1
|
Gao X, Qian B, Yuan T, Pan D, Liang Z, Yin Y, Liu S, Li X, Zhao D, Zhang H. Ginseng extract and total ginsenosides protect the function of hematopoietic stem cells by activating the Notch and Wnt signal pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119798. [PMID: 40216043 DOI: 10.1016/j.jep.2025.119798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer (ginseng), a traditional Chinese medicine, is famous for "Qi-tonifying" effect and widely used for healthcare and therapeutic effects in China. Modern pharmacology showed that Ginseng had a potential impact on hematopoietic stem cells (HSCs) that promote the regeneration of all blood cells in the bone marrow. The "Qi-tonifying" effect of ginseng might have close correlation with hematopoietic function. However, the protective effect of ginseng on HSCs has been rarely studied. AIM OF THE STUDY To elucidate the difference of chemical composition and the effects of ginseng extract (GE), total ginsenosides (TG) and total polysaccharides (TP) on HSCs of cyclophosphamide (CYP)-induced mice. MATERIALS AND METHODS The ginsenosides, monosaccharide and molecular distribution of GE, TG, and TP were detected. We established the mouse myelosuppression model induced by CYP. Eight ginsenosides in mice plasma were detected with high-performance liquid chromatography-mass spectrometer (MS)/MS in GE and TG group. Blood cell parameters (red blood cell, hemoglobin, reticulocyte, platelet, white blood cell, neutrophil, and lymphocyte) of plasma, oxidative stress indicators (superoxide dismutase, catalase, glutathione peroxidase, lactate dehydrogenase, malondialdehyde, and myeloperoxidase) of liver, cell differentiation marker (CD33, and GR-1) and colony forming of HSCs were detected. Ribonucleic acid (RNA)-sequencing analysis was performed on purified HSCs to find differentially expressed genes (DEGs). And the expression of DEGs was verified by quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemical (IHC). RESULTS Our results showed that 24 and 34 ginsenosides were detected in the GE and TG, and the total sugar content was 72.28 %, 4.68 %, and 89.79 % in GE, TG and TP, respectively. The weight-average molar mass/number-average molar mass (Mw/Mn) values of GE and TP were 2.96 and 1.23. TP showed homogeneous polysaccharide. The results of animal experiments showed that Rb1, Rc, Rb2, Rb3, and Rd of mouse serum in TG group was 22.91, 11.64, 10.73, 9.36, and 8.61 times in GE group, respectively. GE, TG and TP obviously elevated the numbers of blood cells, and improved oxidative stress indicator of liver. The results of RNA-sequencing analysis showed that DEGs in GE, TG and TP groups were primarily focused on signaling pathways related to HSCs. GE and TG obviously promoted the expression of Notch1, Notch2 and Jag1, and inhibited the expression of Hes1 of HSCs in model mice via activating Notch signal pathway. Meanwhile, GE and TG also obviously promoted the expression of Wnt7b, Wnt10b, and Fzd6 of HSCs by activating Wnt signal pathway. However, TP hardly activated the expression of these genes in Notch and Wnt signal pathways. Moreover, TG significantly increased the expression of CD33, CD38, CD14, CD4, CD19 and Gp1bα, and GE remarkably increased the expressions of CD34, CD14, CD4, and Gp1bα. GE and TG significantly increased the Gr-1hi and decreased the Gr-1neg. However, TP played less role in HSCs. CONCLUSIONS This study found that TG and GE showed a strong protection on HSCs in model mice induced by CYP via activating the Notch and Wnt signal pathways, however, TP could not activate HSCs. Therefore, we think that ginsenosides from GE and TG are important chemical components in protecting the function of HSCs by activating the Notch and Wnt signal pathways.
Collapse
Affiliation(s)
- Xiang Gao
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Benxin Qian
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Tongyi Yuan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Zuguo Liang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yifei Yin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Songyan Liu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Lee DY, Noren Hooten N, O'Connell JF, Lee BY, Kim Y. The Role of Ginseng and Its Bioactive Compounds in Aging: Cells and Animal Studies. Annu Rev Food Sci Technol 2025; 16:333-354. [PMID: 39971378 DOI: 10.1146/annurev-food-111523-121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aging is an inevitable process that is characterized by physiological deterioration and increased vulnerability to stressors. Therefore, the interest in hallmarks, mechanisms, and ways to delay or prevent aging has grown for decades. Natural plant products and their bioactive compounds have been studied as a promising strategy to overcome aging. Ginseng, a traditional herbal medicine, and its bioactive compound, the ginsenosides, have increasingly gained attention because of various pharmacological functions. This review introduces the species, useful parts, characteristics, and active components of ginseng. It primarily focuses on the bioconversion of ginsenosides through the unique steaming and drying process. More importantly, this review enumerates the antiaging mechanisms of ginseng, ginsenosides, and other bioactive compounds, highlighting their potential to extend the health span and mitigate age-related diseases based on twelve representative hallmarks of aging.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, Maryland, USA
| | - Jennifer F O'Connell
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, USA
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea;
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA;
| |
Collapse
|
3
|
Kwon D, Lee T, Han M, Han SW, Kang KS. Antifragile Treatment for Efficient Chimerism of Induced Pluripotent Stem Cells Derived Hematopoietic Stem Cells. Stem Cell Rev Rep 2025; 21:554-563. [PMID: 39636548 PMCID: PMC11872973 DOI: 10.1007/s12015-024-10828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Engraftable hematopoietic stem cells (HSC) can be obtained from bone marrow, umbilical cord blood, and peripheral blood (PB). However, a major bottleneck in HSC transplantation is identifying an unrelated donor that completely matches the human leukocyte antigen type of the recipient. This issue can be resolved by producing patient-specific stem cells. The purpose of this study was to identify the conditions under which induced pluripotent stem cells (iPSC)-derived hematopoietic stem cells (iHSC) exhibit high efficiency. Because HSC are fragile and vulnerable to damage, this study was performed under the hypothesis that the engraftment rate could be increased by antifragile treatment. Antioxidant ginsenoside Rg1 was used to differentiate from iPSC to iHSC, and differentiated iHSC was intravenously injected into Balb/c nude mouse conditioned with diverse concentrations of busulfan. Engraftment was verified by the presence of human-specific markers in the PB at 2 and 8 weeks post iHSC transplantation. iHSC differentiated by incorporating 1 µM of Rg1 demonstrated high colony forming efficiency in vitro. Additionally, high efficiency engraftment occurred immediately after iHSC were transplanted into mice conditioned with high dose busulfan at a dosage of 125 mg/kg or higher. In this study, high-quality iHSC manufacturing and transplantation conditions capable of high efficiency engraftment in vivo were established. Hereafter, this method of producing HSC using patient-specific iPSC will become the fourth new source of HSC. Additionally, if gene-editing technology is applied, the scope of its application can be expanded to diverse infectious diseases.
Collapse
Affiliation(s)
- Daekee Kwon
- Research Institute, Maru Therapeutics Co., Ltd., Office-706, Hangang-Misa-IS-BIZ Tower, Gyeonggi-do, 12925, South Korea.
| | - Taewook Lee
- Research Institute, Maru Therapeutics Co., Ltd., Office-706, Hangang-Misa-IS-BIZ Tower, Gyeonggi-do, 12925, South Korea
| | - Mijung Han
- Research Institute, Maru Therapeutics Co., Ltd., Office-706, Hangang-Misa-IS-BIZ Tower, Gyeonggi-do, 12925, South Korea
| | - So-Woon Han
- Research Institute, Maru Therapeutics Co., Ltd., Office-706, Hangang-Misa-IS-BIZ Tower, Gyeonggi-do, 12925, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Long J, Lai H, Huang Y, You F, Jiang Y, Kuang Q. Unraveling the pathogenesis of bone marrow hematopoietic injury and the therapeutic potential of natural products. Pharmacol Res 2025; 212:107589. [PMID: 39778641 DOI: 10.1016/j.phrs.2025.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing. Furthermore, we explored the potential and application prospects of natural products in the treatment of bone marrow hematopoietic injury. Natural products, particularly those derived from Chinese herbal medicines and other natural sources, have emerged as promising therapeutic options due to their distinctive mechanisms and minimal side effects. A deeper understanding of the underlying mechanisms of bone marrow hematopoietic injury could illuminate how natural products exert their effects, thereby optimizing treatment strategies and offering safer, more effective options for patients. Future research should leverage emerging technologies to further elucidate the composition and interactions within the bone marrow microenvironment, as well as the specific pathways through which natural products modulate hematopoietic dysfunction.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hengzhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qixuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
5
|
Akbulut M, Keskin Aktan A, Sonugür G, Özen Akarca S, Nur Bahar A, Kavak H, Akbulut G. Protective Effects of SIRT2 Inhibition on Cardiac Fibrosis. Anatol J Cardiol 2025; 29:173-180. [PMID: 39885712 PMCID: PMC11965944 DOI: 10.14744/anatoljcardiol.2025.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND A primary factor in the pathogenesis of aging is oxidative stress, with cardiac inflammation and fibrosis being contributed to by increased oxidative stress as organisms age. Oxidative stress enhances the cardiac fibrotic signaling pathway, with reactive oxygen species inducing cardiac fibrosis through increased expression of the profibrotic factor transforming growth factor-beta 1 (TGF-β1). Furthermore, Wnt/β-catenin signaling pathway is implicated in interstitial fibrosis, which is associated with TGF-β. Sirtuin 2 (SIRT2) is expressed in heart tissue, with protective effects in pathological cardiac hypertrophy. We aimed to investigate the mechanisms of cardiac fibrosis in D-Galactose (D-Gal)-induced accelerated aging, focusing on TGF-β1, β-catenin, and SIRT2. METHODS A total of 30 young male Sprague-Dawley rats were randomly divided into 4 groups: control group, D-Gal group, D-Gal + 4% dimethyl sulfoxide (DMSO) group, and D-Gal + the SIRT2 inhibitor (AGK2) group. After 10 weeks, the rats were sacrificed, and their hearts were removed. SIRT2 expression levels were measured by western blot and gene expression levels of TGF-β1 and β-catenin by quantitative real-time polymerase chain reaction. RESULTS Transforming growth factor-beta 1 (TGF-β1) mRNA expression in heart tissue was higher in the D-Gal group compared to all other groups. β-catenin mRNA expression was higher in the D-Gal group than in the D-Gal + AGK2 group. SIRT2 protein expression was higher in the D-Gal + DMSO group compared to the control group. Sirtuin 2 expression was lower in the D-Gal + AGK2 group compared to the D-Gal and D-Gal + DMSO groups. CONCLUSION Sirtuin 2 inhibition attenuates fibrosis, as evidenced by the downregulation of TGF-β1 and β-catenin. Thus, targeting SIRT2 may represent a potential therapeutic strategy for diseases characterized by cardiac fibrosis in the future.
