1
|
Han MQ, Zhao YJ, Pang S, Zhu HJ, Luo DQ, Liu YF, Yang K, Cao F. Modulating culture method promotes the production of disulfide-linked resorcylic acid lactone dimers with anti-proliferative activity. Bioorg Chem 2025; 159:108418. [PMID: 40168886 DOI: 10.1016/j.bioorg.2025.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Sulfur-containing natural products are distinguished by their unique chemical structures and notable biological activities, rendering them highly valuable in drug discovery and development. Recent advancements in chemical epigenetic modifications, sulfur source regulation, and fungal co-cultivation have significantly facilitated the discovery of novel sulfur-containing compounds. In this study, the modulating culture method, incorporating DMSO and sea salt into the culture medium, was utilized to induce the marine-derived fungus Penicillium sp. to produce novel disulfide-linked resorcylic acid lactone dimers, dipenirestone A and B (1 and 2), along with their monomeric precursors (3-13). The absolute configurations of the new compounds 1-6 were elucidated through calculated NMR and ECD methods, as well as X-ray crystallography. Notably, the dimeric compounds (1 and 2) exhibited significantly enhanced anti-proliferative activity against HGC-27 cells compared to the monomers 3-13. It was revealed that compounds 1 and 2 exerted an antiproliferative effect through the modulation of the PI3K/AKT/mTOR signaling pathway. This was manifested as cell cycle arrest in the G1 phase, reduction in mitochondrial membrane potential, and induction of apoptosis.
Collapse
Affiliation(s)
- Ming-Qian Han
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Ying-Jie Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Sen Pang
- Huanghe Science & Technology College, Zhengzhou 450005, China
| | - Hua-Jie Zhu
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Du-Qiang Luo
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yun-Feng Liu
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Kan Yang
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Coassolo L, Wiggenhorn A, Svensson KJ. Understanding peptide hormones: from precursor proteins to bioactive molecules. Trends Biochem Sci 2025:S0968-0004(25)00063-5. [PMID: 40234176 DOI: 10.1016/j.tibs.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Peptide hormones are fundamental regulators of biological processes involved in homeostasis regulation and are often dysregulated in endocrine diseases. Despite their biological significance and established therapeutic potential, there is still a gap in our knowledge of their processing and post-translational modifications, as well as in the technologies for their discovery and detection. In this review, we cover insights into the peptidome landscape, including the proteolytic processing and post-translational modifications of peptide hormones. Understanding the full landscape of peptide hormones and their modifications could provide insights into leveraging proteolytic mechanisms to identify novel peptides with therapeutic potential. Therefore, we also discuss the need for future research aiming at better predicting, detecting, and characterizing new peptides with biological activities.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Amanda Wiggenhorn
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
3
|
Min T, Zhang Z, Chen L, Li J. Recent Advances in Barnacle-Inspired Biomaterials in the Field of Biomedical Research. MATERIALS (BASEL, SWITZERLAND) 2025; 18:502. [PMID: 39942168 PMCID: PMC11818484 DOI: 10.3390/ma18030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 02/16/2025]
Abstract
As a marine fouling organism, barnacles secrete a cement whose proteins self-assemble into stable nanofibers, conferring exceptional underwater adhesion and curing properties. The barnacle cement proteins (BCPs) are of significant interest in biomedicine due to their adhesiveness, water resistance, stability, and biocompatibility, making them ideal for developing novel biomaterials. Additionally, BCPs have wound-healing acceleration and antibacterial properties, offering new insights for antimicrobial biomaterial development. Recently, barnacle-inspired materials have seen extensive research and notable progress in biomedicine. As the understanding of barnacle cement and its adhesion mechanisms deepens, their medical applications are expected to expand. This review summarizes the latest advancements of barnacle biomimetic materials in biomedicine, including their use in adhesives, tissue engineering, drug delivery, and hemostasis, highlighting their characteristics, applications, and potential research directions, and providing a comprehensive reference for the field.
Collapse
Affiliation(s)
| | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.M.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.M.); (Z.Z.)
| |
Collapse
|
4
|
Li H, Xing R, Ji X, Liu Y, Chu X, Gu J, Wang S, Wang G, Zhao S, Cao X. Natural algicidal compounds: Strategies for controlling harmful algae and application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108981. [PMID: 39163650 DOI: 10.1016/j.plaphy.2024.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 08/22/2024]
Abstract
The expanding impact of algal blooms on marine areas poses a severe threat to the sustainable development of aquaculture, human health, and the ecological safety of coastal areas. To address this issue, the exploration of natural algicidal compounds with high efficiency, selectivity, and environmental friendliness has gained attention as potential substances for algae removal. However, the integration of related work still needs to be improved. Therefore, an in-depth study of algicidal strategies and applications of algicidal compounds for biodiversity has become crucial. Here, we aim to consolidate the current advancements in research on the sources and types of algicidal compounds. We also delve into various algicidal strategies, including the damage inflicted on algal structures, inhibition of photosynthesis, effects on oxidative damage, and impacts on gene expression. Additionally, we highlight practical applications of algicidal compounds, taking into account their specificities and limitations. This review contributes to the protection of marine biodiversity and the promotion of sustainable environmental development. Furthermore, we provide recommendations for future research on algicidal compounds to overcome existing barriers. By doing so, we hope to offer valuable references for researchers engaged in further studies on managing algal outbreaks.
Collapse
Affiliation(s)
- Huili Li
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Ronglian Xing
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China.
| | - Xingyu Ji
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Xinran Chu
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Jiaxin Gu
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Shengnan Wang
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Gexuan Wang
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Shijun Zhao
- College of Life Sciences, Yantai University, Yantai, Shandong Province, 264005, PR China
| | - Xuebin Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang Province, 315832, PR China; Yantai Jinghai Marine Fisheries Co., LTD, Yantai, Shandong Province, 264000, PR China
| |
Collapse
|
5
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
6
|
Thombare VJ, Wu Y, Pamulapati K, Han M, Tailhades J, Cryle MJ, Roberts KD, Velkov T, Li J, Patil NA. Advancing Nitrile-Aminothiol Strategy for Dual and Sequential Bioconjugation. Chemistry 2024; 30:e202401674. [PMID: 38839567 DOI: 10.1002/chem.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Nitrile-aminothiol conjugation (NATC) stands out as a promising biocompatible ligation technique due to its high chemo-selectivity. Herein we investigated the reactivity and substrate scope of NAT conjugation chemistry, thus developing a novel pH dependent orthogonal NATC as a valuable tool for chemical biology. The study of reaction kinetics elucidated that the combination of heteroaromatic nitrile and aminothiol groups led to the formation of an optimal bioorthogonal pairing, which is pH dependent. This pairing system was effectively utilized for sequential and dual conjugation. Subsequently, these rapid (≈1 h) and high yield (>90 %) conjugation strategies were successfully applied to a broad range of complex biomolecules, including oligonucleotides, chelates, small molecules and peptides. The effectiveness of this conjugation chemistry was demonstrated by synthesizing a fluorescently labelled antimicrobial peptide-oligonucleotide complex as a dual conjugate to imaging in live cells. This first-of-its-kind sequential NATC approach unveils unprecedented opportunities in modern chemical biology, showcasing exceptional adaptability in rapidly creating structurally complex bioconjugates. Furthermore, the results highlight its potential for versatile applications across fundamental and translational biomedical research.
