap in the treatment of Alzheimer's disease via postbiotics: Current practices and future prospects. Ageing Res Rev 2025; 105:102689. [PMID: 39952328 DOI: 10.1016/j.arr.2025.102689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Aging is an extremely significant risk associated with neurodegeneration. The most prevalent neurodegenerative disorders (NDs), such as Alzheimer's disease (AD) are distinguished by the prevalence of proteinopathy, aberrant glial cell activation, oxidative stress, neuroinflammation, defective autophagy, cellular senescence, mitochondrial dysfunction, epigenetic changes, neurogenesis suppression, increased blood-brain barrier permeability, and intestinal dysbiosis that is excessive for the patient's age. Substantial body studies have documented a close relationship between gut microbiota and AD, and restoring a healthy gut microbiota may reduce or even ameliorate AD symptoms and progression. Thus, control of the microbiota in the gut has become an innovative model for clinical management of AD, and rising emphasis is focused on finding new techniques for preventing and/or managing the disease. The etiopathogenesis of gut microbiota in driving AD progression and supplementing postbiotics as a preventive and therapeutic treatment for AD is discussed. The review additionally discusses the use of postbiotics in AD prophylaxis and therapy, portraying them as substances that address senescence-triggered dysfunctions and are worthy of translating from bench to biopharmaceutical market in response to "silver consumers" needs. The current review examines and evaluates the impact of postbiotics as whole and specific metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides, and bacterial extracellular vesicles, on the aging-associated processes that reinforce AD. Moreover, it provides an overview of the most recent data from both clinical and preclinical research involving the use of postbiotics in AD.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | | | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Poonam Negi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
12
|
Poloni VL, Pérez ME, Escobar F, Luna J, Pereyra Y, Cristofolini A, Magnoli A, Cavaglieri L. Postbiotics from Saccharomyces cerevisiae RC016 Cell Wall (Formerly Classified as a Prebiotic): Exploring In Vitro and In Vivo Benefits. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10492-8. [PMID: 40000552 DOI: 10.1007/s12602-025-10492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The objective of this work was to obtain postbiotics derived from the cell wall of Saccharomyces cerevisiae RC016 by applying different strategies and to characterize them in terms of their antitoxin capacity in vitro and their in vivo impact on intestinal integrity, evaluating the modulation of the microbiota and the histomorphometry of the intestine. Moreover, the impact of dried strategies on chemical groups related to food toxin adsorption was analyzed. Nine mechanical and enzymatic cell disruption treatments were assayed using S. cerevisiae RC016 biomass to obtain the postbiotic under study. Then, postbiotics were characterized using high-resolution optical microscopy and assayed for in vitro studies related to their antitoxin activity (adsorption and degradation of aflatoxin B1). Postbiotics were dried using freeze-dried and spray-dried methods and subjected to FT-IR spectroscopy. Finally, the postbiotic efficacy was determined on an in vivo study conducted on 16 male and female BALB/c mice, divided into two experimental groups, each experimental group (n = 8) separated by sex in different cages (four females and four males): untreated (control) and yeast wall treated (YW); (a) female control; (b) male control; (c) female control + YW; (d) male control + YW. The intestinal microbiota showed significant differences in the counts of LAB and enterobacteria between male and female animals. The histomorphometric analysis showed a significant increase in villi height and width, as well as crypt depth, compared to the control group in male mice with the addition of the postbiotic solution of S. cerevisiae. These findings open new avenues for further optimizing postbiotics' production processes and evaluating their efficacy across diverse conditions and populations.
Collapse
Affiliation(s)
- Valeria L Poloni
- Departamento de Microbiología E Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Río Cuarto, Cordoba, Argentina.
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| | - María Eugenia Pérez
- Departamento de Microbiología E Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Río Cuarto, Cordoba, Argentina
- Fellow of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Franco Escobar
- Departamento de Microbiología E Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Río Cuarto, Cordoba, Argentina
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Julieta Luna
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Río Cuarto, Cordoba, Argentina
- Fellow of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Yanina Pereyra
- Departamento de Tecnología Química, Facultad de Ingeniería (IITEMA), Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Cordoba, Argentina
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Andrea Cristofolini
- Departamento de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Río Cuarto, Cordoba, Argentina
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Magnoli
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Río Cuarto, Cordoba, Argentina
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Lilia Cavaglieri
- Departamento de Microbiología E Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800), Río Cuarto, Cordoba, Argentina
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Abbas Z, Tong Y, Zhang J, Sammad A, Wang J, Ahmad B, Wei X, Si D, Zhang R. Transcriptomics and microbiome insights reveal the protective mechanism of mulberry-derived postbiotics against inflammation in LPS-induced mice. Front Immunol 2025; 16:1536694. [PMID: 40040706 PMCID: PMC11876837 DOI: 10.3389/fimmu.2025.1536694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Background Natural food-derived bioactive compounds have garnered increasing attention for their potential to modulate immune responses and promote gut health. In particular, compounds like mulberry-derived postbiotics (MDP) may offer novel therapeutic strategies to address inflammation, a key driver of many metabolic disorders. Methodology This study examines the protective effects of MDP against inflammation in LPS-induced mice, using transcriptomic and microbiome analyses to explore underlying mechanisms. Results MDP pretreatment alleviates LPSinduced villous atrophy and intestinal barrier damage, promoting recovery of intestinal morphology. Transcriptomic profiling revealed significant changes in gene expression, with 983 upregulated and 1220 downregulated genes in the NC vs LPS comparison, and 380 upregulated and 204 downregulated genes in the LPS vs LPS+MDP comparison. Enrichment analysis using GO and KEGG pathways revealed significant associations with transcriptional regulatory activity, and the NOD-like receptor signaling pathway among the differentially expressed genes. Protein-protein interaction analysis identified key genes involved in inflammation and immune regulation, with hub genes like IL6, CXCL10, and MYD88 in the LPS group and CD74, CIITA, and H2-AB1 in the MDP-treated group. Conclusion Microbiome analysis suggested MDP may also influence gut microbiota composition, supporting systemic immune regulation. These findings highlight MDP's potential as a food additive for immune modulation and gut health.
