1
|
Roy S, Deka D, Kondaveeti SB, Ayyadurai P, Siripragada S, Philip N, Pathak S, Duttaroy AK, Banerjee A. An overview of potential of natural compounds to regulate epigenetic modifications in colorectal cancer: a recent update. Epigenetics 2025; 20:2491316. [PMID: 40239010 PMCID: PMC12005453 DOI: 10.1080/15592294.2025.2491316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Colorectal cancer (CRC) remains an alarming global health concern despite advancements in treatment modalities over recent decades. Among the various factors contributing to CRC, this review emphasizes the critical role of epigenetic mechanisms in its pathogenesis and progression. This review also describes the potential role of natural compounds in altering the epigenetic landscape, focused mainly on DNA methylation, histone modification, and non-coding RNAs. Publications from the previous five years were searched and retrieved using well-known search engines and databases like PubMed, Google Scholar, and ScienceDirect. Keywords like CRC/colorectal cancer, CAC/Colitis associated CRC, inflammasomes, epigenetic modulation, genistein, curcumin, quercetin, resveratrol, anthocyanins, sulforaphane, and epigallocatechin-3-gallate were used in various combinations during the search. These natural compounds predominantly affect pathways such as Wnt/β-catenin, NF-κB, and PI3K/AKT to suppress CRC cell proliferation and oxidative stress and enhance anti-inflammation and apoptosis. However, their clinical use is restricted due to their low bioavailability. However, multiple methods exist to overcome challenges like this, including but not limited to structural modifications, nanoparticle encapsulations, bio-enhancers, and novel advanced delivery systems. These methods improve their potential as supportive therapies that target CRC progression epigenetically with fewer side effects. Current research focuses on enhancing epigenetic targeting to control CRC progression while minimizing side effects, emphasizing improved specificity, bioavailability, and efficacy as standalone or synergistic therapies.
Collapse
Affiliation(s)
- Susmita Roy
- Medical Biotechnology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Dikshita Deka
- Medical Biotechnology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Suresh Babu Kondaveeti
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, India
| | - Pavithra Ayyadurai
- Medical Biotechnology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sravani Siripragada
- Medical Biotechnology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Neha Philip
- Medical Biotechnology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Medical Biotechnology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Antara Banerjee
- Medical Biotechnology Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
2
|
Raj JAT, Shah J, Ghanekar S, John G, Goda JS, Chatterjee A. Pharmacological and therapeutic innovation to mitigate radiation-induced cognitive decline (RICD) in brain tumor patients. Cancer Lett 2025; 620:217700. [PMID: 40194653 DOI: 10.1016/j.canlet.2025.217700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Radiation therapy is a key treatment modality in both primary and metastatic brain tumors. However, despite its efficacy, it often results in cognitive decline, particularly after whole brain RT (WBRT). Radiation-induced cognitive impairment, which affects memory, attention, and executive function, significantly affects Quality Of Life (QOL) and functional independence. Although white matter necrosis, a hallmark of conventional radiation techniques, has become less common with modern methods, cognitive deficits remain a persistent issue. Neuroinflammation is a key driver of this decline, along with disruptions in hippocampal neurogenesis and damage to regions of the brain. Radiation affects neural stem cells, mature neurons, and glial cells, particularly within the hippocampus, affecting cognition. Recent studies suggest that targeting neuroinflammation and other key Signaling pathways (NMDAR, RAAS, PARP, PPAR, etc.) can reduce cognitive impairment. This review examines the theme of radiation-induced cognitive decline and explores possible interventions to prevent or mitigate these outcomes.
Collapse
Affiliation(s)
- Jemema Agnes Tripena Raj
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Janmey Shah
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Shubham Ghanekar
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Geofrey John
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Jayant S Goda
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology and Radiobiology Lab, Advance Center for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Center, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra, India.
| |
Collapse
|
3
|
Pang H, Badehnoosh B. Synergistic strength: unleashing exercise and polyphenols against breast cancer. Cancer Cell Int 2025; 25:144. [PMID: 40234950 PMCID: PMC11998149 DOI: 10.1186/s12935-025-03767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Breast cancer remains a major global health challenge, necessitating innovative preventive and therapeutic strategies. Emerging evidence such as clinical trials suggests that the combination of exercise and polyphenol intake exerts synergistic effects in mitigating breast cancer progression by modulating key molecular pathways. Exercise enhances immune function, reduces inflammation, and regulates cellular metabolism, while polyphenols, natural compounds found in various plant-based foods, exhibit antioxidant, anti-inflammatory, and anti-carcinogenic properties. Together, these interventions influence apoptosis, oxidative stress, and ferroptosis which play crucial roles in breast cancer pathophysiology. This review explores the molecular mechanisms underlying the combined impact of exercise and polyphenols on breast cancer prevention and treatment. Understanding the interplay between exercise and polyphenols at the molecular level could pave the way for novel, non-invasive therapeutic strategies. Future research should focus on optimizing exercise regimens and dietary interventions to maximize their anti-cancer benefits. By bridging molecular insights with clinical applications, this review aims to provide a foundation for incorporating lifestyle-based interventions into breast cancer management. Our findings collectively highlight the promising potential of combining curcumin supplementation with exercise as a multifaceted approach to breast cancer treatment. The synergistic effects observed in various studies suggest that integrating lifestyle modifications with dietary interventions may enhance therapeutic efficacy and mitigate cancer progression. Further clinical investigations are warranted to validate these results and explore their applicability in human subjects. The evidence supports a holistic strategy for breast cancer management that could improve patient outcomes and quality of life during treatment.
Collapse
Affiliation(s)
- Haifan Pang
- Department of Physical Education, China University of Political Science and Law, Beijing, 102249, China.
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Salah M, Gong W, Tu T, Sobhy R, Dabbour M, Fang Y, Walayat N, Wang Y. Enhancing the antifungal efficiency of chitosan nanoparticle via interacting with didymin/flavonoid and its bio-based approaches for postharvest preservation in pear fruit models. Int J Biol Macromol 2025; 304:140889. [PMID: 39947569 DOI: 10.1016/j.ijbiomac.2025.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/09/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
In this study, chitosan nanoparticles are used to encapsulate didymin and flavonoids separately using ionic gelation with phytic acid as a cross-linker. Their structural, antioxidant, and antifungal properties were evaluated. Flavonoid (Fs) was extracted from orange peels, while didymin (Did) was qualified in the pure extract using ultra-performance liquid chromatography (UPLC). UV-vis spectroscopy and FTIR confirmed the interaction of the obtained nanoparticles, which aligned with Surflex-dock findings. These nanoparticles showed a more compact structure and excellent thermal stability. The encapsulation efficiency (EE%) of Did-Cn and Fs-Cn nanoparticles was 55.33 ± 3.51 and 47.40 ± 0.56 %, respectively. The antioxidant assay showed that these nanoparticles highly reduced FRAP, DPPH, and ABTS radicals. The growth inhibition of Penicillium expansum was 37.39 ± 1.07 %, that of Aspergillus westerdijkiae was 44.26 ± 1.05 %, and that of Alternaria alternata was completely inhibited, which fits with clicks of the confocal microscope. These results suggest that food packaging or coatings could incorporate these nanoparticles to prevent fungal spoilage, thereby improving food safety. Meanwhile, using such nanoparticles offers a natural, safe, and effective solution for the pharmaceuticals and/or food industries to extend the freshness and shelf life of fruits and perishable items, reducing reliance on synthetic preservatives.
Collapse
Affiliation(s)
- Mahmoud Salah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Remah Sobhy
- Department of Biochemistry, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Yajing Fang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Kim D, Lee YY, Kim HJ, Choi M, Lee S, Kim HE, Kim E, Jo M, Choi YJ. Enhanced storage and gastrointestinal stability of spray-dried whey protein emulsions with chitosan and gum Arabic. Int J Biol Macromol 2025; 299:140260. [PMID: 39855532 DOI: 10.1016/j.ijbiomac.2025.140260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Protein-based emulsions are widely utilized for delivering bioactives but suffer from thermodynamic instability, microbial spoilage, and gastrointestinal instability, necessitating enhancement strategies. This study explores the improvement of whey protein isolate (WPI) emulsions through chitosan (CS) coating and spray drying with maltodextrin (MD) or gum Arabic (GA). Canola oil droplets were stabilized with WPI, electrostatic coated with CS, and spray-dried. CS addition significantly increased entrapment efficiency from ∼75-78 % to ∼95-98 %, correlating with enhanced storage and gastrointestinal stability. During a 2-h gastric digestion study, CS/GA-protected powders demonstrated only 3.6 % lipolysis compared to 27.1 % for unprotected WPI emulsions, exhibiting superior gastric resistance. Under small intestinal conditions, their digestion rate constant was one-fifth of that for unprotected WPI emulsions. Furthermore, CS/GA-protected powders maintained excellent storage stability for one year. These findings highlight the potential of WPI-based emulsion powders as effective oral delivery systems for lipophilic bioactives, offering improved storage and gastrointestinal stability.
Collapse
Affiliation(s)
- Dayeong Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - You Young Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyeong Jeong Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minji Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Suyoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ha Eun Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Eunghee Kim
- Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Muro P, Jing C, Zhao Z, Jin T, Mao F. The emerging role of honeysuckle flower in inflammatory bowel disease. Front Nutr 2025; 12:1525675. [PMID: 40225345 PMCID: PMC11985448 DOI: 10.3389/fnut.2025.1525675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), referred to as inflammatory bowel disease (IBD), pose considerable challenges in treatment because they are chronic conditions that easily relapse. The occurrence of IBD continues to rise in developing countries. Nonetheless, the existing therapies for IBD have limitations and fail to address the needs of the patients thoroughly. There is an increasing need for new, safe, and highly effective alternative medications for IBD patients. Traditional Chinese Medicine (TCM) is employed in drug development and disease management due to its wide-range of biological activities, minimal toxicity, and limited side effects. Extensive research has shown that certain TCM exhibits significant therapeutic benefits for IBD treatments. Honeysuckle (Lonicera japonica) was used in TCM research and clinical settings for the treatment of IBD. Bioactive metabolites in L. japonica, such as luteolin, quercetin, cyanidin, chlorogenic acid (CGA), caffeic acid (CA), and saponin, exhibit significant therapeutic benefits for managing IBD. The honeysuckle flower is a potential candidate in the treatment of IBD due to its anti-inflammatory, immune system-regulating, and antioxidant qualities. This paper reviews the metabolites of the honeysuckle flower as a candidate for the treatment of IBD. It discusses the fundamental mechanism of L. japonica and the potential of its bioactive metabolites in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Peter Muro
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caihong Jing
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Zhihan Zhao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Unsal V, Keskin C, Oner E. Can quercetin reduce arsenic induced toxicity in mouse BALB/c 3T3 fibroblast cells? A study involving in vitro, molecular docking, and ADME predictions. BMC Pharmacol Toxicol 2025; 26:68. [PMID: 40133990 PMCID: PMC11934578 DOI: 10.1186/s40360-025-00906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
This study aimed to investigate the protective effect of quercetin against arsenic-induced oxidative damage, inflammation, and apoptosis in mouse BALB/c 3T3 fibroblast cells (NIH-3T3). Arsenic at different concentrations of 0.05 µM (low), 0.5 µM (medium), 10 µM (high) doses were used to induce toxicity, while 120 μm quercetin was used for treatment. MTT and LDH analyses were performed to determine the effect of arsenic and quercetin on cell viability, while oxidative stress markers and antioxidant enzyme activities were measured by spectrophotometric method. TNF-α and IL-1β levels were measured by the ELISA method, Autodock programs were used for molecular docking studies. In addition, computer-based analyses of quercetin and succimer molecules were performed using SwissADME web tools. TNF-α (PDB ID: 2AZ5), IL-1β (PDB ID: 1ITB), Caspase3 (PDB ID: 2XYG), Bax (PDB ID: 4S0O), SOD (PDB ID:1CBJ), GSH-Px (PDB ID: 1GP1) and Bcl-2 (PDB ID: 1G5M) crystal structures were obtained from the Protein Data Bank. Bax and Bcl-2 levels of apoptotic genes and mRNA expression levels of Caspase-3 activity were measured using the QRT-PCR technique. TUNEL staining was performed to determine DNA fragmentations, while DAPI staining was done to visualise nuclear modifications. Quercetin has been found to significantly reduce oxidative stress, inflammation, and apoptosis in cells and exert anti-apoptotic effects. Molecular docking studies revealed quercetin shows good binding affinity with molecules with SOD, GSH-Px, Bax, Bcl-2, Caspase-3, TNF-α and IL-1β structures, and has been observed to bind with Bax and Bcl-2 with molecular docking scores of -7.5 and - 7.7 kcal/mol, respectively. These findings are supported by results showing that quercetin is effective in anti-apoptotic and anti-inflammatory processes in arsenic-induced cells under in vitro conditions. In addition, when ADME values are examined, it can be considered that quercetin is a useful and effective candidate compound in reducing arsenic toxicity, considering its higher synthetic accessibility score, better pharmacokinetic properties, and good biological transition and interaction capacities compared to succimer.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Türkiye.