Collapse
Affiliation(s)
- Müge Akbulut
- Department of Cardiology, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Arzu Keskin Aktan
- Department of Physiology, Afyon Kocatepe University Faculty of Medicine, Afyon, Türkiye
| | - Gizem Sonugür
- Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Türkiye
| | - Saadet Özen Akarca
- Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Aslı Nur Bahar
- Department of Physiology, Marmara University Faculty of Medicine, İstanbul, Türkiye
| | - Hatice Kavak
- Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Gonca Akbulut
- Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
6
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
7
|
Bahar AN, Keskin-Aktan A, Akarca-Dizakar SÖ, Sonugür G, Akbulut KG. AGK2, a SIRT2 inhibitor, ameliorates D-galactose-induced liver fibrosis by inhibiting fibrogenic factors. J Biochem Mol Toxicol 2024; 38:e70000. [PMID: 39400930 DOI: 10.1002/jbt.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
In our study, we aimed to investigate the effect of SIRT2 inhibition on function, fibrosis and inflammation in liver fibrosis induced by D-Galactose (D-Gal) administration. A total of 32 3-month-old Sprague Dawley rats were used in the study. Rats were divided into 4 groups as Control, d-Gal, Solvent+d-Gal, d-Gal+AGK2+Solvent. d-Gal (150 mg/kg/day), AGK-2 (10 µM/bw) as a specific SIRT2 inhibitor, 4%DMSO + PBS as a solvent was applied to the experimental groups and physiological saline was applied to the control group for 10 weeks. All applications were performed subcutaneously. Histological fibrotic changes were studied in the liver tissues by Masson's trichrome staining, hematoxylin and eosin staining and immunohistochemistry and the levels of selected factors were determined by quantitative reverse transcription-polymerase chain reaction, western blot analysis, and immunohistochemical analysis. Biochemical parameters and Paraoxonase levels were determined in the plasma. d-Galactose administration increased AST, AST-ALT Ratio, APRI, SIRT2 protein expression, IL1β, TGF β, β-catenin, Type I collagen, Type III collagen and α-SMA, collagen fiber density and histopathological score. ALT and lipid panels were not changed and paraxonase plasma level was shown to decrease. These effects were largely blocked by the SIRT2 inhibitor AGK2. These findings suggest that SIRT2 inhibition attenuates d-Gal-induced liver injury and that this protection may be due to its antifibrotic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Aslı Nur Bahar
- Department of Physiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Arzu Keskin-Aktan
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | | | - Gizem Sonugür
- Cancer Research Institute, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | |
Collapse
|
8
|
Wu J, Bai Q, Chen J, Yang Z, Zhu X. Systemic Analyses of Anti-Cell-Senescence Active Compounds in Camellia Sect. Chrysantha Chang and Their Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2139. [PMID: 39124256 PMCID: PMC11314071 DOI: 10.3390/plants13152139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Aging is an irreversible pathophysiological process for all organisms. The accumulation of senescent cells in pathological sites or tissues is recognized as the major cause of diseases and disorders during the aging process. Small molecules that reduce senescent cell burdens have gained increasing attention as promising intervention therapeutics against aging, but effective anti-senescence agents remain rare. Camellia Sect. Chrysantha Chang is documented as a traditional Chinese herbal medicine used by ethnic groups for many medical and health benefits, but its effect on aging is unclear. Here, we investigated the anti-senescence potential of eight C. Sect. Chrysantha Chang species. The results show that ethyl acetate fractions from these C. Sect. Chrysantha Chang species were able to delay the senescence of H9c2 cardiomyocytes except for C. pingguoensis (CPg). N-butanol fractions of C. multipetala (CM), C. petelotii var. grandiflora (CPt), and C. longzhouensis (CL) showed a senescent cell clearance effect by altering the expression levels of senescent-associated marker genes in the DNA-damage response (DDR) pathway and the senescent cell anti-apoptotic pathway (SCAPs). By using UPLC-QTOF-MS-based non-targeted metabolomics analyses, 27 metabolites from Sect. Chrysantha species were putatively identified. Among them, high levels of sanchakasaponin C and D in CM, CPt, and CL were recognized as the key bioactive compounds responsible for senescent cell clearance. This study is the first to disclose and compare the anti-cell-senescence effect of a group of C. Sect. Chrysantha Chang, including some rare species. The combination of senescent markers and metabolomics analyses helped us to reveal the differences in chemical constituents that target senescent cells. Significantly, contrary to the C. chrysantha var. longistyla (CCL), which is widely cultivated and commercialized for tea drinks, CM, CPt, and CL contain unique chemicals for managing aging and aging-related diseases. The results from this study provide a foundation for species selection in developing small-molecule-based drugs to alleviate diseases and age-related dysfunctions and may potentially be useful for advancing geroscience research.
Collapse
Affiliation(s)
- Jiacheng Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (Q.B.); (J.C.)
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (Q.B.); (J.C.)
| | - Zhenbiao Yang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China;
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyue Zhu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Ye L, Tian C, Li Y, Pan H, Hu J, Shu L, Pan X. Hematopoietic aging: Cellular, molecular, and related mechanisms. Chin Med J (Engl) 2024; 137:1303-1312. [PMID: 37898877 PMCID: PMC11191024 DOI: 10.1097/cm9.0000000000002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 10/30/2023] Open
Abstract
ABSTRACT Aging is accompanied by significant inhibition of hematopoietic and immune system function and disruption of bone marrow structure. Aging-related alterations in the inflammatory response, immunity, and stem cell niches are at the root of hematopoietic aging. Understanding the molecular mechanisms underlying hematopoietic and bone marrow aging can aid the clinical treatment of aging-related diseases. In particular, it is unknown how the niche reprograms hematopoietic stem cells (HSCs) in an age-dependent manner to maintain normal hematopoiesis in elderly individuals. Recently, specific inhibitors and blood exchange methods have been shown to reshape the hematopoietic niche and reverse hematopoietic aging. Here, we present the latest scientific discoveries related to hematopoietic aging and hematopoietic system rejuvenation, discuss the relationships between hematopoietic niche aging and HSC aging, and describe related studies on stem cell-mediated regulation of hematopoietic aging, aiming to provide new ideas for further study.
Collapse
Affiliation(s)
- Li Ye
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Chuan Tian
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| | - Ye Li
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Hang Pan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Jinxiu Hu
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| | - Liping Shu
- Department of Immunology of School of Basic Medicine of Guizhou Medical University, National and Local Joint Engineering Laboratory of Cell Engineering Biomedical Technology, Key Laboratory of Regenerative Medicine of Guizhou Province, State Key Laboratory of Efficacy and Utilization of Medicinal Plants Co-constructed by Province and Ministry, Key Laboratory of Translational Research of Adult Stem Cell of Chinese Academy of Medical Sciences, Guiyang, Guizhou 550025, China
| | - Xinghua Pan
- The Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming Key Laboratory of Stem Cell and Regenerative Medicine, Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, Yunnan 650032, China
| |
Collapse
|
10
|
Ba Y, Feng Z, Fu X, Chen R, Jiao X, Du Y, Liu X, Huang H, Yu F, Zhou G. Mediation of mitochondrial DNA copy number and oxidative stress in fluoride-related bone mineral density alteration in Chinese farmers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:184. [PMID: 38695941 DOI: 10.1007/s10653-024-01970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 06/17/2024]
Abstract
Excessive fluoride can adversely affect bone mineral density (BMD). Oxidative stress and mitochondrial dysfunction are crucial mechanisms of health damage induced by fluoride. Here, a cross-sectional survey involving 907 Chinese farmers (aged 18-60) was carried out in Tongxu County in 2017, aiming to investigate the significance of mitochondrial DNA copy number (mtDNAcn) and oxidative stress in fluoride-related BMD change. Concentrations of urinary fluoride (UF), serum oxidative stress biomarkers, including total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), as well as relative mtDNAcn in peripheral blood were determined. The multivariable linear model and mediation analysis were performed to assess associations between UF, oxidative stress, and relative mtDNAcn with BMD. Results showed that GSH-Px levels increased by 6.98 U/mL [95% confidence interval (CI) 3.41-10.56)] with each 1.0 mg/L increment of UF. After stratification, the T-AOC, relative mtDNAcn, and BMD decreased by 0.04 mmol/L (-0.08 ~ -0.01), 0.29-unit (-0.55 ~ -0.04), and 0.18-unit (-0.33 ~ -0.03) with every 1.0 mg/L elevation of UF in the excessive fluoride group (EFG, adults with UF > 1.6 mg/L), respectively. Furthermore, T-AOC and relative mtDNAcn were favorably related to the BMD in the EFG (β = 0.82, 95%CI 0.16-1.48 for T-AOC; β = 0.11, 95%CI 0.02-0.19 for relative mtDNAcn). Mediation analysis showed that relative mtDNAcn and T-AOC mediated 15.4% and 17.1% of the connection between excessive fluoride and reduced BMD, respectively. Findings suggested that excessive fluoride was related to lower BMD in adults, and the decrement of T-AOC and relative mtDNAcn partially mediate this relationship.
Collapse
Affiliation(s)
- Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zichen Feng
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoli Fu
- Department of Health Management, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ruiqin Chen
- Department of Epidemiology, Jinshui District Center for Disease Control and Prevention, Zhengzhou, 450053, Henan, China
| | - Xuecheng Jiao
- Department of Epidemic Prevention and Control, Puyang Center for Disease Control and Prevention, Puyang, 457001, Henan, China
| | - Yuhui Du
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoxue Liu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui Huang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fangfang Yu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
11
|
She J, Lu F, Chi Y, Cao L, Zuo Y, Yang N, Zhang X, Dai X. Ginseng Extract Attenuates the Injury from Ultraviolet Irradiation for Female Drosophila melanogaster through the Autophagy Signaling Pathway. J Med Food 2024; 27:348-358. [PMID: 38387003 DOI: 10.1089/jmf.2023.k.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Ginseng is an ancient medicinal and edible plant with many health benefits, and can serve as a drug and dietary supplement, but there are few relevant studies on its use to ease ultraviolet (UV) irradiation damage. After 0.8 mg/mL ginseng extract (GE) was added to the medium of female Drosophila melanogaster subjected to UV irradiation, the lifespan, climbing ability, sex ratio, developmental cycle, and antioxidant capacity of flies were examined to evaluate the GE function. In addition, the underlying mechanism by which GE enhances the irradiation tolerance of D. melanogaster was explored. With GE supplementation, female flies subjected to UV irradiation exhibited an extension in their lifespan, enhancement in their climbing ability, improvement in their offspring sex ratio, and restoration of the normal development cycle by increasing their antioxidant activity. Finally, further experiments indicated that GE could enhance the irradiation tolerance of female D. melanogaster by upregulating the gene expressions of SOD, GCL, and components of the autophagy signaling pathway. Finally, the performance of r4-Gal4;UAS-AMPKRNAi flies confirmed the regulatory role of the autophagy signaling pathway in mitigating UV irradiation injury.