Collapse
Affiliation(s)
- Zaheer Abbas
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Abdul Sammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junyong Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Mafe AN, Büsselberg D. Microbiome Integrity Enhances the Efficacy and Safety of Anticancer Drug. Biomedicines 2025; 13:422. [PMID: 40002835 PMCID: PMC11852609 DOI: 10.3390/biomedicines13020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The intricate relationship between anticancer drugs and the gut microbiome influences cancer treatment outcomes. This review paper focuses on the role of microbiome integrity in enhancing the efficacy and safety of anticancer drug therapy, emphasizing the pharmacokinetic interactions between anticancer drugs and the gut microbiota. It explores how disruptions to microbiome composition, or dysbiosis, can alter drug metabolism, immune responses, and treatment side effects. By examining the mechanisms of microbiome disruption caused by anticancer drugs, this paper highlights specific case studies of drugs like cyclophosphamide, 5-fluorouracil, and irinotecan, and their impact on microbial diversity and clinical outcomes. The review also discusses microbiome-targeted strategies, including prebiotics, probiotics, postbiotics, and fecal microbiota transplantation (FMT), as promising interventions to enhance cancer treatment. Furthermore, the potential of microbiome profiling in personalizing therapy and integrating these interventions into clinical practice is explored. Finally, this paper proposes future research directions, including developing novel biomarkers and a deeper comprehension of drug-microbiome interactions, to respond to current gaps in knowledge and improve patient outcomes in cancer care.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Doha P.O. Box 22104, Qatar
| |
Collapse
|
15
|
Aran KR, Porel P, Hunjan G, Singh S, Gupta GD, Rohit. Postbiotics as a therapeutic tool in Alzheimer's disease: Insights into molecular pathways and neuroprotective effects. Ageing Res Rev 2025; 106:102685. [PMID: 39922231 DOI: 10.1016/j.arr.2025.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by oxidative stress, neuroinflammation, mitochondrial dysfunction, neurotransmitter imbalance, tau hyperphosphorylation, and amyloid beta (Aβ) accumulation in brain regions. The gut microbiota (GM) has a major impact on brain function due to its bidirectional interaction with the gut through the gut-brain axis. The gut dysbiosis has been associated with neurological disorders, emphasizing the importance of gut homeostasis in maintaining appropriate brain function. The changes in the composition of microbiomes influence neuroinflammation and Aβ accumulation by releasing pro-inflammatory cytokines, decreasing gut and blood-brain barrier (BBB) integrity, and microglial activation in the brain. Postbiotics, are bioactive compounds produced after fermentation, have been shown to provide several health benefits, particularly in terms of neuroinflammation and cognitive alterations associated with AD. Several research studies on animal models and human have successfully proven the effects of postbiotics on enhancing cognition and memory in experimental animals. This article explores the protective effects of postbiotics on cellular mechanisms responsible for AD pathogenesis and studies highlighting the influence of postbiotics as a total combination and specific compounds, including short-chain fatty acids (SCFAs). In addition, postbiotics act as a promising option for future research to deal with AD's progressive nature and improve an individual's life quality using microbiota modulation.
Collapse
Affiliation(s)
- Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India.
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Garry Hunjan
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Rohit
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
16
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R, Xu P, Wang Y, Chen R, Wang H, Yang Q, Zhang K, Jin L, Sun D, You J. Modulation of Intestinal Flora: a Novel Immunotherapeutic Approach for Enhancing Thyroid Cancer Treatment. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10471-z. [PMID: 39890752 DOI: 10.1007/s12602-025-10471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Over the past 3 years, there has been a growing interest in clinical research regarding the potential involvement of intestinal flora in thyroid cancer (TC). This review delves into the intricate connection between intestinal flora and TC, focusing on the particular intestinal flora that is directly linked to the disease and identifying which may be able to predict potential microbial markers of TC. In order to shed light on the inflammatory pathways connected to the onset of TC, we investigated the impact of intestinal flora on immune modulation and the connection between chronic inflammation when investigating the role of intestinal flora in the pathogenesis of TC. Furthermore, the potential role of intestinal flora metabolites in the regulation of thyroid function was clarified by exploring the effects of short-chain fatty acids and lipopolysaccharide on thyroid hormone synthesis and metabolism. Based on these findings, we further explore the effects of probiotics, prebiotics, postbiotics, vitamins, and trace elements.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yongpan Wang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hanbing Wang
- The University of Hong Kong School of Biomedical Sciences, Hong Kong, 999077, SAR, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
18
|
Duysburgh C, Nicolas C, Van den Broeck M, Lloret F, Monginoux P, Rème C, Marzorati M. A specific blend of prebiotics and postbiotics improved the gut microbiome of dogs with soft stools in the in vitro Simulator of the Canine Intestinal Microbial Ecosystem. J Anim Sci 2025; 103:skaf056. [PMID: 40036370 PMCID: PMC11971633 DOI: 10.1093/jas/skaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
The Simulator of the Canine Intestinal Microbial Ecosystem (SCIME) allows for the study of the long-term effects of food, supplements, or ingredients on the canine gut microbiome in a simulated proximal and distal colon. This model has been used to evaluate the impact of repeated administration of a test product blend composed of a mixture of baobab fruit pulp, acacia gum, heat-killed Lactobacillus helveticus HA-122, and specific fractions of selected inactivated yeast strains (including Saccharomyces cerevisiae AQP 12260 and AQP 12988 and Cyberlindnera jadinii AQP 12549), on the activity and composition of the gut microbiome of canine donors with soft stools. The SCIME colonic reactors were inoculated with fecal material from 3 different canine donors. After 2 d of stabilization, the 8-d parallel control/treatment period was initiated; reactors were fed with SCIME nutritional medium with or without test product. Changes in microbial metabolic activity were assessed by measuring levels of acetate, propionate, butyrate, lactate, branched short-chain fatty acids, and ammonium. Changes in microbial community composition were assessed using 16S-targeted Illumina sequencing. Overall, test product supplementation resulted in increased saccharolytic fermentation, as evidenced by increases in the health-promoting bacterial metabolites such as propionate (donor-dependent), acetate, and butyrate (donor-dependent) as well as increased abundances of several saccharolytic fermenting microbes, including Bifidobacterium. Conversely, proteolytic bacteria like Proteobacteria were reduced with the test product compared to control. Repeated supplementation with the test product was therefore able to induce-in vitro-a positive modulation of the microbiome originated from dogs with soft stools.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Massimo Marzorati
- ProDigest, 9052 Zwijnaarde, Belgium
- CMET (Center for Microbial Ecology and Technology), University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Martyniak A, Wójcicka M, Rogatko I, Piskorz T, Tomasik PJ. A Comprehensive Review of the Usefulness of Prebiotics, Probiotics, and Postbiotics in the Diagnosis and Treatment of Small Intestine Bacterial Overgrowth. Microorganisms 2025; 13:57. [PMID: 39858825 PMCID: PMC11768010 DOI: 10.3390/microorganisms13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a disorder characterized by the excessive growth of bacteria in the small intestine. Bacterial overgrowth disrupts the bacterial balance and can lead to abdominal pain, weight loss, and gastrointestinal symptoms, including bloating, diarrhea, and malabsorption. SIBO is widespread in the population. There are two main methods for diagnosing SIBO: breath tests and bacterial culture. The most commonly used method is a breath test, which enables the division of SIBO into the following three types: hydrogen-dominant (H-SIBO), methane-dominant (CH4-SIBO), and hydrogen/methane-dominant (H/CH4-SIBO). This comprehensive review aims to present the current knowledge on the use of prebiotics, probiotics, and postbiotics in the context of SIBO. For this purpose, medical databases such as MEDLINE (PubMed) and Scopus were analyzed using specific keywords and their combinations. This review is based on research studies no older than 10 years old and those using only human models. In summary, clinical studies have shown that the efficacy of SIBO therapy can be increased by combining antibiotics with probiotics, especially in vulnerable patients such as children and pregnant women. The further development of diagnostic methods, such as point of care testing (POCT) and portable devices, and a better understanding of the mechanisms of biotics action are needed to treat SIBO more effectively and improve the quality of life of patients.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Magdalena Wójcicka
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Iwona Rogatko
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| | - Tomasz Piskorz
- Chair in Gynecology and Obstetrics, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Przemysław J. Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.); (M.W.); (I.R.)