| | - Cumali Keskin
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Türkiye
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| |
Collapse
|
8
|
Nisa MU, Umer M, Hamza M, Umbreen H, Khalid N, Raza MQ, Mohamed Ahmed IA, Aljobair MO, Khan OA. Investigating Coriander Leaf Phenolics With HPLC-UV and Their Role in Modulating Nitrogen Metabolism. Food Sci Nutr 2025; 13:e70029. [PMID: 40104211 PMCID: PMC11914388 DOI: 10.1002/fsn3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Coriander leaves (Coriandrum Sativum L.) contain quercetin, a flavanol from the flavonoid polyphenol group that helps prevent various metabolic disorders. This study aimed to use HPLC-UV to investigate phenolic compounds in coriander leaves and their impact on nitrogen metabolism. Twenty-four healthy Wistar albino rats weighing 160 ± 10 g were divided into four groups: NC (no coriander), CT1, CT2, and CT3. They received coriander leaf powder at levels of 12.2, 16, and 20.33 g/100 g of feed, respectively, based on the availability of quercetin on a dry matter (DM) basis. Feed intake was found higher in CT3 (27.27 g) and CT2 (25.43 g), while CT1 (24.96 g) and NC (24.66 g) showed a nonsignificant (p ≥ 0.05) trend; however, a similar trend was observed in weekly feed intake. After three weeks, rats in the CT3 group showed a 20 g reduction in body weight compared to the NC group (149.64 g vs. 163.41 g). The feed conversion and feed efficiency ratios (FCR & FER) were decreased in all treated groups due to the reduction in body weight (BW). The digestibility of DM and soluble carbohydrates was reduced in rats fed the CT3 diet while crude protein (CP), crude fiber (CF), ether extract (EE), and ash showed increasing trends. The rats that were fed different levels of coriander in the diet showed positive nitrogen balance. There was a reduction in serum uric acid in CT1 (0.72 ± 0.04 mg/dL) and CT2 (0.81 ± 0.03 mg/dL) as compared to other treatment groups. These nitrogen parameters had a positive impact on nitrogen metabolism, along with a significant (p ≤ 0.05) effect on total serum protein and a non-significant (p ≥ 0.05) effect on creatinine. Liver enzymes showed significant improvements in rats that were fed varying amounts of coriander powder. High-density lipoprotein (HDL) levels improved in all treatment groups, with a significant increase observed in CT1 (52.27 ± 0.27 mg/dL). In conclusion, 130 g of dry coriander containing 136 mg of quercetin can be effectively included in various food recipes in dry or wet form to improve serum indices and weight management in healthy people.
Collapse
Affiliation(s)
- Mahr-Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences Government College University Faisalabad Punjab Pakistan
| | - Muhammad Umer
- Department of Nutritional Sciences, Faculty of Medical Sciences Government College University Faisalabad Punjab Pakistan
| | - Muhammad Hamza
- Department of Nutritional Sciences, Faculty of Medical Sciences Government College University Faisalabad Punjab Pakistan
| | - Huma Umbreen
- Department of Nutritional Sciences, Faculty of Medical Sciences Government College University Faisalabad Punjab Pakistan
| | - Nukhba Khalid
- Faculty of Pharmaceutical Sciences Government College University Faisalabad Punjab Pakistan
| | | | - Isam A Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Moneera O Aljobair
- Department of Sports Health, College of Sports Sciences & Physical Activity Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Osman Ahmad Khan
- Livestock and Dairy Development Department Faisalabad Punjab Pakistan
| |
Collapse
|
9
|
Bi K, Livaoğlu M. Comparison of the Effect of Delay Phenomenon and Quercetin Application on the Viability of Dorsal Skin Island Flaps in Rats: An Experimental Study. Ann Plast Surg 2025; 94:357-364. [PMID: 39652881 DOI: 10.1097/sap.0000000000004172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
BACKGROUND Surgical delay is any surgical intervention performed 7-14 days before flap elevation, separating part of flap from its vascular bed and aiming to decrease flap necrosis. However, delay surgery needs to be planned and performed as a separate surgical operation. Quercetin is a flavonoid with anti-inflammatory, and vasodilator effects. This study compares the effects of quercetin and surgical delay on flap survival. MATERIALS AND METHODS The study included 32 male Wistar rats divided into four groups: control group (group 1), surgical delay group (group 2), quercetin group (group 3), and both surgical delay and quercetin group (group 4). All dorsal skin island flaps were elevated based on deep circumflex iliac artery and 7 days were selected as waiting period after flap elevation, 50 mg/kg (0.5 mL) intraperitoneal quercetin administration period, and surgical delay period. Macroscopically flap necrosis rates were calculated and histopathological examination was performed to evaluate number of vessels, vessel lumen diameters, inflammation, epidermal damage, and dermal fibrosis scores. All rats were euthanized. RESULTS Flap necrosis rates, inflammation, epidermal damage, and dermal fibrosis scores of group 3 and 4 were found to be lower than group 1 and 2 ( P < 0.05). Vascular lumen diameter of group 2, 3, and 4 were found to be higher than group 1 ( P < 0.05) but no statistically significant difference was found for this parameter between group 2, 3, and 4 ( P > 0.05). The number of vessels were found to be higher in group 2, group 3, and group 4 compared with group 1, but this difference was not to be found statistically significant ( P = 0.534). CONCLUSIONS This study shows that quercetin application is more effective in reducing flap necrosis rates and anti-inflammatory effect than surgical delay and also has superior effect in terms of vasodilation.
Collapse
Affiliation(s)
- Kübra Bi
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | | |
Collapse
|
10
|
Abdul-Razek N, Khalil RG, Abdel-Latif M, Kamel MM, Alhazza IM, Awad EM, Ebaid H, Abuelsaad ASA. Investigating the Tumor-Suppressive, Antioxidant Effects and Molecular Binding Affinity of Quercetin-Loaded Selenium Nanoparticles in Breast Cancer Cells. BIONANOSCIENCE 2025; 15:135. [DOI: 10.1007/s12668-024-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/03/2025]
Abstract
AbstractIn 2023, breast cancer is expected to have nearly 2 million new cases, making it the second most common cancer overall and the most prevalent among women. Multidrug resistance limits the effectiveness of chemotherapy; however, quercetin, a natural flavonoid, helps combat this issue. The goal of the current investigation is to determine the impact of a novel composite of quercetin and selenium nanoparticles (SeNPs) on the breast cancer cell lines MDA-MB-231 and MCF-7 in order to enhance quercetin’s tumor-suppressive action and decrease selenium (Se) toxicity. Particle size, zeta potential, FTIR, SEM, UV–VIS spectroscopy, and EDX were used to characterize quercetin-selenium nanoparticles (Que-SeNPs), in addition to evaluation of the antioxidant, apoptotic, and anticancer properties. Moreover, autophagy (Atg-13) protein receptors and PD-1/PD-L1 checkpoint were targeted using molecular docking modeling and molecular dynamics (MD) simulations to assess the interaction stability between Que-SeNPs and three targets: PDL-1, PD-1, and Atg-13HORMA domain. Que-SeNPs, synthesized with quercetin, were stable, semi-spherical (80–117 nm), and had a zeta potential of − 37.8 mV. They enhanced cytotoxicity, antioxidant activity, and apoptosis compared to quercetin alone in MCF-7 and MDA-MB-231 cells. Docking simulations showed strong binding to the PD-1/PD-L1 checkpoint and Atg-13HORMA protein receptors. Moreover, the molecular dynamics simulation revealed that the behavior of the PD-L1 intriguing insights into its structural dynamics, therefore, suggesting a stable phase where the complex is adjusting to the simulation environment. The present data confirmed that the stable formula of Que-SeNPs is cytotoxic, antioxidant, and has a potential activity to increase apoptosis in breast cancer cells, with the potential to inhibit PD-1/PD-L1 and Atg-13 proteins.
Graphical Abstract
Role of Que-SeNPs on breast cancer cells in vitro against two breast cancer cell lines MDA-MB-231 and MCF-7.
Collapse
|
11
|
Khanam A, Ijaz Hussain A, Mohammed EH, Nahar L, Rathore HA. Phenolic Profile of Seedless Ziziphus mauritiana Fruits and Leaves Extracts with In Vivo Antioxidant and Anti-Inflammatory Activities: Influence on Pro-Inflammatory Mediators. Chem Biodivers 2025; 22:e202401728. [PMID: 39475065 PMCID: PMC11908774 DOI: 10.1002/cbdv.202401728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
The present study aimed to assess the antioxidant and anti-inflammatory activities of polyphenol-rich extracts of seedless variety of Ziziphus mauritiana (SZM). Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis of SZM leaves and fruit extracts in ethanol revealed the presence of sixteen phenolics including chlorogenic acid, p-coumeric acid, gallic acid, kaempferol, rutin and quercetin. Leaf extract showed higher total phenolic and total flavonoid contents (177.6 mg/100 g and 46.2 mg/100 g) than in fruit extract (137.8 mg/100 g and 14.1 mg/100 g). The leaf extract exhibited higher DPPH radical-scavenging activity (63.5 %) than the fruit extract (58.2 %). The anti-inflammatory activity was evaluated on carrageenan-induced rat model and suppression of inflammatory biomarkers (Interleukin-6, Tumor necrosis factor-α and CRP) were studied. The fruit extract exhibited remarkable inhibition (98.1 %) at the dose level of 500 mg/kg body weight (BW), comparable to the standard drug indomethacin (98.4 %). Both extracts suppressed the inflammatory biomarkers and more pronounced results showed by the fruit extract including CRP, IL-6, and TNF-α. The leaf extract demonstrated the higher antioxidant potential as evident from the superoxide dismutase, catalase, malondialdehyde, glutathione peroxidase and glutathione levels. These findings suggest that SZM leaf and fruit extracts possess potential antioxidant and remarkable anti-inflammatory properties and can play a significant role in mitigating oxidative stress.
