1
|
Wu X, Zhou C, Wang J, Cao M, Wang L, Liang Y. Reproductive toxicity and parental transmission effects of 4-methylbenzylidene camphor (4-MBC) exposure in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107334. [PMID: 40157257 DOI: 10.1016/j.aquatox.2025.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
4-methylbenzylidene camphor (4-MBC), a commonly used UV absorber, is frequently detected in aquatic environment. So far the reproductive toxicity of parental 4-MBC exposure and its effects on gonadal development in offsprings are not clear. In the present study, male and female adult F0 zebrafish were exposed to 100 nM 4-MBC for 14 consecutive days. Our data showed that 4-MBC exposure resulted in gonadal damage in the parental gonads and decreased egg production in females and sperm viability in males. In addition, exposure to 4-MBC resulted in increased levels of estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) in females and decreased testosterone (T) in males, suggesting the estrogenic and antiandrogenic effects of 4-MBC. Parental 4-MBC exposure did not change the hatchability and mortality of the F1 generation, but caused significantly decreased heart rate and gonadal developmental retardation in 60 dpf fish by interfering with the HPG axis. Therefore, 4-MBC exposure to adult zebrafish caused gonadal damage and reduced reproductive performance in the parental generation, which was sex-dependent and caused intergenerational toxicity to the F1 generation. The present study provides new insights into the ecological risks of 4-MBC and its potential contribution to adverse reproductive outcomes in humans.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chenyu Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jing Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
2
|
Chang F, Yin X, Ju H, Zhang Y, Yin L, Zhou X, Feng Y, Diao X. Organic ultraviolet filters in Hainan coral reefs: Distribution, accumulation, and ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125541. [PMID: 39706560 DOI: 10.1016/j.envpol.2024.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Organic ultraviolet filters (OUVFs) have been widely used as functional ingredients of sunscreen products and have entered into marine ecosystems, particularly in tropical areas where solar UV radiation is strong. These chemicals, with their potential toxicity and ecological risk, have raised widespread concern for the protection of the fragile marine ecosystem of coral reefs. In this study, fourteen OUVFs were analyzed among 24 coral species, together with their habitats including seawater and sediment from the coastal coral reef regions of Hainan Island, South China Sea. Surprisingly, all of fourteen OUVFs were detected in each sample, indicating the wide distribution of OUVFs among sites and samples. Among the fourteen OUVFs, benzophenone-3 (BP-3) and 4-methylbenzylidene camphor (4-MBC) were the most abundant, with concentrations ranging from 35.3 to 75.6 and 38.3 to 61.4 ng/L in seawater, from 13.2 to 25.9 and 7.0 to 17.4 ng/g dw in sediment, and from 4.5 to 21.3 and 4.4 to 19.7 ng/g dw in corals, respectively. Analysis of OUVFs in 24 coral species pointed that OUVFs accumulation in corals is morphology dependent: the highest concentration of OUVFs was identified in Galaxea fascicularis with abundant of polyps and tentacles while the lowest levels of OUVFs were found in Porites mayeri (smooth or lobed surface). In corals, we found that these OUVFs accumulated, depending on the coral species and the types of OUVFs. The ecological risk assessment further indicated that BP-3, 4-MBC and BP-8 had posed risks to corals. In addition, significantly higher concentrations of OUVFs were observed in Sanya (a seaside tourist resort) than in the other sites, suggesting that tourist activity and use of sunscreen products are the key to high inputs of sunscreen agents into marine ecosystem. Overall, our study demonstrates a potential risk role for OUVFs in coral protection in tropical areas where coral bleaching events occur.
Collapse
Affiliation(s)
- Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; School of Environment and Ecology, Hainan University, Haikou, 570228, China.
| | - Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Hanye Ju
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Yankun Zhang
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Xueqing Zhou
- Analytical & Testing Center, Hainan University, Haikou, 570228, China; Center for Advanced Studies in Precision Instruments, Hainan University Haikou, 570228, China.
| | - Yujie Feng
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, 571100, China; Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Science, Haikou, 571100, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
da Silveira FFCL, Porto VA, de Sousa BLC, de Souza EV, Lo Nostro FL, Rocha TL, de Jesus LWO. Bioaccumulation and ecotoxicity of parabens in aquatic organisms: Current status and trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125213. [PMID: 39477001 DOI: 10.1016/j.envpol.2024.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Parabens are preservatives widely used in personal care products, pharmaceuticals, and foodstuffs. However, they are still unregulated chemical compounds. Given their extensive use and presence in different environmental compartments, parabens can adversely affect animal health. Thus, the current study aimed to summarize and critically analyze the bioaccumulation and ecotoxicity of parabens in aquatic species. Studies have been mostly conducted in laboratory conditions (75%), using mainly fish and crustaceans. Field studies were carried out across 128 sampling sites in six countries. Paraben bioaccumulation was predominantly detected in fish muscle, liver, brain, gills, ovary, and testes. Among the parent parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) have been detected frequently and more abundantly in tissues of marine and freshwater specimens, as well as the metabolite 4-hydroxybenzoic acid (4-HB). Parabens can induce lethal and sublethal effects on aquatic organisms, such as oxidative stress, endocrine disruption, neurotoxicity, behavioral changes, reproductive impairment, and developmental abnormalities. The toxicity of parabens varied according to species, taxonomic group, developmental stage, exposure time, and concentrations tested. This study highlights the potential bioaccumulation and ecotoxicological impacts of parabens and their metabolites on aquatic invertebrates and vertebrates. Additionally, future research recommendations are provided to evaluate the environmental risks posed by paraben contamination more effectively.
Collapse
Affiliation(s)
- Felipe Félix Costa Lima da Silveira
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Viviane Amaral Porto
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Bianca Leite Carnib de Sousa
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Emilly Valentim de Souza
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Fabiana Laura Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, UBA-CONICET, Buenos Aires, Argentina
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
4
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
5
|
Colás-Ruiz NR, Pintado-Herrera MG, Santonocito M, Salerno B, Tonini F, Lara-Martín PA, Hampel M. Bioconcentration, biotransformation, and transcriptomic impact of the UV-filter 4-MBC in the manila clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169178. [PMID: 38072265 DOI: 10.1016/j.scitotenv.2023.169178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to μg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 μg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - Marina G Pintado-Herrera
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Melania Santonocito
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Barbara Salerno
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Federico Tonini
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
6
|
Capela R, Castro LF, Santos MM, Garric J. Development of a Lymnaea stagnalis embryo bioassay for chemicals hazard assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168061. [PMID: 37926257 DOI: 10.1016/j.scitotenv.2023.168061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
The validation of high-throughput toxicity tests with invertebrate species is a key priority to improve hazard assessment of new chemicals and increase the available test guidelines with organisms from a representative set of taxa. This work aimed to contribute to the validation of an embryo test with the freshwater gastropod Lymnaea stagnalis, which has been identified by Organization for Economic Co-operation and Development (OECD) as a potential invertebrate test model, and provide the basis for such an endeavor. Recently, a L. stagnalis reproductive test was standardized by the OECD. However, to encompass the entire life cycle, it is crucial to addresses embryogenic development - a phase highly susceptible to various anthropogenic chemicals, which is covered in the proposed methodology. The approach used in the present study is in line with the OECD guidelines and other published studies, namely the Detailed Review Paper (DRP) on Mollusks life-cycle toxicity testing. Here, the assay quality criteria such as basal mortality and abnormality rates, development, growth and hatching rates, the appropriated testing media, and the optimal assay duration were investigated. Cadmium was chosen as the positive test substance, due to the available data and the verified model sensitivity to this compound, namely in the OECD reproductive test validation process. The obtained data demonstrate that L. stagnalis embryogenesis using the developed methodology is highly sensitive to cadmium. High concentration-response correlation was observed using this reference compound, the EC10 and EC50 for growth are 13.57 and 21.84 μg/L, respectively, after 168 h of exposure. The development EC's 10 and 50 were 15.75 and 38.66 μg/L, respectively, after 240 h. This demonstrates the model sensitivity to this compound when compared with other embryo test models, as well as the model sensitivity during the embryogenesis, if compared with the adult stage. Further, given the determined sensitivity parameters, and incubation times, the test can be performed at 240 h as over 95 % of the control embryos were hatched and no further significant changes in the exposure groups were determined. Overall, the findings of the present study demonstrate that the embryo test with L. stagnalis has potential to high-throughput testing and the model has a high sensitivity to cadmium during this life cycle period. The background data provide by this study will be essential to foster the future standardization of this assay.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Luís Filipe Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Jeanne Garric
- INRAE - National Research Institute for Agriculture, Food and the Environment - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| |
Collapse
|
7
|
Seethalakshmi PS, RU VPN, Prabhakaran A, Prathiviraj R, Pamanji R, Kiran GS, Selvin J. Genomic investigation unveils high-risk ESBL producing Enterobacteriaceae within a rural environmental water body. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100216. [PMID: 38274946 PMCID: PMC10809108 DOI: 10.1016/j.crmicr.2023.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Antimicrobial resistance is regarded as a global threat to public health, animals, and the environment, emerging in response to extensive utilization of antimicrobials. The determinants of antimicrobial resistance are transported to susceptible bacterial populations through genetic recombination or through gene transfer, mediated by bacteriophages, plasmids, transposons, and insertion sequences. To determine the penetration of antimicrobial resistance into the bacterial population of the Thiruvandarkoil Lake, a water body located in the rural settings of Puducherry, India, culture-based microbiological and genomic approaches were used. Resistant bacterial isolates obtained from microbiological screening were subjected to whole genome sequencing and the genetic determinants of antimicrobial resistance were identified using in silico genomic tools. Cephalosporin-resistant isolates were found to produce extended spectrum beta lactamases, encoded by blaVEB-6 (in Proteus mirabilis PS01), blaSHV-12 and ompK36 mutation (in Klebsiella quasipneumoniae PS02) and blaSHV-12, blaACT-16, blaCTX-M and blaNDM-1 in (Enterobacter hormaechei PS03). Genes encoding heavy metal resistance, virulence and resistance to detergents were also detected in these resistant isolates. Among ESBL-producing organisms, one mcr-9-positive Enterobacter hormaechei was also identified in this study. To our knowledge, this is the first report of mcr-9 carrying bacterium in the environment in India. This study seeks the immediate attention of policy makers, researchers, government officials and environmental activists in India, to develop surveillance programs to monitor the dissemination of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | | | | | | | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
8
|
Grimmelpont M, Lefrançois C, Panisset Y, Jourdon G, Receveur J, Le Floch S, Boudenne JL, Labille J, Milinkovitch T. Avoidance behaviour and toxicological impact of sunscreens in the teleost Chelon auratus. MARINE POLLUTION BULLETIN 2023; 194:115245. [PMID: 37517278 DOI: 10.1016/j.marpolbul.2023.115245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
There is increasing evidence that sunscreen, more specifically the organic ultra-violet filters (O-UVFs), are toxic for aquatic organisms. In the present study, we simulated an environmental sunscreen exposure on the teleost fish, Chelon auratus. The first objective was to assess their spatial avoidance of environmental concentrations of sunscreen products (i.e. a few μg.L-1 of O-UVFs). Our results showed that the fish did not avoid the contaminated area. Therefore, the second objective was to evaluate the toxicological impacts of such pollutants after 35 days exposure to concentrations of a few μg.L-1 of O-UVFs. At the individual level, O-UVFs increased the hepatosomatic index which could suggest pathological alterations of the liver or the initiation of the detoxification processes. At the cellular level, a significant increase of malondialdehyde was measured in the muscle of fish exposed to O-UVFs which suggests a failure of antioxidant defences and/or an excess of reactive oxygen species.