Collapse
Affiliation(s)
- Varsha J Thombare
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Yimin Wu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Kavya Pamulapati
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Meiling Han
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Julien Tailhades
- Department of Biochemistry Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Max J Cryle
- Department of Biochemistry Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Kade D Roberts
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Nitin A Patil
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| |
Collapse
|
7
|
Ren H, Lan Q, Zhou S, Lyu Y, Yu Y, Zhou J, Mo W, Lu H. Coupling thermotolerance and high production of recombinant protein by CYR1 N1546K mutation via cAMP signaling cascades. Commun Biol 2024; 7:627. [PMID: 38789513 PMCID: PMC11126729 DOI: 10.1038/s42003-024-06341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
In recombinant protein-producing yeast strains, cells experience high production-related stresses similar to high temperatures. It is possible to increase recombinant protein production by enhancing thermotolerance, but few studies have focused on this topic. Here we aim to identify cellular regulators that can simultaneously activate thermotolerance and high yield of recombinant protein. Through screening at 46 °C, a heat-resistant Kluyveromyces marxianus (K. marxianus) strain FDHY23 is isolated. It also exhibits enhanced recombinant protein productivity at both 30 °C and high temperatures. The CYR1N1546K mutation is identified as responsible for FDHY23's improved phenotype, characterized by weakened adenylate cyclase activity and reduced cAMP production. Introducing this mutation into the wild-type strain greatly enhances both thermotolerance and recombinant protein yields. RNA-seq analysis reveals that under high temperature and recombinant protein production conditions, CYR1 mutation-induced reduction in cAMP levels can stimulate cells to improve its energy supply system and optimize material synthesis, meanwhile enhance stress resistance, based on the altered cAMP signaling cascades. Our study provides CYR1 mutation as a novel target to overcome the bottleneck in achieving high production of recombinant proteins under high temperature conditions, and also offers a convenient approach for high-throughput screening of recombinant proteins with high yields.
Collapse
Affiliation(s)
- Haiyan Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Qing Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Shihao Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Yilin Lyu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Wenjuan Mo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| |
Collapse
|
8
|
Nebogatova J, Porosk L, Härk HH, Kurrikoff K. Enhancing Cellular Uptake of Native Proteins through Bio-Orthogonal Conjugation with Chemically Synthesized Cell-Penetrating Peptides. Pharmaceutics 2024; 16:617. [PMID: 38794279 PMCID: PMC11125112 DOI: 10.3390/pharmaceutics16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The potential for native proteins to serve as a platform for biocompatible, targeted, and personalized therapeutics in the context of genetic and metabolic disorders is vast. Nevertheless, their clinical application encounters challenges, particularly in overcoming biological barriers and addressing the complexities involved in engineering transmembrane permeability. This study is dedicated to the development of a multifunctional nanoentity in which a model therapeutic protein is covalently linked to a cell-penetrating peptide, NickFect 55, with the objective of enhancing its intracellular delivery. Successful binding of the nanoentity fragments was achieved through the utilization of an intein-mediated protein-trans splicing reaction. Our research demonstrates that the fully assembled nanoentity-containing protein was effectively internalized by the cells, underscoring the potential of this approach in overcoming barriers associated with protein-based therapeutics for the treatment of genetic disorders.
Collapse
|
9
|
Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X. Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res 2024; 12:45. [PMID: 38685115 PMCID: PMC11059647 DOI: 10.1186/s40364-024-00593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Cell death is an important part of the life cycle, serving as a foundation for both the orderly development and the maintenance of physiological equilibrium within organisms. This process is fundamental, as it eliminates senescent, impaired, or aberrant cells while also promoting tissue regeneration and immunological responses. A novel paradigm of programmed cell death, known as disulfidptosis, has recently emerged in the scientific circle. Disulfidptosis is defined as the accumulation of cystine by cancer cells with high expression of the solute carrier family 7 member 11 (SLC7A11) during glucose starvation. This accumulation causes extensive disulfide linkages between F-actins, resulting in their contraction and subsequent detachment from the cellular membrane, triggering cellular death. The RAC1-WRC axis is involved in this phenomenon. Disulfidptosis sparked growing interest due to its potential applications in a variety of pathologies, particularly oncology, neurodegenerative disorders, and metabolic anomalies. Nonetheless, the complexities of its regulatory pathways remain elusive, and its precise molecular targets have yet to be definitively identified. This manuscript aims to meticulously dissect the historical evolution, molecular underpinnings, regulatory frameworks, and potential implications of disulfidptosis in various disease contexts, illuminating its promise as a groundbreaking therapeutic pathway and target.
Collapse
Affiliation(s)
- Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yubiao Yang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bitao Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
10
|
Wu P, Mo W, Tian T, Song K, Lyu Y, Ren H, Zhou J, Yu Y, Lu H. Transfer of disulfide bond formation modules via yeast artificial chromosomes promotes the expression of heterologous proteins in Kluyveromyces marxianus. MLIFE 2024; 3:129-142. [PMID: 38827505 PMCID: PMC11139206 DOI: 10.1002/mlf2.12115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 06/04/2024]
Abstract
Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins. Improving the yield in K. marxianus remains a challenge and incorporating large-scale functional modules poses a technical obstacle in engineering. To address these issues, linear and circular yeast artificial chromosomes of K. marxianus (KmYACs) were constructed and loaded with disulfide bond formation modules from Pichia pastoris or K. marxianus. These modules contained up to seven genes with a maximum size of 15 kb. KmYACs carried telomeres either from K. marxianus or Tetrahymena. KmYACs were transferred successfully into K. marxianus and stably propagated without affecting the normal growth of the host, regardless of the type of telomeres and configurations of KmYACs. KmYACs increased the overall expression levels of disulfide bond formation genes and significantly enhanced the yield of various heterologous proteins. In high-density fermentation, the use of KmYACs resulted in a glucoamylase yield of 16.8 g/l, the highest reported level to date in K. marxianus. Transcriptomic and metabolomic analysis of cells containing KmYACs suggested increased flavin adenine dinucleotide biosynthesis, enhanced flux entering the tricarboxylic acid cycle, and a preferred demand for lysine and arginine as features of cells overexpressing heterologous proteins. Consistently, supplementing lysine or arginine further improved the yield. Therefore, KmYAC provides a powerful platform for manipulating large modules with enormous potential for industrial applications and fundamental research. Transferring the disulfide bond formation module via YACs proves to be an efficient strategy for improving the yield of heterologous proteins, and this strategy may be applied to optimize other microbial cell factories.