Collapse
Affiliation(s)
- JiaYi She
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - FangYuan Lu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - YiQing Chi
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - LingYao Cao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yaqi Zuo
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Na Yang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xing Zhang
- Zhejiang Shengshi Bio-technology Co., Ltd, Anji, China
| | - XianJun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Sha A, Chen H, Zhao X. Exploration of the mechanisms of improving learning and memory in the offspring of aging pregnant mice by supplementation with Paris polyphylla polysaccharide based on the P19-P53-P21 and Wnt/β-catenin signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116883. [PMID: 37422103 DOI: 10.1016/j.jep.2023.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE First recorded in "Sheng Nong's herbal classic", Paris polyphylla is used to treat diseases, such as convulsions, head shaking and tongue fiddling, and epilepsy. Studies have shown that the ability of three Liliaceae polysaccharides in improving learning and memory may be related to the P19-P53-P21 and Wnt/β-catenin signaling pathways. Moreover, a link between these two signaling pathways and the possible neuroprotective impact of Paris polyphylla polysaccharide has been proposed. AIM OF THE STUDY We explored the mechanisms of improving learning and memory in the offspring of pre-pregnant parental mice and D-galactose-induced aging pregnant mice by supplementation with P. polyphylla polysaccharide based on the P19-P53-P21 and Wnt/β-catenin signaling pathways. STUDY DESIGN AND METHODS After 3 weeks of supplementation of D-galactose-induced pre-pregnant parental mice with P. polyphylla polysaccharide component 1 (PPPm-1), the male and female parental mice mated in cages. The D-galactose-induced pregnant mice were continued to be supplemented with PPPm-1 for 18 days before delivery of the offspring. Behavioral experiments (Morris water maze and dark avoidance experiments) were conducted on the offspring mice born 48 days later to determine whether PPPm-1 had the effect of improving their learning and memory. Based on the P19/P53/P21 and Wnt/β-catenin signaling pathways, the mechanisms of PPPm-1 in improving learning and memory in offspring mice were further investigated. RESULTS Offspring mice administered low- or high-dose PPPm-1 exhibited stronger motor and memory abilities in behavioral experiments than the aging model of offspring mice. Enzyme-linked immunosorbent assay and real-time polymerase chain reaction revealed that the expressions of P19 and P21 mRNA and protein were inhibited in offspring mice administered low- and high-dose PPPm-1. However, P53 expression was inhibited in the low-dose PPPm-1 offspring group but promoted in the high-dose PPPm-1 offspring group. Additionally, PPPm-1 could effectively activate the Wnt/β-catenin signaling pathway, promote the expressions of Wnt/1, β-catenin, CyclinD1, and TCF-4 mRNA and protein, and inhibit GSK-3β mRNA and protein expression to improve the learning and memory abilities of offspring mice. CONCLUSION Thus, PPPm-1 improved the learning and memory abilities in the offspring of aging pregnant mice by acting on the P19-P53-P21 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, 404120, China; School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China.
| | - Hongrun Chen
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Xuewen Zhao
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
13
|
Sha A, Liu Y, Qiu X, Xiong B. Polysaccharide from Paris polyphylla improves learning and memory ability in D-galactose-induced aging model mice based on antioxidation, p19/p53/p21, and Wnt/β-catenin signaling pathways. Int J Biol Macromol 2023; 251:126311. [PMID: 37579895 DOI: 10.1016/j.ijbiomac.2023.126311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The current study aimed to investigate the effects and mechanisms of Paris polyphylla polysaccharide component 1 (PPPm-1) to improve learning and memory in D-galactose-induced aging model mice. We determined the effects of PPPm-1 on the brain, organ index, and behavior in the aging model mice induced by D-galactose to study learning and memory improvement. UV-Vis spectrophotometry helped determine the PPPm-1 effect on antioxidant parameters associated with learning and memory in the brain and related organs of aging mice. Moreover, in the hippocampi of aging model mice, PPPm-1 effect on the mRNA and protein expressions of p19, p53, p21, P16, Rb, Wnt/1, β-catenin, CyclinD1, TCF-4, and GSK-3β were detected using the quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The results indicated that PPPm-1 could increase the brain and organ indexes, the avoidance latency, the total distance and average speed in the water maze, and the SOD and GSH-PX activities in the brain, liver tissues, and plasma. Moreover, the mRNA and protein expressions of Wnt/1, β-catenin, CyclinD1, and TCF-4 were also elevated in the hippocampi of aging model mice. However, the error times in step-through tests, the MDA content in the brain and liver tissues, the AChE activity in the brain tissue, the protein expressions of P16, Rb in the hippocampi, and the mRNA and protein expressions of p19, p53, p21, and GSK-3β in the hippocampi of aging model mice were significantly decreased. Thus, PPPm-1 significantly enhanced the learning and memory impairment induced by D-galactose in mice. The action mechanisms were associated with anti-oxidative stress, cholinergic nervous system function regulation, LTP enhancement in long-term memory, down-regulated expression of p19/p53/p21 signaling pathway factors, and Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China; School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China.
| | - Yi Liu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Xinyu Qiu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Binbing Xiong
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
14
|
Tian T, Ko CN, Luo W, Li D, Yang C. The anti-aging mechanism of ginsenosides with medicine and food homology. Food Funct 2023; 14:9123-9136. [PMID: 37766674 DOI: 10.1039/d3fo02580b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the acceleration of global aging and the rise in living standards, the achievement of healthy aging is becoming an imperative issue globally. Ginseng, a medicinal plant that has a long history of dietary intake and remarkable medicinal value, has become a research hotspot in the field of food and medicine. Ginsenosides, especially protopanaxadiol-type saponins and protopanaxatriol-type saponins, are among the most important active ingredients in ginseng. Ginsenosides have been found to exhibit powerful and diverse pharmacological activities, such as antiaging, antitumor, antifatigue and immunity enhancement activities. Their effects in antiaging mainly include (1) promotion of metabolism and stem cell proliferation, (2) protection of skin and nerves, (3) modulation of intestinal flora, (4) maintenance of mitochondrial function, and (5) enhancement of telomerase activity. The underlying mechanisms are primarily associated with the intervention of the signaling pathways in apoptosis, inflammation and oxidative stress. In this review, the mechanism of action of ginsenosides in antiaging as well as the potential values of developing ginsenoside-based functional foods and antiaging drugs are discussed.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
| | - Wenya Luo
- Haikou Orthopedics and Diabetes Hospital, Haikou, Hainan, 570206, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
15
|
Biswas D, Somkuwar BG, Borah JC, Varadwaj PK, Gupta S, Khan ZA, Mondal G, Chattoraj A, Deb L. Phytochemical mediated modulation of COX-3 and NFκB for the management and treatment of arthritis. Sci Rep 2023; 13:13612. [PMID: 37604838 PMCID: PMC10442333 DOI: 10.1038/s41598-023-37729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/27/2023] [Indexed: 08/23/2023] Open
Abstract
In this study, we investigated whether zerumbone (ZBN), ellagic acid (ELA) and quercetin (QCT), the plant-derived components, can modulate the role of COX-3 or cytokines liable in arthritic disorder. Initially, the effect of ZBN, ELA, and QCT on inflammatory process was investigated using in-vitro models. In-silico docking and molecular dynamics study of these molecules with respective targets also corroborate with in-vitro studies. Further, the in-vivo anti-arthritic potential of these molecules in Complete Freund's adjuvant (CFA)-induced arthritic rats was confirmed. CFA increases in TNF-α and IL-1β levels in the arthritic control animals were significantly (***p < 0.001) attenuated in the ZBN- and ELA-treated animals. CFA-induced attenuation in IL-10 levels recovered under treatment. Moreover, ELA attenuated CFA-induced upregulation of COX-3 and ZBN downregulated CFA-triggered NFκB expression in arthritic animals. The bonding patterns of zerumbone in the catalytic sites of targets provide a useful hint in designing and developing suitable derivatives that can be used as a potential drug. To our best knowledge, the first time we are reporting the role of COX-3 in the treatment of arthritic disorders which could provide a novel therapeutic approach for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Dipak Biswas
- Natural Product Chemistry and Pharmacology Programme, Medicinal Plants and Horticulture Resources Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Bharat Gopalrao Somkuwar
- Bioinformatics and Bioresources Database Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Jagat Chandra Borah
- Natural Product Chemistry and Pharmacology Programme, Medicinal Plants and Horticulture Resources Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
- Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under Department of Science & Technology, Govt. of India) Vigyan Path, Paschim Boragaon Garchuk, Guwahati, 781035, Assam, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa, Allahabad, 211015, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa, Allahabad, 211015, Uttar Pradesh, India
| | - Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, Asansol, 71330, West Bengal, India
| | - Lokesh Deb
- Natural Product Chemistry and Pharmacology Programme, Medicinal Plants and Horticulture Resources Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India.