Collapse
Affiliation(s)
- Arifa Khanam
- Department of ChemistryGovernment College University FaisalabadFaisalabad38000Pakistan
| | - Abdullah Ijaz Hussain
- Department of ChemistryGovernment College University FaisalabadFaisalabad38000Pakistan
| | - Esraa Haji Mohammed
- Department of Pharmaceutical ChemistryCollege of PharmacyUniversity of Hafr Al BatinHafr Al Batin39524Saudi Arabia
| | - Lutfun Nahar
- Laboratory of Growth RegulatorsPalacký University and Institute of Experimental BotanyThe Czech Academy of SciencesŠlechtitelů 27Olomouc78371Czech Republic
| | - Hassaan A. Rathore
- Department of Pharmaceutical SciencesCollege of PharmacyQU HealthQatar UniversityDohaQatar
| |
Collapse
|
12
|
Saadh MJ, Ahmed HH, Chandra M, Al-Hussainy AF, Hamid JA, Mishra A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA, Alsaikhan F, Farhood B, Akhavan-Sigari R. Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis. Cancer Cell Int 2025; 25:66. [PMID: 39994659 PMCID: PMC11854426 DOI: 10.1186/s12935-025-03694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE Oral malignancies are among the common head and neck cancers. Various therapeutic modalities are used for targeting oral cancers. It was shown that quercetin (a flavonoid) has an anti-cancer effect on different cancers. In the current study, the anti-cancer potentials of quercetin against oral cancer cells were summarized. METHODS The current systematic review was conducted in accordance with the PRISMA guideline for the identification of relevant studies in various electronic databases up to April 2023. After reviewing and screening 193 articles, 18 were chosen for this study based on our inclusion and exclusion criteria. RESULTS It was shown that quercetin significantly reduced cancer cell proliferation, cell viability, tumor volume, invasion, metastasis and migration. This anti-cancer agent induced oxidative stress and apoptosis in the cancer cells. Quercetin treatment could also induce some biochemical alterations in the cancer cells. CONCLUSION According to the results, it can be mentioned that quercetin administration has an anti-cancer effect against oral cancer cells. This agent exerts its anticancer effects via reduced cell viability and different mechanisms, including induce oxidative damage, apoptosis, and reduced invasion and metastasis. However, suggesting the use of quercetin as a therapeutic agent of oral cancer patients requires further clinical studies due to its poor absorption rates, and the exact molecular mechanisms are still not well understood.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | | | | | - Anurag Mishra
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Reza Akhavan-Sigari
- Dr. Schneiderhan GmbH and ISAR Klinikum, Munich, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
13
|
Martínez-Esquivias F, Guzmán-Flores JM, Pech-Santiago EO, Guerrero-Barrera AL, Delgadillo-Aguirre CK, Anaya-Esparza LM. Therapeutic Role of Quercetin in Prostate Cancer: A Study of Network Pharmacology, Molecular Docking, and Dynamics Simulation. Cell Biochem Biophys 2025:10.1007/s12013-025-01697-3. [PMID: 39966335 DOI: 10.1007/s12013-025-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Prostate cancer (PCa) is a major cause of cancer-related mortality in men. This study explores the anticancer potential of Quercetin, a polyphenolic compound with antioxidant and anti-inflammatory properties, by network pharmacology, molecular docking, and molecular dynamics simulation approaches. Target genes for Quercetin and PCa were identified from the bioinformatics databases MalaCards, Comparative Toxicogenomics Databases, SwissTargetPrediction, and Traditional Chinese Medicine Systems Pharmacology, and the obtained genes were matched using the Venny platform to find out the common genes. We obtained 11 preliminary genes and analyzed them in ShinyGO-0.77 databases to obtain genetic otology data. Then, we constructed a protein-protein interaction network in STRING, which enabled us to identify six hub genes AKT1, EGFR, MMP2, MMP9, PARP1, and ABCG2. Hub genes were analyzed in the TISIDB database for immune cell infiltration. Furthermore, a molecular docking study between the target proteins and Quercetin was performed in the SwissDock databases. Subsequently, we corroborated the docking with molecular dynamics studies using GROMACS software. Gene Ontology and KEGG pathway analyses revealed that Quercetin influences oxidative stress, mitochondrial function, and metalloproteinase activity. Immune cell infiltration analysis highlighted correlations between key genes and specific immune responses, suggesting a modulatory role of Quercetin in the tumor microenvironment. Finally, docking and molecular dynamics analysis showed that Quercetin has a stable interaction with the hub genes. In conclusion, these findings underline the potential of Quercetin to induce apoptosis, inhibit angiogenesis, and suppress metastasis, proposing it as a promising therapeutic tool for the treatment of PCa. However, additional experimental studies are required to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México.
| | - Juan Manuel Guzmán-Flores
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Edar O Pech-Santiago
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional: Ciudad de México, Mexico City, México
| | - Alma Lilian Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, CP, 20100, México
| | - Claudia Karina Delgadillo-Aguirre
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, CP, 20100, México
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47620, México
| |
Collapse
|
14
|
Anjum I, Nasir A, Naseer F, Ibrahim A, Rehman B, Bashir F, Tul Ain Q. Exploring the anti-inflammatory effects of phytochemicals in attenuating interstitial cystitis-a literature review. Front Pharmacol 2025; 16:1483548. [PMID: 39974737 PMCID: PMC11836544 DOI: 10.3389/fphar.2025.1483548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Interstitial cystitis is a fierce syndrome affecting the quality of life of thousands of individuals around the globe. It causes immense pain in the bladder and associated viscera along with inflammation-like lesions. The current medicinal and pharmacological research focuses on the protective and curative effects of phytochemicals in several ailments. Phytochemicals derived from many medicinal plants have shown potent outcomes in protection against various pathological conditions including interstitial cystitis. This review has summarized the insights of in vitro and in vivo studies regarding the effects of phytochemicals in fading the inflammation in bladder tissue and exhibiting a protective effect on the urothelium. Hemorrhagic cystitis is a common manifestation in patients undergoing chemotherapy with cyclophosphamide and related alkylating agents. Sodium 2-mercaptoethane sulfonate (Mesna) has traditionally been employed in clinical practice to counter cyclophosphamide-induced cystitis in humans. However, cyclophosphamide has been employed in developing animal models of interstitial cystitis in in vivo studies. Phytochemicals including quercetin, beta-caryophyllene, curcumol, boswellic acid, caftaric acid, some flavonoids and other secondary metabolites being a consequential component of numerous medicinal plants, have displayed a significant reduction in the levels of proinflammatory cytokines including TNF-α, NFĸB, IL-1β, NLRP3 inflammasome, IL-6, IL-2, matrix metalloproteinases etc. Uroprotective outcomes of these phytochemicals have been found to result in diminished oxidative stress and restoration of glutathione, superoxide dismutase, and related proteins in the inflamed bladder tissue. Many in vivo studies involving cyclophosphamide-induced interstitial cystitis have confirmed these findings. The coupling of phytotherapy with novel drug delivery systems such as nanoparticles, liposomes, nanotubes, quantum dots, etc. can help translate these beneficial effects of phytochemicals into clinical practice. Further investigations of these phytochemicals can provide intuition regarding the development of newer drug molecules having exclusive activity for attenuating interstitial cystitis.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ayesha Nasir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Faiza Naseer
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Ahsan Ibrahim
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Bisma Rehman
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Fawad Bashir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Qura Tul Ain
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
15
|
Šunderić M, Šukalović V, Penezić A, Nikolić MR, Nedić O, Minić S, Četić D, Gligorijević N. Binding of the commonly used antioxidants (quercetin, resveratrol, and dihydrolipoic acid) to major circulating proteins - spectroscopic and in silico docking and molecular dynamic simulation studies. J Biomol Struct Dyn 2025:1-13. [PMID: 39895647 DOI: 10.1080/07391102.2025.2460087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/07/2024] [Indexed: 02/04/2025]
Abstract
Poor bioavailability and reduced stability are the main drawbacks to efficiently utilizing many naturally occurring antioxidants, so their binding to circulatory proteins is essential. This work investigated whether major human circulatory proteins, besides albumin, including transferrin, alpha-2-macroglobulin, and fibrinogen, bind widely consumed antioxidants and food supplements, including quercetin, trans-resveratrol, and dihydrolipoic acid, thus filling the gap of detailed pharmacokinetic properties of these food supplements. Detailed examination of the protein structural and functional changes that occur upon ligand binding was analyzed by spectroscopic methods and in silico docking and molecular dynamic simulation studies on the model that consists of the protein/antioxidant pair with the highest affinity constant. It was found that alpha-2-macroglobulin binds trans-resveratrol with the highest affinity (Ka of 4.5 x 104 M-1). In silico results revealed four potential binding sites between trans-resveratrol and alpha-2-macroglobulin, with hydrogen bonds being crucial for binding, while other observed interactions (primarily aromatic interactions) are of secondary importance. The binding of trans-resveratrol to alpha-2-macroglobulin leads to mutual protection of both molecules from oxidative stress and significantly increased hidrosolubility of resveratrol, both of which could serve to increase the bioavailability and bioactivity of resveratrol in circulation.
Collapse
Affiliation(s)
- Miloš Šunderić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šukalović
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ana Penezić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Milan R Nikolić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Olgica Nedić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Simeon Minić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Danilo Četić
- Department of Biochemistry, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
16
|
Kong Y, Pan T, Liu B, Kuss M, Krishnan MA, Alimi OA, Shi W, Duan B. Double-Layer Microneedle Patch Loaded with HA-PBA-QCT for Management of Paclitaxel-Induced Peripheral Neuropathic Pain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409748. [PMID: 39888259 PMCID: PMC11855232 DOI: 10.1002/smll.202409748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/24/2024] [Indexed: 02/01/2025]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common adverse effect of antineoplastic drugs, often leading to dose reduction, treatment delays, or cessation of chemotherapy. Chemotherapy agents, like paclitaxel (PTX), damage the somatosensory nervous system by inducing neuroinflammation and oxidative stress, resulting in the sensitization of sensory neurons. Quercetin (QCT), known for its anti-inflammatory, antioxidant, and neuroprotective properties, is investigated for various neurological disorders. This work creates phenylboronic acid-modified hyaluronic acid (HA-PBA) gels with incorporated QCT and fabricates a double-layer microneedle (MN) patch using an HA-PBA-QCT complex in the needles and HA/polyvinyl alcohol (PVA) as the substrate. The crosslinking between PVA and HA-PBA-QCT enables a controlled, sustained release of QCT upon application. This work applies these QCT-loaded microneedle (QMN) patches to the instep skin of PTX-treated mice, which exhibits mechanical allodynia and cold hyperalgesia. Biweekly applications of the QMN patches significantly reduce pain responses. This analgesic effect is associated with the modulation of satellite glial cell activity, decreased macrophage infiltration, and reduced TNF-α and IL-6 levels in dorsal root ganglia (DRGs). Additionally, the treatment improves cellular antioxidant capacity, indicated by upregulated Nrf2 and catalase in DRGs. Overall, these findings suggest that double-layer QMN patches offer long-term anti-inflammatory and antioxidant benefits, potentially alleviating CINP in patients.
