1
|
Yang L, Wang W, Liu Z, Zhai Y, Wang Z, Li Y, Zhang Z, Hou B, Zhang B, Zhou J. Widely Targeted Metabolomics Reveals the Bioactive Metabolites and Antioxidant Activities of Chinese Yam (Dioscorea opposita Thunb.) Peel. Biomed Chromatogr 2025; 39:e70085. [PMID: 40207649 DOI: 10.1002/bmc.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Chinese yam (Dioscorea opposita Thunb. cv. Tiegun) has been utilized in traditional medicine and as a food source for centuries. However, the metabolite profiles and antioxidant activities of yam by-product peel have not been studied sufficiently. Thus, to effectively identify the active metabolites in yam peel, we employed a UHPLC-MS/MS-based widely targeted metabolomics on Chinese yam peel from loessial soil (LPCY) and sandy soil (SPCY). A total of 1054 metabolites were identified, comprising 379 primary metabolites, 528 secondary metabolites, and 147 other compounds. Notably, multivariate analyses revealed the presence of 143 differentially accumulated metabolites (DAMs) between SPCY and LPCY. Linoleic acid metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, pyruvate metabolism, and sphingolipid metabolism were the main differentially regulated pathways. The DPPH, ABTS, and FRAP assays demonstrated that the antioxidant activities of LPCY were significantly higher than those of SPCY. Correlation analysis revealed that most DAMs, including phenolic acids, lipids, organic acids, and amino acids, exhibited significant positive correlations with antioxidant activities (r ≥ 0.7, p < 0.05). These results indicate that loessial soil promotes the accumulation of antioxidant-active compounds. Overall, this study suggests that yam peels hold significant potential as a rich natural source of bioactive substances.
Collapse
Affiliation(s)
- Lanping Yang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Wendi Wang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Zhenzhen Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Yangyang Zhai
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Zhenhui Wang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Ying Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Zhenzhen Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Baohua Hou
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Baobao Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory for Huaiyao Comprehensive Development, Henan Polytechnic University, Jiaozuo, China
| | - Jingchun Zhou
- Beijing Bencaoyuan Pharmaceutical Co., Ltd, Beijing, China
| |
Collapse
|
2
|
Ma M, Ma X, Ma Z, Wang T, Li Y, Mao J, Chen B. Effects of foliar fertilizer additives on grape fruit quality and endogenous hormones in leaves. BMC PLANT BIOLOGY 2025; 25:516. [PMID: 40275139 DOI: 10.1186/s12870-025-06522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Foliar fertilizer adjuvant is a fertilizer adjuvant that can improve the efficiency of plant leaf nutrient absorption. It is an effective means to reduce fertilizer usage and protect the environment, and plays an important role in agricultural production. However, under drought stress, traditional foliar fertilizers are susceptible to photolysis and evaporation loss, which affects the efficiency of nutrient absorption. This experiment used the 10-year-old grape 'Zitian Seedless' planted in the Wuwei area of the Hexi Corridor as the test material, focusing on foliar fertilizer adjuvants, and through its synergistic effect, explored the effects of potassium dihydrogen phosphate combined with different foliar fertilizer adjuvants on leaf endogenous hormones and fruit quality. METHOD This experiment had a total of six treatments: CK (potassium dihydrogen phosphate), T1 (potassium dihydrogen phosphate + ethylated and methylated vegetable oil), T2 (potassium dihydrogen phosphate + silicone), T3 (potassium dihydrogen phosphate + green citrus oil), T4 (potassium dihydrogen phosphate + sodium nitrophenolate aqueous solution), T5 (potassium dihydrogen phosphate + triacontanol solution + benzylaminopurine). The effects of different foliar fertilizer adjuvants on grape fruit quality and endogenous hormones in leaves were explored through a solar greenhouse experiment. RESULTS Different foliar fertilizer adjuvants can improve the quality of fresh grapes, and each treatment significantly increased the content of soluble solids in the fruit. T4 (potassium dihydrogen phosphate + sodium nitrophenolate) had the best effect: the single fruit weight, Vc, tannin and anthocyanin content of the mature fruit increased by 52.55%, 64.68%, 24.97%, and 152.56% respectively compared with CK, and the organic acid content decreased significantly. At the same time, the total content of aroma substances reached 1188.90 µg·kg⁻¹, which was 86.25% higher than that of CK. The analysis of endogenous hormones in leaves showed that T4 treatment had the most significant effect on ZT at the inflorescence separation stage, and the most significant effect on SA, IAA and ABA at the expansion stage, which were 121.89%, 15.62%, 137.23% and 37.36% higher than those of CK at the same period. In addition, T4 treatment had the lowest drug cost and was more economical. CONCLUSION This study revealed the effects of different foliar fertilizer adjuvants on the fruit quality and endogenous hormones of 'Zitian Seedless' grapes. It provides an efficient and low-cost foliar fertilizer adjuvant application scheme for grape cultivation in the Hexi Corridor region, which has important practical significance for improving the economic benefits and sustainable development of the fresh grape industry.
Collapse
Affiliation(s)
- Mingze Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Xiyuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Tian Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Yutao Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China.
| |
Collapse
|
3
|
Taşkın T, Yılmaz BN, Hasan Niari Niar S, Ermanoğlu M, Taşkın D, Şenkardeş İ, Şahin T, Çalışkan Salihi E, Sezer AD, Kerimoğlu O, Elçioğlu HK. Biological activities and phytochemical characterization of Sideritis germanicopolitana subsp. viridis and S. libanotica subsp. linearis extracts and extract-loaded nanoparticles. Front Pharmacol 2025; 16:1508762. [PMID: 40170726 PMCID: PMC11959306 DOI: 10.3389/fphar.2025.1508762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction The current study focuses on evaluating the biological activity and analysis of phytochemical content of extracts and extract-loaded nanoparticles from Sideritis germanicopolitana subsp. viridis (endemic, SGV) and S. libanotica subsp. linearis (SLL). Methods Antioxidant activities of extracts and nanoparticles were investigated by DPPH, FRAP and CUPRAC methods. Enzyme inhibition potentials of extracts and nanoparticles were evaluated by Ellman and indophenol methods. Phytochemical contents were analyzed by HPLC-DAD. Plant extracts were encapsulated by the ionic gelation method which was modified in our laboratory using the green chemistry approach. Results and Discussion It was found that the 70% ethanol extracts of SGV and SLL exhibited the highest antioxidant activity in terms of DPPH, FRAP and CUPRAC compared to other extracts. The findings showed that both 70% ethanol extract-loaded nanoparticles obtained from SGV and SLL showed lower DPPH radical scavenging, iron (III) reducing and copper (II) reducing activities compared to crude extracts. It was determined that the 70% extracts of SGV and SLL exhibited a higher potential to inhibit the enzyme urease than other extracts. The anti-urease activity of the nanoparticle loaded with SLL 70% ethanol extract was found to be greater than that of the nanoparticle made with SGV 70% ethanol extract. Furthermore, an analysis of the acetylcholinesterase enzyme inhibition capacity of various extracts from both plants revealed that the 70% ethanol extracts of each plant species had a greater potential for enzyme inhibition than the other extracts. The anticholinesterase activity of the nanoparticle loaded with SLL 70% extract was found to be higher than that of the nanoparticle loaded with SGV 70% ethanol extract. In this study the phenolic metabolites were examined, luteolin (27.44 μg/mg extract) and p-coumaric acid (20.03 μg/mg extract) were found at the highest concentration in the SGV plant while rosmarinic acid (8.70 μg/mg extract), caffeic acid (6.46 μg/mg extract) and p-coumaric acid (4.42 μg/mg extract) were found at the highest concentration in the SLL plant. However, the data demonstrated that the nanoparticles had lesser biological activity potential than crude extracts. Conclusion The substantial biological activities of the nanoparticles developed as a result of this work showed that these formulations are suitable for use as antioxidant, anti-urease and anticholinesterase medicines in the future due to the benefits of using nanoparticles in the therapeutics such as the controlled release of the active agents and the diminished side effects.
Collapse
Affiliation(s)
- Turgut Taşkın
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Beyza Nur Yılmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharnacognosy, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
| | - Shalaleh Hasan Niari Niar
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Mizgin Ermanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharnacognosy, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
| | - Duygu Taşkın
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Türkiye
| | - İsmail Şenkardeş
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Talip Şahin
- Department of Biology, Institute of Science, Adıyaman University, Adıyaman, Türkiye
| | - Elif Çalışkan Salihi
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Ali Demir Sezer
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Oya Kerimoğlu
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Hatice Kübra Elçioğlu
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| |
Collapse
|
4
|
Zahi A, Driouech M, Hakkou Z, Mansouri F, El Hajji F, Ziyyat A, Mekhfi H, Bnouham M, Legssyer A. Vasorelaxant effect of fennel seeds (Foeniculum vulgare Mill) extracts on rat mesenteric arteries: Assessment of phytochemical profiling and antioxidant potential. Fitoterapia 2025; 181:106359. [PMID: 39725088 DOI: 10.1016/j.fitote.2024.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypertension is a serious health problems and a leading cause of adult mortality worldwide. Foeniculum. vulgare Mill, a plant traditionally used for various ailments, including cardiovascular disorders such as hypertension. AIM OF THE STUDY The objective of the study is to verify the vasorelaxant effect of fennel seeds on the isolated and perfused mesenteric vascular beds in rats. MATERIALS AND METHODS The vasorelaxant effect of the aqueous extract of F. vulgare (AEFv) seeds was tested on mesenteric arteries, both intact and denuded, precontracted with phenylephrine. Extracts from liquid-liquid extraction of F. vulgare were screened to find the active fraction. The mechanism of action of the active butanolic fraction (BFFv) was studied using inhibitors like L-NAME (nitric oxide synthase inhibitor), ODQ (guanylate cyclase inhibitor), indomethacin (cyclooxygenase inhibitor), potassium channel blockers (tetraethylammonium TEA, and glibenclamide), and atropine (a muscarinic receptor antagonist). Moreover, the antioxidant properties of AEFv and BFFv were evaluated using DPPH radical scavenging, β-carotene linoleic acid, and ferric-reducing power assays; total flavonoids and phenolics of AEFv and BFFv were measured using Folin-Ciocalteu and aluminum chloride colorimetric assays; HPLC-DAD analysis and acute toxicity of BFFv in mice were also performed. RESULTS AEFv caused a concentration-dependent vasodilatory response in intact mesenteric arteries (Emax = 81.73 ± 0.36 %). This effect was significantly reduced after endothelium removal. The butanolic fraction showed the highest vasorelaxant effect. The vasodilatory effect was attenuated by L-NAME, ODQ, indomethacin, TEA, glibenclamide, and atropine, indicating involvement of the NO/GMPc pathway, potassium channels, and muscarinic receptors. Additionally, fennel extracts demonstrated excellent antioxidant activity and high concentrations of flavonoids and phenolic compounds. HPLC-DAD analysis of the butanolic fraction revealed an abundance of phenolic acids. Acute toxicity studies of BFFv showed no toxic effects. CONCLUSION Our findings support the traditional use of Foeniculum vulgare seeds for preventing cardiovascular disorders associated with vascular dysfunction, highlighting their vasorelaxant and antioxidant properties.