- Institute of Bioresources and Sustainable Development-Regional Centre, Sikkim (Department of Biotechnology, Government of India), 5th Mile, Near Metro Point, Tadong, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
16
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Su J, Su Q, Hu S, Ruan X, Ouyang S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023; 15:3286. [PMID: 37571224 PMCID: PMC10421173 DOI: 10.3390/nu15153286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Aging is a cellular state characterized by a permanent cessation of cell division and evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity, enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is associated with a variety of diseases, such as Alzheimer's disease, Parkinson's, type 2 diabetes, and chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant, anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage and delay aging has not been comprehensively described. This review focuses on the anti-aging mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for further research on natural products and aging.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
18
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
19
|
Li N, Duan YH, Chen L, Zhang K. Iron metabolism: An emerging therapeutic target underlying the anti-Alzheimer's disease effect of ginseng. J Trace Elem Med Biol 2023; 79:127252. [PMID: 37418790 DOI: 10.1016/j.jtemb.2023.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Finding neuroprotective drugs with fewer side effects and more efficacy has become a major problem as the global prevalence of Alzheimer's disease (AD) rises. Natural drugs have risen to prominence as potential medication candidates. Ginseng has a long history of use in China, and it has a wide range of pharmacological actions that can help with neurological issues. Iron loaded in the brain has been linked to AD pathogenesis. We reviewed the regulation of iron metabolism and its studies in AD and explored how ginseng might regulate iron metabolism and prevent or treat AD. Researchers utilized network pharmacology analysis to identify key factive components of ginseng that protect against AD by regulating ferroptosis. Ginseng and its active ingredients may benefit AD by regulating iron metabolism and targeting ferroptosis genes to inhibit the ferroptosis process. The results present new ideas for ginseng pharmacological studies and initiatives for further research into AD-related drugs. To provide comprehensive information on the neuroprotective use of ginseng to modulate iron metabolism, reveal its potential to treat AD, and provide insights for future research opportunities.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yu-Han Duan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lei Chen
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Medical Research Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Che L, Zhu C, Huang L, Xu H, Ma X, Luo X, He H, Zhang T, Wang N. Ginsenoside Rg2 Promotes the Proliferation and Stemness Maintenance of Porcine Mesenchymal Stem Cells through Autophagy Induction. Foods 2023; 12:foods12051075. [PMID: 36900592 PMCID: PMC10000966 DOI: 10.3390/foods12051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be used as a cell source for cultivated meat production due to their adipose differentiation potential, but MSCs lose their stemness and undergo replicative senescence during expansion in vitro. Autophagy is an important mechanism for senescent cells to remove toxic substances. However, the role of autophagy in the replicative senescence of MSCs is controversial. Here, we evaluated the changes in autophagy in porcine MSCs (pMSCs) during long-term culture in vitro and identified a natural phytochemical, ginsenoside Rg2, that could stimulate pMSC proliferation. First, some typical senescence characteristics were observed in aged pMSCs, including decreased EdU-positive cells, increased senescence-associated beta-galactosidase activity, declined stemness-associated marker OCT4 expression, and enhanced P53 expression. Importantly, autophagic flux was impaired in aged pMSCs, suggesting deficient substrate clearance in aged pMSCs. Rg2 was found to promote the proliferation of pMSCs using MTT assay and EdU staining. In addition, Rg2 inhibited D-galactose-induced senescence and oxidative stress in pMSCs. Rg2 increased autophagic activity via the AMPK signaling pathway. Furthermore, long-term culture with Rg2 promoted the proliferation, inhibited the replicative senescence, and maintained the stemness of pMSCs. These results provide a potential strategy for porcine MSC expansion in vitro.
Collapse
Affiliation(s)
- Lina Che
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Caixia Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Lei Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hui Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xinmiao Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xuegang Luo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
- Correspondence: ; Tel.: +86-2260-6020-99; Fax: +86-2260-6022-98
| |
Collapse
|
21
|
Shang D, Li Z, Tan X, Liu H, Tu Z. Inhibitory effects and molecular mechanisms of ginsenoside Rg1 on the senescence of hematopoietic stem cells. Fundam Clin Pharmacol 2022; 37:509-517. [PMID: 36582074 DOI: 10.1111/fcp.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) produce all blood cell lineages and maintain life-long hematopoiesis. However, the self-renewal ability and differentiation capacity of HSCs reduces with age. The senescence of HSCs can lead to the imbalance of hematopoietic homeostasis and immune disorder and induce a variety of age-related diseases. Recent studies have shown that therapeutic interventions targeting the senescence of HSCs may prevent disease progression. Ginsenoside Rg1 (Rg1), extracted from roots or stems of ginseng, has beneficial antiaging activities. It has been reported that Rg1 can inhibit the senescence of HSCs. Here, we reviewed recent advances of Rg1 in inhibiting the senescence of HSCs and discussed related molecular mechanisms. Bioinformatics and network databases have been widely applied to drug discoveries. Here, we predicted potential antiaging targets of Rg1 explored by bioinformatic methods, which may help discover new targets of Rg1 and provide novel strategies for delaying the aging process of HSCs.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhihuan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoli Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
22
|
Hao J, Xi Y, Jiao L, Wen X, Wu R, Chang G, Sun F, Wei C, Li H. Exogenous hydrogen sulfide inhibits the senescence of cardiomyocytes through modulating mitophagy in rats. Cell Signal 2022; 100:110465. [PMID: 36087824 DOI: 10.1016/j.cellsig.2022.110465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023]
Abstract
Hydrogen sulfide (H2S), a gaseous molecule, has been shown to be involved in the regulation of body pathophysiological processes. Aging is related to structural and functional alterations within the heart. There is evidence that diminished mitophagy accelerates the aging process. Studies in recent years have revealed that plasma levels of H2S in humans and old rats decrease with age, and H2S acts as a cytoprotective mediator in the aging process. However, it is unclear whether H2S can delay the senescence of cardiomyocytes by regulating mitophagy. Our present results showed that exogenous H2S inhibited mitochondrial damage, oxidative stress and cell apoptosis, and enhanced mitophagy through upregulating the SIRT1-PINK1-parkin pathway in myocardial tissues of aged rats and cultured aged cardiomyocytes. Furthermore, the effect of exogenous H2S on the above indicators was the same as that of SRT1720 (a SIRT1 agonist) and kinetin (a PINK1 activator). Our findings suggest that exogenous H2S inhibits the senescence of cardiomyocytes by increasing mitophagy via upregulation of the SIRT1-PINK1-parkin pathway in rats.
Collapse
Affiliation(s)
- Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China; Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China; School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, Heilongjiang, China; School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
23
|
Ginsenoside Rg1 Reduces Oxidative Stress Via Nrf2 Activation to Regulate Age-Related Mesenchymal Stem Cells Fate Switch Between Osteoblasts and Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1411354. [PMID: 36267094 PMCID: PMC9578818 DOI: 10.1155/2022/1411354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Background An important feature of aging cells is the gradual loss of physiological integrity. As aging progresses, MSCs change preferring to differentiate toward adipocytes rather than osteoblasts. Oxidative stress accumulation is an important factor in age-related bone loss. Many experiments have demonstrated the good therapeutic effect of Ginsenoside (Rg1) on oxidative stress injury. In this study, we investigated the effect of Rg1 on the osteogenic-adipogenic differentiation balance of bone marrow mesenchymal stem cells (BMMSC). Objective To analyze the potential application value of Rg1 in the treatment of senile osteoporosis. Methods BMMSCs were isolated from healthy donors of different ages and identified based on isotype and by multi-differentiation induction. Rg1 was used to treat BMMSCs, The differentiation propensity was analyzed by induction of differentiation assay. Antioxidant capacity of BMMSCs as measured by oxidative stress product assay Related mechanism studies were confirmed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), immunofluorescence, western blotting, and inhibitor treatment. Moreover, Observation of the effects of Rg1 on aging BMMSCs under in vivo conditions by treatment of aged mice with Rg1 injections. Results Rg1 treatment rescued age-induced switch of BMMSCs differentiation fate in vitro. In elderly people, Rg1 markedly increased osteogenic differentiation of BMMSCs by decreasing oxidative stress, while inhibiting adipogenic differentiation. However, this effect was abolished in BMMSCs by an Nrf2-inhibitor. Notably, aging mice showed a reduction in adipocyte distribution in the bone marrow and a decrease in oxidative stress products after a 3-month period of Rg1 treatment. Conclusion We have uncovered a novel function for Rg1 that involves attenuating bone loss via Nrf2 antioxidant signaling, which in turn may potentially be utilized as a therapeutic agent for improving osteogenic differentiation in aging BMMSCs.
Collapse
|
24
|
Hou J, Ma R, Zhu S, Wang Y. Revealing the Therapeutic Targets and Mechanism of Ginsenoside Rg1 for Liver Damage Related to Anti-Oxidative Stress Using Proteomic Analysis. Int J Mol Sci 2022; 23:ijms231710045. [PMID: 36077440 PMCID: PMC9455996 DOI: 10.3390/ijms231710045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Ginsenoside Rg1 is an important active substance isolated from the root of ginseng. In previous studies, Rg1 has shown excellent therapeutic effects in antioxidant, anti-inflammatory, and metabolic modulation. However, the therapeutic targets of Rg1 are still unknown. In this study, we investigated the therapeutic effects of Rg1 on oxidative stress-related liver damage. The oxidative stress damage model was achieved by intraperitoneal injection of D-galactose (D-gal) for 42 consecutive days in C57BL/6J mice. Rg1 treatment started on Day 16. Body weight, liver weight, degree of hepatic oxidative stress damage, serum lipid levels, and hepatic lipid and glucose metabolism were measured. Proteomics analysis was used to measure liver protein expression. The differential expression proteins were analyzed with bioinformatics. The results showed that Rg1 treatment attenuated liver damage from oxidative stress, reduced hepatic fat accumulation, promoted hepatic glycogen synthesis, and attenuated peripheral blood low-density lipoprotein (LDL), cholesterol (CHO), and triglycerides (TG) levels. Proteomic analysis suggested that Rg1 may regulate hepatocyte metabolism through ECM-Receptor, the PI3K-AKT pathway. The epidermal growth factor receptor (EGFR) and activator of transcription 1 (STAT1) may be the key protein. In conclusion, this study provides an experimental basis for further clarifying the specific mechanism of Rg1 in the treatment of oxidative stress damage-related liver disease.
Collapse
Affiliation(s)
- Jiying Hou
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Ruoxiang Ma
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- Correspondence: (S.Z.); (Y.W.)