Collapse
Affiliation(s)
- Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Tianshu Pan
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mena A. Krishnan
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Olawale A. Alimi
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of SurgeryCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
17
|
Pei J, Kumarasamy RV, Jayaraman S, Kanniappan GV, Long Q, Palanisamy CP. Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer's disease management. Ageing Res Rev 2025; 104:102665. [PMID: 39824363 DOI: 10.1016/j.arr.2025.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB). Advances in nanotechnology have paved the way for quercetin-functionalized nanomaterials, offering solutions to these challenges. These nanostructures enhance quercetin's solubility, stability, and targeted brain delivery, thereby augmenting its therapeutic potential. In this review, nanocarriers (like liposomes, polymeric nanoparticles, and metal-based nanosystems) are explored for their potential application in optimizing quercetin delivery in AD management. It discusses the mechanisms by which these nanostructures enhance BBB penetration and exert neuroprotective effects. Furthermore, the review examines the outcomes of preclinical and in vitro studies, while addressing the challenges of scaling these approaches for clinical application. By merging the fields of nanotechnology and neurotherapeutics, the importance of quercetin-functionalized nanomaterials in advancing AD management strategies is underscored in this review.
Collapse
Affiliation(s)
- Jinjin Pei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Pro-cessing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guang-dong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Gopalakrishnan Velliyur Kanniappan
- Department of physiology, Saveetha Medical College & Hospital (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India.
| | - Qianfa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, PR China.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
Satrialdi, Pratiwi C, Khaeranny RN, Mudhakir D. The development of mitochondria-targeted quercetin for rescuing Sertoli cells from oxidative stress. Res Pharm Sci 2025; 20:109-120. [PMID: 40190824 PMCID: PMC11972021 DOI: 10.4103/rps.rps_226_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/11/2024] [Accepted: 06/02/2024] [Indexed: 04/09/2025] Open
Abstract
Background and purpose The imbalance between reactive oxygen species (ROS) production and endogenous antioxidant capacity leads to oxidative stress, which may damage several cellular functions, particularly spermatogenesis. This condition is a leading cause of male infertility, so controlling ROS levels is crucial. The ROS level can be controlled by supporting the endogenous antioxidant system through antioxidant therapy. Mitochondria are the prime target for antioxidant therapy due to the majority of endogenous ROS produced in mitochondria and their critical role in providing energy during fertilization. This research aimed to develop mitochondria-targeted hybrid nanoplatforms by combining liposomes with dequalinium's mitochondriotropic agent (DQ) to deliver quercetin for targeted antioxidant therapy to mitochondria. Experimental approach The quercetin-loaded nanocarrier was constructed using the hydration method. We varied the concentration of DQ to investigate its impact on physical characteristics, encapsulation efficiency, intracellular trafficking, and in vitro antioxidant activity. Findings/Results The impact of different DQ densities on particle size, encapsulation efficiency, and mitochondria targeting was insignificant. However, lowering the DQ density reduced the zeta potential. Minimizing oxidative stress on TM4 cells was only achieved with low-density DQ (Q-LipoDQ LD), while high-density DQ (Q-LipoDQ HD) failed to mitigate the negative impact. Conclusion and implications According to the findings, LipoDQ LD preserves a promising potential as mitochondria-targeted nanoplatforms and validates the importance of mitochondria as a target for antioxidant therapy.
Collapse
Affiliation(s)
- Satrialdi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| | - Cellina Pratiwi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| | - Ryan Novia Khaeranny
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| | - Diky Mudhakir
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Indonesia
| |
Collapse
|
19
|
Gangwar T, Poonia N, Subudhi RN, Arora V. Therapeutic potential and underlying mechanisms of phytoconstituents: emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03811-x. [PMID: 39878817 DOI: 10.1007/s00210-025-03811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits. Various natural compounds, including resveratrol, curcumin, quercetin, berberine, and hesperidin demonstrate immunomodulatory and oxido-inflammatory properties inside the gut epithelium, showing potential in managing ulcerative colitis. These compounds attenuate inflammatory mediators, NF-κB, and TLR4 signaling leading to a reduction in the production of inflammation-related cytokines, including TNF-α and IL-6. They also augment the activity of internal defense compounds, including superoxide radical dismutase enzyme and heme oxygenase-1, thereby alleviating oxidative damage. In addition, natural compounds have a profound effect on the endogenous microbiota and thus, support mucosal healing and intercellular barrier integrity. Both experimental and clinical analyses provide evidence that these bioactive compounds may help reduce clinical manifestations, induce and sustain remission, and improve the well-being of individuals suffering from ulcerative colitis. This review seeks to discuss various aspects of natural compounds in the management of ulcerative colitis, including mechanisms, therapeutic prospects, and hurdles, and hence the basis for future research and practice.
Collapse
Affiliation(s)
- Tanuj Gangwar
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Rudra Narayan Subudhi
- Institute of Pharmaceutical Sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
20
|
Islam MR, Al-Imran MIK, Zehravi M, Sweilam SH, Mortuza MR, Gupta JK, Shanmugarajan TS, Devi K, Tummala T, Alshehri MA, Rajagopal K, Asiri M, Ahmad I, Emran TB. Targeting signaling pathways in neurodegenerative diseases: Quercetin's cellular and molecular mechanisms for neuroprotection. Animal Model Exp Med 2025. [PMID: 39843406 DOI: 10.1002/ame2.12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are complex and challenging due to their intricate pathophysiology and limited treatment options. METHODS This review systematically sourced articles related to neurodegenerative diseases, neurodegeneration, quercetin, and clinical studies from primary medical databases, including Scopus, PubMed, and Web of Science. RESULTS Recent studies have included quercetin to impact the cellular and molecular pathways involved in neurodegeneration. Quercetin, a flavonoid abundant in vegetables and fruits, is gaining attention for its antioxidant, anti-inflammatory, and antiapoptotic properties. It regulates signaling pathways such as nuclear factor-κB (NF-κB), sirtuins, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt). These pathways are essential for cellular survival, inflammation regulation, and apoptosis. Preclinical and clinical studies have shown that quercetin improves symptoms and pathology in neurodegenerative models, indicating promising outcomes. CONCLUSIONS The study explores the potential of incorporating laboratory research into practical medical treatment, focusing on quercetin's neuroprotective effects on NDs and its optimal dosage.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| | - Md Ibrahim Khalil Al-Imran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Kadirvel Devi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Tanuja Tummala
- Department of Polymer Chemistry, Pittsburg State University, Pittsburg, Kansas, USA
| | | | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
| |
Collapse
|
21
|
Nasiry D, Khalatbary AR. Anti-ferroptotic effects of natural polyphenols in nervous system injury: a narrative literature review. Nutr Neurosci 2025:1-16. [PMID: 39825479 DOI: 10.1080/1028415x.2024.2448924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
BACKGROUND Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors. OBJECTIVE To review the current evidence on the efficacy of various natural polyphenols in nervous system injury. METHODS The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase. RESULTS Natural polyphenols have been found to have some protective effects against nervous system disorders, which are attributed to a variety of biological properties, particularly antioxidant, immunomodulatory, and anti-inflammatory effects. The preclinical studies conducted on the use of the most common dietary polyphenols, including resveratrol, EGCG, curcumin, quercetin, gastrodin, baicalein & baicalin, carthamin, galangin, puerarin, morachalcone, and carnosic acid with the molecular mechanisms have been discussed. On the other hand, the results of a few clinical studies emphasize the primary role of iron in neuronal degeneration following some of nervous system injury. CONCLUSION Some of the findings indicated that natural polyphenols as antioxidant supplements have anti-ferroptotic effects in nervous system disorders.
Collapse
Affiliation(s)
- Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Rajasekar M, Suresh K, Theerthu A, Pugazhendhi R, Sivakumar K. Diosmin induces mitochondrial-mediated apoptosis and anti-inflammatory effects in Hep-2 cells: an integrated in vitro and in silico analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03690-8. [PMID: 39747464 DOI: 10.1007/s00210-024-03690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
The present study aims to explore the anticancer efficacy of Diosmin by inducing mitochondrial-mediated apoptosis in human epidermoid carcinoma cells (Hep-2). This is done by cell line assays and studying crucial inflammatory and apoptotic signaling molecules. The cytotoxicity property of Diosmin was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Marker expression study was done by western blotting for studying apoptotic markers like Bax, Bcl-2, p53, Bak, and Bcl-xl, proinflammatory cytokine (TNF-α), interleukins (IL-1, IL-6, IL-8), and signal transduction (STAT-3). The docking study confirms the affinity of Diosmin with apoptotic and important markers. Through the MTT assay, a dose-dependent cytotoxic effect of Diosmin was unveiled, with an IC50 value of effective inhibition of cell proliferation. Diosmin treatment resulted in noteworthy downregulation of Bcl-xl, Bak, Bcl-2, IL-1, 6, 8, TNF-α, and STAT-3 while upregulating the p53 and Bax expression levels, highlighting its inhibitory role in inducing apoptosis. Docking studies further exposed robust binding affinities between Diosmin and target apoptotic proteins, suggesting its efficacy in disrupting cellular functions and inflammatory signaling pathways in Hep-2 cells. The cytotoxic effects on Hep-2 cells and suggested activation of Bax, p53, and inhibition of Bcl-xl, Bak, Bcl-2, IL-1, 6, 8, TNF-α, as well as STAT-3 lead to the activation of mitochondrial-mediated apoptosis in Diosmin-treated Hep-2 cells. Further, its anti-inflammatory properties locate Diosmin as a conclusive compound for further studies for effective oral and other related squamous carcinoma treatments.
Collapse
Affiliation(s)
- Muthusamy Rajasekar
- Central Research Laboratory, Vinayaka Mission's Kirupananda Variyar Medical College and Hospitals, Vinayaka Mission's Research Foundation (Deemed to Be University), Salem, 636305, Tamil Nadu, India
| | - Kathiresan Suresh
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India.
| | - Azhamuthu Theerthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India
| | - Ravichandran Pugazhendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India
| | - Kathiresan Sivakumar
- Department of Plant Science, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
23
|
Huang M, Xie X, Yuan R, Xin Q, Ma S, Guo H, Miao Y, Hu C, Zhu Y, Cong W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol Res 2025; 211:107551. [PMID: 39701504 DOI: 10.1016/j.phrs.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy. Nevertheless, due to their potential side effects, there is a pressing need to actively investigate alternative treatment approaches. Researches on natural compounds derived from herbal medicines, such as flavonoids, hold significant promise in combating AS by regulating lipid metabolism, reducing oxidative stress and inflammation, inhibiting the proliferation of vascular smooth muscle cells, modulating autophagy and additional pathways. Various targets participate in these physiological processes, encompassing acyl-CoA: cholesterol acyltransferase (ACAT), ATP citrate lyase (ACLY), nuclear factor erythroid 2-related factor 2 (Nrf2), krüppel-like factor 2 (KLF2), NOD-like receptor protein 3 (NLRP3), transcription factor EB (TFEB) and so on. This comprehensive review endeavors to synthesize and analyse the most recent findings on herbal flavonoids, shedding light on their anti-atherosclerotic potential and the underlying protective mechanisms and related-targets, which might pave the way for the development of novel drug candidates or the optimization of flavonoid-based therapies.