Collapse
Affiliation(s)
- Margot Grimmelpont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Christel Lefrançois
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Yannis Panisset
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Guilhem Jourdon
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Justine Receveur
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | - Stéphane Le Floch
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | | | - Jérôme Labille
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France.
| | - Thomas Milinkovitch
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| |
Collapse
|
9
|
El Idrissi O, Ternengo S, Monnier B, Lepoint G, Aiello A, Bastien R, Lourkisti R, Bonnin M, Santini J, Pasqualini V, Gobert S. Assessment of trace element contamination and effects on Paracentrotus lividus using several approaches: Pollution indices, accumulation factors and biochemical tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161686. [PMID: 36690107 DOI: 10.1016/j.scitotenv.2023.161686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Among the most common contaminants in marine ecosystems, trace elements are recognized as serious pollutants. In Corsica (NW Mediterranean Sea), near the old asbestos mine at Canari, trace elements from the leaching of mine residues have been discharged into the sea for several decades. The aim of this study was to assess the levels of contamination in this area and the potential effects on Paracentrotus lividus (Lamarck, 1816) using pollution indices, accumulation factors and biochemical tools. For this purpose, the concentration of 24 trace elements was measured in sea urchins (gonads and gut content), macroalgae, seawater column and sediment collected at 12 stations nearby the old asbestos mine and at a reference site. The bioaccumulation of trace elements occurs as follows: macroalgae > gut > gonads. TEPI contribute to highlight contamination gradients which are mainly due to the dominant marine currents allowing the migration of mining waste along the coastline. This hypothesis was supported by TESVI, which identified characteristic trace elements in the southern area of the mine. High hydrogen peroxide content, associated with elevated catalase and glutathione-S-transferase enzyme activities, were also identified at these sites and at the reference site. Trace elements contamination as well as several abiotic factors could explain these results (e.g. microbiological contamination, hydrodynamic events, etc.). The results obtained in this study suggest that oxidative stress induced by contamination does not affect the health of Paracentrotus lividus. This work has provided a useful dataset allowing better use of sea urchins and various tools for assessing trace element contamination in coastal ecosystems.
Collapse
Affiliation(s)
- O El Idrissi
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France; Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium.
| | - S Ternengo
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - B Monnier
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - G Lepoint
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium
| | - A Aiello
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - R Bastien
- Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - R Lourkisti
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - M Bonnin
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - J Santini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - V Pasqualini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - S Gobert
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium; STAtion de REcherche Sous-marines et Océanographiques (STARESO), 20260 Calvi, France
| |
Collapse
|
10
|
Torres T, Barros S, Neuparth T, Ruivo R, Santos MM. Using zebrafish embryo bioassays to identify chemicals modulating the regulation of the epigenome: a case study with simvastatin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22913-22928. [PMID: 36307569 DOI: 10.1007/s11356-022-23683-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Contaminants of emerging concern have been increasingly associated with the modulation of the epigenome, leading to potentially inherited and persistent impacts on apical endpoints. Here, we address the performance of the OECD Test No. 236 FET (fish embryo acute toxicity) in the identification of chemicals able to modulate the epigenome. Using zebrafish (Danio rerio) embryos, acute and chronic exposures were performed with the pharmaceutical, simvastatin (SIM), a widely prescribed hypocholesterolemic drug reported to induce inter and transgenerational effects. In the present study, the epigenetic effects of environmentally relevant concentrations of SIM (from 8 ng/L to 2000 ng/L) were addressed following (1) an acute embryo assay based on OECD Test No. 236 FET, (2) a chronic partial life-cycle exposure using adult zebrafish (90 days), and (3) F1 embryos obtained from parental exposed animals. Simvastatin induced significant effects in gene expression of key epigenetic biomarkers (DNA methylation and histone acetylation/deacetylation) in the gonads of exposed adult zebrafish and in 80 hpf zebrafish embryos (acute and chronic parental intergenerational exposure), albeit with distinct effect profiles between biological samples. In the chronic exposure, SIM impacted particularly DNA methyltransferase genes in males and female gonads, whereas in F1 embryos SIM affected mostly genes associated with histone acetylation/deacetylation. In the embryo acute direct exposure, SIM modulated the expression of both genes involved in DNA methylation and histone deacetylase. These findings further support the use of epigenetic biomarkers in zebrafish embryos in a high throughput approach to identify and prioritize epigenome-modulating chemicals.
Collapse
Affiliation(s)
- Tiago Torres
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Susana Barros
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados, Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - Teresa Neuparth
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Raquel Ruivo
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - Miguel Machado Santos
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
11
|
Chaves RS, Rodrigues JE, Santos MM, Benoliel MJ, Cardoso VV. Development of multi-residue gas chromatography coupled with mass spectrometry methodologies for the measurement of 15 chemically different disinfection by-products (DBPs) of emerging concern in drinking water from two different Portuguese water treatment plants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4967-4976. [PMID: 36441195 DOI: 10.1039/d2ay01401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In water treatment plants (WTPs), chemical agents, such as chlorine and ozone, might react with organic matter and anthropogenic contaminants, forming a high diversity of disinfection by-products (DBPs). Due to the potential toxicological effects, the identification of unregulated DBPs (UR-DBPs) is critical to help water managers in the selection of effective water treatment processes, contributing to improving water safety plans. Given the limited validated analytical methods to detect UR-DBPs, here we developed new multi-residue gas chromatography coupled with mass spectrometry methodologies for the detection and quantification of 15 UR-DBPs, including aldehydes, haloketones (HKs), nitrosamines and alcohols, in drinking water matrices. Solid-phase extraction (SPE), for the nitrosamine group, and solid-phase micro extraction (SPME), for the remaining DBPs, were used as sample preparation methods. The developed methodologies allowed the quantification of target UR-DBPs at trace concentration levels (ng L-1), with method quantification limits (MQLs) ranging from 14.4 ng L-1 to 26.0 ng L-1 (SPE-GC-MS) and 2.3 ng L-1 and 1596 ng L-1 (SPME-GC-MS). The methods were applied to different drinking water matrices, considering distinct delivery points of EPAL - Empresa Portuguesa das Águas Livres WTPs. Overall, the aldehyde group, represented by decanal, nonanal and 2-ethylheaxanal, showed the highest occurrence, followed by HKs and nitrosamines. The results of this study suggested that the formation of these UR-DBPs should be further monitored in WTPs.
Collapse
Affiliation(s)
- Raquel S Chaves
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Portugal
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
- CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| | - Joao E Rodrigues
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Miguel M Santos
- CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Maria J Benoliel
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Vitor V Cardoso
- Empresa Portuguesa das Águas Livres, S. A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| |
Collapse
|
12
|
Cuccaro A, Freitas R, De Marchi L, Oliva M, Pretti C. UV-filters in marine environments: a review of research trends, meta-analysis, and ecotoxicological impacts of 4-methylbenzylidene-camphor and benzophenone-3 on marine invertebrate communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64370-64391. [PMID: 35852751 DOI: 10.1007/s11356-022-21913-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The potential adverse effects of UV-filter pollution in marine environments have been the focus of research in recent years. This systematic review aims to determine the extent of this emerging problem, both quantitatively and qualitatively, combining temporal and science mapping analyses to explore the development of the field of UV-filters in the marine environment (from 1990 to 2021), and to outline new research frontiers. The temporal trend analysis revealed an exponential growth of published studies over the last decade (70% since 2016), confirming the emerging role of this topic in environmental science. The meta-analysis determined that 4-methylbenzylidene-camphor (4-MBC) and benzophenone-3 (BP-3) are top-priority environmental pollutants due to their increasing usage and, in turn, a frequent occurrence in marine ecosystems. This meta-analysis determined the focus on these two contaminants for this review. A critical discussion of the applications, regulatory aspects, and environmental occurrences of these selected compounds was provided. The present study also focused on the most recent (2015-2021) field and laboratory studies investigating the ecotoxicological impacts of 4-MBC and BP-3 on marine invertebrates. This review highlights the need for more research efforts to fill the knowledge gaps on the realistic effects these compounds may have when considered individually, in combination, or as subsequent exposures. Overall, this review aims to establish guidelines for further studies to understand the effect of UV-filters on marine ecosystems and marine invertebrate communities.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy.