Collapse
Affiliation(s)
- Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Wenjuan Mo
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Tian Tian
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Kunfeng Song
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Yilin Lyu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Haiyan Ren
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| |
Collapse
|
11
|
Gao B, Li P, Zhu S. Single Deletion Unmasks Hidden Anti-Gram-Negative Bacterial Activity of an Insect Defensin-Derived Peptide. J Med Chem 2024; 67:2512-2528. [PMID: 38335999 DOI: 10.1021/acs.jmedchem.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Insect defensins are a large family of antimicrobial peptides primarily active against Gram-positive bacteria. Here, we explore their hidden anti-Gram-negative bacterial potential via a nature-guided strategy inspired by natural deletion variants of Drosophila defensins. Referring to these variants, we deleted the equivalent region of an insect defensin with the first cysteine-containing N-terminus, and the last three cysteine-containing C-terminal regions remained. This 15-mer peptide exhibits low solubility and specifically targets Gram-positive bacteria. Further deletion of alanine-9 remarkably improves its solubility, unmasks its hidden anti-Gram-negative bacterial activity, and alters its states in different environments. Intriguingly, compared with the oxidized form, the 14-mer reduced peptide shows increased activity on Gram-positive and Gram-negative bacteria through a membrane-disruptive mechanism. The broad-spectrum activity and tolerance to high-salt environments and human serum, together with no toxicity to mammalian or human cells, make it a promising candidate for the design of new peptide antibiotics against Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Ping Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian District, Beijing 100190, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
12
|
Picotti S, Forte L, Serrentino J. A pre-market interventional, single-arm clinical investigation of a new topical lotion based on hyaluronic acid and peptides, EGYFIL TM, for the treatment of pain and stiffness in soft tissues. BMC Musculoskelet Disord 2023; 24:777. [PMID: 37784053 PMCID: PMC10544473 DOI: 10.1186/s12891-023-06903-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Muscle pain and stiffness are strictly interconnected. Injuries frequently occur during sport activities, causing muscle pain, with or without stiffness, and require effective as well as fast-acting treatments. Topical products can be ideal for the treatment of such physical alterations as they are convenient and simple to use. In this study, it was investigated the application of a novel topical formulation, EGYFIL™, for the treatment of pain and stiffness due to muscle contracture, trauma, and/or overtraining. The lotion is composed of hyaluronic acid, a well-known ingredient for the pain alleviation, mixed with skin conditioning SH-Polypeptide-6 and SH-Oligopeptide-1, embedded in it. METHODS Twenty-six patients with pain and/or stiffness were enrolled. After a screening visit (Time 0, t0), patients were treated for the first time with the IP. The treatment consisted of topical application of the pain lotion. Level of pain and stiffness were measured with Numerical Rating Scale (NRS). Patients' pain and/or stiffness were evaluated at t0 (prior to using the product), after three hours (t1), and after three days (t2) of treatment. Participants were free to apply and re-apply the product ad libitum over the course of the study period (3 days). Potential adverse events (AE) and tolerance were evaluated during each visit. RESULTS There was a 22% decrease in pain in the first three hours (p < 0.001), followed by an additional 20% decrease after three days (p=0.0873). Overall, there was a 42% decrease in pain over the three days of the study (p =0.001). Furthermore, a 24% reduction in stiffness in the first three hours (p=0.025) and a 38% decrease in stiffness over three days (p < 0.001) were observed. Reduction in pain and stiffness were neither age, nor sex dependent. No adverse effects were reported during the study. CONCLUSION EGYFIL™ is safe and seems to reduce pain and stiffness in patients during the 3 days of treatment, already after 3 h from the first application. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT05711953. This trial was registered on 03/02/2023.
Collapse
Affiliation(s)
| | - Luca Forte
- Contrad Swiss SA, Via Ferruccio Pelli 2, Lugano, 6900, Switzerland.
| | - Jo Serrentino
- International Institute of Clinical Ecology (IICE), Quebec, Canada
| |
Collapse
|
13
|
Gammoh S, Alu’datt MH, Alhamad MN, Tranchant CC, Rababah T, Al-U’datt D, Hussein N, Alrosan M, Tan TC, Kubow S, Alzoubi H, Almajwal A. Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential. Molecules 2023; 28:6012. [PMID: 37630264 PMCID: PMC10459969 DOI: 10.3390/molecules28166012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
This research aimed to determine the biofunctional properties of wheat flour (WF) protein fractions and modifications to the antioxidant, anti-α-amylase and anti-angiotensin-I converting enzyme (ACE) activities induced by the action of digestive endopeptidases in vitro. A molecular characterization of the most abundant protein fractions, i.e., albumins, glutelins-1, glutelins-2 and prolamins, showed that low- and high-MW polypeptides rich in cysteine, glutamic acid and leucine were present in albumins and glutelins, whereas low-MW subunits with a high proportion of polar amino acids prevailed in prolamins. Prolamins exhibited the second-highest water holding capacity (54%) after WF (84%), while albumins provided superior foam stability (76%). Prolamins, glutenins-1 and globulins demonstrated the highest antioxidant activity (up to 95%, 68% and 59%, respectively) both before and after hydrolysis with pepsin (P-H) or trypsin-chymotrypsin (TC-H). Prolamins, globulins and WF strongly inhibited α-amylase (>90%) before and after TC-H, and before P-H (55-71%). Moreover, P-H significantly increased α-amylase inhibition by albumins from 53 to 74%. The fractions with strong ACE inhibitory activity (70-89%) included prolamins and globulins after TC-H or P-H, as well as globulins before TC-H and WF before P-H. This novel evidence indicates that WF protein fractions and their peptide-enriched P and TC hydrolysates are excellent sources of multifunctional bioactives with antioxidant, antihyperglycemic and antihypertensive potential.