Collapse
Affiliation(s)
- Meiwen Huang
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hongai Guo
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chunyu Hu
- Department of Teaching Quality Construction, Graduate School, China Academy of Chinese Medical Sciences, 100700, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
24
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
25
|
Bibi A, Dhanawat M, Aman S, Chauhan S, Chalotra R, Mujwar S, Kaur N, Maivagna CH, Gupta S. Evaluation of Moringa Oleifera Leaf Extract for its In vitro Antibacterial Properties, Mechanism of Action, and In vivo Corneal Ulcer Healing Effects in Rabbits' Eyes. Curr Drug Deliv 2025; 22:107-122. [PMID: 38638050 DOI: 10.2174/0115672018275561240228065755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND M. oleifera is the most adapted tree species in different medicinal eco-systems and has resilience against climate changes. This multiple-use tree provides healthy foods, snacks, honey, and fuel. Besides this, it has immense promising applications by offering antimicrobial and antibacterial activities for targeted uses. This validates the court of Hippocrates that let food be the medicine and medicine be the food for which moringa qualifies. OBJECTIVE The objective of this study is to assess the antioxidant properties of M. oleifera, in vitro antibacterial activity of hydro-ethanolic extract, and further investigate in vivo healing potential of M. oleifera for corneal ulcers and in silico analysis. METHODS To evaluate the antioxidant and in vitro antibacterial potency of the hydro-ethanolic extract of M. oleifera on clinically isolated multidrug-resistant strains of Staphylococcus aureus using agar well diffusion assay. Furthermore, in vivo, healing response of M. oleifera extract was analysed on corneal ulcers induced in rabbit eyes infected with methicillin-resistant Staphylococcus aureus. RESULTS The M. oleifera extract exhibited exponential antioxidant activity. In-vitro antibacterial activity was evaluated by agar well diffusion assay showing zone of inhibition ranging from 11.05 ± 0.36 to 20 ± 0.40 mm at concentrations of 20, 40, 80, and 160 mg/ml, whereas, in our finding, no zone of inhibition was observed below 20 mg/ml concentration, which indicated that there is threshold limit below which the antibacterial activity of M. oleifera extract is not observed. Furthermore, continuous application of 3% and 5% M. oleifera extract (eye drop) four times a day for 14 consecutive days showed a significant healing response of the eyes of rabbits with corneal ulcers. CONCLUSION These results suggest that M. oleifera extract could be a viable alternative or in combination could be used in existing antibacterial therapies for corneal ulcers. Additionally, there is a possibility of commercial formulation of M. oleifera extract in the form of deliverable pharmaceutical products; therefore, it should be explored further.
Collapse
Affiliation(s)
- Ayesha Bibi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | | | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rishabh Chalotra
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
- Department of Pharmacology, Central University of Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Narinder Kaur
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Chamasse Homary Maivagna
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
26
|
Luan X, Chen P, Miao L, Yuan X, Yu C, Di G. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies. Mol Cell Biochem 2025; 480:19-41. [PMID: 38556592 DOI: 10.1007/s11010-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
Ferroptosis is a newly discovered type of regulated cell death participated in multiple diseases. Different from other classical cell death programs such as necrosis and apoptosis, ferroptosis involving iron-catalyzed lipid peroxidation is characterized by Fe2+ accumulation and mitochondria alterations. The phenomenon of oxidative stress following organ ischemia-reperfusion (I/R) has recently garnered attention for its connection to the onset of ferroptosis and subsequent reperfusion injuries. This article provides a comprehensive overview underlying the mechanisms of ferroptosis, with a further focus on the latest research progress regarding interference with ferroptotic pathways in organ I/R injuries, such as intestine, lung, heart, kidney, liver, and brain. Understanding the links between ferroptosis and I/R injury may inform potential therapeutic strategies and targeted agents.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
27
|
Alsaleem MA, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alrouji M, Yassen ASA, Alexiou A, Papadakis M, Batiha GES. Molecular Signaling Pathways of Quercetin in Alzheimer's Disease: A Promising Arena. Cell Mol Neurobiol 2024; 45:8. [PMID: 39719518 PMCID: PMC11668837 DOI: 10.1007/s10571-024-01526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment and memory deficit. Even with extensive research and studies, presently, there is no effective treatment for the management of AD. Besides, most of drugs used in the treatment of AD did not avert the AD neuropathology, and the disease still in a progressive status. For example, acetyl cholinesterase inhibitors are associated with many adverse effects, such as insomnia and nightmares. As well, acetylcholinesterase inhibitors augment cholinergic neurotransmission leading to the development of adverse effects related to high acetylcholine level, such as salivation, rhinorrhea, vomiting, loss of appetite, and seizure. Furthermore, tacrine has poor bioavailability and causes hepatotoxicity. These commonly used drugs do not manage the original causes of AD. For those reasons, natural products were repurposed for the treatment of AD and neurodegenerative diseases. It has been shown that phytochemicals produce neuroprotective effects against the development and progression of neurodegenerative diseases by different mechanisms, including antioxidant and anti-inflammatory effects. Quercetin (QCN) has been reported to exert an effective neuroprotective effect against AD and other neurodegenerative diseases by lessening oxidative stress. In this review, electronic databases such as PubMed, Scopus, and Web of Science were searched for possible relevant studies and article linking the effect of QCN on AD. Findings from this review highlighted that many studies highlighted different mechanistic signaling pathways regarding the neuroprotective effect of QCN in AD. Nevertheless, the precise molecular mechanism of QCN in AD was not completely clarified. Consequently, this review aims to discuss the molecular mechanism of QCN in AD.
Collapse
Affiliation(s)
- Mansour A Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir Ibn Hayyan Medical University, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Asmaa S A Yassen
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- Department of Research and Development, Funogen, 11741, Athens, Greece
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
28
|
Kim E, Choi DH, Yi YS. Quercetin Ameliorates Acute Lethal Sepsis in Mice by Inhibiting Caspase-11 Noncanonical Inflammasome in Macrophages. Molecules 2024; 29:5900. [PMID: 39769989 PMCID: PMC11678081 DOI: 10.3390/molecules29245900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Quercetin is a natural polyphenolic flavonoid widely found in plants, fruits, and vegetables, and has been reported to play pharmacological roles in numerous pathogenic conditions. The anti-inflammatory effects of quercetin in various inflammatory conditions and diseases have been well-documented. However, its regulatory role in noncanonical inflammasome activation has not yet been demonstrated. This study investigated the anti-inflammatory effects of quercetin in caspase-11 noncanonical inflammasome-activated inflammatory responses in macrophages and a mouse model of acute lethal sepsis. Quercetin protected J774A.1 macrophages from lipopolysaccharide (LPS)-induced cell death and caspase-11 noncanonical inflammasome-induced pyroptosis. It significantly decreased the production and mRNA expression of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-18, and IL-6, but not tumor necrosis factor (TNF)-α, and inflammatory molecules, such as nitric oxide (NO) and inducible NO synthase in caspase-11 noncanonical inflammasome-activated J774A.1 cells. Mechanistically, quercetin strongly suppressed the autoproteolysis and secretion of caspase-11 and the proteolysis of gasdermin D in caspase-11 noncanonical inflammasome-activated J774A.1 cells. However, quercetin did not inhibit the direct binding of caspase-11 to LPS. In vivo, the study revealed that quercetin increased the survival rate of mice with acute lethal sepsis and decreased serum levels of pro-inflammatory cytokines without causing significant toxicity. In conclusion, this study highlights quercetin-mediated anti-inflammatory action in inflammatory responses and acute lethal sepsis through a novel mechanism that targets the caspase-11 noncanonical inflammasome in macrophages, suggesting quercetin as a promising anti-inflammatory agent in natural medicine.
Collapse
Affiliation(s)
| | | | - Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea; (E.K.); (D.-H.C.)
| |
Collapse
|
29
|
Ibi A, Chang C, Zhang Y, Kuo YC, Du M, Roh K, Gahler R, Solnier J. An in vitro investigation on the physicochemical properties of different quercetin formulations. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-2002. [PMID: 39665312 DOI: 10.1515/jcim-2024-2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Quercetin is a naturally occurring plant flavonoid commonly used as a nutritional supplement due to its antioxidant and anti-inflammatory properties. Its well-known low bioavailability has led to the design of different quercetin formulations by various commercial entities seeking to market a highly bioavailable quercetin product. This study investigates four different commercially available quercetin formulations (LMQ, QUX, QUO, and QUV) for their physicochemical properties that influence bioavailability. LMQ and QUX are liquid-based formulations while QUO and QUV are solid powder-based formulations. METHODS Studies were conducted on particle size using a particle size analyzer; solubility (in water, simulated gastric and intestinal fluid) using Ultra High Performance Liquid Chromatography (UHPLC) to quantify the quercetin content; intestinal permeability and toxicity using Caco-2 cells and HepG2 liver cells. RESULTS LMQ and QUX had the narrowest particle size distribution as well as the highest solubility while QUO and QUV had the widest particle size distribution but the poorest solubility. One formulation (QUO) exhibited a significant reduction in cell viability with HepG2 and Caco-2 cells including a significant decrease in TEER value change (-39.0 %; p<0.01); its higher Caco-2 cell permeability (Papp 2.85 × 10-4 ± 4.22 × 10-5; p<0.05) likely resulted from reduced membrane integrity. The other formulations significantly increased the TEER value within the first 4 h (≥22.7 %; p<0.05). CONCLUSIONS The particle size distribution of each of the individual formulations reflected their solubilities in water and gastrointestinal fluids. Despite QUO having the highest permeability, its negative change in TEER value over time revealed its evident cytotoxic effects. QUV performed poorly in terms of solubility, and permeability. LMQ and QUX were the most consistent across each study with LMQ performing better than QUX overall. Findings of this study present one formulation (LMQ) with superior intestinal absorption while maintaining high cell viability, thus making it one of the safer and more effective quercetin formulations.
Collapse
Affiliation(s)
| | | | | | | | - Min Du
- ISURA, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
30
|
Deleu S, Becherucci G, Godny L, Mentella MC, Petito V, Scaldaferri F. The Key Nutrients in the Mediterranean Diet and Their Effects in Inflammatory Bowel Disease: A Narrative Review. Nutrients 2024; 16:4201. [PMID: 39683595 DOI: 10.3390/nu16234201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiome, a collection of gut microorganisms, is crucial in the development and progression of inflammatory bowel diseases (IBD). Therefore, diet and dietary interventions are promising strategies to shape the gut microbiota for IBD management. Of all the diets studied in the IBD field, the Mediterranean diet has the least restrictive nature, promoting long-term adherence. The Mediterranean diet is rich in plants, with a high daily intake of fruits and vegetables (high in fiber, antioxidants, and vitamins), olive oil, whole grains, legumes, and nuts. It includes the moderate consumption of animal products such as oily fish (rich in mono- and polyunsaturated fatty acids), dairy products, and poultry, with a limited intake of red meat and processed foods. This diet is associated with a decreased risk of chronic diseases, including IBD. However, the mechanisms of specific nutrients behind these effects in the Mediterranean diet remain under investigation. Therefore, in this review, we aim to provide an overview of the nutrients that are abundant in the Mediterranean diet and their effects on IBD, with a main focus on preclinical evidence. While several nutrients like fructo-oligosaccharide, chitosan, plant-derived protein, polyphenols, omega-3 polyunsaturated fatty acids, and resveratrol have shown potential beneficial effects in preclinical models, clinical evidence is often limited. However, understanding the complex interactions between specific nutrients and IBD is essential to developing a tailored, multidisciplinary, and personalized approach for disease management; therefore, further research is required.