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Leghorn, Italy
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| |
Collapse
|
13
|
Prakash V, Jain V, Chauhan SS, Parthasarathi R, Roy SK, Anbumani S. Developmental toxicity assessment of 4-MBC in Danio rerio embryo-larval stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149920. [PMID: 34509837 DOI: 10.1016/j.scitotenv.2021.149920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Enormous production of cosmetic products and its indiscriminate use tends to discharge into the aquatic environment and might threaten non-target organisms inhabiting aquatic ecosystems. In the present study, developmental toxicity of 4-methylbenzylidene camphor (4-MBC), a widely used organic UV filter in personal care products has been evaluated using zebrafish embryo-larval stages. Waterborne exposure induced developmental toxicity and deduced 2.71 mg/L as 96 h LC50 whereas embryos exposed to sub-lethal concentrations (50 and 500 μg/L) caused a significant delay in hatching rate, heart rate, reduced larval length, and restricted hatchlings motility besides the axial curvature. Chronic exposure to 10 dpf resulted in significant decrease in SOD activity at 500 μg/L with no changes in CAT level besides a significant increase in GST enzyme at 5 μg/L concentration in 5 dpf sampled larvae. However, all the three enzymes were significantly elevated in 10 dpf larvae indicating differential oxidative stress during the stages of development. Similar trend is noticed for acetylcholine esterase enzyme activity. A concentration dependent increase in malondialdehyde content was noted in larvae sampled at 5 and 10 dpf. In addition, multixenobiotic resistance (MXR) activity inhibition, and elevated oxidative tissue damage were noticed at 5 dpf with no significant changes in 10 dpf larvae. Furthermore, immunoblot analysis confirms 4-MBC induced apoptosis in zebrafish larvae with promoted cleaved Caspase-3, Bax and inhibited Bcl-2 proteins expression. Subsequently, docking studies revealed the binding potential of 4-MBC to zebrafish Abcb4 and CYP450 8A1 proteins with the binding energy of -8.1 and -8.5 kcal/mol representing target proteins interaction and toxicity potentiation. Our results showed that 4-MBC exposure triggers oxidative stress at sub-lethal concentrations leading to apoptosis, deformities and locomotion perturbations in developing zebrafish.This is first of its kind in systematically demonstrating developmental toxicity of 4-MBC and the information shall be used for aquatic toxicity risk assessment.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Araújo MJ, Soares AMVM, Monteiro MS. Effects of exposure to the UV-filter 4-MBC during Solea senegalensis metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51440-51452. [PMID: 33987723 DOI: 10.1007/s11356-021-14235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Many personal care products integrate UV-filters, such as 4-methylbenzylidene camphor (4-MBC), a compound frequently detected in aquatic habitats, including coastal areas. However, the potential effects of 4-MBC to saltwater species have been poorly studied. Therefore, the main objective of this work is to study the effects of 4-MBC exposure on Solea senegalensis during metamorphosis, a sensitive life stage of this flatfish. To achieve this, fish were exposed to 4-MBC (0.2-2.0 mg L-1) for 48 h at the beginning of metamorphosis (13 days after hatching, dah). After this period, the fish were transferred to a clean medium. They were fed and maintained until more than 80% of individuals in the control group completed the metamorphosis (24 dah). Mortality, malformations, and metamorphic progression were studied daily. Growth, behavior, and biochemical markers of neurotransmission (acetylcholinesterase, AChE), oxidative stress (catalase, CAT; lipid peroxidation, LPO), detoxification (glutathione S-transferase, GST), and anaerobic metabolism (lactate dehydrogenase, LDH) were also determined at the end of the experiment. An acceleration of metamorphosis progression was observed during and 2 days after the 4-MBC exposure in all concentrations tested. In addition, reduced length, inhibition of CAT activity, and induction of oxidative damage were observed (lowest observed effect concentration, LOEC = 0.928 mg L-1 4-MBC for length, CAT, and LPO). Short-term exposure to 4-MBC at the onset of metamorphosis affected S. senegalensis at several levels of organization, even after 9 days in a clean medium, including growth and metamorphic progression, suggesting possible long-term adverse effects in this species.
Collapse
Affiliation(s)
- Mário J Araújo
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta S Monteiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Zhang J, Pei ZT, Zhao YN, Zhang M, Zhang LL, Wang WQ, Wu JY, Yu R, Sun LW. Mutagenicity evaluation to UV filters of benzophenone-6, benzophenone-8, and 4-methylbenzylidene camphor by Ames test. PLoS One 2021; 16:e0255504. [PMID: 34473729 PMCID: PMC8412341 DOI: 10.1371/journal.pone.0255504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/18/2021] [Indexed: 11/18/2022] Open
Abstract
Benzophenone (BPs) and 4-Methylbenzylidene Camphor are used as ultraviolet (UV) filters to protect the skin and hair in personal care products. The discharging of the three chemicals may endanger the receiving water ecosystem. In the present study, the mutagenicity of BP-6, BP-8, and 4-Methylbenzylidene Camphor was tested using the Salmonella typhimurium reverse mutation test (Ames test) in the system with and without rat liver microsomal preparations (S9). Four S.typhimurium strains, TA97, TA98, TA100, and TA102 were employed in the Ames tests. The mutagenicity was detected from all three chemicals. The addition of S9 increased the mutation ratios of three chemicals to four strains, except BP-6 to TA100 strain and 4-MBC to TA97 and TA98 strain. In the mixed experiment, all positive effects were detected in the absence of S9. However, the results all became negative in the presence of S9. For the mixture of BP-6 and 4-MBC, positive results were detected on four tester strains except for the TA100 strain. For the mixture of BP-6, BP-8, and 4-MBC, positive results were detected on four strains. The mixture test results showed antagonism in mutagenicity for the mixture of BP-6 and 4-MBC to TA98 and TA100 strains and the mixture of BP-6, BP-8, and 4-MBC to TA100 and TA102 strains.
Collapse
Affiliation(s)
- Jing Zhang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Zhou-Tao Pei
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Ya-Ni Zhao
- Water Pollution Control and Ecological Restoration Engineering Laboratory of Xizang, School of Information Engineering, Xizang Minzu University, Xianyang, China
| | - Meng Zhang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Li-Ling Zhang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Wen-Qiang Wang
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Jing-Ya Wu
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Ran Yu
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| | - Li-Wei Sun
- School of Energy & Environment, Southeast University, Nanjing, Jiangsu, China
- Taihu Lake Water Environment Engineering Research Center (Wuxi), Southeast University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Do Single-Component and Mixtures Selected Organic UV Filters Induce Embryotoxic Effects in Zebrafish (Danio rerio)? WATER 2021. [DOI: 10.3390/w13162203] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UVs are important ingredients in common cosmetic products (e.g., sunscreens, hairsprays, soap). After their use, they can enter the aquatic ecosystem and negatively affect non-target aquatic organisms. The aim of our study was to evaluate acute embryotoxicity of selected organic UVs 2-phenylbenzimidazole-5-sulfonic acid (PBSA), ethylhexyl methoxycinnamate (EHMC), octocrylene (OC), 4-methylbenzylidene camphor (4-MBC) and benzophenone-3 (BP-3). The chemicals were tested both as a single substance and their mixtures. The types of mixtures were chosen as follows: the combination of OC and 4-MBC; the combination of PBSA, EHMC and BP-3 and the combination of all five UV filters. The embryotoxicity was evaluated using a modified method of the Fish Embryo Acute Toxicity Test-OECD guideline 236 and zebrafish (Danio rerio) was selected as a suitable fish model organism. The toxic effects were studied by assessing mortality, hatching and the occurrence of malformations at 24, 48, 72 and 96 h post fertilization. The obtained results indicate that especially the mixture of OC and 4-MBC presents a potential risk of embryotoxicity for zebrafish due to a significant increase in mortality, which was 41.7% in the experimental group exposed to 10 μg/L at 96 h post fertilization. Based on our results, the most effected sub-lethal endpoints were hatching and malformation (e.g., edema of pericard, bent spine, yolk edema), but with no statistically significant effect. These results differ within groups with single UVs and with their mixtures, suggesting the interaction of these substances when they are exposed together.
Collapse
|
17
|
Caioni G, d'Angelo M, Panella G, Merola C, Cimini A, Amorena M, Benedetti E, Perugini M. Environmentally relevant concentrations of triclocarban affect morphological traits and melanogenesis in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105842. [PMID: 33964520 DOI: 10.1016/j.aquatox.2021.105842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Human activity is responsible for producing several chemical compounds, which contaminate the aquatic environment and adversely influence the survival of aquatic species and indirectly human health. Triclocarban (TCC) belongs to the category of emerging pollutants and its presence in aquatic environment is justified by its wide use as antimicrobial agent in personal care products. The concern about this chemical is due to the risk of persistence in water and soils and bioaccumulation, which contributes to human exposition through the contaminated food consumption. The present study evaluated the developmental toxicity of TCC in zebrafish early-life stages starting with the assessment of acute toxicity and then focusing on the integrative analyses of the observed phenotype on zebrafish development. For this purpose, lethal and sublethal alterations of zebrafish embryos were investigated by the Fish Embryo Acute Toxicity Tests (FET tests). Subsequently, two concentrations of TCC were used to investigate the morphometric features and defects in larvae developmental pigmentation: an environmentally relevant (5μg/L) and toxicological (50μg/L), derived from the No Observed Effect Concentration (NOEC) value concentration. Furthermore, the expression levels of a key transcription factor for melanocyte differentiation and melanin syntheses, such as mitfa (microphthalmia-associated transcription factor) and tyr (tyrosinase) and its activity, were evaluated.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
18
|
Torres T, Ruivo R, Santos MM. Epigenetic biomarkers as tools for chemical hazard assessment: Gene expression profiling using the model Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144830. [PMID: 33592472 DOI: 10.1016/j.scitotenv.2020.144830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Recent reports raise the concern that exposure to several environmental chemicals may induce persistent changes that go beyond the exposed organisms, being transferred to subsequent generations even in the absence of the original chemical insult. These changes in subsequent non-exposed generations have been related to epigenetic changes. Although highly relevant for hazard and risk assessment, biomarkers of epigenetic modifications that can be associated with adversity, are still not integrated into hazard assessment frameworks. Here, in order to validate new biomarkers of epigenetic modifications in a popular animal model, zebrafish embryos were exposed to different concentrations of Bisphenol A (0.01, 0.1, 1 and 10 mg/L) and Valproic Acid (0.8, 4, 20 and 100 mg/L), two chemicals reported to alter the modulation of the epigenome. Morphological abnormalities and epigenetic changes were assessed at 80 hours-post fertilization, including DNA global methylation and gene expression of both DNA and histone epigenetic modifications. Gene expression changes were detected at concentrations below those inducing morphological abnormalities. These results further support the importance of combining epigenetic biomarkers with apical endpoints to improve guidelines for chemical testing and hazard assessment, and favour the integration of new biomarkers of epigenetic modifications into the standardized OECD test guideline 236 with zebrafish embryos.
