1
|
Vázquez A, Blanco-Vázquez M, Martínez-Plaza E, Sobas EM, González-García MJ, López-Miguel A, Ortega E, Enríquez-de-Salamanca A, Calonge M. Corneal Sensory Changes and Nerve Plexus Abnormalities in Chronic Neuropathic Ocular Pain and Dry Eye Post-Refractive Surgery. Am J Ophthalmol 2025:S0002-9394(25)00172-2. [PMID: 40252945 DOI: 10.1016/j.ajo.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/21/2025]
Abstract
PURPOSE Chronic neuropathic ocular pain (NOP) can develop alongside chronic dry eye (DE) post-laser-assisted in-situ keratomileusis (LASIK), yet its specific characteristics remain poorly understood. This study aims to compare the clinical characteristics of patients who developed both DE and NOP after LASIK to those with only DE and to asymptomatic LASIK patients, to facilitate the diagnosis of NOP. METHODS Prospective, cross-sectional "case-control" comparison study. An 89-subject post-LASIK study comprised three groups: 34 patients developing NOP and DE (NOP-DE group), 25 patients developing only DE (DE group), and 30 asymptomatic subjects (control group). Assessments included clinical history and symptom questionnaires (OSDI, mSIDEQ, NRS, WFPRS), anxiety and depression evaluation (HADS), tear film stability (osmolarity and TBUT) and production (Schirmer), and ocular surface integrity. Corneal mechanical and thermal sensitivity thresholds were measured using Belmonte's non-contact esthesiometer, whereas tactile sensitivity threshold was assessed pre/post-topical anesthesia using the Cochet-Bonnet esthesiometer. In vivo confocal microscopy (IVCM) was used to evaluate the sub-basal nerve plexus characteristics and dendritic cell density in the central cornea. Group comparisons and correlations were conducted. RESULTS Compared with DE group, patients in the NOP-DE group exhibited significantly more DE symptoms with mSIDEQ (p=0.019) higher level of pain with NRS and WFPRS, increased use of ocular lubrication (p=0.003), greater frequency of patients with pathological results on anxiety and depression questionnaires (p<0.001), and a higher prevalence of central sensitization syndromes (p<0.001). Additionally, NOP-DE patients demonstrated higher tactile corneal sensitivity post-topical anesthesia (p=0.002). IVCM revealed lower nerve density (p=0.049) and higher microneuroma density (p=0.008) in the sub-basal nerve plexus of NOP-DE patients compared to DE patients without NOP (p=0.008). Most nerve metrics correlated moderately to strongly with clinical parameters. CONCLUSIONS Persistent high corneal tactile sensitivity post-anesthesia, reduced nerve density and increased microneuroma density in the central cornea may serve as diagnostic indicators for confirming NOP in patients experiencing chronic DE post-LASIK. These findings underscore the potential utility of incorporating these measures into clinical assessments to improve diagnostic accuracy and guide management strategies in this patient population.
Collapse
Affiliation(s)
- Amanda Vázquez
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain; UDOVA (Pain Unit of Valladolid HURH-HCUV), National Health System, Castilla y Leon, Spain.
| | - Marta Blanco-Vázquez
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain
| | - Elena Martínez-Plaza
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain
| | - Eva M Sobas
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain
| | - María J González-García
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Center Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Spain
| | - Alberto López-Miguel
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain
| | - Enrique Ortega
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain; UDOVA (Pain Unit of Valladolid HURH-HCUV), National Health System, Castilla y Leon, Spain
| | - Amalia Enríquez-de-Salamanca
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Center Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Spain
| | - Margarita Calonge
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid (UVa), Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Center Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Spain.