| |
Collapse
|
20
|
Harat SG, Pourjafar H. Health Benefits and Safety of Postbiotics Derived from Different Probiotic Species. Curr Pharm Des 2025; 31:116-127. [PMID: 39297457 DOI: 10.2174/0113816128335414240828105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 02/18/2025]
Abstract
Nowadays, the usage of probiotics in the food industry has become common. It has been proven that probiotics have many health benefits, such as adjusting the intestinal microbiome, boosting the immune system, and enhancing anti-inflammatory and anti-cancer activities. However, in recent years, some concerns have arisen about the consumption of probiotics, especially in vulnerable populations such as elderly, infants, and people with underlying diseases. As a result, finding a new alternative to probiotics that has the same function as probiotics and is safer has been prioritized. In recent years, postbiotics have been introduced as a great replacement for probiotics. However, the safety of these compounds is not exactly confirmed due to the limited in vivo research. In this review, the definition, classification, activities, limitations, and some advantages of postbiotics over probiotics are discussed. Finally, the limited published data about the safety of postbiotics is summarized.
Collapse
Affiliation(s)
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
21
|
Dong B, Calik A, Blue CEC, Dalloul RA. Impact of early postbiotic supplementation on broilers' responses to subclinical necrotic enteritis. Poult Sci 2024; 103:104420. [PMID: 39454532 PMCID: PMC11539447 DOI: 10.1016/j.psj.2024.104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Necrotic enteritis (NE), an enteric disease caused by Clostridium perfringens, results in damage to the intestinal epithelial lining disrupting its function, nutrient absorption, and utilization. This study evaluated the effects of in ovo and post-hatch applications of a Saccharomyces cerevisiae-based postbiotic on performance and nutrient transporter genes of broilers during a NE challenge. At embryonic d 18, Ross 708 fertile eggs were injected with 0.2 mL of either water or postbiotic. A total of 288 male hatchlings were assigned to one of the following treatment groups: 1) NC (in ovo water injection, no challenge); 2) PIW (postbiotic in ovo and in drinking water, no challenge); 3) NC+ (NC with NE challenge); and 4) PIW+ (PIW with NE challenge). On d 14, all birds in the NE-challenged groups were orally gavaged with 3,000 Eimeria maxima sporulated oocysts followed by two doses of ∼1×108 CFU/mL/bird of C. perfringens on d 19 and d 20. Hatchability, weekly performance, intestinal lesion scores, and mRNA abundance of nutrient transporters in the jejunum and ileum were assessed. Data were analyzed by 2-way ANOVA in JMP and significance between treatments identified by LSD test (P ≤ 0.05). A significant postbiotic treatment and NE challenge interaction was observed in performance during d 21-28 with a greater ADG in PIW compared to NC and PIW+. Lesion scores in the jejunum and ileum were significantly reduced in PIW+ compared to NC+. On d 7, mRNA abundance of SGLT1 was significantly greater in PIW compared to the NC group. On d 14, birds in PIW had greater levels of GLUT2 and EAAT3 than NC group. No significant interaction effects were observed on d 21. PIW+ had significantly greater EAAT3 mRNA levels compared to PIW in jejunum and PIW and NC+ in ileum on d 28. In conclusion, in ovo and water supplementation of this postbiotic presents a potential to improve the performance, ameliorate pathology detriments associated with NE, and positively regulate the mRNA levels of key nutrient transporters during NE challenge.
Collapse
Affiliation(s)
- Bingqi Dong
- Department of Poultry Science, University of Georgia, Athens, GA 30602, United States
| | - Ali Calik
- Department of Poultry Science, University of Georgia, Athens, GA 30602, United States; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Türkiye
| | - Candice E C Blue
- Department of Poultry Science, University of Georgia, Athens, GA 30602, United States
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
22
|
Zhang W, Zhang Y, Zhao Y, Li L, Zhang Z, Hettinga K, Yang H, Deng J. A Comprehensive Review on Dietary Polysaccharides as Prebiotics, Synbiotics, and Postbiotics in Infant Formula and Their Influences on Gut Microbiota. Nutrients 2024; 16:4122. [PMID: 39683515 DOI: 10.3390/nu16234122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk contains an abundance of nutrients which benefit the development and growth of infants. However, infant formula has to be used when breastfeeding is not possible. The large differences between human milk and infant formula in prebiotics lead to the suboptimal intestinal health of infant formula-fed infants. This functional deficit of infant formula may be overcome through other dietary polysaccharides that have been characterized. The aim of this review was to summarize the potential applications of dietary polysaccharides as prebiotics, synbiotics, and postbiotics in infant formula to better mimic the functionality of human milk prebiotics for infant gut health. Previous studies have demonstrated the influences of dietary polysaccharides on gut microbiota, SCFA production, and immune system development. Compared to prebiotics, synbiotics and postbiotics showed better application potential in shaping the gut microbiota, the prevention of pathogen infections, and the development of the immune system. Moreover, the safety issues for biotics still require more clinical trials with a large-scale population and long time duration, and the generally accepted regulations are important to regulate related products. Pectin polysaccharides has similar impacts to human milk oligosaccharides on gut microbiota and the repairing of a damaged gut barrier, with similar functions also being observed for inulin and β-glucan. Prebiotics as an encapsulation material combined with probiotics and postbiotics showed better potential applications compared to traditional material in infant formula.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Huang YN, Hsu CN, Hou CY, Chen SY, Tain YL. Resveratrol Butyrate Esters Reduce Hypertension in a Juvenile Rat Model of Chronic Kidney Disease Exacerbated by Microplastics. Nutrients 2024; 16:4076. [PMID: 39683469 DOI: 10.3390/nu16234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Resveratrol is recognized as a promising nutraceutical with antihypertensive and prebiotic properties; however, its bioavailability in vivo is limited. To enhance its bioactivity, we developed resveratrol butyrate esters (RBEs). This study investigates whether RBEs can mitigate hypertension induced by chronic kidney disease (CKD) and exacerbated by microplastics (MPs) exposure in juvenile rats. METHODS Three-week-old male Sprague Dawley rats were fed either regular chow or 0.5% adenine chow for three weeks. The adenine-fed CKD rats (N = 8 per group) received either 5 μM MPs (10 mg/L) or MPs combined with RBE (25 mg/L) in their drinking water from weeks 3 to 9. RESULTS Our results indicate that MP exposure worsened CKD-induced hypertension, while RBE treatment resulted in a reduction in systolic BP by 15 mmHg (155 ± 2 mmHg vs. 140 ± 1 mmHg, p < 0.05). The combined exposure to adenine and MPs was associated with nitric oxide (NO) deficiency, which RBE treatment alleviated. Additionally, our findings revealed that RBE modulated both the classical and nonclassical renin-angiotensin system (RAS), contributing to its protective effects. We also observed changes in gut microbiota composition, increased butyric acid levels, and elevated renal GPR41 expression associated with RBE treatment. CONCLUSIONS In conclusion, in this juvenile rat model of combined CKD and MP exposure, RBE demonstrates antihypertensive effects by modulating NO levels, the RAS, gut microbiota, and their metabolites.