Collapse
Affiliation(s)
- Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
19
|
Lucas J, Logeux V, Rodrigues AMS, Stien D, Lebaron P. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29412-29420. [PMID: 33555472 DOI: 10.1007/s11356-021-12582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g-1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.
Collapse
Affiliation(s)
- Julie Lucas
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| | - Valentin Logeux
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
20
|
Wilson EW, Castro V, Chaves R, Espinosa M, Rodil R, Quintana JB, Vieira MN, Santos MM. Using zebrafish embryo bioassays combined with high-resolution mass spectrometry screening to assess ecotoxicological water bodies quality status: A case study in Panama rivers. CHEMOSPHERE 2021; 272:129823. [PMID: 33592508 DOI: 10.1016/j.chemosphere.2021.129823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Several studies show that many water bodies in developing countries are increasingly affected by anthropogenic pressure, such as agricultural activities, domestic and industrial wastewater. However, data is scarce in several of such countries, including Panama. Thus, in this work, the ecotoxicological status of selected rivers in Panama with distinct input sources were evaluated using the zebrafish (Danio rerio) embryo bioassays combined with a liquid chromatography-high resolution mass spectrometry screening of contaminants of emerging concern (CECs), using a library of over 3200 chemicals. A total of 68 CECs, including pharmaceuticals and metabolites, pesticides and several industrial chemicals, could be tentatively identified. Additionally, the zebrafish embryo bioassays showed a significant increase (p < 0.05) in embryo mortality/abnormalities when incubated with water samples from two rivers, Matasnillo and Curundú (47.5% and 32%, respectively). Importantly, a positive correlation between ecotoxicological endpoints and some of the detected CECs was observed. The findings demonstrate that both rivers are under strong anthropogenic pressure, and therefore, management actions are urgently needed to decrease their level of contamination. Overall, this study further supports the use of the zebrafish embryo bioassay as a fast, high throughput approach for screening the toxicity of water samples, and highlights the advantages of combining ecotoxicological assays with high-resolution mass spectrometry to an expedite assessment of the ecotoxicological status of water bodies.
Collapse
Affiliation(s)
- Estibali Wilkie Wilson
- CIMAR/CIIMAR - LA, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Verónica Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain
| | - Raquel Chaves
- CIMAR/CIIMAR - LA, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; ISAMB/ FMUL - Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Miguel Espinosa
- University of Panama, Promega Institute, Via Simon Bolivar, Transístmica, Panama
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain.
| | - Maria Natividade Vieira
- CIMAR/CIIMAR - LA, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR - LA, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
21
|
Hong H, Wang J, Shi D. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105742. [PMID: 33460951 DOI: 10.1016/j.aquatox.2021.105742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Organic ultraviolet filters are widely used in personal care products. 4-methylbenzylidene camphor (4-MBC) is one of the most frequently used UV filters. Due to its widespread usage 4-MBC has been detected at high concentrations in offshore waters. Previous toxicological studies have suggested that 4-MBC might induce much higher toxicity in marine organisms than freshwater species. To explore the effects of salinity on 4-MBC toxicity, the marine copepod Tigriopus japonicus was used as the model species, as it plays an important role in marine ecosystems and can be adapted to a wide range of salinity conditions. T. japonicus were adapted to three different salinity conditions (i.e., 20, 30 and 40 ppt) prior to exposure to 0, 1, and 5 μg L-1 4-MBC for multiple generations (F0-F3). Results showed that environmentally relevant concentrations of 4-MBC had toxic effects on T. japonicus and therefore, can pose a significant risk to marine copepods in the natural environment. In addition, increasing salinity levels increased the lethal, developmental and reproductive toxicities of 4-MBC in T. japonicus. This was because that higher salinity levels increased the uptake rate constant and bioconcentration factor of 4-MBC and also further exacerbated the oxidative stress induced by exposure to 4-MBC in T. japonicus. Our study demonstrated that understanding how salinity affects the toxicity of 4-MBC is important for accurate assessment of the risk of 4-MBC in the aquatic environments.
Collapse
Affiliation(s)
- Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, 361102, China.
| | - Jiaxin Wang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
22
|
Abbott T, Kor-Bicakci G, Islam MS, Eskicioglu C. A Review on the Fate of Legacy and Alternative Antimicrobials and Their Metabolites during Wastewater and Sludge Treatment. Int J Mol Sci 2020; 21:ijms21239241. [PMID: 33287448 PMCID: PMC7729486 DOI: 10.3390/ijms21239241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial compounds are used in a broad range of personal care, consumer and healthcare products and are frequently encountered in modern life. The use of these compounds is being reexamined as their safety, effectiveness and necessity are increasingly being questioned by regulators and consumers alike. Wastewater often contains significant amounts of these chemicals, much of which ends up being released into the environment as existing wastewater and sludge treatment processes are simply not designed to treat many of these contaminants. Furthermore, many biotic and abiotic processes during wastewater treatment can generate significant quantities of potentially toxic and persistent antimicrobial metabolites and byproducts, many of which may be even more concerning than their parent antimicrobials. This review article explores the occurrence and fate of two of the most common legacy antimicrobials, triclosan and triclocarban, their metabolites/byproducts during wastewater and sludge treatment and their potential impacts on the environment. This article also explores the fate and transformation of emerging alternative antimicrobials and addresses some of the growing concerns regarding these compounds. This is becoming increasingly important as consumers and regulators alike shift away from legacy antimicrobials to alternative chemicals which may have similar environmental and human health concerns.
Collapse
Affiliation(s)
- Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Gokce Kor-Bicakci
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Mohammad S. Islam
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Correspondence: ; Tel.: +1-250-807-8544 (C.E)
| |
Collapse
|
23
|
Chaves RS, Guerreiro CS, Cardoso VV, Benoliel MJ, Santos MM. Toxicological assessment of seven unregulated drinking water Disinfection By-products (DBPs) using the zebrafish embryo bioassay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140522. [PMID: 32623170 DOI: 10.1016/j.scitotenv.2020.140522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 05/05/2023]
Abstract
Disinfection By-products (DBPs) are formed during the chemical treatment of water for human consumption, by the reaction of raw water with chemical agents used in the different steps of the process. Disinfection is one of the most important steps, inactivating pathogens and preventing their regrowth during water distribution. However, it is also involved in DBPs formation due to the use of disinfectant agents, such as chlorine, which reacts with dissolved precursors, such as pharmaceuticals, toxins, pesticides, among others. Given their widespread occurrence, potential human health and (eco) toxicological impacts are of particular interest due to their potential carcinogenicity and various non-carcinogenic effects, such as endocrine disruption. In this study, the developmental toxicity of chemically- different unregulated DBPs was evaluated using zebrafish embryo bioassay. Embryos were exposed to different concentrations of the target DBPs and multiple endpoints, including, mortality, morphological abnormalities and locomotor behavior were assessed at specific developmental stages (24, 48, 72 and 96 hpf). The different families of DBPs tested included nitrosamines, aldehydes, alcohols and ketones. The results show that the effects were compound dependent, with EC10 values varying between 0.04 mg/L (2-ethyl-1-hexanal) to 9.2 mg/L (hexachloroacetone). Globally, several of the tested unregulated DBPs displayed higher toxicity when compared with the available data for some already regulated, such as trihalomethanes (THMs), which highlights the importance of screening the toxicity of still untested and poorly characterized DBPs.
Collapse
Affiliation(s)
- Raquel S Chaves
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Empresa Portuguesa das Águas Livres, S.A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal; CIMAR/CIIMAR, LA- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Catarina S Guerreiro
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Laboratory of Nutrition, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Vítor V Cardoso
- Empresa Portuguesa das Águas Livres, S.A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Maria J Benoliel
- Empresa Portuguesa das Águas Livres, S.A., Direção Laboratórios e de Controlo da Qualidade da Água, Lisbon, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR, LA- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
24
|
Scalisi EM, Pecoraro R, Salvaggio A, Corsaro A, Messina G, Ignoto S, Lombardo BM, Brundo MV. Evaluation of dimethoate toxicity on fertilization and on embryonic development of Paracentrotus lividus (Lamarck, 1816). Toxicol Res (Camb) 2020; 9:537-543. [PMID: 32905298 PMCID: PMC7467241 DOI: 10.1093/toxres/tfaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Organophosphates are a large class of chemicals with anticholinesterase action insecticides. Dimethoate belongs to the class of organophosphates and it is used for agriculture purpose. Its main toxicological role in animals and humans is the inhibition of the activity of acetylcholinesterase. Although it is not considered genotoxic, carcinogenic and teratogen, there is evidence of increased pup mortality in developmental neurotoxicity studies. Since there is scant published literature about developmental toxicity, we investigated the adverse effects of dimethoate on fertilization and embryonic development in sea urchin (Paracentrotus lividus), a model organism widely used to assess the toxicity of contaminants on environmental matrices; so pesticide residues can be released into the environment, and could affect the health of organisms, including humans. Different solution of dimethoate (4 × 10-3, 4 × 10-4, 4 × 10-5, 4 × 10-6 and 4 × 10-7 g/10 ml) have been tested on spermatozoa of P. lividus to evaluate the fertilizing ability of them when we added egg cells untreated. We demonstrated that dimethoate does not interfere with fertilizing ability of spermatozoa but egg cells fertilized by treated spermatozoa showed alterations in the segmentation planes as asymmetric and/or asynchronous cell divisions.