| |
Collapse
|
2
|
Liu Y, Jiang Y, Song C, Zuo T, Zhang J, Zhao L. The role of miR-146a/IRAK1/JNK1 pathway in mediating the effects of Yiqi Congming decoction on dry eye: A mechanistic study in rat models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119698. [PMID: 40188896 DOI: 10.1016/j.jep.2025.119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiqi Congming Decoction (YQCM) is a traditional Chinese medicine formula widely used as a complementary and alternative therapy for dry eye and other ophthalmic disorders. OBJECTIVE This study aims to investigate the potential effects of YQCM on dry eye and to identify the active components responsible for its therapeutic efficacy using a rat model. MATERIALS AND METHODS Using Ultra-High Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry (HPLC-QTOF/MS), the chemical constituents of YQCM were identified. In vivo experiments demonstrated the protective effects of YQCM on the corneal barrier in a rat model of dry eye and determined the optimal therapeutic dose. YQCM and agomiR-146a were administered either individually or in combination to rat over 14 days, followed by evaluations of Schirmer I test (SⅠT) results, tear film breakup time (BUT), fluorescein staining (FL) levels, corneal epithelial cell inflammation, and apoptosis. Furthermore, the expression of proteins in the miR-146a/IRAK1/JNK1 pathway, as well as inflammation and apoptosis-related proteins, was examined to explore the mechanisms through which YQCM modulates inflammation and improves tear film stability. In vitro experiments employed serum containing YQCM, agomiR-146a, and the IRAK1 inhibitor (AZ1495) to further investigate the regulatory effects of YQCM on the miR-146a/IRAK1/JNK1 pathway and its impact on inflammation and apoptosis in human corneal epithelial cells (HCECs) under hypertonic conditions. RESULTS In vivo experimental results demonstrated that YQCM significantly restored tear film stability. Treatment with varying doses of YQCM improved corneal epithelial damage in rats, with the medium dose exhibiting the most pronounced effect. YQCM increased the SⅠT and BUT levels, effectively reduced FL levels, and inhibited apoptosis and inflammatory damage in corneal epithelial cells. Additionally, scanning electron microscopy, hematoxylin-eosin (HE) staining, TUNEL assays, and Western blot (WB) and qPCR analyses revealed that YQCM significantly ameliorated corneal damage in dry eye rats and reduced the expression levels of MMP-9, TNF-α, IL-1β, Caspase-3, IL-6, and IFN-γ. Moreover, YQCM modulated the expression of proteins in the miR-146a/IRAK1/JNK1 pathway. In vitro experiments demonstrated that YQCM regulated the levels of miR-146a/IRAK1/JNK1 in HCECs under hypertonic conditions and enhanced cell viability by reducing the expression of MMP-9, TNF-α, IL-1β, Caspase-3, IL-6, and IFN-γ. Using Annexin V-FITC/PI double staining and other techniques, it was further confirmed that YQCM alleviated apoptosis in HCECs under hypertonic conditions. CONCLUSION YQCM protects tear film stability in a rat model of dry eye by suppressing corneal epithelial inflammatory responses and reducing apoptosis through modulation of the miR-146a/IRAK1/JNK1 pathway.
Collapse
Affiliation(s)
- Yulin Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China; Liaoning University Of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Yanhua Jiang
- Department of Ophthalmology, China Medical University the Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Caiqiu Song
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Tao Zuo
- Department of Ophthalmology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Jinghan Zhang
- Liaoning University Of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Lei Zhao
- Liaoning University Of Traditional Chinese Medicine, Shenyang, 110847, China; Department of Ophthalmology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China.
| |
Collapse
|
3
|
Domínguez-López A, Blanco-Vázquez M, Calderón-García AÁ, García-Vázquez C, González-García MJ, Calonge M, Enríquez-de-Salamanca A. Analysis of the mucosal chemokines CCL28, CXCL14, and CXCL17 in dry eye disease: An in vitro and clinical investigation. Exp Eye Res 2024; 241:109854. [PMID: 38453037 DOI: 10.1016/j.exer.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Mucosal chemokines have antimicrobial properties and play an important role in mucosal immunity. However, little is known about their expression on the ocular surface. This study aimed to analyze the expression of the mucosal chemokines CCL28, CXCL14 and CXCL17 in corneal and conjunctival epithelial cells under in vitro dry eye (DE) conditions, and in conjunctival samples from healthy subjects and DE patients. Human corneal epithelial cells (HCE) and immortalized human conjunctival epithelial cells (IM-HConEpiC) were incubated under hyperosmolar (400-500 mOsM) or inflammatory (TNF-α 25 ng/mL) conditions for 6 h and 24 h to measure CCL28, CXCL14, and CXCL17 gene expression by RT-PCR and their secretion by immunobead-based analysis (CCL28, CXCL14) and ELISA (CXCL17). Additionally, twenty-seven DE patients and 13 healthy subjects were included in this study. DE-related questionnaires (OSDI, mSIDEQ and NRS) evaluated symptomatology. Ocular surface integrity was assessed using vital staining. Tactile sensitivity was measured with Cochet-Bonnet esthesiometer, and mechanic and thermal (heat and cold) sensitivity using Belmonte's non-contact esthesiometer. Subbasal nerve plexus and dendritic cell density were analyzed by in vivo confocal microscopy. Conjunctival cells from participants were collected by impression cytology to measure mucosal chemokines gene expression by RT-PCR. Our results showed that HCE and IM-HConEpiC cells increased CCL28, CXCL14, and CXCL17 secretion under hyperosmolar conditions. The gene expression of CCL28 was significantly upregulated in conjunctival samples from DE patients. CCL28 expression correlated positively with symptomatology, corneal staining, heat sensitivity threshold, and dendritic cell density. CXCL14 expression correlated positively with age, ocular pain, conjunctival staining, tactile sensitivity, and image reflectivity. CXCL17 expression correlated positively with corneal staining. These results suggest that corneal and conjunctival epithelial cells could be a source of CCL28, CXCL14, and CXCL17 on the ocular surface and that CCL28 might be involved in DE pathogenesis.