Collapse
Affiliation(s)
- Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Muhammad H. Alu’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad N. Alhamad
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Carole C. Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Doa’a Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Neveen Hussein
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan;
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada;
| | - Haya Alzoubi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
14
|
Zhang R, Kang R, Tang D. Reductive cell death: the other side of the coin. Cancer Gene Ther 2023:10.1038/s41417-023-00612-3. [PMID: 37016143 DOI: 10.1038/s41417-023-00612-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Lu S, Lin J, Jin J, Zhang L, Guan Y, Chen H, Wu Y, Zhang W, Luan X. Tachyplesin I and its derivatives: A pharmaco-chemical perspective on their antimicrobial and antitumor potential. Expert Opin Drug Discov 2022; 17:1407-1423. [PMID: 36503335 DOI: 10.1080/17460441.2023.2157402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Increasing evidence suggests that intratumor microbiota are an intrinsic component in the tumor microenvironment across multiple cancer types, and that there is a close relationship between microbiota and tumor progression. Therefore, how to address the interaction between bacteria and malignances has become a growing concern. Tachyplesin I (TPI), a peptide with dual antimicrobial and antitumor effects, holds great promise as a therapeutic alternative for the aforementioned diseases, with the advantage of broad-spectrum activities, quick killing efficacy, and a low tendency to induce resistance. AREAS COVERED This review comprehensively summarizes the pharmacological mechanisms of TPI with an emphasis on its antimicrobial and antitumor potential. Furthermore, it presents advances in TPI derivatives and gives a perspective on their future development. The article is based on literature searches using PubMed and SciFinder to retrieve the most up-to-date information of TPI. EXPERT OPINION Bacterial infections and cancer both pose a serious threat to health due to their symbiotic interactions and drug resistance. TPI is anticipated to be a novel agent to control pathogenic bacteria and various tumors through multiple mechanisms of action. Indeed, the continuous advancements in chemical modification and innovative applications of TPI give hope for future improvements in therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Yingyun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Municipality, Shanghai, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China.,School of Pharmacy, Naval Medical University, Municipality, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| |
Collapse
|
16
|
黄 浩, 乔 妤, 黄 奕, 董 航. [HSP90α exacerbates house dust mite-induced asthmatic airway inflammation by upregulating endoplasmic reticulum stress in bronchial epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:347-353. [PMID: 35426797 PMCID: PMC9010984 DOI: 10.12122/j.issn.1673-4254.2022.03.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the role of heat shock protein 90α (HSP90α) and endoplasmic reticulum (ER) stress pathway in allergic airway inflammation induced by house dust mite (HDM) in bronchial epithelial cells. METHODS A HDM- induced asthmatic cell model was established in human bronchial epithelial (HBE) cells by exposure to a concentration gradient (200, 400 and 800 U/mL) of HDM for 24 h. To test the effect of siHSP90α and HSP90 inhibitor 17-AAG on HDM-induced asthmatic inflammation, HBE cells were transfected with siHSP90α (50 nmol, 12 h) or pretreated with 17-AAG (900 nmol, 6 h) prior to HDM exposure (800 U/mL) for 24 h, and the changes in the expression of HSP90α and ER stress markers were assessed. We also tested the effect of nasal drip of 17-AAG, HDM, or their combination on airway inflammation and ER stress in C57BL/6 mice. RESULTS In HBE cells, HDM exposure significantly up-regulated the expression of HSP90α protein (P=0.011) and ER stress markers XBP-1 (P=0.044), ATF-6α (P=0.030) and GRP-78 (P=0.027). Knocking down HSP90α and treatment with 17-AAG both significantly inhibited HDM-induced upregulation of XBP-1 (P=0.008). In C57BL/6 mice, treatment with 17-AAG obviously improved HDM-induced airway inflammation and significantly reduced the number of inflammatory cells in the airway (P=0.014) and lowered the levels of IL-4 (P=0.030) and IL-5 (P=0.035) in alveolar lavage fluid. Immunohistochemical staining showed that the expressions of XBP-1 and GRP-78 in airway epithelial cells decreased significantly after the treatment of 17-AAG. CONCLUSIONS HSP90α promotes HDM-induced airway allergic inflammation possibly by upregulating ER stress pathway in bronchial epithelial cells.
Collapse
Affiliation(s)
- 浩华 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 妤婕 乔
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 奕 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 航明 董
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Protein Disulfide Isomerase A3 Regulates Influenza Neuraminidase Activity and Influenza Burden in the Lung. Int J Mol Sci 2022; 23:ijms23031078. [PMID: 35162999 PMCID: PMC8834910 DOI: 10.3390/ijms23031078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3−/− in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.
Collapse
|
18
|
Liu X, Ma Z, Nie J, Fang J, Li W. Exploiting Redox-Complementary Peptide/Polyoxometalate Coacervates for Spontaneously Curing into Antimicrobial Adhesives. Biomacromolecules 2021; 23:1009-1019. [PMID: 34964608 DOI: 10.1021/acs.biomac.1c01387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, there has been a wave of reports on the fabrication of peptide-based underwater adhesives with the aim of understanding the adhesion mechanism of marine sessile organisms or creating new biomaterials beyond nature. However, the poor shear adhesion performance of the current peptide adhesives has largely hindered their applications. Herein, we proposed to sequentially perform the interfacial adhesion and bulk cohesion of peptide-based underwater adhesives using two redox-complementary peptide/polyoxometalate (POM) coacervates. The oxidative coacervates were prepared by mixing oxidative H5PMo10V2O40 and cationic peptides in an aqueous solution. The reductive coacervates consisted of K5BW12O40 and cysteine-containing reductive peptides. Each of the individual coacervate has well-defined spreading capacity to achieve fast interfacial attachment and adhesion, but their cohesion is poor. However, after mixing the two redox-complementary coacervates at the target surface, effective adhesion and spontaneous curing were observed. We identified that the spontaneous curing resulted from the H5PMo10V2O40-regulated oxidization of cysteine-containing peptides. The formed intermolecular disulfide bonds improved the cross-linking density of the dual-peptide/POM coacervates, giving rise to the enhanced bulk cohesion and mechanical strength. More importantly, the resultant adhesives showcased excellent bioactivity to selectively suppress the growth of Gram-positive bacteria due to the presence of the polyoxometalates. This work raises further potential in the creation of biomimetic adhesives through the orchestrating of covalent and noncovalent interactions in a sequential fashion.
Collapse
Affiliation(s)
- Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Zhiyuan Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Jun Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| |
Collapse
|
19
|
Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Zhang J. PDIA3: Structure, functions and its potential role in viral infections. Biomed Pharmacother 2021; 143:112110. [PMID: 34474345 DOI: 10.1016/j.biopha.2021.112110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.
Collapse
Affiliation(s)
- Faisal Mahmood
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| |
Collapse
|
20
|
Lu T, Obenchain DA, Zhang J, Grabow JU, Feng G. Van der Waals interactions of the disulfide bond revealed: A microwave spectroscopic study of the diethyl disulfide-argon complex. J Chem Phys 2021; 154:124306. [PMID: 33810705 DOI: 10.1063/5.0043615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The van der Waals complex formed between diethyl disulfide (DEDS) and an argon atom was investigated by pulsed-jet Fourier transform microwave spectroscopy in conjunction with quantum chemical computations. One set of transition lines belonging to the configuration of the global potential energy minimum was measured and assigned. The rotational constants A, B, and C were accurately determined to be 1262.5758(1) MHz, 845.402 12(9) MHz, and 574.006 38(8) MHz, respectively. The distance between the argon atom and the center of mass of the DEDS subunit is 4.075(16) Å. Quantum theory of atoms in molecules and non-covalent interaction analyses reveal that the interactions take place between the argon atom and four sites of the DEDS subunit. Furthermore, the usage of the energy decomposition analysis approach provides further understanding of the characteristics of the van der Waals interactions. Additionally, ab initio calculations and symmetry-adapted perturbation theory analysis of the binary complexes of DEDS with He, Ne, Kr, and Xe atoms were carried out to get further insight into the characteristics of the van der Waal interactions of the disulfide bond.