Collapse
Affiliation(s)
- Amal Zahi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Mounia Driouech
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Zineb Hakkou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco; Higher Institute of Nursing Professions and Health Techniques, 60000 Oujda, Morocco.
| | - Farid Mansouri
- Laboratory of Agricultural Productions Improvement, Biotechnology and Environment, Faculty of Sciences, Mohammed First University, BP-717, 60000 Oujda, Morocco; High School of Education and Training, Mohammed I University, BP-410, 60000 Oujda, Morocco.
| | - Fatima El Hajji
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco.
| |
Collapse
|
5
|
Hao X, Gao Z, Hu M. Anti-tumor role and molecular mechanism of vanillic acid. Discov Oncol 2025; 16:20. [PMID: 39775208 PMCID: PMC11711440 DOI: 10.1007/s12672-025-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Vanillic Acid (VA) is an aromatic acid extracted from traditional Chinese medicine such as Angelica sinensis and Panax ginseng, which has demonstrated potent anti-cancer activity, inhibiting the onset and progression of various malignant tumors. This review highlights the principal mechanism by which VA exerts its anticancer activity, including apoptosis induction, specifically promoting the generation of intracellular reactive oxygen species (ROS), which in turn triggers mitochondrial apoptosis. Furthermore, VA disrupts the cancer cell cycle, arresting most cancer cells at the G1 phase, curtails cell migration, invasion, angiogenesis, and potentiates the therapeutic efficacy of chemotherapeutic drugs, all while minimizing adverse reactions. This paper offers a comprehensive review of VA's anti-tumor effects and underlying mechanisms, aiming to provide some references for scientists and clinical physicians in the research of anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Xunxing Hao
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shangdong, China
| | - Zhixiao Gao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mingzhe Hu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Kumar R, Flint-Garcia S, Salazar Vidal MN, Channaiah L, Vardhanabhuti B, Sommer S, Wan C, Somavat P. Optimization of Polyphenol Extraction from Purple Corn Pericarp Using Glycerol/Lactic Acid-Based Deep Eutectic Solvent in Combination with Ultrasound-Assisted Extraction. Antioxidants (Basel) 2024; 14:9. [PMID: 39857343 PMCID: PMC11762350 DOI: 10.3390/antiox14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Purple corn pericarp, a processing waste stream, is an extremely rich source of phytochemicals. Optimal polyphenol extraction parameters were identified using response surface methodology (RSM) by combining a deep eutectic solvent (DES) and ultrasound-assisted extraction (UAE) method. After DES characterization, Plackett-Burman design was used to screen five explanatory variables, namely, time, Temp (temperature), water, Amp (amplitude), and S/L (solid-to-liquid ratio). The total anthocyanin concentration (TAC), total polyphenol concentration (TPC), and condensed tannin (CT) concentration were the response variables. After identifying significant factors, the Box-Behnken design was utilized to identify the optimal extraction parameters. The experimental yields under the optimized conditions of time (10 min), temperature (60 °C), water concentration (42.73%), and amplitude (40%) were 36.31 ± 1.54 g of cyanidin-3-glucoside (C3G), 103.16 ± 6.17 g of gallic acid (GA), and 237.54 ± 9.98 g of epicatechin (EE) per kg of pericarp, with a desirability index of 0.858. The relative standard error among the predicted and experimental yields was <10%, validating the robustness of the model. HPLC analysis identified seven phytochemicals, and significant antioxidant activities were observed through four distinct assays. Metabolomic profiling identified 57 unique phytochemicals. The UAE technique combined with DES can efficiently extract polyphenols from purple corn pericarp in a short time.
Collapse
Affiliation(s)
- Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Sherry Flint-Garcia
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, MO 65211, USA;
| | | | - Lakshmikantha Channaiah
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Bongkosh Vardhanabhuti
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Stephan Sommer
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
7
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
8
|
Suyanto E, Gorantla JN, Santi M, Fatchiyah F, Ketudat-Cairns M, Talabnin C, Ketudat Cairns JR. Enzymatic synthesis of phenolic acid glucosyl esters to test activities on cholangiocarcinoma cells. Appl Microbiol Biotechnol 2024; 108:69. [PMID: 38183488 DOI: 10.1007/s00253-023-12895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 01/08/2024]
Abstract
While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy. The transglycosylation products were evaluated by antioxidant and anti-proliferative assays, followed by an anti-migration assay for the selected phenolic acid glucosyl ester. Os9BGlu31 mutants produced higher yield and activity than wild-type enzymes on phenolic acids to produce phenolic acid glucosyl esters. Among these, gallic acid glucosyl ester (β-glucogallin) had the highest antioxidant activity and anti-proliferative activity in cholangiocarcinoma cells. It also inhibited the migration of cholangiocarcinoma cells. Our study demonstrated that rice Os9BGlu31 transglucosidase is a promising enzyme for glycosylation of bioactive compounds in one-step reactions and provides evidence that β-glucogallin inhibits cell proliferation and migration of cholangiocarcinoma cells. KEY POINTS: • Os9BGlu31 transglucosidases produced phenolic acid glucosyl esters for bioactivity testing. • Phenolic acid glucosyl esters were tested for cytotoxicity in cholangiocarcinoma cells. • β-Glucogallin displayed the highest inhibition of cholangiocarcinoma cell growth.
Collapse
Affiliation(s)
- Eko Suyanto
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Jaggaiah N Gorantla
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maniganda Santi
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Fatchiyah Fatchiyah
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.
| |
Collapse
|
9
|
Peng Y, Li M, Song F, Liu S, Qin Y, Hu B, Cui X. Identification of Primary Metabolite Profiles Reveals Quality Characteristics of Citrus maxima 'Shatian Yu' from Different Origins. Curr Issues Mol Biol 2024; 46:12830-12846. [PMID: 39590358 PMCID: PMC11593049 DOI: 10.3390/cimb46110764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Citrus maxima 'Shatian Yu' displays varying nutritional profiles influenced by its production area. This study evaluated pomelo fruits from four primary and one developing 'Shatian Yu' production area. Notably, 'Shatian Yu' from the Guilin area exhibited higher sugar and alcohol content, suggesting enhanced taste. Principal component analysis and OPLS-DA revealed significant metabolite differences among production areas. In Guilin, variations were observed in a few substances, including sugars, alcohols, and phenolic acids. When compared with Rong City, Guilin showed a decrease in four phenolic acids and an increase in three organic acids, eighteen amino acids, eighteen lipids, and one vitamin. This comprehensive analysis provides valuable insights for the development of 'Shatian Yu' cultivation, highlighting the impact of production areas on fruit quality.
Collapse
Affiliation(s)
- Yujiao Peng
- Guangxi Geographical Indication Crops Research Center of Big Data Mining and Experimental Engineering Technology, Nanning Normal University, Nanning 530001, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Meixin Li
- Guangxi Geographical Indication Crops Research Center of Big Data Mining and Experimental Engineering Technology, Nanning Normal University, Nanning 530001, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Fangfei Song
- Guangxi Geographical Indication Crops Research Center of Big Data Mining and Experimental Engineering Technology, Nanning Normal University, Nanning 530001, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Shuilan Liu
- Guangxi Geographical Indication Crops Research Center of Big Data Mining and Experimental Engineering Technology, Nanning Normal University, Nanning 530001, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Yuxiang Qin
- Guangxi Geographical Indication Crops Research Center of Big Data Mining and Experimental Engineering Technology, Nanning Normal University, Nanning 530001, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Baoqing Hu
- Guangxi Geographical Indication Crops Research Center of Big Data Mining and Experimental Engineering Technology, Nanning Normal University, Nanning 530001, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Xueyu Cui
- Guangxi Geographical Indication Crops Research Center of Big Data Mining and Experimental Engineering Technology, Nanning Normal University, Nanning 530001, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
10
|
Laaraj S, Tikent A, Chebaibi M, Bouaouda K, Bouhrim M, Sweilam SH, Herqash RN, Shahat AA, Addi M, Elfazazi K. A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq. Curr Issues Mol Biol 2024; 46:12375-12396. [PMID: 39590329 PMCID: PMC11592469 DOI: 10.3390/cimb46110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Anabasis aretioïdes contain numerous bioactive compounds that provide several advantages, including antioxidant, antibacterial, anticancer, neuroprotective, anti-inflammatory, and antidiabetic characteristics. This study aimed to make a hydroethanolic extract from the aerial part of the plant, analyze its biochemical compounds, and test its biological activities. From HPLC-DAD analysis, cinnamic acid, sinapic acid, and vanillin bioactives were found to be the main compounds in the extract. The spectrometric tests revealed that the extract was rich in flavonoids (8.52 ± 0.32 mg RE/100 g DW), polyphenols (159.32 ± 0.63 mg GAE/100 g DW), and condensed tannins (8.73 ± 0.23 mg CE/100 g DW). The extract showed significant antioxidant activity. There were strong correlations between the amount of flavonoid or polyphenol and the antioxidant assays, including ABTS, DPPH, β-carotene, and TAC. The extract also showed highly effective results against Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis as well as against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and showed promising cytotoxicity against breast cancer cell lines MCF-7 and MDA-MB-231. The in silico modeling of the bioactive compounds contained in the extract illustrated their interaction mode with the active sites of particular target proteins, and it showed that rutin had the strongest effect on stopping NADPH oxidase enzyme, with a glide score of -6.889 Kcal/mol. Sinapic acid inhibited E. coli beta-ketoacyl-[acyl carrier protein] synthase (-7.517 kcal/mol), and apigenin showed high binding affinity to S. aureus nucleoside di-phosphate kinase, with -8.656 kcal/mol. Succinic acid has the strongest anticancer effect for caspase-3, with a glide score of -8.102 kcal/mol. These bioactive components may be beneficial as antioxidant and antibacterial applications in medicine, foods, natural cosmetics, and breast cancer prevention in the future. As a result, the use of this indigenous plant must be considered to maximize its value and preservation.