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (S.Z.); (Y.W.)
| |
Collapse
|
25
|
Huang C, Xue X, Gong N, Jiang J. Ginsenoside Rg1 suppresses paraquat-induced epithelial cell senescence by enhancing autophagy in an ATG12-dependent manner. ENVIRONMENTAL TOXICOLOGY 2022; 37:2302-2313. [PMID: 35657166 DOI: 10.1002/tox.23597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ), as a widely used herbicide, is highly toxic to human. PQ-induced pulmonary fibrosis is the main reason for respiratory failure and death. In PQ-poisoned mice, we find abundant senescent epithelial cells in the lung tissues, which can contribute to the activation of pulmonary fibroblasts. Ginsenoside Rg1 (Rg1), the main active component of ginseng, possess beneficial properties against aging. In our work, we aimed to investigate the potential protective effects of Rg1 on PQ-induced pulmonary fibrosis and the underlying mechanism. In vivo, the treatment of Rg1 can attenuate PQ-induced pulmonary fibrosis and decrease senescence and senescence associated secretory phenotype (SASP) expression. In vitro, Rg1 can effectively eliminate senescent cells via apoptosis, but not normal cells. In addition, we demonstrate that Rg1 can enhance autophagy activity via inducing the expression of ATG12. Inhibition of autophagy via 3-MA or transfection of the siRNA targeting ATG12 can impair the antiaging effect of Rg1. Taken together, our data implicates that Rg1 can protect pulmonary epithelial cells from PQ-induced cellular senescence in an ATG12 dependent manner, which may provide a preventive and therapeutic strategy for PQ poisoning-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| | - Xiang Xue
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| | - Nengkai Gong
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| | - Jinghan Jiang
- Department of General Practice Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| |
Collapse
|
26
|
Yuan H, Xu Y, Luo Y, Zhang J, Zhu X, Xiao J. Ganoderic acid D prevents oxidative stress-induced senescence by targeting 14-3-3ε to activate CaM/CaMKII/NRF2 signaling pathway in mesenchymal stem cells. Aging Cell 2022; 21:e13686. [PMID: 35929187 PMCID: PMC9470892 DOI: 10.1111/acel.13686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023] Open
Abstract
Stem cell senescence is an important cause of aging. Delaying senescence may present a novel way to combat aging and age-associated diseases. This study provided a mechanistic insight into the protective effect of ganoderic acid D (GA-D) against human amniotic mesenchymal stem cell (hAMSCs) senescence. GA-D, a Ganoderma lucidum-derived triterpenoid, markedly prevented hAMSCs senescence via activating the Ca2+ calmodulin (CaM)/CaM-dependent protein kinase II (CaMKII)/nuclear erythroid 2-related factor 2 (Nrf2) axis, and 14-3-3ε was identified as a target of GA-D. 14-3-3ε-encoding gene (YWHAE) knockdown in hAMSCs reversed the activation of the CaM/CaMKII/Nrf2 signals to attenuate the GA-D anti-aging effect and increase senescence-associated β-galactosidase (SA-β-gal), p16 and p21 expression levels, including reactive oxygen species (ROS) production, thereby promoting cell cycle arrest and decreasing differentiation potential. YWHAE overexpression maintained or slightly enhanced the GA-D anti-aging effect. GA-D prevented d-galactose-caused aging in mice by significantly increasing the total antioxidant capacity, as well as superoxide dismutase and glutathione peroxidase activity, and reducing the formation of malondialdehyde, advanced glycation end products, and receptor of advanced glycation end products. Consistent with the protective mechanism of GA-D against hAMSCs senescence, GA-D delayed the senescence of bone-marrow mesenchymal stem cells in this aging model in vivo, reduced SA-β-gal and ROS production, alleviated cell cycle arrest, and enhanced cell viability and differentiation via regulating 14-3-3ε and CaM/CaMKII/Nrf2 axis. Therefore, GA-D retards hAMSCs senescence by targeting 14-3-3ε to activate the CaM/CaMKII/Nrf2 signaling pathway. Furthermore, the in vivo GA-D anti-aging effect may involve the regulation of stem cell senescence via the same signal axis.
Collapse
Affiliation(s)
- Huan Yuan
- Institute of Medicinal BiotechnologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology and Guizhou Provincial Research Center for Translational MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yan Xu
- Institute of Medicinal BiotechnologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology and Guizhou Provincial Research Center for Translational MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yi Luo
- Institute of Medicinal BiotechnologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology and Guizhou Provincial Research Center for Translational MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jia‐Rong Zhang
- Institute of Medicinal BiotechnologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xin‐Xin Zhu
- Institute of Medicinal BiotechnologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jian‐Hui Xiao
- Institute of Medicinal BiotechnologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology and Guizhou Provincial Research Center for Translational MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
27
|
Shi S, Wang F, Chen B, Pan J, Luo D, Pei C, Huang D, Wang X, Wang Y, Shen Z, Li W, Wu Y, He Y, Wang Z. Efficacy and Safety of Shenfu Injection for Severe Pneumonia in the Elderly: A Systematic Review and Meta-Analysis Based on Western and Eastern Medicine. Front Pharmacol 2022; 13:779942. [PMID: 36091817 PMCID: PMC9454296 DOI: 10.3389/fphar.2022.779942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Although increasing clinical trials studying Shenfu injection (SFI) comprising panaxoside 0.8 mg/ml extracted from Panax ginseng C.A. Mey. and aconitine 0.1 mg/ml extracted from Aconitum carmichaeli Debeaux for elderly patients with severe pneumonia on biomarkers associated with COVID-19 progression are emerging, there is no evidence-based evaluation for the effect of SFI on elderly severe pneumonia. Objectives: To evaluate the effect of SFI on elderly patients with severe pneumonia providing hints for treating critical COVID-19, we conducted a systematic review and meta-analysis. Methods: Nine databases, namely, PubMed, EMBASE, Web of Science, Science Direct, Google Scholar, Wanfang, Chongqing VIP Database, CNKI, and SinoMed were used to search clinical trials reporting the effect of SFI as an adjuvant for elderly severe pneumonia on outcomes of interest. Primary outcomes were total effective rate, Acute Physiology and Chronic Health Evaluation (APACHE) II score, mortality, and safety. Secondary outcomes were predictors associated with COVID-19 progression. Duplicated or irrelevant articles with unavailable data were excluded. Cochrane Collaboration’s tool was used to evaluate the risk of bias by two reviewers independently. All data were analyzed by Rev Man 5.4. Continuous variables were shown as weighted mean difference (WMD) or standard mean difference (SMD) with 95% confidence intervals (95% CI), whereas dichotomous data were calculated as the risk ratio (RR) with 95% CI. Results: We included 20 studies with 1, 909 participants, and the pooled data showed that compared with standard control, SFI could improve the total effective rate (RR = 1.25, 95% CI = 1.14–1.37, and n = 689), APACHE II score (WMD = −2.95, 95% CI = −3.35, −2.56, and n = 809), and predictors associated with COVID-19 progression (brain natriuretic peptide, creatine kinase, stroke volume, cardiac output, left ventricular ejection fraction, cardiac index, sE-selectin, von Willebrand factor, activated partial thromboplastin time, platelet counts, D-Dimer, procalcitonin, and WBC count). SFI may reduce mortality (RR = 0.52, 95% CI = 0.37–0.73, and n = 429) and safety concerns (RR = 0.29, 95% CI = 0.17–0.51, and n = 150) for elderly severe pneumonia. Conclusion: SFI as an adjuvant may improve the total effective rate, APACHE II score, gas exchange, and predictors associated with COVID-19 progression, reducing mortality and safety concerns for elderly patients with severe pneumonia.
Collapse
Affiliation(s)
- Shihua Shi
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
- *Correspondence: Shihua Shi, ; Jie Pan, ; Zhenxing Wang,
| | - Fei Wang
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bonan Chen
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Shihua Shi, ; Jie Pan, ; Zhenxing Wang,
| | - Dan Luo
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caixia Pei
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Demei Huang
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Wang
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilan Wang
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zherui Shen
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihao Li
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| | - Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yacong He
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenxing Wang
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shihua Shi, ; Jie Pan, ; Zhenxing Wang,
| |
Collapse
|
28
|
Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9299574. [PMID: 35498130 PMCID: PMC9045968 DOI: 10.1155/2022/9299574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.
Collapse
|
29
|
Rg1 Protects Hematopoietic Stem Cells from LiCl-Induced Oxidative Stress via Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2875583. [PMID: 35388306 PMCID: PMC8977299 DOI: 10.1155/2022/2875583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/09/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Background Ginsenoside Rg1 is a major component of ginseng with antioxidative and antiaging effects, which is a traditional Chinese medicine. In this study, we investigated the potential spillover and mechanism of action of Rg1 on LiCl-driven hematopoietic stem cell aging. Results Collect the purified Sca-1+ hematopoietic cells for differentiation ability detection and biochemical and molecular labeling. The experiment found that Rg1 plays an antiaging role in reversing the SA-β-gal staining associated with LiCl-induced hematopoietic stem cell senescence, the increase in p53 and p21 proteins, and sustained DNA damage. At the same time, Rg1 protects hematopoietic cells from the reduced differentiation ability caused by LiCl. In addition, Rg1 increased the excessive inhibition of intracellular GSK-3β protein, resulting in the maintenance of β-catenin protein levels in hematopoietic cells after LiCl treatment. Then, the target gene level of β-catenin can be maintained. Conclusions Rg1 exerts the pharmacological effect of maintaining the activity of GSK-3β in Sca-1+ hematopoietic cells, enhances the antioxidant potential of cells, improves the redox homeostasis, and thus protects cells from the decline in differentiation ability caused by aging. This study provides a potential therapeutic strategy to reduce stem cell pool failure caused by chronic oxidative damage to hematopoietic stem cells.
Collapse
|
30
|
Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK. Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Front Cell Dev Biol 2022; 10:664261. [PMID: 35399522 PMCID: PMC8987924 DOI: 10.3389/fcell.2022.664261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.