Collapse
Affiliation(s)
- Tao Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Daniel A Obenchain
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| |
Collapse
|
21
|
Mirzadeh A, Jafarihaghighi F, Kazemirad E, Sabzevar SS, Tanipour MH, Ardjmand M. Recent Developments in Recombinant Proteins for Diagnosis of Human Fascioliasis. Acta Parasitol 2021; 66:13-25. [PMID: 32974849 DOI: 10.1007/s11686-020-00280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Fascioliasis is an important neglected tropical disease that causes severe injury to the bile ducts and liver. Therefore, a rapid and accurate method for detection of Fasciola hepatica infection plays a vital role in early treatment. Currently, the diagnosis of fascioliasis is mainly conducted via serological tests using the excretory/secretory (E/S) products, which might cross-react with antigens from other helminth parasitic diseases. Hence, the development of serodiagnosis test using recombinant antigens may contribute to differentiate fascioliasis from other helminth infections. In the past 20 years, many attempts have been made to exert different F. hepatica recombinant antigens to obtain a well-established standard assay with high accuracy. In this review, we address recent studies that refer to the development of serodiagnosis tests for diagnosis of human fascioliasis based on the candidate recombinant antigens produced by different approaches. Meanwhile, in the present review, some main factors have been highlighted to improve the accuracy of diagnostic tests such as the effect of refolding methods to recover antigens' tertiary structure as well as applying a mixture of recombinant antigens with the highest sensitivity and specificity to improve the accuracy of diagnostic tests.
Collapse
Affiliation(s)
- Abolfazl Mirzadeh
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Farid Jafarihaghighi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, 1584743311, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokouh Shahrokhi Sabzevar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Tanipour
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, 1584743311, Tehran, Iran
| |
Collapse
|
22
|
Dopp JL, Reuel NF. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Liu X, Xu J, Xie X, Ma Z, Zheng T, Wu L, Li B, Li W. Heteropoly acid-driven assembly of glutathione into redox-responsive underwater adhesive. Chem Commun (Camb) 2020; 56:11034-11037. [DOI: 10.1039/d0cc03746j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A glutathione-based underwater adhesive with dynamic attachment/detachment behaviour was achieved via the reversible formation and breakage of disulfide bonds of glutathione.
Collapse
Affiliation(s)
- Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Jing Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Zhiyuan Ma
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| |
Collapse
|
24
|
Horváth D, Taricska N, Keszei E, Stráner P, Farkas V, Tóth GK, Perczel A. Compactness of Protein Folds Alters Disulfide-Bond Reducibility by Three Orders of Magnitude: A Comprehensive Kinetic Case Study on the Reduction of Differently Sized Tryptophan Cage Model Proteins. Chembiochem 2019; 21:681-695. [PMID: 31475422 PMCID: PMC7079008 DOI: 10.1002/cbic.201900470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/12/2022]
Abstract
A new approach to monitor disulfide-bond reduction in the vicinity of aromatic cluster(s) has been derived by using the near-UV range (λ=266-293 nm) of electronic circular dichroism (ECD) spectra. By combining the results from NMR and ECD spectroscopy, the 3D fold characteristics and associated reduction rate constants (k) of E19_SS, which is a highly thermostable, disulfide-bond reinforced 39-amino acid long exenatide mimetic, and its N-terminally truncated derivatives have been determined under different experimental conditions. Single disulfide bond reduction of the E19_SS model (with an 18-fold excess of tris(2-carboxyethyl)phosphine, pH 7, 37 °C) takes hours, which is 20-30 times longer than that expected, and thus, would not reach completion by applying commonly used reduction protocols. It is found that structural, steric, and electrostatic factors influence the reduction rate, resulting in orders of magnitude differences in reduction half-lives (900>t1/2 >1 min) even for structurally similar, well-folded derivatives of a small model protein.
Collapse
Affiliation(s)
- Dániel Horváth
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Ernő Keszei
- Chemical Kinetics Laboratory, Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Pál Stráner
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Viktor Farkas
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Faculty of General Medicine, University of Szeged, Szeged Dóm tér 8, H-6720, Szeged, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| |
Collapse
|
25
|
Hu Y, Wang J, Zhou Y, Xie H, Yan X, Chu X, Chen W, Liu Y, Wang X, Wang J, Zhang A, Han S. Peptidomics analysis of umbilical cord blood reveals potential preclinical biomarkers for neonatal respiratory distress syndrome. Life Sci 2019; 236:116737. [PMID: 31505194 DOI: 10.1016/j.lfs.2019.116737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 02/04/2023]
Abstract
AIMS The purpose of this study was to investigate the pathophysiology and discover novel predictors of neonatal respiratory distress syndrome (NRDS) from a peptidomics perspective. MAIN METHODS Comparative profiling of umbilical cord blood from NRDS and control patients was performed by liquid chromatography tandem mass spectrometry technology. The underlying biological functions of the differentially expressed peptides (DEPs) were predicted by Gene Ontology (GO) and KEGG pathway analyses. The interactions of DEPs and their precursor proteins were explored by ingenuity pathway analysis (IPA). The sources and stability of DEPs were determined by online databases, including UniProt, SMART and ProtParam tool. KEY FINDINGS A total of 251 DEPs were identified, of which 139 peptides were upregulated, and 112 peptides were downregulated (fold change ≥2.0, P < 0.05). These DEPs were predicted to be associated with respiratory failure, atelectasis, and morphogenesis of endothelial cells. These processes indicated that DEPs may play a role in NRDS. Among them, eleven stable DEPs might be used as preclinical biomarkers. SIGNIFICANCE Our findings improve our understanding of NRDS and facilitate the discovery of candidate diagnostic biomarkers for NRDS from the perspective of peptidomics.
Collapse
Affiliation(s)
- Yin Hu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Juan Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yahui Zhou
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Hanying Xie
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiangyun Yan
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Xue Chu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Wenjuan Chen
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yiwen Liu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xingyun Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Jun Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Aiqing Zhang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, Jiangsu 210003, China.
| | - Shuping Han
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
26
|
Patil NA, Karas JA, Wade JD, Hossain MA, Tailhades J. Rapid Photolysis‐Mediated Folding of Disulfide‐Rich Peptides. Chemistry 2019; 25:8599-8603. [DOI: 10.1002/chem.201901334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nitin A. Patil
- The Monash Biomedicine Discovery Institute 15 Innovation Walk Clayton VIC 3800 Australia
| | - John A. Karas
- Department of Pharmacology and TherapeuticsThe University of Melbourne Victoria 3010 Australia
| | - John D. Wade
- Department of Pharmacology and TherapeuticsThe University of Melbourne Victoria 3010 Australia
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne 30 Royal Parade, Parkville Victoria 3052 Australia
| | - Mohammed Akhter Hossain
- Department of Pharmacology and TherapeuticsThe University of Melbourne Victoria 3010 Australia
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne 30 Royal Parade, Parkville Victoria 3052 Australia
| | - Julien Tailhades
- The Monash Biomedicine Discovery Institute 15 Innovation Walk Clayton VIC 3800 Australia
- EMBL AustraliaMonash University Clayton Victoria 3800 Australia
| |
Collapse
|
27
|
Chamberlain N, Korwin-Mihavics BR, Nakada EM, Bruno SR, Heppner DE, Chapman DG, Hoffman SM, van der Vliet A, Suratt BT, Dienz O, Alcorn JF, Anathy V. Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics. Redox Biol 2019; 22:101129. [PMID: 30735910 PMCID: PMC6365984 DOI: 10.1016/j.redox.2019.101129] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022] Open
Abstract
Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons.