Collapse
Affiliation(s)
- Salah Laaraj
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Bp 415 Rabat Principal, Rabat 10090, Morocco;
- Environmental, Ecological, and Agro-Industrial Engineering Laboratory, LGEEAI, Faculty of Science and Technology (FST), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco
| | - Aziz Tikent
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie & Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Bp 717, Oujda 60000, Morocco;
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
| | - Khawla Bouaouda
- Faculty of Science Ben M’sik, Laboratory of Biology and Health, University Hassan II of Casablanca, Casablanca 20650, Morocco;
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Cairo 11829, Egypt;
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.N.H.); (A.A.S.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.N.H.); (A.A.S.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie & Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Bp 717, Oujda 60000, Morocco;
| | - Kaoutar Elfazazi
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Bp 415 Rabat Principal, Rabat 10090, Morocco;
| |
Collapse
|
11
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
12
|
Ahmed S, Zengin G, Selvi S, Ak G, Cziáky Z, Jekő J, Rodrigues MJ, Custodio L, Venanzoni R, Flores GA, Cusumano G, Angelini P. Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques. Pathogens 2024; 13:795. [PMID: 39338986 PMCID: PMC11435373 DOI: 10.3390/pathogens13090795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the biochemical composition and biological properties of different parts (leaves, roots, and twigs) of two Cistus species (Cistus monspeliasis and Cistus parviflorus). The extracts were analysed using UHPLC-MS/MS to determine their chemical profiling. A range of antioxidant assays were performed to evaluate the extract's antioxidant capabilities. The enzyme inhibition studies focused on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase and tyrosinase. In addition, the study examined the antimicrobial effects on different bacteria and yeasts and evaluated the toxicity using the MTT assay. Quinic acid, citric acid, gallic acid, catechin, quercetin derivatives, kaempferol, myricetin, ellagic acid, prodelphinidins, procyanidins, scopoletin, and flavogallonic acid dilactone are the main bioactive compounds found in both species. In enzyme inhibition assays, C. monspeliasis roots exhibited significant activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with the values of 2.58 ± 0.02 mg GALAE/g and 11.37 ± 1.93 mg GALAE/g, respectively. Cytotoxicity studies showed mostly weak toxicity, with some samples moderately reducing viability in RAW and HepG2 cells. These findings underscore the diverse biochemical profiles and bioactive potential of Cistus species, suggesting their utility as natural sources of antioxidants and enzyme inhibitors for pharmaceutical and nutraceutical development.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir 10870, Turkey;
| | - Gunes Ak
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (S.A.); (G.A.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Maria J. Rodrigues
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Luisa Custodio
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (R.V.); (G.A.F.); (G.C.)
| |
Collapse
|
13
|
Amayreh M, Esaifan M, Hourani MK. A sensitive and selective voltammetric method for the detection of pyrogallol in tomato and water samples using platinum electrode modified with alizarin red S film. ANAL SCI 2024; 40:1671-1681. [PMID: 38811524 DOI: 10.1007/s44211-024-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
In contrast to the hyperactive platinum electrode, ARS modified platinum electrode presents a remarkable inertness toward adsorption and surface processes and lends it for further voltammetric applications. Measuring pyrogallol levels in samples is significant for assessing their antioxidant activity, which is crucial for understanding their potential health benefits and ability to combat oxidative stress. In addition, the excess consumption of pyrogallol can have significant negative effects on human health. A voltammetric sensor has been developed for the determination of pyrogallol using ARS modified platinum electrode. The electrode was prepared by electrodeposition of alizarin red S on a platinum electrode using cyclic voltammetry with a potential scan range of - 0.4 to 1.2 V against an Ag/AgCl quasi reference electrode for 60 cycles as optimum number of cycles. The modified electrode was characterized by CV and SEM techniques. This modified alizarin red S platinum electrode showed remarkable electrocatalytic performance and stability, resulting in a significant increase in pyrogallol oxidation current by 11.05% compared to the pyrogallol oxidative current at the unmodified platinum electrode. A well-defined oxidation peak was observed at ~ 0.40 V. The sensor exhibited a low limit of detection (LOD) of 0.28 µM and a linear standard curve covering the ranges of 1.0-40 µM and 0.01-10.0 mM pyrogallol. Extensive studies were performed to evaluate possible interferences from various organic and inorganic compounds and yielded satisfactory results that confirm the selectivity of the developed sensor for pyrogallol determination. In addition, the ARS-Pt electrode provided consistently reliable results for the accurate detection of pyrogallol in water and tomato samples.
Collapse
Affiliation(s)
- Mohammad Amayreh
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan.
| | - Muayad Esaifan
- Department of Chemistry, Faculty of Arts and Sciences, University of Petra, Amman, 11196, Jordan
| | - Mohammed Khair Hourani
- Electrochemistry Research Laboratory, Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
14
|
Hu K, Liu X, Ma H, Zhao D, Song J, Zeng H, Zhang Z. Selective extraction and analysis of phenolic acids in herbal plants using Fe 3O 4@MXene@PEI aerogel. Talanta 2024; 277:126344. [PMID: 38838562 DOI: 10.1016/j.talanta.2024.126344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
A magnetic MXene aerogel (Fe3O4@MXene@PEI) was prepared by crosslinking amino modified MXene with polyethyleneimine using epichlorohydrin as a cross-linker. Adsorption properties of Fe3O4@MXene@PEI aerogel for phenolic acids were evaluated by adsorption kinetics and isotherms experiments, showing that the high adsorption affinity was governed by multilayer chemisorption process. An efficient MSPE/HPLC method was developed for the determination of phenolic acids with excellent selectivity, good linearity (0.025-5.0 μg mL-1), low LODs (0.007-0.017 μg mL-1), and satisfactory recoveries (80.0-120.0 %). Moreover, the antioxidant activity of the Fe3O4@MXene@PEI purified compounds was superior to that of the conventional method as demonstrated by the results of scavenging experiments on 2,2 -diphenyl-1-picrylhydrazyl radical scavenging assay. Finally, 65 organic acids were identified in the Fe3O4@MXene@PEI treated honeysuckle extracts by UHPLC-Q-Exactive Orbitrap MS/MS analysis. The proposed sorbent exhibits remarkable promise for the selective separation and purification of organic acids from herbal products.
Collapse
Affiliation(s)
- Kai Hu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, China.
| | - Xiaobing Liu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huifen Ma
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Di Zhao
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junying Song
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huahui Zeng
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
15
|
Macrì R, Maiuolo J, Scarano F, Musolino V, Fregola A, Gliozzi M, Carresi C, Nucera S, Serra M, Caminiti R, Cardamone A, Coppoletta AR, Ussia S, Ritorto G, Mazza V, Bombardelli E, Palma E, Muscoli C, Mollace V. Evaluation of the Potential Beneficial Effects of Ferula communis L. Extract Supplementation in Postmenopausal Discomfort. Nutrients 2024; 16:2651. [PMID: 39203788 PMCID: PMC11357168 DOI: 10.3390/nu16162651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Peri-menopausal discomfort can have a detrimental effect on the physical health of women due to physiological and behavioral changes. Estrogen and progesterone-based hormone therapy can alleviate menopausal symptoms, but estrogen supplementation may have negative health effects. The effectiveness of hormone replacement therapy using natural compounds for peri-menopausal disorders is still uncertain. Evidence from in vivo experiments indicates that Ferula L. extract in ovariectomized rats leads to better sexual behavior. The effect seems to be linked to the phytoestrogenic properties of ferutinin, the primary bioactive compound in the extract. The purpose of this study was to assess the clinical impact of Ferula communis L. extract (titrated at 20% ferutinin, and given at doses of 100 mg/die for 90 days) on the quality of life of 64 menopausal women. The clinical trial was randomized, double-blind, and placebo controlled. Our data showed that Ferula communis L. extract reduced by 67 + 9% all symptoms associated to postmenopausal discomfort and enhanced significantly sexual behavior. In addition, the supplement led to a significant improvement of BMI and oxidative stress decrease in the women who received it, while also keeping platelet aggregation within normal levels. Overall, these results could point to the potential use of supplementation with Ferula communis L. extract to revert or mitigate menopause dysfunction.