Collapse
Affiliation(s)
- Yi-Ning Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shin-Yu Chen
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
24
|
Chen YY, Liu ZS, Chen BY, Tam HMH, Shia WY, Yu HH, Chen PW. Effects of Heat-Killed Probiotic Strains on Biofilm Formation, Transcription of Virulence-Associated Genes, and Prevention of UTIs in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10399-w. [PMID: 39579303 DOI: 10.1007/s12602-024-10399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Urinary tract infections (UTIs) pose a substantial healthcare challenge, exacerbated by the biofilm-forming abilities and antibiotic resistance of uropathogens. This study investigated the inhibition of biofilm formation (anti-biofilm) and dispersion of pre-established biofilm properties of 18 heat-killed probiotics and their supernatants against four antibiotic-resistant uropathogens: UPEC, Klebsiella pneumoniae (KP), Methicillin-resistant Escherichia coli (MREC), and Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Supernatants from 14 probiotic strains significantly (P < 0.001) inhibited UPEC biofilm formation, reducing it by 20-80%, and also showed promise in removing existing biofilms by 10-60% (P < 0.001). Eight strains significantly (P < 0.05 to < 0.001) inhibited MREC biofilm formation, with four strains achieving 50-80% dispersion. Seventeen strains of heat-killed probiotics directly inhibited UPEC biofilm formation by 10-60% (P < 0.05 to < 0.001), but were less effective against MREC and MRSP (10-50% reduction; P < 0.05 to < 0.001) and had limited impact on KP (10% reduction; P < 0.05 to < 0.001). Notably, heat-killed probiotic like LGA, LGC, LGD, TP-8, and TP-4 showed the most significant inhibitory and dispersion of biofilm activity. RT-qPCR analysis further revealed these inactivated probiotics downregulated genes associated with pili and biofilm formation (fimA, csgA) and upregulated genes linked to quorum sensing (luxS, qseBC, sdiA). Therefore, these findings suggest that paraprobiotic treatment could inhibit the formation of pili and biofilms and promote biofilm dispersion. In an animal model, mice given paraprobiotic formulations I (16 strains) and II (a specific mixture) for 2 weeks showed reduced urinary bacterial load (P < 0.05). Paraprobiotic I notably reduced morbidity from bacteriuria (> 105 CFU/ml) by 5 to 30% within the first 5 days post-infection compared to placebo. These findings highlight the potential of specific heat-killed probiotics in combating biofilms and preventing UTIs.
Collapse
Affiliation(s)
- Yueh-Ying Chen
- Medical Department of Pathology and Laboratory, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, 61363, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bo-Yuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Wei-Yau Shia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hsin-Hsuan Yu
- Medical Department of Pathology and Laboratory, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan.
| |
Collapse
|
25
|
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024; 16:3955. [PMID: 39599742 PMCID: PMC11597603 DOI: 10.3390/nu16223955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The trillions of microbes that constitute the human gut microbiome play a crucial role in digestive health, immune response regulation, and psychological wellness. Maintaining gut microbiota is essential as metabolic diseases are associated with it. Functional food ingredients potentially improving gut health include prebiotics, probiotics, synbiotics, and postbiotics (PPSPs). While probiotics are living bacteria that provide health advantages when ingested sufficiently, prebiotics are non-digestible carbohydrates that support good gut bacteria. Synbiotics work together to improve immunity and intestinal health by combining probiotics and prebiotics. Postbiotics have also demonstrated numerous health advantages, such as bioactive molecules created during probiotic fermentation. According to a recent study, PPSPs can regulate the synthesis of metabolites, improve the integrity of the intestinal barrier, and change the gut microbiota composition to control metabolic illnesses. Additionally, the use of fecal microbiota transplantation (FMT) highlights the potential for restoring gut health through microbiota modulation, reinforcing the benefits of PPSPs in enhancing overall well-being. Research has shown that PPSPs provide several health benefits, such as improved immunological function, alleviation of symptoms associated with irritable bowel disease (IBD), decreased severity of allergies, and antibacterial and anti-inflammatory effects. Despite encouraging results, many unanswered questions remain about the scope of PPSPs' health advantages. Extensive research is required to fully realize the potential of these functional food components in enhancing human health and well-being. Effective therapeutic and prophylactic measures require further investigation into the roles of PPSPs, specifically their immune-system-modulating, cholesterol-lowering, antioxidant, and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Maha Al-Khalili
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Syed Ariful Haque
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman
- Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur 2012, Bangladesh
| | - Moussa Elias
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Nada Al Olqi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Tasnim Al Uraimi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| |
Collapse
|
26
|
He K, Cheng H, McClements DJ, Xu Z, Meng M, Zou Y, Chen G, Chen L. Utilization of diverse probiotics to create human health promoting fatty acids: A review. Food Chem 2024; 458:140180. [PMID: 38964111 DOI: 10.1016/j.foodchem.2024.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Collapse
Affiliation(s)
- Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Lab of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Alam M, Abbas K, Mustafa M, Usmani N, Habib S. Microbiome-based therapies for Parkinson's disease. Front Nutr 2024; 11:1496616. [PMID: 39568727 PMCID: PMC11576319 DOI: 10.3389/fnut.2024.1496616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
The human gut microbiome dysbiosis plays an important role in the pathogenesis of Parkinson's disease (PD). The bidirectional relationship between the enteric nervous system (ENS) and central nervous system (CNS) under the mediation of the gut-brain axis control the gastrointestinal functioning. This review article discusses key mechanisms by which modifications in the composition and function of the gut microbiota (GM) influence PD progression and motor control loss. Increased intestinal permeability, chronic inflammation, oxidative stress, α-synuclein aggregation, and neurotransmitter imbalances are some key factors that govern gastrointestinal pathology and PD progression. The bacterial taxa of the gut associated with PD development are discussed with emphasis on the enteric nervous system (ENS), as well as the impact of gut bacteria on dopamine production and levodopa metabolism. The pathophysiology and course of the disease are associated with several inflammatory markers, including TNF-α, IL-1β, and IL-6. Emerging therapeutic strategies targeting the gut microbiome include probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). The article explored how dietary changes may affect the gut microbiota (GM) and the ways that can affect Parkinson's disease (PD), with a focus on nutrition-based, Mediterranean, and ketogenic diets. This comprehensive review synthesizes current evidence on the role of the gut microbiome in PD pathogenesis and explores its potential as a therapeutic target. Understanding these complex interactions may assist in the development of novel diagnostic tools and treatment options for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Mudassir Alam
- Indian Biological Sciences and Research Institute (IBRI), Noida, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
28
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
29
|
López-Almada G, Mejía-León ME, Salazar-López NJ. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024; 13:3529. [PMID: 39593945 PMCID: PMC11592899 DOI: 10.3390/foods13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a pandemic currently affecting the world's population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even when the microorganisms do not remain alive (paraprobiotic effects). This raises the need to elucidate the mechanisms by which obesity-associated factors can be modulated. This narrative review explores recent findings on the effects of L. rhamnosus, particularly, its postbiotic and paraprobiotic effects, on the modulation of adiposity, weight gain, oxidative stress, inflammation, adipokines, satiety, and maintenance of intestinal integrity, with the aim of providing a better understanding of its mechanisms of action in order to contribute to streamlining its clinical and therapeutic applications. The literature shows that L. rhamnosus can modulate obesity-associated factors when analyzed in vitro and in vivo. Moreover, its postbiotic and paraprobiotic effects may be comparable to the more studied probiotic actions. Some mechanisms involve regulation of gene expression, intracellular signaling, and enteroendocrine communication, among others. We conclude that the evidence is promising, although there are still multiple knowledge gaps that require further study in order to fully utilize L. rhamnosus to improve human health.