Collapse
Affiliation(s)
- Zoya Mann
- Independent Researcher, New Delhi, India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
31
|
Xu J, Zhou H, Xiang G. Identification of Key Biomarkers and Pathways for Maintaining Cognitively Normal Brain Aging Based on Integrated Bioinformatics Analysis. Front Aging Neurosci 2022; 14:833402. [PMID: 35356296 PMCID: PMC8959911 DOI: 10.3389/fnagi.2022.833402] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Background Given the arrival of the aging population has caused a series of social and economic problems, we aimed to explore the key genes underlying cognitively normal brain aging and its potential molecular mechanisms. Methods GSE11882 was downloaded from Gene Expression Omnibus (GEO). The data from different brain regions were divided into aged and young groups for analysis. Co-expressed differentially expressed genes (DEGs) were screened. Functional analysis, protein–protein interaction (PPI) network, microRNA (miRNA)-gene, and transcription factor (TF)-gene networks were performed to identify hub genes and related molecular mechanisms. AlzData database was used to elucidate the expression of DEGs and hub genes in the aging brain. Animal studies were conducted to validate the hub genes. Results Co-expressed DEGs contained 7 upregulated and 87 downregulated genes. The enrichment analysis indicated DEGs were mainly involved in biological processes and pathways related to immune-inflammatory responses. From the PPI network, 10 hub genes were identified: C1QC, C1QA, C1QB, CD163, FCER1G, VSIG4, CD93, CD14, VWF, and CD44. CD44 and CD93 were the most targeted DEGs in the miRNA-gene network, and TIMP1, HLA-DRA, VWF, and FGF2 were the top four targeted DEGs in the TF-gene network. In AlzData database, the levels of CD44, CD93, and CD163 in patients with Alzheimer’s disease (AD) were significantly increased than those in normal controls. Meanwhile, in the brain tissues of cognitively normal mice, the expression of CD44, CD93, and CD163 in the aged group was significantly lower than those in the young group. Conclusion The underlying molecular mechanisms for maintaining healthy brain aging are related to the decline of immune-inflammatory responses. CD44, CD93, and CD 163 are considered as potential biomarkers. This study provides more molecular evidence for maintaining cognitively normal brain aging.
Collapse
Affiliation(s)
- Jinling Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Hui Zhou
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Guangda Xiang,
| |
Collapse
|
32
|
Ginsenoside Rg1 as a Potential Regulator of Hematopoietic Stem/Progenitor Cells. Stem Cells Int 2022; 2021:4633270. [PMID: 35003268 PMCID: PMC8741398 DOI: 10.1155/2021/4633270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/24/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ginsenoside Rg1 (Rg1), a purified, active component of the root or stem of ginseng, exerts positive effects on mesenchymal stem cells (MSCs). Many recent studies have found that hematopoietic stem cells (HSCs), which can develop into hematopoietic progenitor cells (HPCs) and mature blood cells, are another class of heterogeneous adult stem cells that can be regulated by Rg1. Rg1 can affect HSC proliferation and migration, regulate HSC/HPC differentiation, and alleviate HSC aging, and these findings potentially provide new strategies to improve the HSC homing rate in HSC transplantation and for the treatment of graft-versus-host disease (GVHD) or other HSC/HPC dysplasia-induced diseases. In this review, we used bioinformatics methods, molecular docking verification, and a literature review to systematically explore the possible molecular pharmacological activities of Rg1 through which it regulates HSCs/HPCs.
Collapse
|
33
|
Dong Y, Guo C, Zhou W, Li W, Zhang L. Using a new HSPC senescence model in vitro to explore the mechanism of cellular memory in aging HSPCs. Stem Cell Res Ther 2021; 12:444. [PMID: 34365970 PMCID: PMC8351417 DOI: 10.1186/s13287-021-02455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Age-associated changes attenuate human blood system functionality through the aging of hematopoietic stem and progenitor cells (HSPCs), manifested in human populations an increase in myeloproliferative disease and even leukemia; therefore, study on HSPC senescence bears great significance to treat hematopoietic-associated disease. Furthermore, the mechanism of HSPC aging is lacking, especially the cellular memory mechanism. Here, we not only reported a new HSPC senescence model in vitro, but also propose and verify the cellular memory mechanism of HSPC aging of the Polycomb/Trithorax system. METHODS HSPCs (Lin-c-kit+ cells) were isolated and purified by magnetic cell sorting (MACS). The proportions and cell cycle distribution of cells were determined by flow cytometry; senescence-related β-galactosidase assay, transmission electron microscope (TEM), and colony-forming unit (CFU)-mix assay were detected for identification of the old HSPC model. Proteomic tests and RNA-seq were applied to analyze differential pathways and genes in the model cells. qPCR, Western blot (WB), and chromatin immunoprecipitation PCR (CHIP-PCR) were used to detect the gene expression of cell memory-related proteins. Knockdown of cell memory-related key genes was performed with shRNA interference. RESULTS In the model old HSPCs, β-gal activity, cell cycle, colony-forming ability, aging-related cell morphology, and metabolic pathway were significantly changed compared to the young HSPCs. Furthermore, we found the model HSPCs have more obvious aging manifestations than those of natural mice, and IL3 is the major factor contributing to HSPC aging in the model. We also observed dramatic changes in the expression level of PRC/TrxG complexes. After further exploring the downstream molecules of PRC/TrxG complexes, we found that Uhrf1 and TopII played critical roles in HSPC aging based on the HSPC senescence model. CONCLUSIONS These findings proposed a new HSPC senescence model in vitro which we forecasted could be used to preliminary screen the drugs of the HSPC aging-related hemopathy and suggested cellular memory mechanism of HSPC aging.
Collapse
Affiliation(s)
- Yongpin Dong
- grid.412540.60000 0001 2372 7462Institute of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave., Pudong, Shanghai, 201203 China ,grid.73113.370000 0004 0369 1660Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chunni Guo
- grid.16821.3c0000 0004 0368 8293Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuxiong Zhou
- grid.412540.60000 0001 2372 7462Institute of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave., Pudong, Shanghai, 201203 China
| | - Wenfang Li
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China.
| | - Lina Zhang
- Institute of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave., Pudong, Shanghai, 201203, China.
| |
Collapse
|
34
|
Ginsenoside Rg1 can restore hematopoietic function by inhibiting Bax translocation-mediated mitochondrial apoptosis in aplastic anemia. Sci Rep 2021; 11:12742. [PMID: 34140535 PMCID: PMC8211841 DOI: 10.1038/s41598-021-91471-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The present study investigated, the anti-apoptotic activity of Ginsenoside Rg1 (Rg1) via inhibition of Bax translocation and the subsequent recovery of hematopoietic function. Mitochondrial apoptosis in bone marrow mononuclear cells (BMNCs) was observed in aplastic anemia (AA) patients. To establish a mouse model of AA, BALB/c mice were transplanted with lymph node cells from DBA/2 donor mice via vein injection after treatment with Co60 γ-radiation. After treatment with Rg1 for 14 days, the peripheral blood and Lin–Sca-1 + c-Kit + (LSK) cell counts of the treated group were increased compared with those of the untreated model mice. In in vivo and in vitro tests of LSKs, Rg1 was found to increase mitochondrial number and the ratio of Bcl-2/Bax and to decrease damage to the mitochondrial inner and outer membranes, the mitochondrial Bax level and the protein levels of mitochondrial apoptosis-related proteins AIF and Cyt-C by decreasing the ROS level. Rg1 also improved the concentration–time curve of MAO and COX and levels of ATP, ADP and AMP in an in vitro test. In addition, high levels of Bax mitochondrial translocation could be corrected by Rg1 treatment. Levels of markers of mitochondrial apoptosis in the Rg1-treated group were significantly better than those in the AA model group, implying that Rg1 might improve hematopoietic stem cells and thereby restore hematopoietic function in AA by suppressing the mitochondrial apoptosis mediated by Bax translocation.
Collapse
|
35
|
Xu X, Qu Z, Qian H, Li Z, Sun X, Zhao X, Li H. Ginsenoside Rg1 ameliorates reproductive function injury in C57BL/6J mice induced by di-N-butyl-phthalate. ENVIRONMENTAL TOXICOLOGY 2021; 36:789-799. [PMID: 33331133 DOI: 10.1002/tox.23081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
With the aggravation of environmental pollution, the incidence of infertility is increasing. Ginsenoside Rg1 is a monomer component extracted from Panax ginseng. It has been found that Ginsenoside Rg1 is able to prevent premature ovarian failure and delay testicular senescence. Therefore, we speculate Ginsenoside Rg1 may have great potential to prevent and treat infertility. The aim of this work is to explore whether Ginsenoside Rg1 plays a protective role in the dinbutyl phthalate (DBP)-induced reproductive function injury mice, and to elucidate the potential mechanism. C57BL/6J male mice were administered by DBP with or without Ginsenoside Rg1 treatment and serum, testis and epididymis were collected for further analysis. Sperm analysis, hematoxylin and eosin staining, and serum hormone detection indicated that Ginsenoside Rg1 treatment improved the sperm density and sperm motility, reduced the testicular tissue damage, increased the serum testosterone and luteinizing hormone levels, and decreased the serum follicle-stimulating hormone level in DBP-induced mice. Furthermore, Ginsenoside Rg1 treatment upregulated expression levels of spermatogenesis-related protein, Cx43, E-cadherin, p-PI3K, p-Akt, and mTOR in the mice treated by DBP, observed by using a immunohistochemistry assay, a real-time quantitative PCR assay, and a western blot analysis. The present study reveals that Ginsenoside Rg1 may exert anti-DBP-induced reproductive function injury in C57BL/6J mice. In addition, the protect role of Ginsenoside Rg1 in spermatogenesis may be associated with the regulation of reproductive hormones, upregulation of spermatogenic associated proteins expression, restoration of the gap junctions, and the activation of PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xiaolei Xu
- School of Public Health, Beihua University, Jilin, China
| | - Zhenting Qu
- Department of Pediatrics, Jilin Combine Traditional Chinese and Western Hospital, Jilin, China
| | - Honghao Qian
- School of Public Health, Beihua University, Jilin, China
| | - Zhongming Li
- School of Public Health, Beihua University, Jilin, China
| | - Xiuling Sun
- School of Public Health, Beihua University, Jilin, China
| | - Xinrui Zhao
- Department of Iodine Deficiency Disorders, The Second Institue for Endemic Disease Control and Prevention of Jilin Province, Jilin, China
| | - Huan Li
- School of Public Health, Beihua University, Jilin, China
| |
Collapse
|
36
|
Zhou X, Sun H, Tan F, Yi R, Zhou C, Deng Y, Mu J, Zhao X. Anti-aging effect of Lactobacillus plantarum HFY09-fermented soymilk on D-galactose-induced oxidative aging in mice through modulation of the Nrf2 signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
Zhou S, Xu S, Li H, Zhao C. The inhibitory effects of different kinds of ginsenosides on skin pigmentation in melasma mice model. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Deciphering the Key Pharmacological Pathways and Targets of Yisui Qinghuang Powder That Acts on Myelodysplastic Syndromes Using a Network Pharmacology-Based Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8877295. [PMID: 33488754 PMCID: PMC7787775 DOI: 10.1155/2020/8877295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 01/21/2023]
Abstract
Background Yisui Qinghuang powder (YSQHP) is an effective traditional Chinese medicinal formulation used for the treatment of myelodysplastic syndromes (MDS). However, its pharmacological mechanism of action is unclear. Materials and Methods In this study, the active compounds of YSQHP were screened using the traditional Chinese medicine systems pharmacology (TCMSP) and HerDing databases, and the putative target genes of YSQHP were predicted using the STITCH and DrugBank databases. Then, we further screened the correlative biotargets of YSQHP and MDS. Finally, the compound-target-disease (C-T-D) network was conducted using Cytoscape, while GO and KEGG analyses were conducted using R software. Furthermore, DDI-CPI, a web molecular docking analysis tool, was used to verify potential targets and pathways. Finally, binding site analysis was performed to identify core targets using MOE software. Results Our results identified 19 active compounds and 273 putative target genes of YSQHP. The findings of the C-T-D network revealed that Rb1, CASP3, BCL2, and MAPK3 showed the most number of interactions, whereas indirubin, tryptanthrin, G-Rg1, G-Rb1, and G-Rh2 showed the most number of potential targets. The GO analysis showed that 17 proteins were related with STPK activity, PUP ligase binding, and kinase regulator activity. The KEGG analysis showed that PI3K/AKT, apoptosis, and the p53 pathways were the main pathways involved. DDI-CPI identified the top 25 proteins related with PI3K/AKT, apoptosis, and the p53 pathways. CASP8, GSK3B, PRKCA, and VEGFR2 were identified as the correlative biotargets of DDI-CPI and PPI, and their binding sites were found to be indirubin, G-Rh2, and G-Rf. Conclusion Taken together, our results revealed that YSQHP likely exerts its antitumor effects by binding to CASP8, GSK3B, PRKCA, and VEGFR2 and by regulating the apoptosis, p53, and PI3K/AKT pathways.