Collapse
Affiliation(s)
- Sara Deleu
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Guia Becherucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lihi Godny
- Division of Gastroenterology and Nutrition Unit, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Maria Chiara Mentella
- UOC di Nutrizione Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino-Metaboliche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Petito
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- CEMAD Translational Research Laboratories, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
31
|
Angeles Flores G, Cusumano G, Zengin G, Cetiz MV, Uba AI, Senkardes I, Koyuncu I, Yuksekdag O, Kalyniukova A, Emiliani C, Venanzoni R, Angelini P. Using In Vitro and In Silico Analysis to Investigate the Chemical Profile and Biological Properties of Polygonum istanbulicum Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:3421. [PMID: 39683214 DOI: 10.3390/plants13233421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
The present study investigates the chemical profile and biological activities of Polygonum istanbulicum M. Keskin, a species endemic to Turkey, aiming to explore its potential applications in pharmacology. We assessed its phenolic and flavonoid content by employing ethyl acetate, methanol, and water as extraction solvents. The methanol extract demonstrated the highest concentrations of these compounds, with liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-MS-qTOF) analysis identifying a wide range of bioactive substances, such as derivatives of quercetin and myricetin. Antioxidant capacity was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), cupric-reducing antioxidant capacity (CUPRAC), ferric-reducing antioxidant power (FRAP), and phosphomolybdenum assays, with the methanol extract showing the most potent activity (DPPH: 892.22 mg Trolox equivalent (TE)/g; ABTS: 916.21 mg TE/g; CUPRAC: 1082.69 mg TE/g; FRAP: 915.05 mg TE/g). Enzyme inhibition assays highlighted the efficacy of P. istanbulicum extracts against key enzymes, with potential implications for managing Alzheimer's disease, hyperpigmentation, and type 2 diabetes. Cytotoxicity tests against various cancer cell lines showed notable activity, particularly with the aqueous extract on the HGC-27 cell line (IC50: 29.21 µg/mL), indicating potential for targeted anti-cancer therapy. Molecular docking and molecular dynamics simulations further supported the binding affinities of quercetin and myricetin derivatives to cancer-related proteins, suggesting significant therapeutic potential. This study underscores the value of P. istanbulicum as a source of bioactive compounds with applications in antioxidant, anti-cancer, and enzyme-inhibitory treatments.
Collapse
Affiliation(s)
- Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- Botanic Garden "Giardino dei Semplici", Department of Pharmacy, "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Mehmet Veysi Cetiz
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetic, Faculty of Science and Arts, Istanbul Arel University, Istanbul 34537, Turkey
| | - Ismail Senkardes
- Department of Pharmaceutical Biology, Pharmacy Faculty, Marmara University, Istanbul 34722, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
32
|
Taherkhani S, Ahmadi P, Nasiraie LR, Janzadeh A, Honardoost M, Sedghi Esfahani S. Flavonoids and the gut microbiome: a powerful duo for brain health. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39632543 DOI: 10.1080/10408398.2024.2435593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Flavonoids, a class of polyphenolic compounds, are widely distributed in plant-based foods and have been recognized for their potential to promote overall health and well-being. Flavonoids in fruits and vegetables offer various beneficial effects such as anti-aging, anticancer, and anti-inflammatory properties. Flavonoids have been extensively studied for their neuroprotective properties, which are attributed to their ability to cross the blood-brain barrier and interact with neural cells. Factors like gut microbiota composition, age, genetics, and diet can impact how well flavonoids are absorbed in the gut. The gut microbiota can enhance the absorption of flavonoids through enzymatic processes, making microbiota composition a key factor influenced by age, genetics, and diet. Flavonoids can modulate the gut microbiota through prebiotic and antimicrobial effects, affecting the production of beneficial microbial metabolites like short-chain fatty acids (SCFAs) such as butyrate, which play a role in brain function and health. The gut microbiome also modulates the immune system, which is critical for preventing neuroinflammation. Additionally, flavonoids can benefit mental and psychological health by influencing anti-inflammatory signaling pathways in brain cells and increasing the absorption of tyrosine and tryptophan, precursors to neurotransmitters like serotonin, dopamine, norepinephrine, adrenaline, and gamma-aminobutyric acid (GABA). The flavonoid-gut microbiome axis is a complex and multifaceted relationship that has significant implications for neurological health. This review will explore how genetic and environmental factors can impact flavonoid absorption and the positive effects of flavonoids on brain health and the gut microbiota network.
Collapse
Affiliation(s)
- Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Roozbeh Nasiraie
- Department of Food Science and Technology, Islamic Azad University, Nour Branch, Nour, Iran
| | - Atousa Janzadeh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Sedghi Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
33
|
Melo ECD, da Silva Pinheiro R, Costa BS, Lima RMTD, Dias ACS, de Jesus Aguiar Dos Santos T, Nascimento MLLBD, de Castro E Sousa JM, Islam MT, de Carvalho Melo Cavalcante AA, El-Nashar HAS, El-Shazly M, Oliveira Filho JWGD. Allium cepa as a Toxicogenetic Investigational Tool for Plant Extracts: A Systematic Review. Chem Biodivers 2024; 21:e202401406. [PMID: 39103292 DOI: 10.1002/cbdv.202401406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Toxicological studies are important to investigate the genotoxic effects of various substances. Allium cepa can be used as test model for this purpose. This review summarizes the scope and applications for this A. cepa test model. For this, an up-to-date (April 2023) literature search was made in the Science Direct, PubMed, and Web of Science databases to find published evidence on studies performed using A. cepa as a test model. Out of 3,748 studies, 74 fit the inclusion criteria. The results showed that the use of the test model A. cepa contributed considerably to measuring the toxicological potential of plant extracts, proving the efficacy of the test as a potent bioindicator of toxic effects. In addition, 27 studies used more than one test system to verify the toxicological potential of extracts and fractions. Studies have shown that the A. cepa model has the potential to replace other test systems that make use of animals and cell cultures, besides having other advantages such as low cost, ease of execution, and good conditions for the observation of chromosomes. In conclusion, the A. cepa test can be considered one of the potential biomonitoring systems in toxicological studies of crude extracts.
Collapse
Affiliation(s)
- Erisson Cruz de Melo
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
| | - Randyson da Silva Pinheiro
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
| | - Bruno Sousa Costa
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Ana Carolina Soares Dias
- Laboratory of Genetics and Molecular Biology, Federal University of Maranhão, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | | | - Maria Luisa Lima Barreto do Nascimento
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - João Marcelo de Castro E Sousa
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, 9208, Khulna, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, 8100, Gopalganj, Bangladesh
| | - Ana Amélia de Carvalho Melo Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - José Williams Gomes de Oliveira Filho
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| |
Collapse
|
34
|
Feng Y, Yu X, Han J. Quercetin Regulates the Polarization of Microglia through the NRF2/HO1 Pathway and Mitigates Alzheimer's Disease. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:786-799. [PMID: 39665609 PMCID: PMC11636543 DOI: 10.62641/aep.v52i6.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a burdening disease and is the main cause of dementia. Quercetin (Que), an antioxidant, plays potential roles in treating age-related disorders, including AD. This study aimed to validate the effects of Que on AD and explore the underlying mechanisms. METHODS Mice with no treatment, amyloid-β Aβ (1-42) treatment (for acquiring AD model), or Aβ (1-42) plus Que treatment were used. Cognitive function was determined using the open field test (OFT), objective recognition test, and Y-maze test. In brain tissues, mRNA levels of inflammation cytokines, the M1 microglia marker cluster of differentiation (CD)86, and the M2 microglia markers arginase 1 (Arg1) and CD206 were measured. Nuclear factor E2-related factor 2 (NRF2)/heme oxygenase-1 (HO1) pathway-related proteins were detected by western blot. Additionally, mechanisms were investigated using human microglia HMC3 cells treated with Aβ (1-42) and Aβ (1-42) plus Que. The NRF2/HO1 pathway in HMC3 cells was inhibited using the selective inhibitor ML385. Cell viability and death were assessed using the cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release levels, respectively. Cell apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Levels of NRF2/HO1 pathway-related proteins, inflammation cytokines, and oxidative stress-related markers, including malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG)), were determined in HMC3 cells. Flow cytometry was used to determine M1 markers CD86 and CD80 and M2 markers CD206 and CD163. RESULTS Cognitive ability was impaired in AD model mice, and Que treatment reversed this impairment (p < 0.05). Levels of interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), and IL-6 were increased, while M2 markers were decreased in the AD model mouse brain. Que treatment reversed these changes (p < 0.001). The NRF2/HO1 pathway was slightly inhibited in AD mice brain, while further activated by Que (p < 0.05). Que reversed the Aβ (1-42)-impaired cell viability. Through greatly activating NRF2/HO1 pathway, Que suppressed Aβ (1-42)-induced cell death, decreased Aβ (1-42)-promoted IL-1β, TNF-α, IL-6, MDA, CD86 and CD80, increased Aβ (1-42)-suppressed SOD and GSH/GSSG, and greatly increased CD206 and CD163 (p < 0.01). CONCLUSION Quercetin, through the activation of the NRF2/HO1 pathway, promotes M2 polarization of microglia, suppresses Aβ (1-42)-induced inflammation and oxidative stress, protects microglia from Aβ (1-42)-induced damage, improves cognitive function in mice, and demonstrates therapeutic potential for AD.
Collapse
Affiliation(s)
- Ying Feng
- Geriatric Medicine Department, Affiliated Hospital of Shandong Second Medical University, 261041 Weifang, Shandong, China
| | - Xinjun Yu
- Geriatric Medicine Department, Affiliated Hospital of Shandong Second Medical University, 261041 Weifang, Shandong, China
| | - Jingyang Han
- Geriatric Medicine Department, Affiliated Hospital of Shandong Second Medical University, 261041 Weifang, Shandong, China
| |
Collapse
|
35
|
Steenekamp EM, Liebenberg W, Lemmer HJR, Gerber M. Formulation and Ex Vivo Evaluation of Ivermectin Within Different Nano-Drug Delivery Vehicles for Transdermal Drug Delivery. Pharmaceutics 2024; 16:1466. [PMID: 39598589 PMCID: PMC11597838 DOI: 10.3390/pharmaceutics16111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ivermectin gained widespread attention as the "miracle drug" during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. Since the late 2000s, this bio-inspired active pharmaceutical ingredient (API) gained renewed interest for its diverse therapeutic capabilities. However, producing ivermectin formulations does remain challenging due to its poor water solubility, resulting in low bioavailability after oral administration. Therefore, the transdermal drug delivery of ivermectin was considered to overcome these challenges, which are observed after oral administration. Methods: Ivermectin was incorporated in a nano-emulsion, nano-emulgel and a colloidal suspension as ivermectin-loaded nanoparticles. The nano-drug delivery vehicles were optimized, characterized and evaluated through in vitro membrane release studies, ex vivo skin diffusion studies and tape-stripping to determine whether ivermectin was successfully released from its vehicle and delivered transdermally and/or topically throughout the skin. This study concluded with cytotoxicity tests using the methyl thiazolyl tetrazolium (MTT) and neutral red (NR) assays on both human immortalized epidermal keratinocytes (HaCaT) and human immortalized dermal fibroblasts (BJ-5ta). Results: Ivermectin was successfully released from each vehicle, delivered transdermally and topically throughout the skin and demonstrated little to no cytotoxicity at concentrations that diffused through the skin. Conclusions: The type of nano-drug delivery vehicle used to incorporate ivermectin influences its delivery both topically and transdermally, highlighting the dynamic equilibrium between the vehicle, the API and the skin.