Collapse
Affiliation(s)
| | | | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico
| |
Collapse
|
30
|
Asadi Z, Abbasi A, Ghaemi A, Montazeri EA, Akrami S. Investigating the properties and antibacterial, antioxidant, and cytotoxicity activity of postbiotics derived from Lacticaseibacillus casei on various gastrointestinal pathogens in vitro and in food models. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc60. [PMID: 39677014 PMCID: PMC11638717 DOI: 10.3205/dgkh000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background Postbiotics comprise soluble compounds freed from the structure of destroyed bacteria or created by living bacteria. Such byproducts provide the host with enhanced biological function as well as specific physiological consequences. This research aims to examine the characteristics and possible health advantages of Lacticaseibacillus (L.) casei-derived postbiotics. Methods The antibacterial effects of postbiotics derived from L. casei were examined in vitro against various infectious gastrointestinal agents, as well as pasteurized milk and minced beef. Postbiotic activity potential was evaluated using disc-diffusion agar, minimum inhibitory concentration, minimum bactericidal concentration, and well-diffusion agar methods. Postbiotics were tested for antioxidant activity against 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals. Additionally, the total phenolic and flavonoid content of the postbiotics was determined. The colorimetric MTT was used to investigate the potential cytotoxicity of postbiotics. The chemical makeup of the postbiotics was also determined using gas chromatography/mass spectrometry. Results The antibacterial capacity was mostly related to pyrrolo[1,2-a] pyrazine-1,4-dione, benzoic acid, and laurostearic acid. Gram-positive microbes were more influenced by microbial byproducts in vitro than Gram-negative bacteria (P<0.05). The minimum effective concentrations of postbiotics were found to be much greater in ground beef and milk in the Listeria monocytogenes-inoculated model than with other bacteria (P<0.05). Postbiotics also show high antioxidant activity. Postbiotics generated from L. casei had the greatest concentrations of phenolic (99.46 mg GAE/g) and flavonoid (17.46 mg QE/g) constituents. Postbiotics had no influence on the viability of human foreskin fibroblasts at any dose. Conclusion Lactobacillus spp. postbiotics, particularly L. casei, were recommended for use as antioxidants, antimicrobials, and preservatives in both the food and pharmaceuticals sector for their beneficial effects and biological properties.
Collapse
Affiliation(s)
- Zahra Asadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghaemi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sousan Akrami
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Santiago-López L, Garcia HS, Beltrán-Barrientos LM, Méndez-Romero JI, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Probiotic Potential of Bacteria Isolated from Huauzontle (Chenopodium berlandieri spp. Nuttalliae) and Multifunctional Properties of Their Intracellular Contents. FOOD BIOPROCESS TECH 2024; 17:3546-3560. [DOI: 10.1007/s11947-024-03334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/28/2024] [Indexed: 01/05/2025]
|
32
|
Monika M, Tyagi JS, Sonale N, Biswas A, Murali D, Sky, Tiwari AK, Rokade JJ. Evaluating the efficacy of Lactobacillus acidophilus derived postbiotics on growth metrics, Health, and Gut Integrity in broiler chickens. Sci Rep 2024; 14:24768. [PMID: 39433775 PMCID: PMC11494069 DOI: 10.1038/s41598-024-74078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Continuous use of antibiotics in poultry feed as growth promoters poses a grave threat to humanity through the emergence of antibiotic resistance, necessitating the exploration of novel and sustainable alternatives. The present study was carried out to evaluate the performance of postbiotics derived from Lactobacillus acidophilus in broiler birds. The postbiotics were harvested by culturing probiotic bacteria from the stock cultures at the required temperature and duration under laboratory conditions and supplemented to broilers via feed. For experimentation, 480-day-old CARI-Bro Dhanraja (slow-growing broiler) straight-run chicks were randomly split up into six groups. Treatment groups diets are as follows: T1- Basal diet (BD)+0.2%(v/w) MRS Broth/ uninoculated media; T2 - BD + Antibiotic (CTC); T3- BD + Probiotic; T4, T5 & T6 - BD + postbiotics supplementation of 0.2%, 0.4% and 0.6% (v/w) respectively. The chicks were raised under an intensive, deep litter system with standard protocol for 6 weeks. Results showed that 0.2% of postbiotics (T4) had significantly (P < 0.001) higher body weight (1677.52 g) with better FCR (1.75) and immune response. Postbiotic supplementation altered various serum attributes positively, in this study. Significant (P < 0.001) reductions in total plate counts (TPC), coliform counts, and maximum Lactobacillus counts were recorded in all postbiotic-supplemented groups. The villus height (1379.25 μm), width (216.06 μm) and crept depth (179.25 μm) showed significant (P < 0.001) improvement among the treatment groups on the 21st and 42nd day of the experimental trial, with the highest value in the T4 group (0.2% postbiotic supplementation). Jejunal antioxidant values also noted significantly (P < 0.001) higher values in T4 group. The study concludes that 0.2% postbiotic supplementation can act as a substitute to antibiotic growth promoters and also combat the disfavour activity of probiotics in broilers.
Collapse
Affiliation(s)
- M Monika
- ICAR-Indian Agricultural Research Institute, Hazaribagh, Jharkhand, 825405, India
| | - Jagbir Singh Tyagi
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India.
| | - Nagesh Sonale
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Avishek Biswas
- ICAR- Central Institute for Research on Cattle, Meerut, Uttar Pradesh, 250001, India
| | - Dinesh Murali
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Sky
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India
| | - A K Tiwari
- ICAR- Central Avian Research Institute, Izatnagar, Bareilly, 243122, India
| | | |
Collapse
|
33
|
Han KI, Shin HD, Lee Y, Baek S, Moon E, Park YB, Cho J, Lee JH, Kim TJ, Manoharan RK. Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals (Basel) 2024; 17:1383. [PMID: 39459022 PMCID: PMC11510163 DOI: 10.3390/ph17101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Probiotics, which are live microorganisms that, when given in sufficient quantities, promote the host's health, have drawn a lot of interest for their ability to enhance gut health. Enterococcus faecalis, a member of the human gut microbiota, has shown promise as a probiotic candidate due to its functional attributes. However, safety concerns associated with certain strains warrant comprehensive evaluation before therapeutic application. MATERIALS AND METHODS In this study, E. faecalis EF-2001, originally isolated from fecal samples of a healthy human infant, was subjected to a multi-faceted assessment for its safety and probiotic potential. In silico analysis, CAZyme, biosynthetic, and stress-responsive proteins were identified. RESULTS The genome lacked biogenic amine genes but contained some essential amino acid and vitamin synthetic genes, and carbohydrate-related enzymes essential for probiotic properties. The negligible difference of 0.03% between the 1st and 25th generations indicates that the genetic information of the E. faecalis EF-2001 genome remained stable. The live E. faecalis EF-2001 (E. faecalis EF-2001L) demonstrated low or no virulence potential, minimal D-Lactate production, and susceptibility to most antibiotics except some aminoglycosides. No bile salt deconjugation or biogenic amine production was observed in an in vitro assay. Hemolytic activity assessment showed a β-hemolytic pattern, indicating no red blood cell lysis. Furthermore, the EF-2001L did not produce gelatinase and tolerated simulated gastric and intestinal fluids in an in vitro study. Similarly, heat-killed E. faecalis EF-2001 (E. faecalis EF-2001HK) exhibits tolerance in both acid and base conditions in vitro. Further, no cytotoxicity of postbiotic EF-2001HK was observed in human colorectal adenocarcinoma HT-29 cells. CONCLUSIONS These potential properties suggest that probiotic and postbiotic E. faecalis EF-2001 could be considered safe and retain metabolic activity suitable for human consumption.