Collapse
Affiliation(s)
- Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Bethany R Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Emily M Nakada
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - David G Chapman
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States; Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia; Translational Airways Group, School of Life Sciences, University of Technology, Sydney, Australia
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Benjamin T Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Oliver Dienz
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT, United States
| | - John F Alcorn
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States.
| |
Collapse
|
28
|
Wang J, Yin T, Xiao X, He D, Xue Z, Jiang X, Wang Y. StraPep: a structure database of bioactive peptides. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4974332. [PMID: 29688386 PMCID: PMC5905355 DOI: 10.1093/database/bay038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/21/2018] [Indexed: 12/03/2022]
Abstract
Bioactive peptides, with a variety of biological activities and wide distribution in nature, have attracted great research interest in biological and medical fields, especially in pharmaceutical industry. The structural information of bioactive peptide is important for the development of peptide-based drugs. Many databases have been developed cataloguing bioactive peptides. However, to our knowledge, database dedicated to collect all the bioactive peptides with known structure is not available yet. Thus, we developed StraPep, a structure database of bioactive peptides. StraPep holds 3791 bioactive peptide structures, which belong to 1312 unique bioactive peptide sequences. About 905 out of 1312 (68%) bioactive peptides in StraPep contain disulfide bonds, which is significantly higher than that (21%) of PDB. Interestingly, 150 out of 616 (24%) bioactive peptides with three or more disulfide bonds form a structural motif known as cystine knot, which confers considerable structural stability on proteins and is an attractive scaffold for drug design. Detailed information of each peptide, including the experimental structure, the location of disulfide bonds, secondary structure, classification, post-translational modification and so on, has been provided. A wide range of user-friendly tools, such as browsing, sequence and structure-based searching and so on, has been incorporated into StraPep. We hope that this database will be helpful for the research community. Database URL: http://isyslab.info/StraPep
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xuwen Xiao
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhidong Xue
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xinnong Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
29
|
Mirzadeh A, Yoosefy A, Kazemirad E, Barati Z, Golkar M, Babaie J, Jafarihaghighi F, Valadkhani Z. Evaluation of a set of refolded recombinant antigens for serodiagnosis of human fascioliasis. PLoS One 2018; 13:e0203490. [PMID: 30281608 PMCID: PMC6169862 DOI: 10.1371/journal.pone.0203490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022] Open
Abstract
Diagnosis of fascioliasis with high sensitivity and specificity antigens play a vital role in the management of the disease. Majority of commercial serological tests use F. hepatica native antigens and indicate wide diversities in test accuracy. Nowadays, recombinant antigens have been introduced as diagnostic reagents offer better test standardization. A combination of highly pure recombinant antigens associated with correct folding will leads to improve specificity and sensitivity of ELISA for diagnosis of Fascioliasis. In this article, Fasciola hepatica saposin-like protein 2 (SAP-2), ferritin protein (Ftn-1) and leucine aminopeptidase (LAP) recombinant antigens were considered as tools for the detection of F. hepatica immunoglobulin G antibodies in persons with chronic human fasciolasis. The recombinant antigens were obtained as fusion proteins, expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC). The refolding processes of denatured recombinant proteins were performed using dialysis method in the presence of chemical additives, and reduced/oxidized glutathione (in vitro). The immunoreactivity of the recombinant antigens was assessed individually and in a combination compared with excretory/secretory antigen (E/S) in an enzyme-linked immunosorbent assay (ELISA) test. The experiments were optimized using 213 serum samples from humans, including patients with chronic fascioliasis, patients with other parasitic diseases, and healthy subjects. The results indicated 95% sensitivity and 98% specificity for rtFhSAP-2, 96% sensitivity and 91% specificity for E/S, 80% and 83.3% for rtFhFtn-1, 84% and 88% for FhLAP, and also, 96% and 95% for combination of recombinant antigens, respectively. In conclusion, the results of this investigation showed that rtFhSAP-2 with the highest specificity and acceptable sensitivity has a considerable superiority compared to mentioned antigens and even in combination with these antigens in serodiagnosis of human fascioliasis.
Collapse
Affiliation(s)
- Abolfazl Mirzadeh
- Department of Medical Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Asiyeh Yoosefy
- Department of Medical Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Barati
- Department of Medical Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Department of Medical Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Jalal Babaie
- Department of Medical Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Zarrintaj Valadkhani
- Department of Medical Parasitology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
30
|
Solid-Phase Synthesis and Antibacterial Activity of an Artificial Cyclic Peptide Containing Two Disulfide Bridges. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9757-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Pulka-Ziach K. Influence of reaction conditions on the oxidation of thiol groups in model peptidomimetic oligoureas. J Pept Sci 2018; 24:e3096. [DOI: 10.1002/psc.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 11/12/2022]
|
32
|
Chaichana C, Khamwut A, Jaresitthikunchai J, Phaonakrop N, Ratanapo S, Roytrakul S, T-Thienprasert NP. A Novel Anti-cancer Peptide Extracted from Gynura pseudochina Rhizome: Cytotoxicity Dependent on Disulfide Bond Formation. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9726-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
34
|
Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang L, Wang R, Xie Z. Overexpression of LhSorNPR1, a NPR1-like gene from the oriental hybrid lily 'Sorbonne', conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:793-808. [PMID: 29158629 PMCID: PMC5671448 DOI: 10.1007/s12298-017-0466-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/30/2017] [Accepted: 08/29/2017] [Indexed: 05/03/2023]
Abstract
The non-expressor of the pathogenesis-related genes 1 (NPR1) is a master regulator in defense signaling of plants and plays a key role in basal and systemic acquired resistance. In this study, we isolated a NPR1-like gene from the oriental hybrid lily 'Sorbonne' (designated as LhSorNPR1) using rapid amplification of cDNA ends (RACE). The open reading frame of LhSorNPR1 consisted of 1854 bp, encoding a protein of 617 amino acids. Multiple sequence alignment revealed that LhSorNPR1 shares high similarity to NPR1-like proteins and characteristics of the BTB/POZ domain and ankyrin repeats. A comparison between the intron/exon organization of LhSorNPR1 and orthologs from other plant species demonstrated that NPR1 genomic fragments (including LhSorNPR1) are all composed of 4 exons and 3 introns. We also identified sequence motifs involved in hormone response and binding sites for RAV1 proteins and WRKY transcription factors through the prediction of cis-regulatory elements in the LhSorNPR1 promoter. Our gene expression analysis showed that LhSorNPR1 transcript levels significantly differed in various tissues, and that LhSorNPR1 expressions were induced by sodium salicylate, ethephon, and methyl jasmonate. Furthermore, we transformed LhSorNPR1 into Col-0 wild-type Arabidopsis to conduct function analysis, and we observed enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 in the Arabidopsis expressing LhSorNPR1 gene. The enhanced disease resistance of LhSorNPR1 expressing plants could correlate to elevated expression levels in pathogenesis-related genes (PR1, PR2, and PR5) in vivo.