Collapse
Affiliation(s)
- Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (V.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (V.M.)
| | - Annalisa Fregola
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Sara Ussia
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Giovanna Ritorto
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Valeria Mazza
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Ezio Bombardelli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
- Renato Dulbecco Institute, 88046 Lamezia Terme, Italy
| |
Collapse
|
16
|
Bejenaru LE, Radu A, Segneanu AE, Biţă A, Manda CV, Mogoşanu GD, Bejenaru C. Innovative Strategies for Upcycling Agricultural Residues and Their Various Pharmaceutical Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2133. [PMID: 39124251 PMCID: PMC11314045 DOI: 10.3390/plants13152133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This review investigates innovative strategies for upcycling agricultural residues into valuable pharmaceutical compounds. The improper disposal of agricultural residues contributes to significant environmental issues, including increased greenhouse gas emissions and ecosystem degradation. Upcycling offers a sustainable solution, transforming these residues into high-value bioproducts (antioxidants, antitumor agents, antidiabetic compounds, anti-inflammatory agents, and antiviral drugs). Nanotechnology and microbial biotechnology have a crucial role in enhancing bioavailability and targeted delivery of bioactive compounds. Advanced techniques like enzymatic hydrolysis, green solvents, microwave processing, pyrolysis, ultrasonic processing, acid and alkaline hydrolysis, ozonolysis, and organosolv processes are explored for their effectiveness in breaking down agricultural waste and extracting valuable compounds. Despite the promising potential, challenges such as variability in residue composition, scalability, and high costs persist. The review emphasizes the need for future research on cost-effective extraction techniques and robust regulatory frameworks to ensure the safety, efficacy, and quality of bioproducts. The upcycling of agricultural residues represents a viable path towards sustainable waste management and production of pharmaceutical compounds, contributing to environmental conservation and public health improvements. This review provides an analysis of the current literature and identifies knowledge gaps, offering recommendations for future studies to optimize the use of agricultural residues in the drug industry.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Costel-Valentin Manda
- Department of Analytical and Instrumental Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| |
Collapse
|
17
|
Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int J Mol Sci 2024; 25:7631. [PMID: 39062873 PMCID: PMC11276737 DOI: 10.3390/ijms25147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
18
|
Amini N, Shoshtari MH, Nejaddehbashi F, Dianat M, Badavi M. Dose-dependent renoprotective effect of vanillic acid on methotrexate-induced nephrotoxicity via its anti-apoptosis, antioxidant, and anti-inflammatory properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4195-4204. [PMID: 38041776 DOI: 10.1007/s00210-023-02866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Methotrexate-induced nephrotoxicity is a medical emergency which is associated with a variety of side effects. Vanillic acid (VA), as an antioxidant, removes free radical oxygen to protect cell defense. Therefore, this study investigated VA's beneficial effects on nephrotoxicity induced by methotrexate through its anti-apoptosis, antioxidant, and anti-inflammatory properties. Our study included five groups of male Wistar rats (n = 8): sham, MTX (Methotrexate) group: rats receiving methotrexate (20 mg/kg, intraperitoneally) on Day 2. Moreover, the remaining groups consisted of animals that received vanillic acid (25, 50, and 100 mg/kg, orally for seven days) plus MTX on the 2nd day. The rats were deeply anesthetized on the eighth day to obtain blood and renal tissue samples. The results showed that MTX can increase blood urea nitrogen and creatinine. However, VA (50 and 100 mg/kg) improved renal function as approved by histological findings. Compared with MTX-treated rats, VA enhanced the contents of total antioxidant capacity (TAC) and reduced renal malondialdehyde (MDA). Moreover, VA reduced mRNA expressions of caspase-3 and Bcl-2-associated x protein (Bax) and caused mRNA overexpression of the renal B-cell lymphoma-2 (Bcl-2), and Nrf-2 (Nuclear factor erythroid 2-related factor 2) compared to the MTX group. Also, VA administration significantly reduced inflammatory agents. Overall, VA protects the kidneys against methotrexate-induced nephrotoxicity via anti-apoptosis, antioxidant, and anti-inflammatory properties. Our results revealed that the most effective dose of VA was 100 mg/kg.
Collapse
Affiliation(s)
- Negin Amini
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Sweed NM, Zaafan MA, El-Bishbishy MH, Dawoud MHS. The pulmonary protective potential of vanillic acid-loaded TPGS-liposomes: modulation of miR-217/MAPK/NF-κb signalling pathway. J Microencapsul 2024; 41:255-268. [PMID: 38647544 DOI: 10.1080/02652048.2024.2335166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
The aim is to investigate the possible pulmonary protective effect of vanillic acid (VA) in liposome-TPGS nanoparticles, to overcome VA's poor bioavailability. VA was successfully extracted. Liposomes were prepared using thin film hydration. Central composite design was adopted for optimisation of liposomes to get the maximum entrapment efficiency (EE%) and the minimum mean diameter, where the liposomes were further modified with TPGS, and tested for PDI, zeta-potential, and in-vitro drug release. In-vivo study on mice with LPS-acute pulmonary toxicity was tested. TPGS-modified VA-liposomes showed EE% of 69.35 ± 1.23%, PS of 201.7 ± 3.23 nm, PDI of 0.19 ± 0.02, and zeta-potential of -32.2 ± 0.32 mv. A sustained drug release of the TPGS-modified VA-liposomes was observed compared to standard VA, and a pulmonary-protective effect through decreasing miR-217 expression with subsequent anti-inflammatory effect through suppression of MAPK and PI3K/NF-κB pathways was also demonstrated in the current study. TPGS-modified VA-liposomes showed an enhanced bioavailability and a sustained drug release with promising pulmonary protective effects against acute pulmonary injury diseases.
Collapse
Affiliation(s)
- Nabila M Sweed
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Mai A Zaafan
- Pharmacology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Mahitab H El-Bishbishy
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Marwa H S Dawoud
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| |
Collapse
|
20
|
Gorantla JN, Choknud S, Suyanto E, Win HH, Hua Y, Santhi M, Wangngae S, Kamkaew A, Ketudat-Cairns M, Rojanathammanee L, Ketudat Cairns JR. Semi-synthesis of phenolic-amides and their cytotoxicity against THP-1, HeLa, HepG2 and MCF-7 cell lines. Nat Prod Res 2024; 38:2069-2077. [PMID: 37526601 DOI: 10.1080/14786419.2023.2241971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
In the present study, we derivatized several hydroxycinnamic and hydroxybenzoic acids to phenolic amides (PAMs) via one step BOP mediated amide coupling reactions. Fifteen PAMs were synthesized in >40% yields and were screened for their cytotoxic activities against four cancer cell lines: THP-1 (leukaemia), HeLa (cervical), HepG2 (liver), and MCF-7 (breast), in comparison to 5-flurouracil (5-FU). Four amides showed IC50 ranging from 5 to 55 µM against all four cell lines. In contrast, tetradecyl-gallic-amide (13) affected only THP-1 leukaemia cells with IC50 of 3.08 µM. The activities of these compounds support the promise of phenolic amides as anticancer agents.
Collapse
Affiliation(s)
- Jaggaiah N Gorantla
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sunaree Choknud
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Eko Suyanto
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Htun-Htun Win
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yanling Hua
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maniganda Santhi
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Lalida Rojanathammanee
- School of Sports Science, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
21
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Mihaylova D, Dimitrova-Dimova M, Popova A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int J Mol Sci 2024; 25:4769. [PMID: 38731987 PMCID: PMC11084633 DOI: 10.3390/ijms25094769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Maria Dimitrova-Dimova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
23
|
Godos J, Scazzina F, Paternò Castello C, Giampieri F, Quiles JL, Briones Urbano M, Battino M, Galvano F, Iacoviello L, de Gaetano G, Bonaccio M, Grosso G. Underrated aspects of a true Mediterranean diet: understanding traditional features for worldwide application of a "Planeterranean" diet. J Transl Med 2024; 22:294. [PMID: 38515140 PMCID: PMC10956348 DOI: 10.1186/s12967-024-05095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Over the last decades, the Mediterranean diet gained enormous scientific, social, and commercial attention due to proven positive effects on health and undeniable taste that facilitated a widespread popularity. Researchers have investigated the role of Mediterranean-type dietary patterns on human health all around the world, reporting consistent findings concerning its benefits. However, what does truly define the Mediterranean diet? The myriad of dietary scores synthesizes the nutritional content of a Mediterranean-type diet, but a variety of aspects are generally unexplored when studying the adherence to this dietary pattern. Among dietary factors, the main characteristics of the Mediterranean diet, such as consumption of fruit and vegetables, olive oil, and cereals should be accompanied by other underrated features, such as the following: (i) specific reference to whole-grain consumption; (ii) considering the consumption of legumes, nuts, seeds, herbs and spices often untested when exploring the adherence to the Mediterranean diet; (iii) consumption of eggs and dairy products as common foods consumed in the Mediterranean region (irrespectively of the modern demonization of dietary fat intake). Another main feature of the Mediterranean diet includes (red) wine consumption, but more general patterns of alcohol intake are generally unmeasured, lacking specificity concerning the drinking occasion and intensity (i.e., alcohol drinking during meals). Among other underrated aspects, cooking methods are rather simple and yet extremely varied. Several underrated aspects are related to the quality of food consumed when the Mediterranean diet was first investigated: foods are locally produced, minimally processed, and preserved with more natural methods (i.e., fermentation), strongly connected with the territory with limited and controlled impact on the environment. Dietary habits are also associated with lifestyle behaviors, such as sleeping patterns, and social and cultural values, favoring commensality and frugality. In conclusion, it is rather reductive to consider the Mediterranean diet as just a pattern of food groups to be consumed decontextualized from the social and geographical background of Mediterranean culture. While the methodologies to study the Mediterranean diet have demonstrated to be useful up to date, a more holistic approach should be considered in future studies by considering the aforementioned underrated features and values to be potentially applied globally through the concept of a "Planeterranean" diet.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica Delle Marche, Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain
| | - José L Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento S/N, Parque Tecnologico de La Salud, Armilla, 18016, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016, Granada, Spain
| | - Mercedes Briones Urbano
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, 24560, México
- Universidad Internacional Iberoamericana, Arecibo, PR, 00613, USA
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica Delle Marche, Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
- Libera Università Mediterranea (LUM) "Giuseppe Degennaro", Casamassima (Bari), Italy
| | | | | | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy.
| |
Collapse
|
24
|
Yildirim Akatin M, Ayaz FA, Boyraci GM, Er Kemal M, Batan N, Colak N. An evaluation of the antioxidant potential and in vitro enzyme inhibition profile of selected bryophytes from Northeast Anatolia (Türkiye). J Biomol Struct Dyn 2024:1-13. [PMID: 38327145 DOI: 10.1080/07391102.2024.2313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Interest in the use of bryophytes in pharmaceutical, cosmetic, and food industrial applications is growing worldwide due to their secondary metabolites. In this study, n-hexane crude extracts and further fractions (aqueous, ethyl acetate and n-butanol) of aqueous ethanol (80:20, ethanol:H2O, v/v) were obtained from five different bryophytes (Pellia epiphylla, Conocephalum conicum, Porella platyphylla, Plagiomnium cuspidatum and Mnium spinulosum) collected from Trabzon, Türkiye. The total phenolic compound (TPC) content, antioxidant capacity (AC) and enzyme inhibition activity (acetylcholine esterase, butyrylcholine esterase, tyrosinase, α-amylase and α-glucosidase) of the extracts and fractions were species-specific and varied significantly between the crude extracts and fractions. Among the different bryophytes, Porella platyphylla and Pellia epiphylla in n-butanol and Plagiomnium cuspidatum and Mnium spinulosum in ethyl acetate fraction exhibited the highest TPC contents and AC values. The contents of phenolic acids liberated in free, ester and glycoside forms were also species-specific. p-Hydroxybenzoic acid (p-HBA) in free form in P. cuspidatum and P. platyphylla, p-coumaric acid (p-CoA) in ester form and m-hydroxybenzoic acid (m-HBA) in glycoside form in M. spinulosum were the major phenolic acids in the bryophytes. The n-hexane extracts of the bryophytes, in particular M. spinulosum, had IC50 values almost 100 times lower than acarbose. This suggests that M. spinulosum in particular may represent a possible candidate for the production of new antidiabetic agents.