Collapse
Affiliation(s)
- Kwon Il Han
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Hyun-Dong Shin
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Yura Lee
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Sunhwa Baek
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Eunjung Moon
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Youn Bum Park
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Junhui Cho
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Ranjith Kumar Manoharan
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| |
Collapse
|
34
|
Jalali S, Mojgani N, Sanjabi MR, Saremnezhad S, Haghighat S. Functional properties and safety traits of L. rhamnosus and L. reuteri postbiotic extracts. AMB Express 2024; 14:114. [PMID: 39384663 PMCID: PMC11465093 DOI: 10.1186/s13568-024-01768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
Postbiotics are the non-viable bacterial products or the low molecular weight metabolites produced by probiotics that have received considerable attention owing to their health promoting effects. The present study aimed to investigate the safety and antibacterial properties of postbiotic components of Lacticaseibacillus rhamnosus (Lra) and Limosilactobacillus reuteri (Lre) for their potential applications in food products. The freeze dried postbiotic metabolites (FD-P) from Lra and Lre were extensively analyzed for their physico-chemical properties and antibacterial actions against common food borne pathogens. Higher levels of total flavonoids (1971.79 ± 20 mg Qu/ g), total short-chain fatty acid (23 µg/g), sugar contents, CAT, and SOD anti-oxidative enzymes were detected in the Lra postbiotic, while GSH-px levels and riboflavin were higher in Lre postbiotics (P < 0.01). No significant differences were recorded in the total phenolic (2501 and 2518 mg GAE/ L) and crude protein contents (305. 58 and 296.23 µg/g) of the postbiotics (p ≥ 0.05), respectively. Both FD-P samples showed enhanced activities against Gram-Positive pathogens compared to Gram-Negative pathogens (p < 0.05), while combining the two postbiotics further potentiated the antibacterial actions. Both FD-P samples were non-hemolytic to human erythrocyte cells, and exhibited low cytotoxicity in MRC 5 and IPEC-J2 cell lines at the highest used concentrations (150 mg/ml). In summary, the postbiotics derived from Lra and Lre are safe bioactive ingredients with enhanced antibacterial and antioxidant capabilities, having potential applications as a natural preservatives in food system, potentially enhancing safety and extending the shelf life of food products.
Collapse
Affiliation(s)
- Safura Jalali
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mohammad Reza Sanjabi
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Solmaz Saremnezhad
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Sato A, Watanabe A, Muraki K, Kimoto-Nira H, Kobayashi M. Novel Indirect Antioxidant Activity Independent of Nrf2 Exerted by Lactic Acid Bacteria. Int J Mol Sci 2024; 25:10648. [PMID: 39408975 PMCID: PMC11476518 DOI: 10.3390/ijms251910648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, the health benefits of lactic acid bacteria have garnered attention, but their antioxidant activity remains relatively underexplored. We have been analyzing the antioxidant activities of various dietary phytochemicals by assessing their ability to mitigate oxidative stressor-induced toxicity in zebrafish larvae through pretreatment. In this study, the antioxidant activities of 24 strains of heat-killed lactic acid bacteria from various origins were examined using this zebrafish assay system. The results revealed that all 24 strains possessed antioxidant activity that reduces hydrogen peroxide toxicity. Further detailed analysis using the H61 strain, which exhibited the strongest activity, showed that no direct antioxidant activity was observed in the assay system, suggesting that the detected antioxidant activity was entirely indirect. Moreover, it was found that pretreatment of zebrafish larvae with the H61 strain for more than 6 h was required to exert its antioxidant activity. This duration was similar to that required by dietary antioxidants that activate the Keap1-Nrf2 pathway, suggesting potential involvement of this pathway. However, analysis using Nrf2-knockout zebrafish revealed that the antioxidant activity of strain H61 is independent of Nrf2, indicating that it represents a novel indirect antioxidant activity that does not involve the Keap1-Nrf2 pathway. To further characterize this activity, the ability to mitigate the toxicity of oxidative stressors other than hydrogen peroxide was examined. The results indicated that while the toxicity of tert-butyl hydroperoxide was reduced, unlike with the Keap1-Nrf2 pathway, it was not effective in counteracting the toxicity of paraquat or arsenite, which generate superoxide radicals. In conclusion, we have identified a novel indirect antioxidant activity in lactic acid bacteria.
Collapse
Affiliation(s)
- Ayaka Sato
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Asami Watanabe
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
| | - Kyoji Muraki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
| | - Hiromi Kimoto-Nira
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan;
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
| |
Collapse
|
36
|
Khani N, Noorkhajavi G, Soleiman RA, Raziabad RH, Rad AH, Akhlaghi AP. Aflatoxin Biodetoxification Strategies Based on Postbiotics. Probiotics Antimicrob Proteins 2024; 16:1673-1686. [PMID: 38478298 DOI: 10.1007/s12602-024-10242-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 10/02/2024]
Abstract
Aflatoxins (AFs) are secondary metabolites produced by fungi, and they are deemed the most perilous mycotoxin and food safety predicament. The exposure of humans to mycotoxins transpires either directly through the consumption of contaminated agricultural commodities or indirectly through the ingestion of items derived from animals that have been nourished with tainted substances of animal origin. To ensure the detoxification of AFs in animal and plant food products and to mitigate the risks they pose to public health and the economy, diverse techniques (physical, chemical, and biological) have been subject to scrutiny. By altering and eradicating the molecular structure of the toxin, all of these approaches impede its transmission to the digestive system and potentially diminish the accessibility of toxins to the target tissue, ultimately eliminating them. Given the pervasive predicaments attributed to the contamination of foods and feeds by AFs, it is of utmost importance to urgently devise cost-effective and appropriate strategies to combat this hazard. This review highlights the concept of AFs, definitions, and benefits of postbiotics and their biological role in the detoxification of AFs, as well as their benefits in the food-pharmaceutical industry.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Abedi Soleiman
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Pouya Akhlaghi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Zhu X, Tian X, Wang M, Li Y, Yang S, Kong J. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes. Int Microbiol 2024; 27:1417-1428. [PMID: 38278974 DOI: 10.1007/s10123-024-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.