Collapse
Affiliation(s)
- Elena Maria Scalisi
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, I-95124 Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, I-95124 Catania, Italy
| | - Antonio Salvaggio
- Experimental Zooprophylactic Institute of Sicily “A. Mirri”, Catania area, Via Passo Gravina 195, I-95123 Catania, Italy
| | - Aurora Corsaro
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, I-95124 Catania, Italy
| | - Giuseppina Messina
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, I-95124 Catania, Italy
| | - Sara Ignoto
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, I-95124 Catania, Italy
| | - Bianca Maria Lombardo
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, I-95124 Catania, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, I-95124 Catania, Italy
| |
Collapse
|
25
|
Lozano C, Matallana-Surget S, Givens J, Nouet S, Arbuckle L, Lambert Z, Lebaron P. Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137803. [PMID: 32197158 DOI: 10.1016/j.scitotenv.2020.137803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 05/20/2023]
Abstract
Organic UV filters are of emerging concern due to their occurrence and persistence in coastal ecosystems. Because marine bacteria are crucial in the major biogeochemical cycles, there is an urgent need to understand to what extent these microorganisms are affected by those chemicals. This study deciphers the impact of five common sunscreen UV filters on twenty-seven marine bacteria, combining both photobiology and toxicity analysis on environmentally relevant species. Seven bacteria were sensitive to different organic UV filters at 1000 μg L-1, including octinoxate and oxybenzone. This is the first report demonstrating inhibition of bacterial growth from 100 μg L-1. None of the UV filters showed any toxicity at 1000 μg L-1 on stationary phase cells, demonstrating that physiological state was found to be a key parameter in the bacterial response to UV-filters. Indeed, non-growing bacteria were resistant to UV filters whereas growing cells exhibited UV filter dependent sensitivity. Octinoxate was the most toxic chemical at 1000 μg L-1 on growing cells. Interestingly, photobiology experiments revealed that the toxicity of octinoxate and homosalate decreased after light exposure while the other compounds were not affected. In terms of environmental risk characterization, our results revealed that the increasing use of sun blockers could have detrimental impacts on bacterioplanktonic communities in coastal areas. Our findings contribute to a better understanding of the impact of the most common UV filters on bacterial species and corroborate the importance to consider environmental parameters such as solar radiation in ecotoxicology studies.
Collapse
Affiliation(s)
- Clément Lozano
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France; Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom.
| | - Justina Givens
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Salomé Nouet
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Louise Arbuckle
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom
| | - Zacharie Lambert
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France.
| |
Collapse
|
26
|
Liang M, Yan S, Chen R, Hong X, Zha J. 3-(4-Methylbenzylidene) camphor induced reproduction toxicity and antiandrogenicity in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 249:126224. [PMID: 32088463 DOI: 10.1016/j.chemosphere.2020.126224] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
To assess the toxic effects of 3-(4-Methylbenzylidene) camphor (4-MBC) at environmentally relevant concentrations on the reproduction and development of Japanese medaka (Oryzias latipes), adult paired medaka (F0) were exposed to 5, 50, and 500 μg/L 4-MBC for 28 d in the current study. The fecundity and fertility were significantly decreased at 500 μg/L 4-MBC (p < 0.05). Histological observations showed that spermatogenesis in F0 males was significantly inhibited at 50 and 500 μg/L 4-MBC, similar to the effects obtained with all treatments of plasma 11-ketotestosterone (p < 0.05). Moreover, the plasma vitellogenin and estradiol levels in F0 females were significantly increased at 5 μg/L 4-MBC (p < 0.05). All the transcripts of hypothalamic-pituitary-gonadal (HPG) axis-related genes tested in the brains and gonads of males were significantly increased at all treatments, similar to the effects obtained for erα, erβ and vtg in the livers and in contrast to those found for arα in the livers (p < 0.05). Equal numbers of embryos were exposed to tap water and 4-MBC solutions. Significantly increased times to hatching, decreased hatching rates and decreased body lengths at 14-day post-hatching (dph) were obtained at 500 μg/L 4-MBC treatment (p < 0.05). The cumulative death rates at 14 dph were significantly increased with all the treatments (p < 0.05). Therefore, our results showed that long-term exposure to 50 and 500 μg/L 4-MBC causes reproductive and developmental toxicity and thus provide new insight into antiandrogenicity and the mechanism of 4-MBC in Japanese medaka.
Collapse
Affiliation(s)
- Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
27
|
Yan S, Liang M, Chen R, Hong X, Zha J. Reproductive toxicity and estrogen activity in Japanese medaka (Oryzias latipes) exposed to environmentally relevant concentrations of octocrylene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114104. [PMID: 32045793 DOI: 10.1016/j.envpol.2020.114104] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The growing use of octocrylene (OC) in sunscreens has posed a great threat to aquatic organisms. In the present study, to assess its reproductive toxicity and mechanism, paired Japanese medaka (Oryzias latipes) (F0) were exposed to OC at nominal concentrations of 5, 50, and 500 μg/L for 28 d. Significant increases were observed in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of F0 medaka at 500 μg/L OC (p < 0.05) without significant differences in fecundity. The fertility was significantly decreased at all treatments (p < 0.05). Significant increases in the percent of mature oocytes were observed at 5 and 500 μg/L OC, in which contrary to the percent of spermatozoa (p < 0.05). The plasma sex hormones and vitellogenin levels significantly increased in males at all treatments and in females at 50 and 500 μg/L OC (p < 0.05). In addition, the levels of fshβ and lhβ in the brains and the levels of fshr, lhr and cyp17α in the gonads were significantly upregulated in males at all treatments (p < 0.05), in line with those of ar, erα, erβ and cyp19β in the brains of male and female. The upregulation of vtg in male and female livers was observed only at 500 μg/L OC and upregulation of star and hsd3β was observed in testis at all treatments (p < 0.05). Continued exposure to OC significantly induced increases in the time to hatching, morphological abnormality rates, and cumulative death rates of F1 embryos, inconsistent with body length of F1 larvae (p < 0.05). Therefore, the responses of the exposed fish at the biochemical and molecular levels indicated reproductive toxicity and estrogenic activity of OC, providing insights into the mechanism of OC.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
28
|
Nataraj B, Maharajan K, Hemalatha D, Rangasamy B, Arul N, Ramesh M. Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134546. [PMID: 31839308 DOI: 10.1016/j.scitotenv.2019.134546] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we explored the adverse effects of Octyl methoxycinnamate (OMC), and its photoproducts, namely 2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA) on the developmental stages of zebrafish using various biomarkers such as developmental toxicity, oxidative stress, antioxidant response, neurotoxicity and histopathological changes. The 96 h effective concentrations (EC50) of OMC, 2-EH and 4-MBA were found to be 64.0, 34.0 and 3.5 µg/mL, respectively in the embryo toxicity test. Embryos exposed to the EC50 of OMC, 2-EH and 4-MBA showed time-dependent increases in the malformation, heart rate and hatching delay. The lipid peroxidation (LPO) level was significantly (p < 0.05) increased and both induction and inhibition of SOD, CAT, GPx and GST activities were observed in the zebrafish embryos exposed to OMC, 2-EH and 4-MBA. GSH activity was significantly (p < 0.05) decreased in the highest exposure groups, when compared with the control. AChE activity was increased in lower concentrations of OMC, 2-EH and 4-MBA exposed embryos whereas, the activity was found to be decreased in highest concentration. Moreover, the histopathological studies showed severe damage to the muscle fibers and yolk sac regions of the larvae with 4-MBA treatment. The photoproduct 4-MBA has the highest toxic effect, followed by 2-EH and OMC. Our results provide useful insights into the impacts of OMC and its photoproducts on zebrafish development.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University, Coimbatore, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; PG and Research Department of Zoology, PSG College of Arts and Science, Coimbatore, 641014, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Narayanasamy Arul
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
29
|
Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp. TOXICS 2020; 8:toxics8020029. [PMID: 32290111 PMCID: PMC7357026 DOI: 10.3390/toxics8020029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
The presence of pharmaceutical and personal care product (PPCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through gray water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), 2-ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS) and octocrylene (OC) on marine organisms from two major trophic levels, including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, results showed that both HS and OC were the most toxic UV filters for our tested species, followed by a significant effect of BM on Artemia salina due to BM—but only at high concentrations (1 mg/L). ES, BP3 and DHHB affected the metabolic activity of the microalgae at 100 µg/L. BEMT, DBT, ET, MBBT had no effect on the tested organisms, even at high concentrations (2 mg/L). OC toxicity represents a risk for those species, since concentrations used in this study are 15–90 times greater than those reported in occurrence studies for aquatic environments. For the first time in the literature, we report HS toxicity on a microalgae species at concentrations complementing those found in aquatic environments. These preliminary results could represent a risk in the future if concentrations of OC and HS continue to increase.