Collapse
Affiliation(s)
| | | | | | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2531, South Africa; (E.M.S.); (W.L.); (H.J.R.L.)
| |
Collapse
|
36
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
37
|
Liu GH, Yao ZQ, Chen GQ, Li YL, Liang B. Potential Benefits of Green Tea in Prostate Cancer Prevention and Treatment: A Comprehensive Review. Chin J Integr Med 2024; 30:1045-1055. [PMID: 38561489 DOI: 10.1007/s11655-024-4100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
Prostate cancer is a prevalent and debilitating disease that necessitates effective prevention and treatment strategies. Green tea, a well-known beverage derived from the Camellia sinensis plant, contains bioactive compounds with potential health benefits, including catechins and polyphenols. This comprehensive review aims to explore the potential benefits of green tea in prostate cancer prevention and treatment by examining existing literature. Green tea possesses antioxidant, anti-inflammatory, and anti-carcinogenic properties attributed to its catechins, particularly epigallocatechin gallate. Epidemiological studies have reported an inverse association between green tea consumption and prostate cancer risk, with potential protection against aggressive forms of the disease. Laboratory studies demonstrate that green tea components inhibit tumor growth, induce apoptosis, and modulate signaling pathways critical to prostate cancer development and progression. Clinical trials and human studies further support the potential benefits of green tea. Green tea consumption has been found to be associated with a reduction in prostate-specific antigen levels, tumor markers, and played a potential role in slowing disease progression. However, challenges remain, including optimal dosage determination, formulation standardization, and conducting large-scale, long-term clinical trials. The review suggests future research should focus on combinatorial approaches with conventional therapies and personalized medicine strategies to identify patient subgroups most likely to benefit from green tea interventions.
Collapse
Affiliation(s)
- Gui-Hong Liu
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ze-Qin Yao
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Guo-Qiang Chen
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ya-Lang Li
- Department of Urology, Yuzhou People's Hospital, Xuchang City, Henan Province, 461670, China
| | - Bing Liang
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China.
| |
Collapse
|
38
|
Hesari M, Mohammadi P, Moradi M, Shackebaei D, Yarmohammadi F. Molecular mechanisms involved in therapeutic effects of natural compounds against cisplatin-induced cardiotoxicity: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8367-8381. [PMID: 38850306 DOI: 10.1007/s00210-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various cancers. However, the clinical use of cisplatin is limited by its cardiotoxic side effects. The primary mechanisms implicated in this cardiotoxicity include mitochondrial dysfunction, oxidative stress, inflammation, and apoptotic. Numerous natural compounds (NCs) have been introduced as promising protective factors against cisplatin-mediated cardiac damage. The current review summarized the potential of various NCs as cardioprotective agents at the molecular levels. These compounds exhibited potent antioxidant and anti-inflammatory effects by interaction with the PI3K/AKT, AMPK, Nrf2, NF-κB, and NLRP3/caspase-1/GSDMD pathways. Generally, the modulation of these signaling pathways by NCs represents a promising strategy for improving the therapeutic index of cisplatin by reducing its cardiac side effects.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Moradi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
39
|
Long B, Zhou H, Xiao L, Jiang X, Li J, Ma Z, He N, Xin W, Zhang B, Zhu X, Yu Z, Jiao Z. Targeting NUF2 suppresses gastric cancer progression through G2/M phase arrest and apoptosis induction. Chin Med J (Engl) 2024; 137:2437-2451. [PMID: 39193700 PMCID: PMC11479523 DOI: 10.1097/cm9.0000000000003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC), a malignant tumor with poor prognosis, is one of the leading causes of cancer-related deaths worldwide; consequently, identifying novel therapeutic targets is crucial for its corresponding treatment. NUF2 , a component of the NDC80 kinetochore complex, promotes cancer progression in multiple malignancies. Therefore, this study aimed to explore the potential of NUF2 as a therapeutic target to inhibit GC progression. METHODS Clinical samples were obtained from patients who underwent radical resection of GC at Lanzhou University Second Hospital from 2016 to 2021. Cell count assays, colony formation assays, and cell-derived xenotransplantation (CDX) models were used to determine the effects of NUF2 on GC progression. Flow cytometry was used to detect the effect of NUF2 or quercetin on cell cycle progression and apoptosis. A live-cell time-lapse imaging assay was performed to determine the effect of NUF2 on the regulation of mitotic progression. Transcriptomics was used to investigate the NUF2 -associated molecular mechanisms. Virtual docking and microscale thermophoresis were used to identify NUF2 inhibitors. Finally, CDX, organoid, and patient-derived xenograft (PDX) models were used to examine the efficacy of the NUF2 inhibitor in GC. RESULTS NUF2 expression was significantly increased in GC and was negatively correlated with prognosis. The deletion of NUF2 suppressed GC progression both in vivo and in vitro . NUF2 significantly regulated the mitogen-activated protein kinase (MAPK) pathway, promoted G2/M phase transition, and inhibited apoptosis in GC cells. Additionally, quercetin was identified as a selective NUF2 inhibitor with low toxicity that significantly suppressed tumor growth in GC cells, organoids, CDX, and PDX models. CONCLUSIONS Collectively, NUF2 -mediated G2/M phase transition and apoptosis inhibition promoted GC progression; additionally, NUF2 inhibitors exhibited potent anti-GC activity. This study provides a new strategy for targeting NUF2 to suppress GC progression in clinical settings.
Collapse
Affiliation(s)
- Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huinian Zhou
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lixia Xiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangyan Jiang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian Li
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhijian Ma
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Na He
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Xin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Boya Zhang
- The Second Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoqin Zhu
- The Second Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zeyuan Yu
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
40
|
Bakr AF, El-Shiekh RA, Mahmoud MY, Khalil HMA, Alyami MH, Alyami HS, Galal O, Mansour DF. Efficacy of Quercetin and Quercetin Loaded Chitosan Nanoparticles Against Cisplatin-Induced Renal and Testicular Toxicity via Attenuation of Oxidative Stress, Inflammation, and Apoptosis. Pharmaceuticals (Basel) 2024; 17:1384. [PMID: 39459023 PMCID: PMC11510010 DOI: 10.3390/ph17101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Flavonoids, including quercetin, have attracted much attention due to their potential health-promoting effects. METHODS The current experiment aims to see whether quercetin (QUE) in nanoparticle form could mitigate testicular and renal toxicity caused by cisplatin (CIS) more effectively than normally formulated QUE. Rats were randomly treated with CIS alone or in combination with QUE or QUE.NPs (Quercetin-loaded chitosan nanoparticles) for 4 weeks. QUE and QUE.NPs were given orally (10 mg/kg, three times a week), while CIS was given intraperitoneally (2 mg/kg, twice a week). RESULTS Compared to QUE- and CIS + QUE.NP-treated rats, CIS exposure induced anxiety and emotional stress as well as promoted oxidative stress in both testicular and renal tissues. Moreover, CIS reduced serum testosterone levels and diminished testicular IL-10, as well as CIS-induced renal failure, as indicated by hypokalemia, and increased levels of creatinine, urea, sodium, IL-18, and KIM-1. Further, severe histological changes were observed in the testis and kidney of CIS-intoxicated rats. Regarding immunohistochemical staining, CIS significantly upregulated Bax, downregulated Bcl-2, and moderately enhanced PCNA expression. CONCLUSIONS Our findings suggest that both QUE and QUE.NPs modulated emotional disturbance and improved testicular and renal functions via modulation of oxidation, inflammation, and apoptosis. However, QUE.NPs performed better than QUE-treated rats.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Mohamed Y. Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Faculty of Veterinary Medicine, King Salman International University, South Sinai, Ras Sudr 43312, Egypt
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Omneya Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt;
| | - Dina F. Mansour
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo 12622, Egypt;
- Department of Pharmacy, Faculty of Pharmacy, Galala University, Attaka, Suez 43511, Egypt
| |
Collapse
|
41
|
Hou M, John Martin JJ, Song Y, Wang Q, Cao H, Li W, Sun C. Dynamics of flavonoid metabolites in coconut water based on metabolomics perspective. FRONTIERS IN PLANT SCIENCE 2024; 15:1468858. [PMID: 39435019 PMCID: PMC11491327 DOI: 10.3389/fpls.2024.1468858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Coconut meat and coconut water have garnered significant attention for their richness in healthful flavonoids. However, the dynamics of flavonoid metabolites in coconut water during different developmental stages remain poorly understood. This study employed the metabolomics approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the changes in flavonoid metabolite profiles in coconut water from two varieties, 'Wenye No.5'(W5) and Hainan local coconut (CK), across six developmental stages. The results showed that a total of 123 flavonoid metabolites including chalcones, dihydroflavonoids, dihydroflavonols, flavonoids, flavonols, flavonoid carboglycosides, and flavanols were identified in the coconut water as compared to the control. The total flavonoid content in both types of coconut water exhibited a decreasing trend with developmental progression, but the total flavonoid content in CK was significantly higher than that in W5. The number of flavonoid metabolites that differed significantly between the W5 and CK groups at different developmental stages were 74, 74, 60, 92, 40 and 54, respectively. KEGG pathway analysis revealed 38 differential metabolites involved in key pathways for flavonoid biosynthesis and secondary metabolite biosynthesis. This study provides new insights into the dynamics of flavonoid metabolites in coconut water and highlights the potential for selecting and breeding high-quality coconuts with enhanced flavonoid content. The findings have implications for the development of coconut-based products with improved nutritional and functional properties.
Collapse
Affiliation(s)
- Mingming Hou
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yuqiao Song
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qi Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- College of Wine and Horticulture, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Chengxu Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
42
|
Yousefi Zardak M, Keshavarz F, Mahyaei A, Gholami M, Moosavi FS, Abbasloo E, Abdollahi F, Hossein Rezaei M, Madadizadeh E, Soltani N, Bejeshk F, Salehi N, Rostamabadi F, Bagheri F, Jafaraghae M, Ranjbar Zeydabadi M, Baghgoli M, Sepehri G, Bejeshk MA. Quercetin as a therapeutic agent activate the Nrf2/Keap1 pathway to alleviate lung ischemia-reperfusion injury. Sci Rep 2024; 14:23074. [PMID: 39367100 PMCID: PMC11452703 DOI: 10.1038/s41598-024-73075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) causes oxidative stress, inflammation, and immune system activation. The Nrf2/Keap1/HO-1 pathway is important in cellular defense against these effects. Quercetin, a flavonoid with antioxidant, anti-inflammatory, and anti-cancer properties, has been investigated. Our aim in this study was to investigate the effect of quercetin on preventing lung ischemia-reperfusion injury and the role of the Nrf2/Keap1/HO-1 pathway. Sixty-four male Wistar rats were divided into four distinct groups(n = 16). Sham, lung ischemia-reperfusion (LIR), Saline + LIR, Quercetin + LIR (30 mg/kg i.p for a week before LIR). LIR groups were subjected to 60 min of ischemia (left pulmonary artery, vein, and bronchus) and 120 min of reperfusion. Our assessment encompassed a comprehensive analysis of various factors, including the evaluation of expression Nrf2, Keap1, and Heme Oxygenase-1 (HO-1) levels and NF-κB protein. Furthermore, we examined markers related to inflammation (interleukin-1β and tumor necrosis factor alpha), oxidative stress (malondialdehyde, total oxidant status, superoxide dismutase, glutathione peroxidase, total antioxidant capacity), lung edema (Wet/dry lung weight ratio and total protein concentration), apoptosis (Bax and Bcl2 protein), and histopathological alterations (intra-alveolar edema, alveolar hemorrhage, and neutrophil infiltration). Our results show that ischemia-reperfusion results in heightened inflammation, oxidative stress, apoptosis, lung edema, and histopathological damage. Quercetin showed preventive effects by reducing these markers, acting through modulation of the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway. This anti-inflammatory effect, complementary to the antioxidant effects of quercetin, provides a multifaceted approach to cell protection that is important for developing therapeutic strategies against ischemia-reperfusion injury and could be helpful in preventive strategies against ischemia-reperfusion.