Collapse
Affiliation(s)
- Xiaoce Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xingfang Tian
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yan Li
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Suzhen Yang
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| |
Collapse
|
38
|
Kaushal A. Nutraceuticals and pharmacological to balance the transitional microbiome to extend immunity during COVID-19 and other viral infections. J Transl Med 2024; 22:847. [PMID: 39294611 PMCID: PMC11409805 DOI: 10.1186/s12967-024-05587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/08/2024] [Indexed: 09/20/2024] Open
Abstract
SCOPE The underlying medical conditions and gut dysbiosis is known to influence COVID-19 severity in high-risk patients. The current review proposed the optimal usage of nutraceuticals & pharmacological interventions can help regulate the protective immune response and balance the regulatory functionality of gut microbiota. Many studies have revealed that the probiotic interventions viz., Lactobacillus rhamnosus, L. plantarum & other bacterial spp. reduce IFNγ & TNF-α and increase IL-4 & IL-10 secretions to control the immunostimulatory effects in upper respiratory tract infection. Dietary fibres utilized by beneficial microbiota and microbial metabolites can control the NF-kB regulation. Vitamin C halts the propagation of pathogens and vitamin D and A modulate the GM. Selenium and Flavonoids also control the redox regulations. Interferon therapy can antagonize the viral replications, while corticosteroids may reduce the death rates. BCG vaccine reprograms the monocytes to build trained immunity. Bifidobacterium and related microbes were found to increase the vaccine efficacy. Vaccines against COVID-19 and season flu also boost the immunity profile for robust protection. Over all, the collective effects of these therapeutics could help increase the opportunities for faster recovery from infectious diseases. CONCLUSION The nutraceutical supplements and pharmacological medicines mediate the modulatory functionalities among beneficial microbes of gut, which in turn eliminate pathogens, harmonize the activity of immune cells to secrete essential regulatory molecular receptors and adaptor proteins establishing the homeostasis in the body organs through essential microbiome. Therefore, the implementation of this methodology could control the severity events during clinical sickness and reduce the mortalities.
Collapse
|
39
|
Ivashkin VT, Gorelov AV, Abdulganieva DI, Alekseeva OP, Alekseenko SA, Baranovsky AY, Zakharova IN, Zolnikova OY, Ivashkin KV, Ivashkina NY, Korochanskaya NV, Mammaev SN, Nikolaeva SV, Poluektova EA, Trukhmanov AS, Usenko DV, Khlynov IB, Tsukanov VV, Shifrin OS, Berezhnaya IV, Lapina TL, Maslennikov RV, Sugian NG, Ulyanin AI. Methodological Guidelines of the Scientific Community for Human Microbiome Research (CHMR) and the Russian Gastroenterology Association (RGA) on the Use of Probiotics, Prebiotics, Synbiotics, Metabiotics and Functional Foods Enriched with Them for the Treatment and Prevention of Gastrointestinal Diseases in Adults and Children. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 34:113-136. [DOI: 10.22416/1382-4376-2024-117-312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Aim: to optimize outcomes of the treatment and prevention of gastrointestinal diseases in adults and children. Key points. The Methodological Guidelines contain sections on the terminology, classification, mechanisms of action, requirements for sale in the Russian Federation, requirements for proving the efficacy and safety of probiotics, prebiotics, synbiotics and metabiotics, as well as functional foods enriched with them. An overview of relevant data allowing to include these drugs and products in the treatment an d prevention of gastrointestinal diseases in adults and children is presented. Conclusion. The clinical efficacy of probiotics, prebiotics, synbiotics and metabiotics depends on the specificity and quantity of their components, the dosage form, the regimen and duration of treatment. Products and functional foods with proven efficacy and safety are recommended for the treatment and prevention of gastrointestinal diseases in adults and children.
Collapse
Affiliation(s)
- V. T. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A. V. Gorelov
- Sechenov First Moscow State Medical University (Sechenov University); Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor)
| | | | | | | | | | - I. N. Zakharova
- Russian Medical Academy of Continuous Professional Education
| | - O. Yu. Zolnikova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - S. V. Nikolaeva
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor)
| | - E. A. Poluektova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Trukhmanov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - D. V. Usenko
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor)
| | | | - V. V. Tsukanov
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, a Separate Subdivision of the Research Institute of Medical Problems of the North
| | - O. S. Shifrin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - T. L. Lapina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - R. V. Maslennikov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N. G. Sugian
- Russian Medical Academy of Continuous Professional Education
| | - A. I. Ulyanin
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
40
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
41
|
Zavišić G, Ristić S, Petričević S, Janković D, Petković B. Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives. Foods 2024; 13:2487. [PMID: 39200415 PMCID: PMC11353716 DOI: 10.3390/foods13162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Heroja Pinkija 4, 21101 Novi Sad, Serbia
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Saša Petričević
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Drina Janković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia;
| | - Branka Petković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| |
Collapse
|
42
|
Isaac-Bamgboye FJ, Mgbechidinma CL, Onyeaka H, Isaac-Bamgboye IT, Chukwugozie DC. Exploring the Potential of Postbiotics for Food Safety and Human Health Improvement. J Nutr Metab 2024; 2024:1868161. [PMID: 39139215 PMCID: PMC11321893 DOI: 10.1155/2024/1868161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Food safety is a global concern, with millions suffering from foodborne diseases annually. The World Health Organization (WHO) reports significant morbidity and mortality associated with contaminated food consumption, and this emphasizes the critical need for comprehensive food safety measures. Recent attention has turned to postbiotics, metabolic byproducts of probiotics, as potential agents for enhancing food safety. Postbiotics, including organic acids, enzymes, and bacteriocins, exhibit antimicrobial and antioxidant properties that do not require live organisms, and this offers advantages over probiotics. This literature review critically examines the role of postbiotics in gut microbiome modulation and applications in the food industry. Through an extensive review of existing literature, this study evaluates the impact of postbiotics on gut microbiome composition and their potential as functional food ingredients. Research indicates that postbiotics are effective in inhibiting food pathogens such as Staphylococcus aureus, Salmonella enterica, and Escherichia coli, as well as their ability to prevent oxidative stress-related diseases, and they also show promise as alternatives to conventional food preservatives that can extend food shelf life by inhibiting harmful bacterial growth. Their application in functional foods contributes to improved gut health and reduced risk of foodborne illnesses. Findings suggest that postbiotics hold promise for improving health and preservation by inhibiting pathogenic bacteria growth and modulating immune responses.