Collapse
|
30
|
Capela R, Garric J, Castro LFC, Santos MM. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135740. [PMID: 31838430 DOI: 10.1016/j.scitotenv.2019.135740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
This review article gathers the available information on the use of embryo-tests as high-throughput tools for toxicity screening, hazard assessment and prioritization of new and existing chemical compounds. The approach is contextualized considering the new legal trends for animal experimentation, fostering the 3R policy, with reduction of experimental animals, addressing the potential of embryo-tests as high-throughput toxicity screening and prioritizing tools. Further, the current test guidelines, such as the ones provided by OECD and EPA, focus mainly in a limited number of animal lineages, particularly vertebrates and arthropods. To extrapolate hazard assessment to the ecosystem scale, a larger diversity of taxa should be tested. The use of new experimental animal models in toxicity testing, from a representative set of taxa, was thoroughly revised and discussed in this review. Here, we critically review current tools and the main advantages and drawbacks of different animal models and set researcher priorities.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Jeanne Garric
- IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
31
|
Bioaccumulation and Toxicological Effects of UV-Filters on Marine Species. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Perugini M, Merola C, Amorena M, D'Angelo M, Cimini A, Benedetti E. Sublethal exposure to propylparaben leads to lipid metabolism impairment in zebrafish early-life stages. J Appl Toxicol 2019; 40:493-503. [PMID: 31889330 DOI: 10.1002/jat.3921] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022]
Abstract
Parabens are widely used in cosmetics, toiletries, food and pharmaceuticals. Toxicological effects of parabens on human lipid metabolism are not well established. The present study used the early-life stages of zebrafish (Danio rerio) to determine the toxicity of propylparaben (PP). The embryos were exposed for 96 hours postfertilization (hpf) at five different concentrations of PP, and lethal and sublethal alterations were recorded daily. The lethal concentration 50 (LC50 ) value was 3.98 mg/L. The most common sublethal alterations recorded at 1 and 2 mg/L were an enlarged and misshaped yolk sac, hyperexcitability, and reduction in head size and swim bladder. At sublethal concentrations of 1 and 2 mg/L, we observed an altered lipid metabolism, in terms of decrease in neutral lipid mobilization from yolk and alteration of phospholipid metabolism, both in the body and in the yolk sac. These observations were combined with strong head cartilage defects, indicating a strong effect of PP on head development. This research demonstrates that PP interferes with lipid utilization in zebrafish during early-life stages that might be involved in neurological and skeletal abnormalities.
Collapse
Affiliation(s)
- Monia Perugini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| | - Carmine Merola
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| | - Michele Amorena
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| | - Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| |
Collapse
|
33
|
Junaid M, Wang Y, Hamid N, Deng S, Li WG, Pei DS. Prioritizing selected PPCPs on the basis of environmental and toxicogenetic concerns: A toxicity estimation to confirmation approach. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120828. [PMID: 31301631 DOI: 10.1016/j.jhazmat.2019.120828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs), the pollutants of emerging concerns, present potential risks to the ecological environment. This study focused on the prioritization of widely used selected PPCPs belonging to two categories:personal care products (PCPs) and non-steroidal anti-inflammatory drugs (NSAIDs). We predicted the toxicogenetic endpoints of PPCPs and then confirmed them using experimental approaches. Our results revealed a significant similarity in the findings obtained through both approaches, indicating NSAIDs with relatively high environmental impacts and in vitro/vivo toxicity. Experimental approach revealed that musk xylene (MX) from PCPs and DIC from NSAIDs as individual chemicals of priority concern showed elevated environmental impacts and significantly induced pi3k-akt-mTOR in vitro. Similarly, propyl paraben (PP) from PCPs and diclofenac (DIC) from NSAIDs caused significant cytotoxicity and DNA damage in vitro. Moreover, PP and MX from the PCPs group and naproxen (NAP) and DIC from the NSAIDs group induced developmental toxicity and perturbations to phases I, II, and III detoxification pathways in vivo. In addition, MX and DIC as priority PPCPs inhibited hematopoiesis and hepatogenesis in vivo. Apart from the specific effects, PPCPs can be ranked as: MX > PP > methylparaben (MP) for PCPs, and DIC > NAP > ibuprofen (IBU) for NSAIDs, regarding their toxic and environmental concerns.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Life Science, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naima Hamid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Deng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - De-Sheng Pei
- College of Life Science, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Acetaminophen Removal from Water by Microalgae and Effluent Toxicity Assessment by the Zebrafish Embryo Bioassay. WATER 2019. [DOI: 10.3390/w11091929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, zebrafish embryo bioassays were performed to assess the efficiency of microalgae in the removal of acetaminophen from water. Chlorella sorokiniana (CS), Chlorella vulgaris (CV) and Scenedesmus obliquus (SO) were the strains used for water treatment. Toxic effects on zebrafish embryo caused by effluents from microalgae treatment were compared with those observed under exposure to experimental solutions with known concentrations of acetaminophen. The three microalgae strains allowed for the reduction of acetaminophen concentration and its toxic effects, but CS was the most efficient one. At the end of the batch culture, a 67% removal was provided by CS with a reduction of 62% in the total abnormalities on the exposed zebrafish embryo. On the other hand, toxic effects observed under exposure to effluents treated by microalgae were alike to those determined for acetaminophen experimental solutions with equivalent concentration. Thus, it may be inferred that microalgae biodegradation of acetaminophen did not involve an increased toxicity for zebrafish embryo.
Collapse
|
35
|
Espíndola JC, Cristóvão RO, Araújo SRF, Neuparth T, Santos MM, Montes R, Quintana JB, Rodil R, Boaventura RAR, Vilar VJP. An innovative photoreactor, FluHelik, to promote UVC/H 2O 2 photochemical reactions: Tertiary treatment of an urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:197-207. [PMID: 30826680 DOI: 10.1016/j.scitotenv.2019.02.335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
An innovative photoreactor, FluHelik, was used to promote the degradation of contaminants of emerging concern (CECs) by a photochemical UVC/H2O2 process. First, the system was optimized for the oxidation of a model antibiotic, oxytetracycline (OTC), using both ultrapure water (UPW) and a real urban wastewater (UWW) (collected after secondary treatment) as solution matrices. Following, the process was evaluated for the treatment of a UWW spiked with a mixture of OTC and 10 different pharmaceuticals established by the Swiss legislation at residual concentrations (∑CECs <660 μg L-1). The performance of the FluHelik reactor was analyzed both at lab and pre-pilot scale in multiple and single pass flow modes. The efficiency of the FluHelik photoreactor, at lab-scale, was evaluated at different operational conditions (H2O2 concentration, UVC lamp power (4, 6 and 11 W) and flow rate) and further compared with a conventional Jets photoreactor. Both photoreactors exhibited similar OTC removal efficiencies at the best conditions; however, the FluHelik reactor showed to be more efficient (1.3 times) in terms of mineralization when compared with the Jets reactor. Additionally, the efficiency of the UVC/H2O2 photochemical system using the FluHelik photoreactor in reducing the toxicity of the real effluent containing 11 pharmaceuticals was evaluated through zebrafish (Danio rerio) embryo toxicity bioassays. FluHelik scale-up from laboratory to pre-pilot to promote UVC/H2O2 photochemical process proved to be feasible.
Collapse
Affiliation(s)
- Jonathan C Espíndola
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CNPq - National Council for Scientific and Technological Development, Brazil
| | - Raquel O Cristóvão
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Sara R F Araújo
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR - LA, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR - LA, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
36
|
Quintaneiro C, Teixeira B, Benedé JL, Chisvert A, Soares AMVM, Monteiro MS. Toxicity effects of the organic UV-filter 4-Methylbenzylidene camphor in zebrafish embryos. CHEMOSPHERE 2019; 218:273-281. [PMID: 30472611 DOI: 10.1016/j.chemosphere.2018.11.096] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Ultraviolet (UV) filters are widely used in personal care products and due to their lipophilicity these chemicals tend to bioaccumulate in the aquatic biota. 4-Methylbenzylidene camphor (4-MBC) is one of the most used UV-filters, and it is commonly detected in freshwater fish tissues. This substance is suspected to be an endocrine disruptor due to its interaction with Hypothalamus-Pituitary-Gonadal (HPG) and HP-Thyroid (HPT)-axis. The main objective of this study was to evaluate the effects of 4-MBC on apical endpoints, biochemical markers and on genes involved in endocrine pathways in Danio rerio. Zebrafish embryos were exposed to 4-MBC (0.083-0.77 mg/l) from 0 to 96 h post-fertilization (hpf). Hatching, heart rate and malformations were the apical endpoints assessed. Alterations on neurotransmission and oxidative stress were evaluated through acetylcholinesterase (AChE), catalase (CAT) and glutathione S-transferase (GST) enzymatic activities. Endocrine effects were analysed by the expression of genes involved in HPG and HPT-axis of embryos exposed 96 h to the EC10 of 4-MBC (0.19 mg/l). Exposure to 4-MBC induced morphological abnormalities during embryonic development, including notochord curvature, delayed absorption of yolk sac and pericardial oedema. Concentration of 0.77 mg/l 4-MBC decreased embryo heart rate at 48h. At neurotransmission level, an induction of AChE at concentrations above 0.15 mg/l was observed. Malformations and decreased heart rate along with alterations observed at neurotransmission level might have compromised zebrafish larvae equilibrium. Glutathione S-transferase induction above 0.15 mg/l 4-MBC suggests activation of detoxification processes. Furthermore, observed brain aromatase gene down-regulation by 4-MBC suggests impairment of normal functioning of HPG axis in zebrafish.