Collapse
Affiliation(s)
| | - Faik Ahmet Ayaz
- Faculty of Science, Department of Biology, Karadeniz Technical University, Trabzon, Türkiye
| | | | - Mehtap Er Kemal
- Macka Vocational School, Karadeniz Technical University, Trabzon, Türkiye
| | - Nevzat Batan
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Türkiye
| | - Nesrin Colak
- Faculty of Science, Department of Biology, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
25
|
Silva LR, Rodrigues S, Kumar N, Goel N, Singh K, Gonçalves AC. Development of phenolic acids-based system as anticancer drugs. ADVANCEMENT OF PHENOLIC ACIDS IN DRUG DISCOVERY 2024:255-294. [DOI: 10.1016/b978-0-443-18538-0.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Duque-Soto C, Leyva-Jiménez FJ, Quirantes-Piné R, López-Bascón MA, Lozano-Sánchez J, Borrás-Linares I. Evaluation of Olive Leaf Phenolic Compounds' Gastrointestinal Stability Based on Co-Administration and Microencapsulation with Non-Digestible Carbohydrates. Nutrients 2023; 16:93. [PMID: 38201923 PMCID: PMC10780473 DOI: 10.3390/nu16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The large generation of olive by-products has motivated their revalorization into high-added-value products. In this regard, olive leaves pose as an interesting source of bioactive compounds, due to their phenolic content with commonly known antioxidant, anti-inflammatory, and immunomodulatory properties, with potential application in non-communicable diseases. However, their effectiveness and applicability into functional foods is limited by their instability under gastrointestinal conditions. Thus, the development of protective formulations is essential. In this study, the spray-drying encapsulation of a phenolic-rich olive leaf extract with inulin as the encapsulating agent was optimized. Then, the behavior of the free extract under gastrointestinal conditions, its co-administration with the encapsulating agent, and the optimized microencapsulated formulation were studied through an in vitro gastrointestinal digestion process following the INFOGEST protocol. Digestion of the free extract resulted in the degradation of most compounds, whereas this was minimized in the co-administration of the non-encapsulated extract with the encapsulating agent. This protective effect, related to its interaction with inulin, was similar to the microencapsulated formulation. Thus, both approaches, co-administration and microencapsulation with inulin, could be promising strategies for the improvement of the stability of these anti-inflammatory and immunomodulatory compounds under gastrointestinal conditions, enhancing their beneficial effect.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain;
| | - Francisco Javier Leyva-Jiménez
- Area of Food Science and Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - María Asunción López-Bascón
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain;
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain;
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| |
Collapse
|
27
|
Pellerito C, Presentato A, Lazzara G, Cavallaro G, Alduina R, Fiore T. New Biocide Based on Tributyltin(IV) Ferulate-Loaded Halloysite Nanotubes for Preserving Historical Paper Artworks. Molecules 2023; 28:7953. [PMID: 38138442 PMCID: PMC10745945 DOI: 10.3390/molecules28247953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Combining biologically active compounds with nanocarriers is an emerging and promising strategy for enhancing the activities of molecules while reducing their levels of toxicity. Green nanomaterials have recently gained momentum in developing protocols for treating and preserving artifacts. In this study, we designed a functional biohybrid material by incorporating tributyltin(IV) ferulate (TBT-F) into halloysite nanotubes (HNTs), generating a new formulation called HNT/TBT-F. The primary objective was to develop a formulation with robust antimicrobial properties and reinforcing features for treating paper with artistic and historical value. To characterize HNT/TBT-F, assess the HNT's loading capacity, and investigate the TBT-F release kinetics from the nanotubes, various analytical techniques, including UV-Vis and infrared spectroscopies, thermogravimetry, and microscopy analysis, were employed. Furthermore, we evaluated the antimicrobial potential of TBT-F and HNT/TBT-F against Kocuria rhizophila, a bacterial strain known for its opportunistic behavior and a cause of artifact biodeterioration. HNT/TBT-F exhibited a significantly stronger bactericidal effect than TBT-F alone against K. rhizophila cells growing planktonically or those forming a biofilm. This enhanced performance could relate to the confinement of TBT-F within the nanotubes, which likely improved its physical-chemical stability and increased the local concentration of TBT-F upon contact with the bacterial cells. Additionally, we evaluated the mechanical properties of a paper treated with HNT/TBT-F, assessing any potential alterations in its color. The findings of this study highlight the favorable attributes of the HNT/TBT-F formulation and its potential for developing protocols aimed at consolidating and preserving culturally significant paper objects.
Collapse
Affiliation(s)
- Claudia Pellerito
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Giuseppe Lazzara
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Giuseppe Cavallaro
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Tiziana Fiore
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| |
Collapse
|
28
|
Dreger M, Adamczak A, Foksowicz-Flaczyk J. Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review. Pharmaceuticals (Basel) 2023; 16:1419. [PMID: 37895890 PMCID: PMC10609845 DOI: 10.3390/ph16101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this work was to provide an overview of available information on the antibacterial and antifungal properties of Epilobium angustifolium extracts. A literature search of Scopus, PubMed/Medline, and Google Scholar for peer-reviewed articles published between January 2000 and June 2023 was undertaken. A total of 23 studies were eligible for inclusion in this review. Significant variation of antimicrobial activity depending on the tested species and strains, type of extract solvent, or plant organs utilized for the extract preparation was found. E. angustifolium extracts were active against both Gram-positive and Gram-negative bacteria and showed antimycotic effects against the fungi of Microsporum canis and Trichophyton tonsurans and the dermatophytes Arthroderma spp. Greater susceptibility of Gram-positive than Gram-negative bacteria to fireweed extracts was found. A strong antibacterial effect was recorded for Staphylococcus aureus, Bacillus cereus, Micrococcus luteus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii including multi-drug resistant strains. E. angustifolium extract might find practical application as an antimicrobial in wound healing, components of cosmetic products for human and animals, or as food preservatives.
Collapse
Affiliation(s)
- Mariola Dreger
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Artur Adamczak
- Department of Breeding and Botany of Useful Plants, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Joanna Foksowicz-Flaczyk
- Department of Bioproducts Engineering, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| |
Collapse
|
29
|
Yazici E, Sahin E, Sahin N, Tuzcu M, Sahin K, Orhan C. Mango ginger ( Curcuma amada Roxb.) may alleviate the effect of high-fat diet/streptozotocin-induced diabetes by activation of the GSK-3β/Fyn/Nrf2 pathway. Food Sci Nutr 2023; 11:6041-6051. [PMID: 37823118 PMCID: PMC10563713 DOI: 10.1002/fsn3.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 10/13/2023] Open
Abstract
Mango ginger (MG) exhibits antioxidant, anti-inflammatory, and antihyperglycemic effects; however, the exact mechanism of action of MG extract in relation to its antidiabetic properties remains unclear. To investigate the potential antidiabetic effect of MG extract, we used a high-fat diet (HFD)/low-dose streptozotocin (STZ)-induced type 2 diabetic rat model. A total of 28 male Wistar rats were randomly divided into four groups: (i) Control, (ii) MG (50 mg/kg/day of MG extract), (iii) HFD + STZ (40 mg/kg i.p.), and (iv) HFD + STZ + MG. Following a 12-week administration of MG extract, significant reductions were observed in serum glucose, insulin, free fatty acid, cholesterol, and triglyceride levels in diabetic rats (p < .0001 for all). MG extract supplementation led to an increase in the total antioxidant capacity of the serum and a decrease in malondialdehyde (MDA) levels in both the serum and liver (p < .0001). Furthermore, hepatocellular fat accumulation was partially attenuated in the HFD + STZ + MG group. Notably, MG extract inhibited glycogen synthase kinase-3β (GSK-3β) in the liver (p < .01) and downregulated Fyn expression, resulting in elevated nuclear factor erythroid 2-related factor 2 (Nrf2) activity in the HFD + STZ + MG group compared to the HFD + STZ group (p < .05). The increased activity of Nrf2 in the HFD + STZ + MG group likely promoted the upregulation of heme oxygenase 1 (HO-1) in the liver (p < .0001). In conclusion, MG extract may exert antidiabetic effects by augmenting the antioxidant defense system through the regulation of GSK-3β/Fyn/Nrf2 in a rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Emrah Yazici
- Department of Animal Nutrition, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary MedicineBingol UniversityBingolTurkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of ScienceFirat UniversityElazigTurkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
| |
Collapse
|
30
|
Abd El-Hack ME, de Oliveira MC, Attia YA, Kamal M, Almohmadi NH, Youssef IM, Khalifa NE, Moustafa M, Al-Shehri M, Taha AE. The efficacy of polyphenols as an antioxidant agent: An updated review. Int J Biol Macromol 2023; 250:126525. [PMID: 37633567 DOI: 10.1016/j.ijbiomac.2023.126525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Global production of the two major poultry products, meat and eggs, has increased quickly. This, in turn, indicates both the relatively low cost and the customers' desire for these secure and high-quality products. Natural feed additives have become increasingly popular to preserve and enhance the health and productivity of poultry and livestock. We consume a lot of polyphenols, which are a kind of micronutrient. These are phytochemicals with positive effects on cardiovascular, cognitive, anti-inflammatory, detoxifying, anti-tumor, anti-pathogen, a catalyst for growth, and immunomodulating functions, among extra health advantages. Furthermore, high quantities of polyphenols have unknown and occasionally unfavorable impacts on the digestive tract health, nutrient assimilation, the activity of digestive enzymes, vitamin and mineral assimilation, the performance of the laying hens, and the quality of the eggs. This review clarifies the numerous sources, categories, biological functions, potential limitations on usage, and effects of polyphenols on poultry performance, egg composition, exterior and interior quality traits.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | | | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Animal and Poultry Production, Faculty of Agriculture, Damnahur University, Damanhour 22516, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| |
Collapse
|
31
|
Popova A, Mihaylova D, Lante A. Insights and Perspectives on Plant-Based Beverages. PLANTS (BASEL, SWITZERLAND) 2023; 12:3345. [PMID: 37836085 PMCID: PMC10574716 DOI: 10.3390/plants12193345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The emerging demand for everyday food substitutes is increasing on a daily basis. More and more individuals struggle with allergies and intolerances, which makes it mandatory to provide alternatives for simple products like dairy milk. Plant-based beverages (PBBs) are currently trending due to the multiple diets that promote their consumption with or without a justification. PBBs can derive from various types of plants, not exclusively nuts. Some of the most well-known sources are almonds, soy, rice, and hazelnuts, among others. In view of the need for sustainable approaches to resource utilization and food production, novel sources for PBBs are being sought, and those include fruit kernels. The plant kingdom offers a palette of resources with proven bioactivity, i.e., containing flavonoids, phenolic acids, vitamins, carotenoids, and phenolics, among others. Many of these beneficial substances are water soluble, which means they could be transferred to the plant beverage compositions. The current review aims at comparing the vast number of potential formulations based on their specific nutritional profiles and potential deficiencies, as well as their expected health-promoting properties, based on the raw material(s) used for production. Special attention will be given to the antinutrients, usually abundant in plant-based sources.