Collapse
Affiliation(s)
- Folayemi Janet Isaac-Bamgboye
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
- Department of Food Science and TechnologyFederal University of Technology, Akure, Ondo State, Nigeria
| | - Chiamaka Linda Mgbechidinma
- Centre for Cell and Development Biology and State Key Laboratory of AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ocean CollegeZhejiang University, Zhoushan 316021, Zhejiang, China
- Department of MicrobiologyUniversity of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Helen Onyeaka
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
43
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring Therapeutic Advances: A Comprehensive Review of Intestinal Microbiota Modulators. Antibiotics (Basel) 2024; 13:720. [PMID: 39200020 PMCID: PMC11350912 DOI: 10.3390/antibiotics13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota establishes a mutually beneficial relationship with the host starting from birth, impacting diverse metabolic and immunological processes. Dysbiosis, characterized by an imbalance of microorganisms, is linked to numerous medical conditions, including gastrointestinal disorders, cardiovascular diseases, and autoimmune disorders. This imbalance promotes the proliferation of toxin-producing bacteria, disrupts the host's equilibrium, and initiates inflammation. Genetic factors, dietary choices, and drug use can modify the gut microbiota. However, there is optimism. Several therapeutic approaches, such as probiotics, prebiotics, synbiotics, postbiotics, microbe-derived products, and microbial substrates, aim to alter the microbiome. This review thoroughly explores the therapeutic potential of these microbiota modulators, analysing recent studies to evaluate their efficacy and limitations. It underscores the promise of microbiota-based therapies for treating dysbiosis-related conditions. This article aims to ensure practitioners feel well-informed and up to date on the most influential methods in this evolving field by providing a comprehensive review of current research.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
44
|
Fakharian F, Sadeghi A, Pouresmaeili F, Soleimani N, Yadegar A. Anti-inflammatory effects of extracellular vesicles and cell-free supernatant derived from Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-induced inflammatory response in gastric epithelial cells in vitro. Folia Microbiol (Praha) 2024; 69:927-939. [PMID: 38308067 DOI: 10.1007/s12223-024-01138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Helicobacter pylori infection is the major risk factor associated with the development of gastric cancer. Currently, administration of standard antibiotic therapy combined with probiotics and postbiotics has gained significant attention in the management of H. pylori infection. In this work, the immunomodulatory effects of Lactobacillus crispatus-derived extracellular vesicles (EVs) and cell-free supernatant (CFS) were investigated on H. pylori-induced inflammatory response in human gastric adenocarcinoma (AGS) cells. L. crispatus-derived EVs were isolated by ultracentrifugation and physically characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Furthermore, the protein content of L. crispatus-derived EVs was also evaluated by SDS-PAGE. Cell viability of AGS cells exposed to varying concentrations of EVs and CFS was assessed by MTT assay. The mRNA expression of IL-1β, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR. ELISA was used for the measurement of IL-8 production in AGS cells. In addition, EVs (50 μg/mL) and CFS modulated the H. pylori-induced inflammation by downregulating the mRNA expression of IL-1β, IL-6, IL-8, and TNF-α, and upregulating the expression of IL-10, and TGF-ß genes in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with L. crispatus-derived EVs and CFS. In conclusion, our observation suggests for the first time that EVs released by L. crispatus strain RIGLD-1 and its CFS could be recommended as potential therapeutic agents against H. pylori-triggered inflammation.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Pyo Y, Kwon KH, Jung YJ. Probiotic Functions in Fermented Foods: Anti-Viral, Immunomodulatory, and Anti-Cancer Benefits. Foods 2024; 13:2386. [PMID: 39123577 PMCID: PMC11311591 DOI: 10.3390/foods13152386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented foods can provide many benefits to our health. These foods are created by the action of microorganisms and help support our digestive health and immune system. Fermented foods include yogurt, kimchi, pickles, kefir, beer, wine, and more. Fermented foods contain probiotics, lactic acid bacteria (LAB), yeast, organic acids, ethanol, or antimicrobial compounds, which help balance the gut microbiome and improve digestive health. Fermented foods can also benefit your overall health by increasing the diversity of your gut microbiome and reducing inflammation. By routinely consuming fermented foods with these benefits, we can continue to improve our health. Probiotics from fermented foods are beneficial strains of bacteria that are safe for human health and constitute an important component of human health, even for children and the elderly. Probiotics can have a positive impact on your health, especially by helping to balance your gut microbiome and improve digestive health. Probiotics can also boost your immune system and reduce inflammation, which can benefit your overall health. Probiotics, which can be consumed in the diet or in supplement form, are found in many different types of foods and beverages. Research is continuing to investigate the health effects of probiotics and how they can be utilized. The potential mechanisms of probiotics include anti-cancer activity, preventing and treating immune system-related diseases, and slowing the development of Alzheimer's disease and Huntington's disease. This is due to the gut-brain axis of probiotics, which provides a range of health benefits beyond the digestive and gastrointestinal systems. Probiotics reduce tumor necrosis factor-α and interleukins through the nuclear factor-kappa B and mitogen-activated protein kinase pathways. They have been shown to protect against colon cancer and colitis by interfering with the adhesion of harmful bacteria in the gut. This article is based on clinical and review studies identified in the electronic databases PubMed, Web of Science, Embase, and Google Scholar, and a systematic review of clinical studies was performed.
Collapse
Affiliation(s)
- Yeonhee Pyo
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Yeon Ja Jung
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
46
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
47
|
Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients 2024; 16:2244. [PMID: 39064687 PMCID: PMC11279795 DOI: 10.3390/nu16142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.
Collapse
Affiliation(s)
- Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| |
Collapse
|
48
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
49
|
Kango N, Nath S. Prebiotics, Probiotics and Postbiotics: The Changing Paradigm of Functional Foods. J Diet Suppl 2024; 21:709-735. [PMID: 38881201 DOI: 10.1080/19390211.2024.2363199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The rampant use of antibiotics has led to the emergence of multidrug resistance and is often coupled with gut dysbiosis. To circumvent the harmful impact of antibiotics, probiotics have emerged as an effective intervention. However, while the new probiotics are being added to the list, more recently, the nature and role of their counterparts, viz. prebiotics, postbiotics and parabiotics have also drawn considerable attention. As such, intricate relationships among these gut-biotics vis-à-vis their role in imparting health benefits is to be delineated in a holistic manner. Prebiotic dietary fibers are selectively fermented by probiotics and promote their colonization in the gut. The proliferation of probiotics leads to production of fermentation by-products (postbiotics) which affect the growth of enteropathogens by lowering the pH and producing inhibitory bacteriocins. After completing life-cycle, their dead remnants (parabiotics e.g. exopolysaccharides and cell wall glycoproteins) also inhibit adhesion and biofilm formation of pathogens on the gut epithelium. These beneficial effects are not just endemic to gut but a systemic response is witnessed at different gut-organ axes. Thus, to decipher the role of probiotics, it is imperative to unravel the interdependence between these components. This review elaborates on the recent advancements on various aspects of these gut-biotics and the mechanism of potential attributes like anti-oxidant, anti-inflammatory, anti-neoplastic, anti-lipidemic and anti-hyperglycemic benefits.
Collapse
Affiliation(s)
- Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
50
|
Odorskaya MV, Mavletova DA, Nesterov AA, Tikhonova OV, Soloveva NA, Reznikova DA, Galanova OO, Vatlin AA, Slynko NM, Vasilieva AR, Peltek SE, Danilenko VN. The use of omics technologies in creating LBP and postbiotics based on the Limosilactobacillus fermentum U-21. Front Microbiol 2024; 15:1416688. [PMID: 38919499 PMCID: PMC11197932 DOI: 10.3389/fmicb.2024.1416688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857.
Collapse
Affiliation(s)
- Maya V. Odorskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dilara A. Mavletova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Andrey A. Nesterov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Institute of Environmental Engineering, RUDN University, Moscow, Russia
| | | | | | - Diana A. Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Olesya O. Galanova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksey A. Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Nikolai M. Slynko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
| |
Collapse
|