Collapse
Affiliation(s)
- Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Bruna Teixeira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan L Benedé
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
37
|
Zhou T, Wei J, Su Y, Hu Z, Li Y, Yuan H, Zhao K, Liu C, Zhang H. Triclocarban at environmentally relevant concentrations induces the endoplasmic reticulum stress in zebrafish. ENVIRONMENTAL TOXICOLOGY 2019; 34:223-232. [PMID: 30592132 DOI: 10.1002/tox.22675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Triclocarban (TCC) is an antibacterial agent commonly found in environmental, wildlife, and human samples. However, with in-depth study of TCC, its negative effects are increasingly presented. Toxicological studies of TCC at environmentally relevant concentrations have been conducted in zebrafish embryos and indicated that TCC leads to deformity of development causes developmental deformities. However, the molecular mechanisms underlying the toxicity of TCC in zebrafish embryos have not been entirely elucidated. We investigated whether exposure to TCC at environmentally relevant concentrations induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in zebrafish. Zebrafish embryos were grown to 32 hours post fertilization and exposed to 2.5, 5, and 10 μg/L TCC and used in whole-mount in situ hybridization to visualize the expression of ER chaperone hspa5 and ER stress-related apoptosis factor chop. Zebrafish livers were exposed to different concentrations of TCC to elaborate the relationships between fatty degeneration and ER stress. Then, a human hepatic cell line (HL-7702) was used to test whether TCC induced ER stress in human livers similar to those of zebrafish. In zebrafish embryos, TCC induced high hspa5 expression, which could defend against external stimulations. Furthermore, hapa5, hsp90b1, and chop exhibited ectopic expressions in the neuromast, intestinal tract, and tail tip of zebrafish embryos. On the one hand, significant differences were observed in the mRNA and protein expressions of the ER stress molecular chaperone pPERK-pEIF2a-ATF4 and ATF6 pathways in HL-7702 cells exposed to TCC. On the other hand, lipid droplet accumulation slightly increased in zebrafish livers exposed to 10 μg/L TCC in vitro. These results demonstrate that TCC not only damages the development of zebrafish embryos and structure of zebrafish liver but also influences human hepatic cells by activating ER stress and the UPR signaling pathway.
Collapse
Affiliation(s)
- Ting Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yufang Su
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhiyong Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ying Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hongfang Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Kai Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
38
|
Shi Q, Zhuang Y, Hu T, Lu C, Wang X, Huang H, Du G. Developmental toxicity of triclocarban in zebrafish (Danio rerio) embryos. J Biochem Mol Toxicol 2019; 33:e22289. [PMID: 30657620 DOI: 10.1002/jbt.22289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/10/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
Triclocarban (TCC), which is used as an antimicrobial agent in personal care products, has been widely detected in aquatic ecosystems. However, the consequence of TCC exposure on embryo development is still elusive. Here, by using zebrafish embryos, we aimed to understand the developmental defects caused by TCC exposure. After exposure to 0.3, 30, and 300 μg/L TCC from 4-hour postfertilization (hpf) to 120 hpf, we observed that TCC exposure significantly increased the mortality and malformation, delayed hatching, and reduced body length. Exposure to TCC also affected the heart rate and expressions of cardiac development-related genes in zebrafish embryos. In addition, TCC exposure altered the expressions of the genes involved in hormonal pathways, indicating its endocrine disrupting effects. In sum, our data highlight the impact of TCC on embryo development and its interference with the hormone system of zebrafish.
Collapse
Affiliation(s)
- Qimeng Shi
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuhang Zhuang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tingting Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongyu Huang
- Department of Experimental Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Babic T, Dinic J, Buric SS, Hadzic S, Pesic M, Radojkovic D, Rankov AD. Comparative toxicity evaluation of targeted anticancer therapeutics in embryonic zebrafish and sea urchin models. ACTA BIOLOGICA HUNGARICA 2018; 69:395-410. [PMID: 30587022 DOI: 10.1556/018.69.2018.4.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer drug resistance and poor selectivity towards cancer cells demand the constant search for new therapeutics. PI3K-Akt-mTOR and RAS-MAPK-ERK signaling pathways are key mechanisms involved in cell survival, proliferation, differentiation, and metabolism and their deregulation in cancer can promote development of therapy resistance. We investigated the effects of targeted inhibitors (wortmannin, GSK690693, AZD2014 and tipifarnib) towards these two pathways on early zebrafish and sea urchin development to assess their toxicity in normal, fast proliferating cells. PI3K inhibitor wortmannin and RAS inhibitor tipifarnib displayed highest toxicity while GSK690693, a pan-Akt kinase inhibitor, exhibited a less significant impact on embryo survival and development. Moreover, inhibition of the upstream part of the PI3K-Akt-mTOR pathway (wortmannin/GSK690693 co-treatment) produced a synergistic effect and impacted zebrafish embryo survival and development at much lower concentrations. Dual mTORC1/mTORC2 inhibitor AZD2014 showed no considerable effects on embryonic cells of zebrafish in concentrations substantially toxic in cancer cells. AZD2014 also caused the least prominent effects on sea urchin embryo development compared to other inhibitors. Significant toxicity of AZD2014 in human cancer cells, its capacity to sensitize resistant cancers, lower antiproliferative activity against human normal cell lines and fast proliferating embryonic cells could make this agent a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Tamara Babic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Jelena Dinic
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojkovic Buric
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Stefan Hadzic
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Milica Pesic
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| |
Collapse
|
40
|
Barros S, Montes R, Quintana JB, Rodil R, André A, Capitão A, Soares J, Santos MM, Neuparth T. Chronic environmentally relevant levels of simvastatin disrupt embryonic development, biochemical and molecular responses in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:47-57. [PMID: 29879595 DOI: 10.1016/j.aquatox.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic compound, is among the most prescribed pharmaceuticals for cardiovascular disease prevention worldwide. Several studies have shown that acute exposure to SIM causes multiple adverse effects in aquatic organisms. However, uncertainties still remain regarding the chronic effects of SIM in aquatic ecosystems. Therefore, the present study aimed to investigate the effects of SIM in the model freshwater teleost zebrafish (Danio rerio) following a chronic exposure (90 days) to environmentally relevant concentrations ranging from 8 ng/L to 1000 ng/L. This study used a multi-parameter approach integrating distinct ecologically-relevant endpoints, i.e. survival, growth, reproduction and embryonic development, with biochemical markers (cholesterol and triglycerides). Real Time PCR was used to analyse the transcription levels of key genes involved in the mevalonate pathway (hmgcra, cyp51, and dhcr7). Globally, SIM induced several effects that did not follow a dose-response relationship; embryonic development, biochemical and molecular markers, were significantly impacted in the lower concentrations, 8 ng/L, 40 ng/L and/or 200 ng/L, whereas no effects were recorded for the highest tested SIM levels (1000 ng/L). Taken together, these findings expand our understanding of statin effects in teleosts, demonstrating significant impacts at environmentally relevant concentrations and highlight the importance of addressing the effects of chemicals under chronic low-level concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
41
|
Araújo MJ, Rocha RJM, Soares AMVM, Benedé JL, Chisvert A, Monteiro MS. Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1395-1404. [PMID: 30045559 DOI: 10.1016/j.scitotenv.2018.02.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The inclusion of organic UV filters in personal care products (PCPs) has increased in recent years. 4-Methylbenzylidene camphor (4MBC) is one of the most used UV filters, and thus it is commonly found in aquatic ecosystems, with proved negative effects on aquatic organisms. Effects on early life stages of marine vertebrates are largely unknown. Therefore, the main goal of this work was to evaluate 4MBC effects on Senegalese sole (Solea Senegalensis Kaup, 1858) larvae at different levels of biological organization. S. senegalensis were exposed to increasing concentrations of 4MBC from egg stage until 96 h. Mortality, growth, malformations, behaviour and biochemical responses, including enzymatic biomarkers were studied. The exposure to 4MBC until 96 h post-fertilization (hpf) induced mortality and malformations in a dose-response manner. Besides, reduced growth with increasing concentrations was observed. The exposure to 4MBC also caused alterations on behaviour, including overall lower swimming time during light and dark periods. Biomarker alterations caused by 4MBC included imbalance of neurotransmission related endpoints (increased acetylcholinesterase activity) and decreased activity of enzymes related to anaerobic metabolism (lower cellular lactate dehydrogenase activity) at the lower concentrations tested. Furthermore, our results suggest that 4MBC do not induce oxidative stress in S. senegalensis larvae, since catalase and lipid peroxidation levels were not significantly altered by 4MBC. S. senegalensis revealed to be a good model species for vertebrate animal testing in the marine environment. Sub-lethal concentrations of 4MBC induced toxic effects at all organizational levels. Swimming behaviour was a sensitive endpoint and showed that exposure to 4MBC causes impairment on response to light stimulus which is possibly linked with the observed imbalances on cholinesterase activity in larvae. Conservation concerns along distribution range of S. senegalensis should consider that increasing levels of UV filters in marine environment might have impact on the ecology of the species.
Collapse
Affiliation(s)
- M J Araújo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - R J M Rocha
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J L Benedé
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - A Chisvert
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - M S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
42
|
Sreevidya VS, Lenz KA, Svoboda KR, Ma H. Benzalkonium chloride, benzethonium chloride, and chloroxylenol - Three replacement antimicrobials are more toxic than triclosan and triclocarban in two model organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:814-824. [PMID: 29348075 DOI: 10.1016/j.envpol.2017.12.108] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
With the recent ban of triclosan (TCS) and triclocarban (TCC) from some personal care products, many replacement antimicrobial compounds have been used. Yet the potential health risk and environmental impact of these replacement compounds are largely unknown. Here we investigated the toxicological effects of three commonly used replacement antimicrobials, benzalkonium chloride (BAC), benzethonium chloride (BEC), and chloroxylenol (CX) to two model organisms, the nematode C. elegans and zebrafish (Danio rerio), and compared them to the banned TCS and TCC. We found that these replacement compounds are not any safer than the banned antimicrobials. In the worm, at least one of the three, BAC, showed comparable toxicity to TCS from organismal to molecular levels, with toxic effects occurring at lower hundred μg/L to lower mg/L levels. In the fish, all three compounds at the tested concentration ranges (0.05-5 mg/L) showed toxicity effects to zebrafish embryos, indicated by hatching delay or inhibition, embryonic mortality, morphological malformations, and neurotoxicity. BAC was the most toxic among the three, with acute lethal toxicity occurring at environmentally relevant concentrations (hundreds of μg/L), which is comparable to the banned TCC. However, the toxicity effects of BAC and TCC occurred within different time windows, potentially suggesting different mechanisms of toxicity. CX was the only compound that induced a "body curvature" phenotype among the five compounds examined, suggesting a unique mode of toxic action for this compound. Furthermore, all five compounds except TCS induced neurotoxicity in fish larvae, indicated by alterations in secondary motoneuron axonal projections. Such neurotoxicity has been largely understudied for these antimicrobials in the past years and calls for further investigations in terms of its underlying mechanisms and ecological significance. These findings strongly indicate that scrutiny should be put on these replacement compounds before their introduction into massive use in personal care products.