Collapse
Affiliation(s)
- Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, Agripolis, University of Padova, 35020 Legnaro, Italy;
| |
Collapse
|
32
|
Fei X, Yan Y, Wang L, Huang Z, Gong D, Zhang G. Protocatechuic acid and gallic acid improve the emulsion and thermal stability of whey protein by covalent binding. Food Res Int 2023; 170:113000. [PMID: 37316070 DOI: 10.1016/j.foodres.2023.113000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
This study aimed to explore the impacts of gallic acid (GA)/protocatechuic acid (PA) on the structural and functional characteristics of whey proteins (WP) through covalent binding. To this purpose, the covalent complexes of WP-PA and WP-GA at different concentration gradients were prepared by the alkaline method. SDS-PAGE indicated that PA/GA was cross-linked by covalent bonds. The decreased contents of free amino and sulfhydryl groups suggested that WP formed covalent bonds with PA/GA by amino and sulfhydryl groups, and the structure of WP became slightly looser after covalent modification by PA/GA. When the concentration of GA was added up to 10 mM, the structure of WP was slightly loosened with a reduction of α-helix content by 2.3% and an increase in random coil content by 3.0%. The emulsion stability index of WP increased by 14.9 min after interaction with GA. Moreover, the binding of WP and 2-10 mM PA/GA increased the denaturation temperature by 1.95 to 19.87 °C, indicating the improved thermal stability of the PA/GA-WP covalent complex. Additionally, the antioxidant capacity of WP was increased with increasing GA/PA concentration. This work may offer worthful information for enhancing the functional properties of WP and the application of the PA/GA-WP covalent complexes in food emulsifiers.
Collapse
Affiliation(s)
- Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China.
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
33
|
Zhu B, Li Y, Rensing C, Ye J, Qiu J, Li Q, Wu L, Lu Q, Lin Y, Jia X. Improvement of phenolic acid autotoxicity in tea plantations by Pseudomonas fluorescens ZL22. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131957. [PMID: 37399720 DOI: 10.1016/j.jhazmat.2023.131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Accumulation of phenolic acids, such as p-hydroxybenzoic acid (PHBA), 3,4 dihydroxybenzoic acid (PA), and cinnamic acid (CA) causes a decline in tea plantation soil quality. Bacterial strains that can balance phenolic acid autotoxicity (PAA) in tea tree rhizosphere soil are used to improve tea plantation soil. In this study, the effects of Pseudomonas fluorescens ZL22 on soil restoration and PAA regulation in tea plantations were investigated. ZL22 carries a complete pathway for degrading PHBA and PA to acetyl coenzyme A. ZL22 can colonise and reduce PHBA by 96% and PA by 98% in tea rhizosphere soil within 30 days. The cooccurrence of ZL22 and low CA levels further promotes lettuce seed growth and substantially increases tea production. ZL22 effectively regulates PAA to a safe level in rhizospheric soil, alleviating the inhibition of microbiota by PAA, increases the abundance of genera associated with soil N, C, and S cycling, and creates optimum pH (approximately 4.2) and organic carbon (approximately 25 g/kg), and available N (approximately 62 mg/kg) contents for secondary metabolite accumulation in tea leaves. The application of P. fluorescens ZL22 controls PAA, which synergistically improves plant growth and soil nutrition, thereby promoting tea production and quality.
Collapse
Affiliation(s)
- Bitong Zhu
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China.
| | - Yuanping Li
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jialin Qiu
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China
| | - Qinji Li
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China
| | - Lekang Wu
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China
| | - Qianxi Lu
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China
| | - Yv Lin
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China
| | - Xiaoli Jia
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China.
| |
Collapse
|
34
|
Kaczmarek-Szczepańska B, Polkowska I, Małek M, Kluczyński J, Paździor-Czapula K, Wekwejt M, Michno A, Ronowska A, Pałubicka A, Nowicka B, Otrocka-Domagała I. The characterization of collagen-based scaffolds modified with phenolic acids for tissue engineering application. Sci Rep 2023; 13:9966. [PMID: 37340023 DOI: 10.1038/s41598-023-37161-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
The aim of the experiment was to study the morphology of collagen-based scaffolds modified by caffeic acid, ferulic acid, and gallic acid, their swelling, and degradation rate, as well as the biological properties of scaffolds, such as antioxidant activity, hemo- and cytocompatibility, histological observation, and antibacterial properties. Scaffolds based on collagen with phenolic acid showed higher swelling rate and enzymatic stability compared to scaffolds based on pure collagen, and the radical scavenging activity was in the range 85-91%. All scaffolds were non-hemolytic and compatible with surrounding tissues. Collagen modified by ferulic acid showed potentially negative effects on hFOB cells as a significantly increased LDH release was found, but all of the studied materials had antimicrobial activity against Staphylococcus aureus and Escherichia coli. It may be assumed that phenolic acids, such as caffeic, ferulic, and gallic acid, are modifiers and provide novel biological properties of collagen-based scaffolds. This paper provides the summarization and comparison of the biological properties of scaffolds based on collagen modified with three different phenolic acids.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland.
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Marcin Małek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
| | - Janusz Kluczyński
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
| | - Katarzyna Paździor-Czapula
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229, Gdańsk, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology With Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400, Kościerzyna, Poland
| | - Beata Nowicka
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
35
|
Paula VB, Estevinho LM, Cardoso SM, Dias LG. Comparative Methods to Evaluate the Antioxidant Capacity of Propolis: An Attempt to Explain the Differences. Molecules 2023; 28:4847. [PMID: 37375400 DOI: 10.3390/molecules28124847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Propolis is a natural product produced by bees that contains a complex mixture of compounds, including phenolic compounds and flavonoids. These compounds contribute to its biological activities, such as antioxidant capacity. This study analysed the pollen profile, total phenolic content (TPC), antioxidant properties, and phenolic compound profile of four propolis samples from Portugal. The total phenolic compounds in the samples were determined by six different techniques: four different Folin-Ciocalteu (F-C) methods, spectrophotometry (SPECT), and voltammetry (SWV). Of the six methods, SPECT allowed the highest quantification, while SWV achieved the lowest. The mean TPC values for these methods were 422 ± 98 and 47 ± 11 mg GAE/g sample, respectively. Antioxidant capacity was determined by four different methods: DPPH, FRAP, original ferrocyanide (OFec), and modified ferrocyanide (MFec). The MFec method gave the highest antioxidant capacity for all samples, followed by the DPPH method. The study also investigated the correlation between TPC and antioxidant capacity with the presence of hydroxybenzoic acid (HBA), hydroxycinnamic acid (HCA), and flavonoids (FLAV) in propolis samples. The results showed that the concentrations of specific compounds in propolis samples can significantly impact their antioxidant capacity and TPC quantification. Analysis of the profile of phenolic compounds by the UHPLC-DAD-ESI-MS technique identified chrysin, caffeic acid isoprenyl ester, pinocembrin, galangin, pinobanksin-3-O-acetate, and caffeic acid phenyl ester as the major compounds in the four propolis samples. In conclusion, this study shows the importance of the choice of method for determining TPC and antioxidant activity in samples and the contribution of HBA and HCA content to their quantification.