Collapse
|
39
|
Luo Y, Wang B, Liu J, Ma F, Luo D, Zheng Z, Lu Q, Zhou W, Zheng Y, Zhang C, Wang Q, Sha W, Chen H. Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury. Aging (Albany NY) 2020; 13:1132-1152. [PMID: 33293477 PMCID: PMC7835034 DOI: 10.18632/aging.202241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
UNLABELLED Content and aims: Ginsenoside RG1 (RG1) is thought to enhance proliferation and differentiation of stem cell, however, its role on paracrine efficacy of stem cell remains unclear. Here we examined if and how RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) on radiation induced intestinal injury (RIII). METHOD Irradiated rats randomly received intraperitoneal injection of conditioned medium (CM) derived from non-activated BM-MSCs (MSC-CM) or BM-MSCs pre-activated by RG-1 (RG1-MSC-CM). Intestinal samples were collected, followed by the evaluation of histological and functional change, apoptosis, proliferation, inflammation, angiogenesis and stem cell regeneration. The effects of heme oxygenase-1 (HO-1) were investigated using HO-1 inhibitor or siRNA. RESULT RG1 enhanced the paracrine efficacy of BM-MSCs partially through upregulation of HO-1. RG1-MSC-CM rather than MSC-CM significantly improved the survival and intestinal damage of irradiated rats via improvement of intestinal proliferation/apoptosis, inflammation, angiogenesis and stem cell regeneration in a HO-1 dependent mechanism. The mechanism for the superior paracrine efficacy of RG1-MSC-CM is related to a higher release of two pivotal cytokines VEGF and IL-6. CONCLUSION Our study revealed that RG1 enhances paracrine effects of BM-MSCs on RIII, providing a novel method for maximizing the paracrine potential of MSCs.
Collapse
Affiliation(s)
- Yujun Luo
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Beibei Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Jianhua Liu
- Department of Oncology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Faxin Ma
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, P.R. China
| | - Dongling Luo
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Zhongwen Zheng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Quan Lu
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Yue Zheng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Chen Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Qiyi Wang
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Weihong Sha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Hao Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| |
Collapse
|
40
|
He L, Wang X, Cheng D, Xiong Z, Liu X. Ginsenoside Rg1 improves pathological damages by activating the p21‑p53‑STK pathway in ovary and Bax‑Bcl2 in the uterus in premature ovarian insufficiency mouse models. Mol Med Rep 2020; 23:37. [PMID: 33179093 PMCID: PMC7684879 DOI: 10.3892/mmr.2020.11675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the effects of the ginsenoside Rg1 on D-galactose (D-gal)-induced mouse models of premature ovarian insufficiency (POI) and the related mechanisms. C57BL/6 female mice were randomly grouped into the following: i) D-gal [subcutaneously (s.c.) 200 mg/kg/d D-gal for 42 days]; ii) Rg1 [intraperitoneally (i.p.) 20 mg/kg/d Rg1 for 28 days]; iii) D-gal + Rg1 (s.c. 200 mg/kg/d D-gal for 42 days followed by i.p. 20 mg/kg/d Rg1 for 28 days); and iv) saline groups (equivalent volume of saline s.c. and i.p.). Hematoxylin and eosin staining and electron microscopy were used to analyze uterine and ovarian morphology. Expression levels of senescence factors (p21, p53 and serine/threonine kinase), secretion of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β] and the activities of oxidation biomarkers [superoxide dismutase (T-SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-px)] were analyzed. The results showed that mice in the Rg1 + D-gal group had significantly higher uterine and ovarian weight compared with those in the D-gal group. Uterus morphology was also improved, based on the comparison between the D-gal group and the Rg1 + D-gal group. In addition, the Rg1 treatment after D-gal administration significantly decreased the expression of senescence-associated factors, enhanced the activities of anti-oxidant enzymes total T-SOD and GSH-px in addition to reducing TNF-α, IL-1β, MDA and IL-6 (based on the comparison between the D-gal group and the Rg1 + D-gal group). In conclusion, the present study suggested that the ginsenoside Rg1 improved pathological damages in the ovary and uterus by increasing anti-oxidant and anti-inflammatory abilities whilst reducing the expression of senescence signaling pathways in POI mouse models.
Collapse
Affiliation(s)
- Lianli He
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaojuan Wang
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Daigang Cheng
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengai Xiong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoyun Liu
- Department of Gynecology and Obstetrics, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
41
|
Abruzzo PM, Canaider S, Pizzuti V, Pampanella L, Casadei R, Facchin F, Ventura C. Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells Int 2020; 2020:8827038. [PMID: 33101419 PMCID: PMC7568162 DOI: 10.1155/2020/8827038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases (ARDs). This process involves physiological, structural, biochemical, and molecular changes of cells, leading to a characteristic trait referred to "senescence-associated secretory phenotype (SASP)." In particular, with aging, stem cells (SCs) in situ exhibit a diminished capacity of self-renewal and show a decline in their functionality. The identification of interventions able to prevent the accumulation of senescent SCs in the organism or to pretreat cultured multipotent mesenchymal stromal cells (MSCs) prior to employing them for cell therapy is a main purpose of medical research. Many approaches have been investigated and resulted effective to prevent or counteract SC senescence in humans, as well as other animal models. In this work, we have reviewed the chance of using a number of herb-derived products as novel tools in the treatment of cell senescence, highlighting the efficacy of these agents, often still far from being clearly understood.
Collapse
Affiliation(s)
- Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
42
|
Wang B, Zhang J, Pang X, Yuan J, Yang J, Yang Y, Gao L, Zhang J, Fan Z, He L, Yue W, Li Y, Pei X, Ma B. Furostanol Saponins from Trillium tschonoskii Promote the Expansion of Human Cord Blood Hematopoietic Stem and Progenitor Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:2567-2577. [PMID: 32870000 DOI: 10.1021/acs.jnatprod.9b01268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trillium tschonoskii is a medicinal plant known to biosynthesize steroidal saponins. A phytochemical investigation of the rhizomes of T. tschonoskii led to the isolation of nine new furostanol saponins (1-9) and 11 known analogues (10-20). Five of these new compounds were shown to have hydroxy groups at the C-5 and C-6 positions, while two possess a rare aglycone containing carbonyl groups at the C-16 and C-22 positions as well as a Δ17(20) double bond, and the others have conjugated double bonds in the E-ring or have different sugar chains at the C-3 position. All the isolates were tested for their effect on the expansion of human cord blood (CB) CD34+ hematopoietic stem and progenitor cells. It was found that CB CD34+ cells treated with compounds 6, 7, 9, 10, 14, 15, and 19 showed increased numbers of rigorously phenotype-defined hematopoietic stem cells. Notably, compounds 9, 10, 13, and 14 demonstrated an enhanced ability to increase the percentages and numbers of CB CD34+CD38- cells and multipotential progenitors. The present study is the first to report that furostanol saponins from T. tschonoskii rhizomes can promote hematopoietic stem/progenitor cell (HSPC) expansion.
Collapse
Affiliation(s)
- Bei Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
- Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Junyong Yuan
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
| | - Jie Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Yinjun Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Lin Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Zeng Fan
- Institute of Health Service and Transfusion Medicine, Beijing 100850, People's Republic of China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
| | - Lijuan He
- Institute of Health Service and Transfusion Medicine, Beijing 100850, People's Republic of China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
| | - Wen Yue
- Institute of Health Service and Transfusion Medicine, Beijing 100850, People's Republic of China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
| | - Yanhua Li
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
| | - Xuetao Pei
- Institute of Health Service and Transfusion Medicine, Beijing 100850, People's Republic of China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, People's Republic of China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
- Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
43
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
44
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
45
|
Ginsenoside Rg1 Improves Differentiation by Inhibiting Senescence of Human Bone Marrow Mesenchymal Stem Cell via GSK-3 β and β-Catenin. Stem Cells Int 2020; 2020:2365814. [PMID: 32565825 PMCID: PMC7271209 DOI: 10.1155/2020/2365814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives To demonstrate the effect of Ginsenoside Rg1 on the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Subsequently, a rational mechanism for the detection of Rg1 which affects mesenchymal stem cell differentiation was explored. Methods Flow cytometry is used for cell identification. The differentiation ability of hBM-MSCs was studied by differentiation culture. SA-β-gal staining is used to detect cell senescence levels. Western blot and immunofluorescence were used to determine protein expression levels. RT-qPCR is used to detect mRNA expression levels. Results Rg1 regulates the differentiation of hBM-MSCs. Differentiation culture analysis showed that Rg1 promoted cells to osteogenesis and chondrogenesis. Western blot results showed that Rg1 regulated the overactivation of the β-catenin signaling pathway and significantly adjusted the phosphorylation of GSK-3β. GSK-3β inhibitor (Licl) significantly increased Rg1-induced phosphorylation of GSK-3β, which in turn reduced Rg1-induced differentiation of hBM-MSCs. Conclusion Ginsenoside Rg1 can reduce the excessive activation of the Wnt pathway in senescent cells by inhibiting the phosphorylation of GSK-3β and regulate the mesenchymal stem cell differentiation ability.