Collapse
Affiliation(s)
- Virinchipuram S Sreevidya
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI 53205, USA
| | - Kade A Lenz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI 53205, USA
| | - Hongbo Ma
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N 10th St, Milwaukee, WI 53205, USA.
| |
Collapse
|
43
|
Rocha AC, Camacho C, Eljarrat E, Peris A, Aminot Y, Readman JW, Boti V, Nannou C, Marques A, Nunes ML, Almeida CM. Bioaccumulation of persistent and emerging pollutants in wild sea urchin Paracentrotus lividus. ENVIRONMENTAL RESEARCH 2018; 161:354-363. [PMID: 29195184 DOI: 10.1016/j.envres.2017.11.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Marine pollution has been increasing as a consequence of anthropogenic activities. The preservation of marine ecosystems, as well as the safety of harvested seafood, are nowadays a global concern. Here, we report for the first time the contamination levels of a large set of 99 emerging and persistent organic contaminants (butyltins (BTs), polycyclic aromatic hydrocarbons (PAHs), pesticides including pyrethroids, pharmaceuticals and personal care products (PCPs) and flame retardants) in roe/gonads of sea urchin Paracentrotus lividus. Sea urchins are a highly prized worldwide delicacy, and the harvesting of this seafood has increased over the last decades, particularly in South West Atlantic coast, where this organism is harvested mainly for exportation. Sampling was performed in three harvesting sites of the NW Portuguese coast subjected to distinct anthropogenic pressures: Carreço, Praia Norte and Vila Chã, with sea urchins being collected in the north and south areas of each site. Butyltins and pharmaceuticals were not found at measurable levels. Several PAHs, four pyrethroids insecticides, four PCPs and eleven flame retardants were found in roe/gonads of sea urchins, though in general at low levels. Differences among harvesting sites and between areas within each site were found, the lowest levels of contaminants being registered in Carreço. The accumulation of contaminants in sea urchins' roe/gonads seemed to reflect the low anthropogenic pressure felt in the sampling sites. Nevertheless, taking into account the low accumulated levels of chemicals, results indicate that sea urchins collected in South West Atlantic coast are safe for human consumption.
Collapse
Affiliation(s)
- A Cristina Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR / CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal.
| | - Carolina Camacho
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR / CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal; Division of Aquaculture and Seafood Upgrading. Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), JordiGirona, 18, 08034 Barcelona, Spain
| | - Andrea Peris
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), JordiGirona, 18, 08034 Barcelona, Spain
| | - Yann Aminot
- Biogeochemistry Research Centre, Plymouth University, Plymouth, United Kingdom
| | - James W Readman
- Biogeochemistry Research Centre, Plymouth University, Plymouth, United Kingdom
| | - Vasiliki Boti
- Laboratory of Analytical Chemistry, Chemistry Department, University of Ioannina, Panepistimioupolis, Ioannina, GR 45110, Greece
| | - Christina Nannou
- Laboratory of Analytical Chemistry, Chemistry Department, University of Ioannina, Panepistimioupolis, Ioannina, GR 45110, Greece
| | - António Marques
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR / CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal; Division of Aquaculture and Seafood Upgrading. Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Maria Leonor Nunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR / CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal; Division of Aquaculture and Seafood Upgrading. Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - C Marisa Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR / CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| |
Collapse
|
44
|
Chen L, Li X, Hong H, Shi D. Multigenerational effects of 4-methylbenzylidene camphor (4-MBC) on the survival, development and reproduction of the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:94-102. [PMID: 29172130 DOI: 10.1016/j.aquatox.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
One of the most widely used organic UV filters, 4-methylbenzylidene camphor (4-MBC), is present at high concentrations in offshore waters. The marine copepod Tigriopus japonicus was exposed to different concentrations of 4-MBC (i.e., 0, 0.5, 1, 5 and 10μgL-1) for 4 consecutive generations (F0-F3) to evaluate the impact of 4-MBC on marine ecosystems. The results showed that in the F0 generation, 4-MBC caused significant lethal toxicity in T. japonicas at concentrations of 5 and 10μgL-1 and the nauplii were more sensitive to 4-MBC toxicity than the adults. However in the F1-F3 generations, 4-MBC exposure did not affect the survival rate. The hatching rate and the developmental duration from the nauplii to the copepodite (N-C) and from the nauplii to adult (N-A) decreased significantly in the F1-F2 generations and in the F2-F3 generations, respectively, even at the lowest exposure concentration (0.5μgL-1). In the subsequent two generations (i.e., the F4-F5 generations) of recovery exposure in clean seawater, the growth rates of the original 4-MBC exposure groups were still faster than the control in both the N-C and N-A stages, suggesting possible transgenerational genetic and/or epigenetic changes upon chronic 4-MBC exposure. The expression of the ecdysone receptor gene was up-regulated by 4-MBC, which was consistent with the decrease of the N-C/N-A duration. In addition, 4-MBC may induce oxidative stress and trigger apoptosis in T. japonicas, resulting in developmental, reproductive and even lethal toxicity. A preliminary risk assessment suggested that under environmentally realistic concentrations, 4-MBC had significant potential to pose a threat to marine crustaceans and marine ecosystems.
Collapse
Affiliation(s)
- Leyun Chen
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen 361102, China.
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
45
|
Colón-Cruz L, Kristofco L, Crooke-Rosado J, Acevedo A, Torrado A, Brooks BW, Sosa MA, Behra M. Alterations of larval photo-dependent swimming responses (PDR): New endpoints for rapid and diagnostic screening of aquatic contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:670-680. [PMID: 28934711 PMCID: PMC5681395 DOI: 10.1016/j.ecoenv.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/29/2017] [Accepted: 09/09/2017] [Indexed: 05/06/2023]
Abstract
Detection and toxicity assessment of waterborne contaminants are crucial for protecting human health and the environment. Development of easy-to-implement, rapid and cost-effective tools to measure anthropogenic effects on watersheds are critical for responsible management, particularly in times of increasing development and urbanization. Traditionally, environmental toxicology has focused on limited endpoints, such as lethality and fertility, which are directly affecting population levels. However, more sensitive readings are needed to assess sub-lethal effects. Monitoring of contaminant-induced behavior alterations was proposed before, but is difficult to implement in the wild and performing it in aquatic laboratory models seem more suited. For this purpose, we adapted a photo-dependent swimming response (PDR) that was previously described in zebrafish larva. We first asked if PDR was present in other aquatic animals. We measured PDR in larvae from two freshwater prawn species (Macrobrachium rosenbergii, MR, and Macrobrachium carcinus, MC) and from another fish the fathead minnow (FHM, Pimephales promelas). In all, we found a strong and reproducible species-specific PDR, which is arguing that this behavior is important, therefore an environmental relevant endpoint. Next, we measured PDR in fish larvae after acute exposure to copper, a common waterborne contaminant. FHM larvae were hyperactive at all tested concentrations in contrast to ZF larvae, which exhibited a concentration-dependent hyperactivity. In addition to this well-accepted anxiety-like behavior, we examined two more: photo-stimulated startle response (PSSR) and center avoidance (CA). Both were significantly increased. Therefore, PDR measures after acute exposure to this waterborne contaminant provided as sensitive readout for its detection and toxicity assessment. This approach represents an opportunity to diagnostically examine any substance, even when present in complex mixtures like ambient surface waters. Mechanistic studies of toxicity using the extensive molecular tool kit of ZF could be a direct extension of such approaches.
Collapse
Affiliation(s)
- Luis Colón-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Lauren Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| | - Jonathan Crooke-Rosado
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Agnes Acevedo
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Aranza Torrado
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA.
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| | - María A Sosa
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Martine Behra
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
46
|
Rochester JR, Bolden AL, Pelch KE, Kwiatkowski CF. Potential Developmental and Reproductive Impacts of Triclocarban: A Scoping Review. J Toxicol 2017; 2017:9679738. [PMID: 29333157 PMCID: PMC5733165 DOI: 10.1155/2017/9679738] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Triclocarban (TCC) is an antimicrobial agent used in personal care products. Although frequently studied with another antimicrobial, triclosan, it is not as well researched, and there are very few reviews of the biological activity of TCC. TCC has been shown to be a possible endocrine disruptor, acting by enhancing the activity of endogenous hormones. TCC has been banned in the US for certain applications; however, many human populations, in and outside the US, exhibit exposure to TCC. Because of the concern of the health effects of TCC, we conducted a scoping review in order to map the current body of literature on the endocrine, reproductive, and developmental effects of TCC. The aim of this scoping review was to identify possible endpoints for future systematic review and to make recommendations for future research. A search of the literature until August 2017 yielded 32 relevant studies in humans, rodents, fish, invertebrates, and in vitro. Based on the robustness of the literature in all three evidence streams (human, animal, and in vitro), we identified three endpoints for possible systematic review: estrogenic activity, androgenic activity, and offspring growth. In this review, we describe the body of evidence and make recommendations for future research.
Collapse
Affiliation(s)
| | | | | | - Carol F. Kwiatkowski
- The Endocrine Disruption Exchange (TEDX), Eckert, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|