Collapse
Affiliation(s)
- Mohammad Yousefi Zardak
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Keshavarz
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mahyaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Gholami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sadat Moosavi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Abdollahi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hossein Rezaei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Nasrin Soltani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Niyan Salehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research center, Bam University of Medical Sciences, Bam, Kerman, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mahla Jafaraghae
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Meraj Baghgoli
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Pulmonary Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
43
|
Wang A, Ruan X, Wang X, Ren Y, Shen C, Zhang K, Song Z, Xiang B, Ma Y, Zhao F. A one-stop integrated natural antimicrobial microneedles with anti-inflammatory, pro-angiogenic and long-term moisturizing properties to accelerate diabetic wound healing. Eur J Pharm Biopharm 2024; 203:114448. [PMID: 39134098 DOI: 10.1016/j.ejpb.2024.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 09/14/2024]
Abstract
Diabetic ulcers present a formidable obstacle in diabetes management, typically leading to high mortality and amputation rates. To overcome traditional monotherapy drawbacks, We developed a novel microneedle strategy for combined antimicrobial action: ingeniously integrating quercetin with Platelet-derived Growth Factor-BB(PDGF-BB) and Sucrose Octasulfate(SOS) into the microneedle system(QPS MN). This method allows to penetrate through biofilms, administering quercetin nanocrystals and PDGF-BB deep into the tissue to combat microbial infection, mitigate inflammation, and promote angiogenesis. The accompanying backing material contains SOS, which absorbs wound exudate and forms a dressing that provides a moist environment for wound healing In an in vitro wound-scratch assay demonstrated that co-cultivating Human Umbilical Vein Endothelial Cells(HUVEC) with QPS MN for 48 h (90.3 ± 2.51 %) significantly enhanced cell migration compared to the control group (20.2 ± 1.41 %). Moreover, treatment of streptozotocin-induced diabetic wounds in rats with QPS MN for 14 days resulted in a wound healing rate of 96.56 ± 3.44 %, far surpassing the healing rate of only 40.34 ± 7.26 % observed in the untreated control group. Furthermore, the QPS MN treated wounds exhibited a notable increase in skin appendages and neovascularisation, indicating promising potential for achieving complete wound healing. These results suggest that QPS MN may offer substantial therapeutic benefits for addressing diabetic wounds.
Collapse
Affiliation(s)
- Aili Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Ruan
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuejiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuyu Ren
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunjiao Shen
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Kaiyi Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhenjie Song
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Bai Xiang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yinling Ma
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Clinical Pharmacy, Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China.
| | - Feng Zhao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
44
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Raya Tonetti F, Eguileor A, Llorente C. Goblet cells: guardians of gut immunity and their role in gastrointestinal diseases. EGASTROENTEROLOGY 2024; 2:e100098. [PMID: 39524932 PMCID: PMC11542612 DOI: 10.1136/egastro-2024-100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024]
Abstract
Goblet cells (GCs) are specialised guardians lining the intestine. They play a critical role in gut defence and immune regulation. GCs continuously secrete mucus creating a physical barrier to protect from pathogens while harbouring symbiotic gut bacteria adapted to live within the mucus. GCs also form specialised GC-associated passages in a dynamic and regulated manner to deliver luminal antigens to immune cells, promoting gut tolerance and preventing inflammation. The composition of gut bacteria directly influences GC function, highlighting the intricate interplay between these components of a healthy gut. Indeed, imbalances in the gut microbiome can disrupt GC function, contributing to various gastrointestinal diseases like colorectal cancer, inflammatory bowel disease, cystic fibrosis, pathogen infections and liver diseases. This review explores the interplay between GCs and the immune system. We delve into the underlying mechanisms by which GC dysfunction contributes to the development and progression of gastrointestinal diseases. Finally, we examine current and potential treatments that target GCs and represent promising avenues for further investigation.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
46
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
47
|
Li Y, Li S, Li D, Gao Y, Kong S, Liu J, Liu S, Ma Y, Zhou H, Ren D, Wang Q, He Y. In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol-Polysaccharide Complex in Mice. Foods 2024; 13:3019. [PMID: 39335947 PMCID: PMC11431462 DOI: 10.3390/foods13183019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, a quantitative method based on fluorescein isothiocyanate (FITC)-labelled Hizikia fusiforme polyphenol-polysaccharide complex (HPC) and its purified fractions (PC1, PC4) was used, and its pharmacokinetics and tissue distribution were investigated in mice. The results showed that the FITC-labelled method had good linearity (R2 > 0.99), intra-day and inter-day precision (RSD, %) consistently lower than 15%, recovery (93.19-106.54%), and stability (RSD < 15%), which met the basic criteria for pharmacokinetic studies. The pharmacokinetic and tissue distribution results in mice after administration showed that all three sample groups could enter the blood circulation. and HPC-FITC had a longer half-life (T1/2: 26.92 ± 0.76 h) and mean retention time (MRT0-∞: 36.48 h) due to its larger molecular weight. The three groups of samples could be absorbed by the organism in a short time (0.5 h) mainly in the stomach and intestine; the samples could be detected in the urine after 2 h of administration indicating strong renal uptake, and faecal excretion reached its maximum at 12 h. The samples were also detected in the urine after 2 h of administration. This study provides some theoretical basis for the tissue distribution pattern of polyphenol-polysaccharide complex.
Collapse
Affiliation(s)
- Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuan Gao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shuhua Kong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Jingyi Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
48
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Papageorgiou N, Georgakou AV, Chatzis G, Triantafyllou A. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life (Basel) 2024; 14:1210. [PMID: 39337992 PMCID: PMC11433244 DOI: 10.3390/life14091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Vascular aging, marked by alterations in the structure and function of blood vessels, including heightened arterial stiffness and impaired endothelial function, is linked to a higher likelihood of developing cardiovascular and age-associated pathological conditions. Oxidative stress and inflammation are key stimulation factors in vascular aging. Engaging in healthy dietary habits could enhance the functioning of blood vessels. The aim of this study was to conduct a literature review of the evidence regarding the relationship between food regimens, nutraceuticals, and dietary supplements and vascular health. A search of electronic databases, including PubMed, Scopus, and Web of Science Core Collection, was performed. Experimental and observational studies evaluating the association between food groups, nutraceuticals, supplements, and endothelial function and/or arterial stiffness were deemed eligible for this narrative review. Based on the current body of the included studies, food groups, nutraceuticals, and dietary supplements may not demonstrate superiority over placebos in enhancing markers of vascular health. To obtain more reliable evidence on the effectiveness of interventions in vascular health, additional RCTs with larger sample sizes, extended follow-up periods, and multi-center participation are necessary. Enhancing the credibility of these RCTs requires better control of dietary variables and more precise measurement of vascular health markers.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Niki Papageorgiou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| |
Collapse
|
49
|
Naidoo K, Khathi A. Effects of Gossypetin on Glucose Homeostasis in Diet-Induced Pre-Diabetic Rats. Molecules 2024; 29:4410. [PMID: 39339405 PMCID: PMC11434540 DOI: 10.3390/molecules29184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Natural flavonoids exert many potential health benefits, including anti-hyperglycaemic effects. However, the effects of gossypetin (GTIN) on glucose homeostasis in pre-diabetes have not yet been investigated. This study examined the effects of GTIN on key markers of glucose homeostasis in a diet-induced pre-diabetic rat model. Pre-diabetes was induced by allowing the animals to feed on a high-fat high-carbohydrate (HFHC) diet supplemented with 15% fructose water for 20 weeks. Following pre-diabetes induction, the pre-diabetic animals were sub-divided into five groups (n = 6), where they were either orally treated with GTIN (15 mg/kg) or metformin (MET) (500 mg/kg), both with and without dietary intervention, over a 12-week period. The results demonstrated that animals in the untreated pre-diabetic (PD) control group exhibited significantly higher fasting and postprandial blood glucose levels, as well as elevated plasma insulin concentrations and increased homeostatic model assessment for insulin resistance (HOMA2-IR) index, relative to the non-pre-diabetic (NPD) group. Similarly, increased caloric intake, body weight and plasma ghrelin levels were observed in the PD control group. Notably, these parameters were significantly reduced in the PD animals receiving GTIN treatment. Additionally, glycogen levels in the liver and skeletal muscle, which were disturbed in the PD control group, showed significant improvement in both GTIN-treated groups. These findings may suggest that GTIN administration, with or without dietary modifications, may offer therapeutic benefits in ameliorating glucose homeostasis disturbances associated with the PD state.
Collapse
Affiliation(s)
- Karishma Naidoo
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
50
|
Erick NO, Montserrat EGA, Antonio EPE, Rocío SP, Eduardo LU, Verónica GC, Miriam RS, Imelda JA, Del Carmen BFJ, Cruz RCJ, Tzasna HDC, María GBA, Guillermo AAJ. Photoprotective effect of topical treatment with Lopezia racemosa extract against deleterious UVB irradiation effects in the skin of hairless mice. Photochem Photobiol 2024; 100:1489-1506. [PMID: 38445720 DOI: 10.1111/php.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Lopezia racemosa is known as a "mosquito flower or perlilla." It is commonly found in corn crops. In traditional Mexican medicine, this plant is used to treat stomach cancer and urinary tract infections. Likewise, compounds and extracts isolated from plants have shown cytotoxic and anti-inflammatory effects. The objective of this study was to evaluate the photochemoprotective effect of topical treatment with the methanolic extract of L. racemosa (MELR) as a photochemoprotective agent against the harmful effects of UV irradiation (UVR) on a bacterial model and hairless mice. The MELR components were separated and analyzed via HPLC-UV-ESI-MS. Antioxidant activity was evaluated by the ability of MERL to scavenge DPPH and ABTS free radicals and by its FRAP capacity. The toxicity of MELR was evaluated in keratinocyte cultures. The photoprotective capacity of MELR was assessed through challenge experiments using models with bacteria and hairless CD1 et/et mice; cytokines related to the damage caused by UVR were also measured. In the methanolic extract of L. racemosa, five metabolites were detected and identified: two isomers of quercetin 6-C glycoside, orientin, quercetin 3-(6″-acetylglycoside) and quercetin 3-(6″-galloylglycoside) 7-(2,3-dihydroxytetrahydro-2H-pyran-4-yl acetate). MELR exhibited DPPH and ABTS radical scavenging properties, in addition to Fe ion reducing activity. MELR showed a photoprotective effect against UVB radiation-induced death in Escherichia coli bacteria. At the histological level, topical treatment of CD-1 et/et mice with MERL reduced the damage caused by UVR. Quantification of interleukins in the blood of mice revealed that the expression of IL-12 was greater in the control group treated with ultraviolet radiation than in the group protected with MELR. The methanolic extract of L. racemosa has photochemoprotective properties.
Collapse
Affiliation(s)
- Nolasco Ontiveros Erick
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Estudios de Posgrado, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - Estrella Parra Edgar Antonio
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Serrano Parrales Rocío
- Laboratorio de Bioactividad de Productos Naturales, UBIPRO, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla de Baz, Estado de Mexico, Mexico
| | - López Urrutia Eduardo
- Laboratorio de Genómica Funcional del Cáncer, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - García Castillo Verónica
- Laboratorio de Genómica Funcional del Cáncer, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Rodríguez-Sosa Miriam
- Laboratorio de Inmunidad Innata, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Juárez-Avelar Imelda
- Laboratorio de Inmunidad Innata, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Benítez Flores José Del Carmen
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Rivera Cabrera José Cruz
- Laboratorio de Cromatografía de Líquidos, Departamento de Farmacología, Escuela Militar de Medicina, Ciudad de Mexico, Mexico
| | - Hernández Delgado Claudia Tzasna
- Laboratorio de Bioactividad de Productos Naturales, UBIPRO, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla de Baz, Estado de Mexico, Mexico
| | - García Bores Ana María
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Avila Acevedo José Guillermo
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| |
Collapse
|