Collapse
|
46
|
Merino JJ, Cabaña-Muñoz ME, Pelaz MJ. The Bluegreen Algae (AFA) Consumption over 48 Hours Increases the Total Number of Peripheral CD34+ Cells in Healthy Patients: Effect of Short-Term and Long-Term Nutritional Supplementation (Curcumin/AFA) on CD34+ Levels (Blood). J Pers Med 2020; 10:E49. [PMID: 32521810 PMCID: PMC7354690 DOI: 10.3390/jpm10020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
Several active principles from plants could trigger the release of stem cells from the bone marrow. Stem cell mobilizers have shown side effects in patients. Thus, the purpose of this paper is to find the natural products from plants (curcuminoids, glycosinolate of sulforaphane, AFA bluegreen algae), which could be potential stem mobilizes without adverse side effects. The antioxidant curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-2,5-dione], glycosinolate of sulforaphane (broccoli) or AFA (Aphanizomenon flos) extract promote beneficial effects in patients. The number of circulating stem cells were monitored by HSC marker-CD34 by flow cytometry in peripheral blood from healthy subjects. CD34 is a hematological stem cells (HSC) marker. A double-blind study was conducted in 22 healthy subjects. We have evaluated whether short-term AFA-Aphanizomenon flos aquae-algae or curcuminoids consumption (powder or liquid formulation) over 48 consecutive hours could increase the total number of peripheral CD34+ blood cells (n = 22, n = 5 subjects/group). The total number of circulating CD34+ cells were quantified after short-term and long-term nutritional supplementation; their levels were compared with their own basal levels (n = 5/group, controls: before taking any supplement) or placebo-treated patients (n = 7); their average age was 54 years old. We also evaluated whether long-term nutritional supplementation with several nutraceuticals could enhance HSC mobilization by increasing the total number of peripheral CD-34+ cell after seven or 38 consecutive days of administration (n = 5, with seven placebo-treated patients). The long-term administration take place with these doses/day [curcuminoids: 2000 mg/day, equivalent to 120 mg of curcuminoids/day), glycosinolate of sulforaphane (66 mg/day), plus AFA Algae bluegreen extract (400 mg/day)]. On the last day (10 A.M.) of treatment, blood samples were collected six hours after taking these supplements; the average age was 54 years old. Notably, the blue green AFA algae extract consumption over 48 h enhances HSC mobilization by increasing the total number of peripheral CD34+ cells. The long-term administration with curcuminoids, glycosinolate of sulforaphane, and AFA bluegreen algae extract also increased the total number of CD34-HSC cells after seven or 38 days of consecutive of administration in healthy subjects.
Collapse
Affiliation(s)
- José Joaquín Merino
- Dpto. Farmacologia, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
47
|
Liu X, Shang S, Chu W, Ma L, Jiang C, Ding Y, Wang J, Zhang S, Shao B. Astragaloside IV ameliorates radiation-induced senescence via antioxidative mechanism. ACTA ACUST UNITED AC 2020; 72:1110-1118. [PMID: 32412100 DOI: 10.1111/jphp.13284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Ageing is a universal and gradual process of organ deterioration. Radiation induces oxidative stress in cells, which leads to genetic damage and affects cell growth, differentiation and senescence. Astragaloside (AS)-IV has antioxidative, anti-apoptotic and anti-inflammatory properties. METHODS To study the protective mechanism of AS-IV on radiation-induced brain cell senescence, we constructed a radiation-induced brain cell ageing model, using biochemical indicators, senescence-associated galactosidase (SA-β-gal) senescence staining, flow cytometry and Western blotting to analyse the AS-IV resistance mechanism to radiation-induced brain cell senescence. KEY FINDINGS Radiation reduced superoxide dismutase (SOD) activity and expressions of cyclin-dependent kinase (CDK2), CDK4, cyclin E and transcription factor E2F1 proteins, and increased expressions of p21, p16, cyclin D and retinoblastoma (RB) proteins, malondialdehyde (MDA) activity, SA-β-gal-positive cells and cells stagnating in G1 phase. After treatment with AS-IV, the level of oxidative stress in cells significantly decreased and expression of proteins related to the cell cycle and ageing significantly changed. In addition, SA-β-gal-positive cells and cells arrested in G1 phase were significantly reduced. CONCLUSIONS These data suggest that AS-IV can antagonize radiation-induced brain cells senescence; and its mechanism may be related to p53-p21 and p16-RB signalling pathways of ageing regulation.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shuying Shang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Weiwei Chu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Liang Ma
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou, Gansu Province, China
| | - Jianlin Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
48
|
Guan S, Yu P, Cao J, Xi X, Zhang Q, Zhu C, Hu H, Gong X, Fan H. Ginsenoside Rg1 protects against cigarette smoke-induced airway remodeling by suppressing the TGF-β1/Smad3 signaling pathway. Am J Transl Res 2020; 12:493-506. [PMID: 32194898 PMCID: PMC7061821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating and common respiratory disease characterized by chronic inflammation and progressive airway remodeling. Ginsenoside Rg1 (GRg1), a major active component of Panax ginseng, has been found to possess beneficial properties against acute lung injury and respiratory diseases. However, the effects of GRg1 on airway remodeling in COPD remain unclear. In this study, we aimed to investigate the potential protective effects of GRg1 on airway remodeling induced by cigarette smoke (CS) and the underlying mechanism. A rat model of COPD was established in which the animals were subjected to CS and GRg1 daily for 12 weeks. Subsequently, we evaluated lung function, inflammatory responses, along with airway remodeling and associated signaling factors. GRg1 treatment was found to improve pulmonary function, reduce airway collagen volume fraction, and markedly reduce the expression of IL-6, TNF-α, α-SMA, and collagen I. Moreover, GRg1 treatment decreased the expression of TGF-β1, TGF-βR1, and phosphorylated-Smad3. In vitro, pretreatment of MRC5 human lung fibroblasts with GRg1 prior to exposure to cigarette smoke extract (CSE) reversed the cell ultrastructure disorder, decreased the expression of IL-6 and TNF-α, and significantly attenuated transdifferentiation of MRC5 cells by suppressing α-SMA and collagen I expression. Additionally, GRg1 suppressed the TGF-β1/Smad3 signaling pathway in CSE-stimulated MRC5 cells, whereas Smad3 over-expression abolished the anti-transdifferentiation effect of GRg1. In conclusion, the results of our study demonstrated that GRg1 improves lung function and protects against CS-induced airway remodeling, in part by down-regulating the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Sibin Guan
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Ping Yu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Jianhong Cao
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Xiaoling Xi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Qingliu Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Chenying Zhu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Hao Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Xin Gong
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| | - Huimin Fan
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
49
|
de Rezende MM, Ng-Blichfeldt JP, Justo GZ, Paredes-Gamero EJ, Gosens R. Divergent effects of Wnt5b on IL-3- and GM-CSF-induced myeloid differentiation. Cell Signal 2019; 67:109507. [PMID: 31857239 PMCID: PMC7116107 DOI: 10.1016/j.cellsig.2019.109507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
The multiple specialized cell types of the hematopoietic system originate from differentiation of hematopoietic stem cells and progenitors (HSPC), which can generate both lymphoid and myeloid lineages. The myeloid lineage is preferentially maintained during ageing, but the mechanisms that contribute to this process are incompletely understood. Here, we studied the roles of Wnt5a and Wnt5b, ligands that have previously been linked to hematopoietic stem cell ageing and that are abundantly expressed by both hematopoietic progenitors and bone-marrow derived niche cells. Whereas Wnt5a had no major effects on primitive cell differentiation, Wnt5b had profound and divergent effects on cytokine-induced myeloid differentiation. Remarkably, while IL-3- mediated myeloid differentiation was largely repressed by Wnt5b, GM-CSF-induced myeloid differentiation was augmented. Furthermore, in the presence of IL-3, Wnt5b enhanced HSPC self-renewal, whereas in the presence ofGM-CSF, Wnt5b accelerated differentiation, leading to progenitor cell exhaustion. Our results highlight discrepancies between IL-3 and GM-CSF, and reveal novel effects of Wnt5b on the hematopoietic system.
Collapse
Affiliation(s)
- Marina Mastelaro de Rezende
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil; Department of Molecular Pharmacology, University of Groningen, Groningen 9713AV, Netherlands
| | - John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, University of Groningen, Groningen 9713AV, Netherlands; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema 09913-030, Brazil
| | - Edgar Julian Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen 9713AV, Netherlands.
| |
Collapse
|
50
|
Reactive Oxygen Species and Nrf2: Functional and Transcriptional Regulators of Hematopoiesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5153268. [PMID: 31827678 PMCID: PMC6885799 DOI: 10.1155/2019/5153268] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are characterized by self-renewal and multilineage differentiation potentials. Although they play a central role in hematopoietic homeostasis and bone marrow (BM) transplantation, they are affected by multiple environmental factors in the BM. Here, we review the effects of reactive oxygen species (ROS) and Nrf2 on HSC function and BM transplantation. HSCs reside in the hypoxic microenvironment of BM, and ROS play an important role in HSPC regulation. Recently, an extraphysiologic oxygen shock/stress phenomenon was identified in human cord blood HSCs collected under ambient air conditions. Moreover, Nrf2 has been recently recognized as a master transcriptional factor that regulates multiple antioxidant enzymes. Since several years, the role of Nrf2 in hematopoiesis has been extensively studied, which has functional similarities of cellular oxygen sensor hypoxia-inducible factor-1 as transcriptional factors. Increasing evidence has revealed that abnormally elevated ROS production due to factors such as genetic defects, aging, and ionizing radiation unexceptionally resulted in lethal impairment of HSC function and hematopoiesis. Both experimental and clinical studies have identified elevated ROS levels as a major culprit of ineffective BM transplantation. Lastly, we discuss the possibility of using small molecule antioxidants, such as N-acetyl cysteine, resveratrol, and curcumin, to augment HSC function and improve the therapeutic efficacy of BM transplantation. Further research on the function of ROS levels and improving the efficacy of BM transplantation may have a great potential for broad clinical applications of HSCs.
Collapse
|