Collapse
Affiliation(s)
- Le Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhihong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yubao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yajun Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Guo Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Liu Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Wang
- Forest Tree Seedling Station of Alashan League, Alashan League, 750300 China
| | - Ruoyu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Zhongkui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
35
|
Hossain MA, Wade JD. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres. Acc Chem Res 2017; 50:2116-2127. [PMID: 28829564 DOI: 10.1021/acs.accounts.7b00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious insertion of disulfide isosteres that possess structurally subtle variations in bond length, hydrophobicity, and angle. These include lactam, dicarba, and cystathionine, each of which has required modifications to the peptide synthesis protocols for their successful placement within the peptides. Together, these synthesis improvements and the novel chemical developments of cysteine/cystine analogues have greatly aided in the development of novel insulin-like peptide (INSL) analogues, principally with intra-A-chain disulfide isosteres, possessing not only improved functional properties such as increased receptor selectivity but also, with one important and unexpected exception, greater in vivo half-lives due to stability against disulfide reductases. Such analogues greatly will aid further biochemical and pharmacological analyses to delineate the structure-function relationships of INSLs and also future potential drug development.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D. Wade
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
36
|
Mirzadeh A, Valadkhani Z, Yoosefy A, Babaie J, Golkar M, Esmaeili Rastaghi AR, Kazemi-Rad E, Ashrafi K. Expression, purification and in vitro refolding of the recombinant truncated Saposin-like protein 2 antigen for development of diagnosis of human fascioliasis. Acta Trop 2017; 171:163-171. [PMID: 28300559 DOI: 10.1016/j.actatropica.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/12/2017] [Accepted: 03/04/2017] [Indexed: 02/06/2023]
Abstract
Early diagnosis of fascioliasis is critical in prevention of injury to the liver and bile ducts. Saposin-like protein (FhSAP-2) is probably the most ideal antigen of Fasciola hepatica for development of ELISA kits. SAP-2 has a conserved tertiary structure containing three disulfide bonds and conformational epitopes. Therefore, antigenicity of SAP-2 is greatly depends on disulfide bond formation and proper folding. We produced the recombinant truncated SAP-2 (rtSAP-2) in the SHuffle® T7 and Rosetta strain of Escherichia coli, in soluble and insoluble forms, respectively and purified by immobilized metal affinity chromatography (IMAC). The refolding process of denatured rtSAP-2 was performed using dialysis and dilution methods in the presence of chemical additives, along with reduced/oxidized glutathione (in vitro). Physicochemical studies, including non-reducing gel electrophoresis, Ellman's assay, Western blotting and ELISA showed the most antigenicity and likely correct folding of rtSAP-2, which was obtained by dialysis method. An IgG ELISA test was developed using rtSAP-2 refolded by dialysis and compared with excretory/secretory products of parasite with 52 positive fascioliasis samples, 79 other parasitic samples and 70 negative controls samples. The results exhibited 100% sensitivity and 98% specificity for rtSAP-2, also, 100% and 95.3% for excretory/secretory (E/S) antigen, respectively. In conclusion, it is suggested that rtSAP-2 with the correct folding could be used as a candidate antigen for detection of human fascioliasis.
Collapse
Affiliation(s)
- Abolfazl Mirzadeh
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Asiyeh Yoosefy
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Jalal Babaie
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Elham Kazemi-Rad
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Keyhan Ashrafi
- Department of Parasitology, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
37
|
Baindara P, Kapoor A, Korpole S, Grover V. Cysteine-rich low molecular weight antimicrobial peptides from Brevibacillus and related genera for biotechnological applications. World J Microbiol Biotechnol 2017; 33:124. [DOI: 10.1007/s11274-017-2291-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/20/2017] [Indexed: 11/28/2022]
|
38
|
|
39
|
Mirzadeh A, Saadatnia G, Golkar M, Babaie J, Noordin R. Production of refolded Toxoplasma gondii recombinant SAG1-related sequence 3 (SRS3) and its use for serodiagnosis of human toxoplasmosis. Protein Expr Purif 2017; 133:66-74. [PMID: 28263855 DOI: 10.1016/j.pep.2017.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 11/26/2022]
Abstract
SAG1-related sequence 3 (SRS3) is one of the major Toxoplasma gondii tachyzoite surface antigens and has been shown to be potentially useful for the detection of toxoplasmosis. This protein is highly conformational due to the presence of six disulfide bonds. To achieve solubility and antigenicity, SRS3 depends on proper disulfide bond formation. The aim of this study was to over-express the SRS3 protein with correct folding for use in serodiagnosis of the disease. To achieve this, a truncated SRS3 fusion protein (rtSRS3) was produced, containing six histidyl residues at both terminals and purified by immobilized metal affinity chromatography. The refolding process was performed through three methods, namely dialysis in the presence of chemical additives along with reduced/oxidized glutathione and drop-wise dilution methods with reduced/oxidized glutathione or reduced DTT/oxidized glutathione. Ellman's assay and ELISA showed that the protein folding obtained by the dialysis method was the most favorable, probably due to the correct folding. Subsequently, serum samples from individuals with chronic infection (n = 76), probable acute infection (n = 14), and healthy controls (n = 81) were used to determine the usefulness of the refolded rtSRS3 for Toxoplasma serodiagnosis. The results of the developed IgG-ELISA showed a diagnostic specificity of 91% and a sensitivity of 82.89% and 100% for chronic and acute serum samples, respectively. In conclusion, correctly folded rtSRS3 has the potential to be used as a soluble antigen for the detection of human toxoplasmosis.
Collapse
Affiliation(s)
- Abolfazl Mirzadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran; Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Geita Saadatnia
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Jalal Babaie
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
40
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
41
|
Varas LR, Coutinho LH, Bernini RB, Betancourt A, de Moura CEV, Rocha AB, de Souza GGB. Breaking the disulfide chemical bond using high energy photons: the dimethyl disulfide and methyl propyl disulfide molecules. RSC Adv 2017. [DOI: 10.1039/c7ra05001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In order to study the stability of the disulfide chemical bond in molecules subjected to a flux of high energy photons, the ionic fragmentation of DMDS and MPDS has been studied following excitation around the S 1s edge (∼2470 eV).