Collapse
Affiliation(s)
- Vanessa B Paula
- Doctoral School, University of León (ULE), Campus de Vegazana, 24007 León, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Letícia M Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Susana M Cardoso
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís G Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
36
|
Kuang Y, Li W, Xie S, Gong W, Ye Z, Wang Y, Peng D, Li J. Epoxidized Soybean-Oils-Based Pressure-Sensitive Adhesives with Di-Hydroxylated Soybean-Oils Copolymerizing and Antioxidant Grafting. Polymers (Basel) 2023; 15:2709. [PMID: 37376355 DOI: 10.3390/polym15122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Vegetable-oils-based pressure-sensitive adhesives (PSAs) are being developed as a substitute for petrochemical-based PSAs for application in daily life. However, vegetable-oils-based PSAs face the problems of unsatisfactory binding strengths and easy aging. In this work, the grafting of antioxidants (tea polyphenol palmitates, caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate (PG), tea polyphenols) was introduced into an epoxidized soybean oils (ESO)/di-hydroxylated soybean oils (DSO)-based PSA system to improve the binding strengths and aging-resistant properties. PG was screened out as the most suitable antioxidant in the ESO/DSO-based PSA system. Under optimal conditions (ESO/DSO mass ratio of 9/3, 0.8% PG, 55% rosin ester (RE), 8% phosphoric acid (PA), 50 °C, and 5 min), the peel adhesion, tack, and shear adhesion of the PG-grafted ESO/DSO-based PSA increased to 1.718 N/cm, 4.62 N, and >99 h, respectively, in comparison with the control (0.879 N/cm, 3.59 N, and 13.88 h), while peel adhesion residue reduced to 12.16% in comparison with the control (484.07%). The thermal stability of the ESO/DSO-based PSA was enhanced after PG grafting. PG, RE, PA, and DSO were partially crosslinked in the PSA system, with the rest being free in the network structures. Thus, antioxidant grafting is a feasible method for improving the binding strengths and aging-resistant properties of vegetable-oils-based PSAs.
Collapse
Affiliation(s)
- Yongyan Kuang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenlong Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shuli Xie
- Ningbo Fotile Kitchen Ware Company, Ningbo 315336, China
| | - Weijian Gong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zihan Ye
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiming Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dan Peng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
37
|
Khan A, Park JS, Kang MH, Lee HJ, Ali J, Tahir M, Choe K, Kim MO. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants (Basel) 2023; 12:1284. [PMID: 37372012 DOI: 10.3390/antiox12061284] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress plays an important role in cognitive dysfunctions and is seen in neurodegeneration and Alzheimer's disease (AD). It has been reported that the polyphenolic compound caffeic acid possesses strong neuroprotective and antioxidant effects. The current study was conducted to investigate the therapeutic potential of caffeic acid against amyloid beta (Aβ1-42)-induced oxidative stress and memory impairments. Aβ1-42 (5 μL/5 min/mouse) was administered intracerebroventricularly (ICV) into wild-type adult mice to induce AD-like pathological changes. Caffeic acid was administered orally at 50 mg/kg/day for two weeks to AD mice. Y-maze and Morris water maze (MWM) behavior tests were conducted to assess memory and cognitive abilities. Western blot and immunofluorescence analyses were used for the biochemical analyses. The behavioral results indicated that caffeic acid administration improved spatial learning, memory, and cognitive abilities in AD mice. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed and showed that the levels of ROS and LPO were markedly reduced in the caffeic acid-treated mice, as compared to Aβ-induced AD mice brains. Moreover, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were regulated with the administration of caffeic acid, compared to the Aβ-injected mice. Next, we checked the expression of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic proteins (GFAP), and other inflammatory markers in the experimental mice, which suggested enhanced expression of these markers in AD mice brains, and were reduced with caffeic acid treatment. Furthermore, caffeic acid enhanced synaptic markers in the AD mice model. Additionally, caffeic acid treatment also decreased Aβ and BACE-1 expression in the Aβ-induced AD mice model.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, The Netherlands
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
38
|
Nabil-Adam A, E. Elnosary M, L. Ashour M, M. Abd El-Moneam N, A. Shreadah M. Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. FLAVONOID METABOLISM - RECENT ADVANCES AND APPLICATIONS IN CROP BREEDING 2023. [DOI: 10.5772/intechopen.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer’s disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids’ role in metabolism and the main difference between marine and terrestrial flavonoids.
Collapse
|
39
|
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 2023; 11:1158198. [PMID: 37234200 PMCID: PMC10206224 DOI: 10.3389/fchem.2023.1158198] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Free radicals are reactive oxygen species that constantly circulate through the body and occur as a side effect of many reactions that take place in the human body. Under normal conditions, they are removed from the body by antioxidant processes. If these natural mechanisms are disrupted, radicals accumulate in excess and contribute to the development of many diseases. Methodology: Relevant recent information on oxidative stress, free radicals, reactive oxidative species, and natural and synthetic antioxidants was collected by researching electronic databases such as PubMed / Medline, Web of Science, and Science Direct. Results: According to the analysed studies, this comprehensive review provided a recent update on oxidative stress, free radicals and antioxidants and their impact on the pathophysiology of human diseases. Discussion: To counteract the condition of oxidative stress, synthetic antioxidants must be provided from external sources to supplement the antioxidant defense mechanism internally. Because of their therapeutic potential and natural origin, medicinal plants have been reported as the main source of natural antioxidants phytocompounds. Some non-enzymatic phytocompounds such as flavonoids, polyphenols, and glutathione, along with some vitamins have been reported to possess strong antioxidant activities in vivo and in vitro studies. Thus, the present review describes, in brief, the overview of oxidative stress-directed cellular damage and the unction of dietary antioxidants in the management of different diseases. The therapeutic limitations in correlating the antioxidant activity of foods to human health were also discussed.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty, Kazakhstan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food` Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
40
|
Sánchez-Quezada V, Gaytán-Martínez M, Recio I, Loarca-Piña G. Avocado seed by-product uses in emulsion-type ingredients with nutraceutical value: Stability, cytotoxicity, nutraceutical properties, and assessment of in vitro oral-gastric digestion. Food Chem 2023; 421:136118. [PMID: 37084594 DOI: 10.1016/j.foodchem.2023.136118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
The avocado industry obtains 20-30% of the total by-products (peels and seeds). However, byproducts can be uses as sources of economic nutraceutical ingredients with functional potential. This work developed emulsion-type ingredients from avocado seed to evaluate its quality, stability, cytotoxicity, and nutraceutical properties before/after in vitro oral-gastric digestion. Ultrasound lipid extraction achieved an extraction yield of up to 95.75% compared with Soxhlet conventional extraction (p > 0.05). Six ingredients' formulations (E1-E6) were stable for up to day 20 during storage, preserving their antioxidant capacity and displaying low in vitro oxidation compared to control. None of the emulsion-type ingredients were considered cytotoxic according to the shrimp lethality assay (LC50 > 1000 µg/mL). Ingredients E2, E3, and E4 generated low lipoperoxides' concentrations and high antioxidant capacity during the oral-gastric stage. The 25 min-gastric phase showed the highest antioxidant capacity and low lipoperoxidation. Results suggested avocado seed-derived could be used to develop functional ingredients with nutraceutical properties.
Collapse
Affiliation(s)
- Vanessa Sánchez-Quezada
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, México.
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, México.
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain.
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, México.
| |
Collapse
|
41
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S, Michalska-Sionkowska M. The Application of Phenolic Acids in The Obtainment of Packaging Materials Based on Polymers-A Review. Foods 2023; 12:foods12061343. [PMID: 36981267 PMCID: PMC10048273 DOI: 10.3390/foods12061343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
42
|
Maiuolo J, Miceli N, Davì F, Bava I, Tucci L, Ragusa S, Taviano MF, Musolino V, Gliozzi M, Carresi C, Macrì R, Scarano F, Coppoletta AR, Cardamone A, Muscoli C, Bombardelli E, Palma E, Mollace V. Ferula communis Root Extract: In Vitro Evaluation of the Potential Additive Effect with Chemotherapy Tamoxifen in Breast Cancer (MCF-7) Cells Part II. PLANTS (BASEL, SWITZERLAND) 2023; 12:1194. [PMID: 36904054 PMCID: PMC10005481 DOI: 10.3390/plants12051194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Ferula L., belonging to the Apiaceae family, is represented by about 170 species predominantly present in areas with a mild-warm-arid climate, including the Mediterranean region, North Africa and Central Asia. Numerous beneficial activities have been reported for this plant in traditional medicine, including antidiabetic, antimicrobial, antiproliferative, anti-dysentery, stomachache with diarrhea and cramps remedies. FER-E was obtained from the plant F. communis, and precisely from the root, collected in Sardinia, Italy. A total of 25 g of root was mixed with 125 g of acetone (ratio 1:5, room temperature). The solution was filtered, and the liquid fraction was subjected to high pressure liquid chromatographic separation (HPLC). In particular, 10 mg of dry root extract powder, from F. communis, was dissolved in 10.0 mL of methanol, filtered with a 0.2 µm PTFE filter and subjected to HPLC analysis. The net dry powder yield obtained was 2.2 g. In addition, to reduce the toxicity of FER-E, the component ferulenol was removed. High concentrations of FER-E have demonstrated a toxic effect against breast cancer, with a mechanism independent of the oxidative potential, which is absent in this extract. In fact, some in vitro tests were used and showed little or no oxidizing activity by the extract. In addition, we appreciated less damage on the respective healthy cell lines (breast), assuming that this extract could be used for its potential role against uncontrolled cancer growth. The results of this research have also shown that F. communis extract could be used together with tamoxifen, increasing its effectiveness, and reducing side effects. However, further confirmatory experiments should be carried out.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Irene Bava
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Salvatore Ragusa
- PLANTA/Research, Documentation and Training Center, 90121 Palermo, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Vincenzo Musolino
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ezio Bombardelli
- Laboratoy of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Faculty of Pharmacy, San Raffaele Telematic University, 00042 Rome, Italy
| |
Collapse
|
43
|
Vukmirović S, Ilić V, Tadić V, Čapo I, Pavlović N, Tomas A, Paut Kusturica M, Tomić N, Maksimović S, Stilinović N. Comprehensive Analysis of Antioxidant and Hepatoprotective Properties of Morus nigra L. Antioxidants (Basel) 2023; 12:antiox12020382. [PMID: 36829941 PMCID: PMC9952467 DOI: 10.3390/antiox12020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The framework of this study was a comprehensive investigation of Morus nigra L. extracts, with the aim to establish the correlation between chemical composition and antioxidant/hepatoprotective activity of a series of black mulberry extracts obtained from aerial parts of the plant. Black mulberry leaf (MLEE), bark (MBEE), juice (MJ) and fresh fruit (MFEE) extracts were obtained using the conventional Soxhlet extraction, while the supercritical CO2 extraction procedure was employed for preparation of the seed oil (MSO). Analysis of the chemical composition was performed using spectrophotometric, HPLC and GC methods. For the evaluation of antioxidant activity, in vitro FRAP and DPPH assays were applied. In Haan strain NMRI mice with streptozotocin-induced oxidative stress, in vivo antioxidant activity and liver tissue integrity were examined. The content of polyphenolic compounds was the highest in MBEE (68.3 ± 0.7 mgGAE/g) with the most abundant compounds being polyphenolic acids, followed by MLEE (23.4 ± 0.5 mgGAE/g) with the flavonoids isoquercetin and rutin being present in a significant amount. An analysis of MSO revealed a high content of γ-linoleic acid. The highest antioxidant activity in vitro (FRAP and DPPH) was observed for MLEE, MBEE and MSO. Beneficial effects were confirmed in vivo, with lower values of hepatosomatic index, potentiation of the activity of the enzymes superoxide dismutase and catalase, a lower rate of lipid peroxidation and reduced positivity for the P450 enzyme in animals treated with MLEE, MBEE and MSO. Black mulberry leaf and bark extracts as well as seed oil exhibited significant antioxidant activity. Apart from the confirmed biological properties of the fruit and leaf extracts, the observed activities of black mulberry seed oil and bark extract imply its importance as a sustainable source of phytochemicals.