Collapse
Affiliation(s)
- L. R. Varas
- Escuela de Ingeniería Química
- Universidad de Costa Rica
- Sede Central Rodrigo Facio
- Facultad de Ingeniería
- 11501-2060 San José
| | - L. H. Coutinho
- Instituto de Física
- Universidade Federal do Rio de Janeiro
- Cidade Universitária
- Rio de Janeiro
- Brazil
| | - R. B. Bernini
- Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ)
- Duque de Caxias
- Brazil
| | - A. M. Betancourt
- Escuela de Ingeniería Química
- Universidad de Costa Rica
- Sede Central Rodrigo Facio
- Facultad de Ingeniería
- 11501-2060 San José
| | - C. E. V. de Moura
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Cidade Universitária
- Rio de Janeiro
- Brazil
| | - A. B. Rocha
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Cidade Universitária
- Rio de Janeiro
- Brazil
| | - G. G. B. de Souza
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Cidade Universitária
- Rio de Janeiro
- Brazil
| |
Collapse
|
42
|
Hughes MM, McGettrick AF, O'Neill LAJ. Glutathione and Glutathione Transferase Omega 1 as Key Posttranslational Regulators in Macrophages. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0044-2016. [PMID: 28102119 PMCID: PMC11687437 DOI: 10.1128/microbiolspec.mchd-0044-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Macrophage activation during phagocytosis or by pattern recognition receptors, such as Toll-like receptor 4, leads to the accumulation of reactive oxygen species (ROS). ROS act as a microbicidal defense mechanism, promoting clearance of infection, allowing for resolution of inflammation. Overproduction of ROS, however, overwhelms our cellular antioxidant defense system, promoting oxidation of protein machinery, leading to macrophage dysregulation and pathophysiology of chronic inflammatory conditions, such as atherosclerosis. Here we will describe the role of the antioxidant tripeptide glutathione (GSH). Until recently, the binding of GSH, termed glutathionylation, was only considered to maintain the integrity of cellular components, limiting the damaging effects of an aberrant oxidative environment. GSH can, however, have positive and negative regulatory effects on protein function in macrophages. GSH regulates protein secretion, driving tumor necrosis factor α release, hypoxia-inducible factor-1α stability, STAT3 phosphorylation, and caspase-1 activation in macrophages. GSH also plays a role in host defense against Listeria monocytogenes, modifying the key virulence protein PrfA in infected macrophages. We will also discuss glutathione transferase omega 1, a deglutathionylating enzyme recently shown to play a role in many aspects of macrophage activity, including metabolism, NF-κB activation, and cell survival pathways. Glutathionylation is emerging as a key regulatory event in macrophage biology that might be susceptible to therapeutic targeting.
Collapse
Affiliation(s)
- Mark M Hughes
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
43
|
Eastland A, Hornick J, Kawamura R, Nanavati D, Marko JF. Dependence of the structure and mechanics of metaphase chromosomes on oxidized cysteines. Chromosome Res 2016; 24:339-53. [PMID: 27145786 PMCID: PMC4970972 DOI: 10.1007/s10577-016-9528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/09/2016] [Accepted: 04/26/2016] [Indexed: 11/28/2022]
Abstract
We have found that reagents that reduce oxidized cysteines lead to destabilization of metaphase chromosome folding, suggesting that chemically linked cysteine residues may play a structural role in mitotic chromosome organization, in accord with classical studies by Dounce et al. (J Theor Biol 42:275-285, 1973) and Sumner (J Cell Sci 70:177-188, 1984a). Human chromosomes isolated into buffer unfold when exposed to dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP). In micromanipulation experiments which allow us to examine the mechanics of individual metaphase chromosomes, we have found that the gel-like elastic stiffness of native metaphase chromosomes is dramatically suppressed by DTT and TCEP, even before the chromosomes become appreciably unfolded. We also report protein labeling experiments on human metaphase chromosomes which allow us to tag oxidized and reduction-sensitive cysteine residues. PAGE analysis using fluorescent labels shows a small number of labeled bands. Mass spectrometry analysis of similarly labeled proteins provides a list of candidates for proteins with oxidized cysteines involved in chromosome organization, notably including components of condensin I, cohesin, the nucleosome-interacting proteins RCC1 and RCC2, as well as the RNA/DNA-binding protein NONO/p54NRB.
Collapse
Affiliation(s)
- Adrienne Eastland
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Jessica Hornick
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Ryo Kawamura
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| | - Dhaval Nanavati
- Proteomics Core, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
44
|
Krause M, Neubauer A, Neubauer P. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microb Cell Fact 2016; 15:110. [PMID: 27317421 PMCID: PMC4912726 DOI: 10.1186/s12934-016-0513-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022] Open
Abstract
While the nutrient limited fed-batch technology is the standard of the cultivation of microorganisms and production of heterologous proteins in industry, despite its advantages in view of metabolic control and high cell density growth, shaken batch cultures are still the standard for protein production and expression screening in molecular biology and biochemistry laboratories. This is due to the difficulty and expenses to apply a controlled continuous glucose feed to shaken cultures. New ready-made growth media, e.g. by biocatalytic release of glucose from a polymer, offer a simple solution for the application of the fed-batch principle in shaken plate and flask cultures. Their wider use has shown that the controlled diet not only provides a solution to obtain significantly higher cell yields, but also in many cases folding of the target protein is improved by the applied lower growth rates; i.e. final volumetric yields for the active protein can be a multiple of what is obtained in complex medium cultures. The combination of the conventional optimization approaches with new and easy applicable growth systems has revolutionized recombinant protein production in Escherichia coli in view of product yield, culture robustness as well as significantly increased cell densities. This technical development establishes the basis for successful miniaturization and parallelization which is now an important tool for synthetic biology and protein engineering approaches. This review provides an overview of the recent developments, results and applications of advanced growth systems which use a controlled glucose release as substrate supply.
Collapse
Affiliation(s)
- Mirja Krause
- />Laboratory of Bioprocess Engineering, Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK 24, 13355 Berlin, Germany
- />Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | | | - Peter Neubauer
- />Laboratory of Bioprocess Engineering, Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK 24, 13355 Berlin, Germany
| |
Collapse
|
45
|
Hossain MA, Haugaard-Kedström LM, Rosengren KJ, Bathgate RAD, Wade JD. Chemically synthesized dicarba H2 relaxin analogues retain strong RXFP1 receptor activity but show an unexpected loss of in vitro serum stability. Org Biomol Chem 2015; 13:10895-903. [PMID: 26368576 DOI: 10.1039/c5ob01539a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptides and proteins are now acknowledged as viable alternatives to small molecules as potential therapeutic agents. A primary limitation to their more widespread acceptance is their generally short in vivo half-lives due to serum enzyme susceptibility and rapid renal clearance. Numerous chemical approaches to address this concern have been undertaken in recent years. The replacement of disulfide bonds with non-reducible elements has been demonstrated to be one effective means by eliminating the deleterious effect of serum reductases. In particular, substitution with dicarba bonds via ring closure metathesis has been increasingly applied to many bioactive cystine-rich peptides. We used this approach for the replacement of the A-chain intramolecular disulfide bond of human relaxin 2 (H2 relaxin), an insulin-like peptide that has important regulatory roles in cardiovascular and connective tissue homeostasis that has led to successful Phase IIIa clinical trials for the treatment of acute heart failure. Use of efficient solid phase synthesis of the two peptide chains was followed by on-resin ring closure metathesis and formation of the dicarba bond within the A-chain and then by off-resin combination with the B-chain via sequential directed inter-chain disulfide bond formation. After purification and comprehensive chemical characterization, the two isomeric synthetic H2 relaxin analogues were shown to retain near-equipotent RXFP1 receptor binding and activation propensity. Unexpectedly, the in vitro serum stability of the analogues was greatly reduced compared with the native peptide. Circular dichroism spectroscopy studies showed subtle differences in the secondary structures between dicarba analogues and H2 relaxin suggesting that, although the overall fold is retained, it may be destabilized which could account for rapid degradation of dicarba analogues in serum. Caution is therefore recommended when using ring closure metathesis as a general approach to enhance peptide stability.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|