Collapse
Affiliation(s)
- Saša Vukmirović
- Department of Pharmacology and Toxicology, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| | - Vladimirka Ilić
- Department of Pharmacology and Toxicology, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vanja Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Ivan Čapo
- Department of Histology and Embryology, Medical Faculty of Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ana Tomas
- Department of Pharmacology and Toxicology, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milica Paut Kusturica
- Department of Pharmacology and Toxicology, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nataša Tomić
- Institute of Emergency Medicine, Clinical Center of Vojvodina, Novi Sad, 21000, Serbia
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Svetolik Maksimović
- Department of Organic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 3503, 11120 Belgrade, Serbia
| | - Nebojša Stilinović
- Department of Pharmacology and Toxicology, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
44
|
Nazari A, Zarringhalami S, Asghari B. Influence of germinated black cumin (Nigella sativa L.) seeds extract on the physicochemical, antioxidant, antidiabetic and sensory properties of yogurt. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Effect of Agrimonia eupatoria L. and Origanum vulgare L. Leaf, Flower, Stem, and Root Extracts on the Survival of Pseudomonas aeruginosa. Molecules 2023; 28:molecules28031019. [PMID: 36770686 PMCID: PMC9921178 DOI: 10.3390/molecules28031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most antibiotic multi-resistant bacteria, causing chronic pulmonary disease and leading to respiratory failure and even mortality. Thus, there has been an ever-increasing search for novel and preferably natural antimicrobial compounds. Agrimonia eupatoria L. and Origanum vulgare L. shoots are commonly used as teas or alcoholic tinctures for their human health-promoting and antibacterial properties. Here, we explored the antimicrobial effects of all plant parts, i.e., leaf, flower, stem, and root extracts, prepared in water or in 60% ethanol, against P. aeruginosa. The impact of these extracts on bacterial survival was determined using a luminescent strain of P. aeruginosa, which emits light when alive. In addition, the antimicrobial effects were compared with the antioxidant properties and content of phenolic compounds of plant extracts. Ethanolic extracts of O. vulgare roots and flowers showed the highest antimicrobial activity, followed by A. eupatoria roots. In particular, chlorogenic acid, the ethanolic extract of O. vulgare roots contained high levels of protocatechuic acid, hesperidin, shikimic acid, rutin, quercetin, and morin. The synergistic effects of these phenolic compounds and flavonoids may play a key role in the antibacterial activity of teas and tinctures.
Collapse
|
46
|
Antihyaluronidase and Antioxidant Potential of Atriplex sagittata Borkh. in Relation to Phenolic Compounds and Triterpene Saponins. Molecules 2023; 28:molecules28030982. [PMID: 36770647 PMCID: PMC9921161 DOI: 10.3390/molecules28030982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The genus Atriplex provides species that are used as food and natural remedies. In this work, the levels of soluble phenolic acids (free and conjugated) and flavonoids in extracts from roots, stems, leaves and flowers of the unexplored Atriplex sagittata Borkh were investigated by LC-ESI-MS/MS, together with their antioxidant and antihyaluronidase activity. Phenolic acids were present in all parts of A. sagittata; and were most abundant in the leaves (225.24 μg/g dw.), whereas the highest content of flavonoids were found in the flowers (242.71 μg/g dw.). The most common phenolics were 4-hydroxybenzoic and salicylic acids, kaempferol-3-glucoside-7-rhamnoside, kaempferol-3-rutinoside and the rare narcissoside, which was present in almost all morphotic parts. The stem extract had the highest antioxidant activity and total phenolic content (611.86 mg/100 g dw.), whereas flower extract exerted the most potent antihyaluronidase effect (IC50 = 84.67 µg/mL; control-quercetin: IC50 = 514.28 μg/mL). Phytochemical analysis of the flower extract led to the isolation of two triterpene saponins that were shown to be strong hyaluronidase inhibitors (IC50 = 33.77 and 168.15 µg/mL; control-escin: IC50 = 307.38 µg/mL). This is the first report on the presence of phenolics and saponins in A. sagittata. The results suggest that both groups of metabolites may contribute to the overall activity of this plant species.
Collapse
|
47
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
48
|
Hao C, Guo X, Dong Z, Guo Q, Shi W. Zymolytic grain extract facilitates the conversion of liver tumor cells to hepatocyte-like cells through hepatocyte nuclear factors. Biomed Pharmacother 2023; 157:114029. [PMID: 36436492 DOI: 10.1016/j.biopha.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
At present, malignant tumors are an urgent global threat to human health. Conversion of cancer cells to normal-like or normal cells will open new therapeutic avenues for eradicating cancer. It has been reported that compounds extracted from grains display biological activities, such as antioxidant, antiviral and antitumor activities. In this study, we identified clear changes in a liver tumor cell line (HepG2) after stimulation with zymolytic grain extract (ZGE) supernatants. The expression levels of hepatocyte nuclear factor 1A (HNF1A), hepatocyte nuclear factor 4A (HNF4A) and forkhead box protein A3 (FOXA3) were significantly increased. Eukaryotic transcriptome analyses revealed that trends in the transcriptional changes for genes were similar in HepG2 cells stimulated with ZGE (zHeps) and the normal hepatocyte cell line L02. Changes in the expression levels of genes involved in drug transport, metabolism and the malignant characteristics of cancer cells in nude mice further indicated that ZGE regulated the expression of HNF1A, HNF4A and FOXA3, which altered the expression of a series of hepatocyte-specific genes. It was also confirmed that zHeps acquired some of the characteristics of hepatocyte-like cells. Our results not only provide new ideas for the treatment of liver tumors but also lay a solid foundation for the application of combination therapy.
Collapse
Affiliation(s)
- Cuiting Hao
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xi Guo
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Zhenghan Dong
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Qiong Guo
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, Jilin 130012, China; College of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| |
Collapse
|
49
|
Fatima MT, Bhat AA, Nisar S, Fakhro KA, Al-Shabeeb Akil AS. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2022; 9:e12698. [PMID: 36632095 PMCID: PMC9826852 DOI: 10.1016/j.heliyon.2022.e12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Healthy diet is vital to cellular health. The human body succumbs to numerous diseases which afflict severe economic and psychological burdens on the patient and family. Oxidative stress is a possible crucial regulator of various pathologies, including type 2 diabetes and neurodegenerative diseases. It generates reactive oxygen species (ROS) that trigger the dysregulation of essential cellular functions, ultimately affecting cellular health and homeostasis. However, lower levels of ROS can be advantageous and are implicated in a variety of signaling pathways. Due to this dichotomy, the terms oxidative "eustress," which refers to a good oxidative event, and "distress," which can be hazardous, have developed. ROS affects multiple signaling pathways, leading to compromised insulin secretion, insulin resistance, and β-cell dysfunction in diabetes. ROS is also associated with increased mitochondrial dysfunction and neuroinflammation, aggravating neurodegenerative conditions in the body, particularly with age. Treatment includes drugs/therapies often associated with dependence, side effects including non-selectivity, and possible toxicity, particularly in the long run. It is imperative to explore alternative medicines as an adjunct therapy, utilizing natural remedies/resources to avoid all the possible harms. Antioxidants are vital components of our body that fight disease by reducing oxidative stress or nullifying the excess toxic free radicals produced under various pathological conditions. In this review, we focus on the antioxidant effects of components of dietary foods such as tea, coffee, wine, oils, and honey and the role and mechanism of action of these antioxidants in alleviating type 2 diabetes and neurodegenerative disorders. We aim to provide information about possible alternatives to drug treatments used alone or combined to reduce drug intake and encourage the consumption of natural ingredients at doses adequate to promote health and combat pathologies while reducing unwanted risks and side effects.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmed Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid Adnan Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Doha, Qatar,Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar,Department of Human Genetics, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ammira Sarah Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar,Corresponding author.
| |
Collapse
|
50
|
Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review paper focuses on the antioxidant properties of phenolic compounds in oil in water (o/w) emulsion systems. The authors first provide an overview of the most recent studies on the activity of common, naturally occurring phenolic compounds against the oxidative deterioration of o/w emulsions. A screening of the latest literature was subsequently performed with the aim to elucidate how specific parameters (polarity, pH, emulsifiers, and synergistic action) affect the phenolic interfacial distribution, which in turn determines their antioxidant potential in food emulsion systems. An understanding of the interfacial activity of phenolic antioxidants could be of interest to food scientists working on the development of novel food products enriched with functional ingredients. It would also provide further insight to health scientists exploring the potentially beneficial properties of phenolic antioxidants against the oxidative damage of amphiphilic biological membranes (which link to serious pathologic conditions).
Collapse
|