Collapse
Affiliation(s)
| | - Marta Blanco-Vázquez
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain
| | | | - Carmen García-Vázquez
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - María J González-García
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III National Institute of Health, Spain
| | - Margarita Calonge
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; OculoFacial Pain Unit, Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III National Institute of Health, Spain
| | - Amalia Enríquez-de-Salamanca
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; OculoFacial Pain Unit, Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III National Institute of Health, Spain.
| |
Collapse
|
4
|
Musa M, Chukwuyem E, Ojo OM, Topah EK, Spadea L, Salati C, Gagliano C, Zeppieri M. Unveiling Ocular Manifestations in Systemic Lupus Erythematosus. J Clin Med 2024; 13:1047. [PMID: 38398361 PMCID: PMC10889738 DOI: 10.3390/jcm13041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a complex autoimmune disorder characterized by immune dysregulation and multi-organ involvement. In this concise brief review, we highlight key insights into Ocular Systemic Lupus Erythematosus (SLE), an intricate autoimmune disorder with diverse organ involvement. Emphasizing the formation of autoantibodies and immune complex deposition, we delve into the inflammation and damage affecting ocular structures. Clinical presentations, ranging from mild dry eye syndrome to severe conditions like retinal vasculitis, necessitate a comprehensive diagnostic approach, including clinical exams, serological testing, and imaging studies. Differential diagnosis involves distinguishing SLE-related ocular manifestations from other autoimmune and non-inflammatory ocular conditions. The multidisciplinary management approach, involving rheumatologists, ophthalmologists, and immunologists, tailors treatment based on ocular involvement severity, encompassing corticosteroids, immunosuppressive agents, and biologics. Follow-up is crucial for monitoring disease progression and treatment response. Future perspectives revolve around advancing molecular understanding, refining diagnostic tools, and exploring targeted therapies. Novel research areas include genetic factors, microbiome composition, and biotechnology for tailored and effective SLE ocular treatments.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria;
- Centre for Sight Africa, Onitsha 434112, Nigeria
| | | | - Oluwasola Michael Ojo
- School of Optometry and Vision Sciences, College of Health Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Efioshiomoshi Kings Topah
- Department of Optometry, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano 700006, Nigeria
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza Dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Zhao L, Yu JJ, Liu Y, Zuo T, Zhou H, Ju P, Li Y, Cao Y, Dong B. An enhanced model for environmental dry eye: Exploring pathological features and underlying factors. Exp Eye Res 2024; 239:109744. [PMID: 38072354 DOI: 10.1016/j.exer.2023.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/17/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023]
Abstract
This study aimed to develop an enhanced environmental dry eye (EDE) model that accurately reproduces the etiology of prolonged visual fatigue and investigates the underlying pathological features. A total of 40 adult SPF-grade Wistar rats were randomly assigned to control (n = 20) and model (n = 20) groups. Rats in the control group were maintained under normal conditions, while rats in the model group were exposed to a controlled frontal airflow of 2-4 m/s from a fan for 7.5 h daily while placed on a suspended cylindrical wire mesh frame. Various assessments were performed at different time points during the 14-day experiment, including blink frequency, tear secretion (phenol red thread test), tear film breakup time (BUT), fluorescein staining (FL), corneal epithelial status (light microscopy), ultrastructure of corneal epithelial cells (electron microscopy), and expression levels of inflammatory cytokines (IL-1β, TNF-α) in tears (enzyme-linked immunosorbent assay). Additionally, mRNA and protein expression levels of MMP-9, IL1β, IL6, TNF-α, IFN-γ, and caspase-3 in corneal tissues were quantified (real-time quantitative PCR and Western blotting). Compared to the control group, the model group rats exhibited significant decreases in blink frequency (P < 0.001), tear secretion (Schirmer I test) values (P < 0.001), and tear film breakup time levels (P < 0.001). There was also a significant increase in fluorescein staining scores (P < 0.001) in the model group. Histological examination revealed distinct differences of the corneal epithelium between groups. The corneal epithelium of the model group appeared thicker, with disorganized cell arrangement in the superficial and basal layers, partial defects or detachment of superficial epithelial cells, and a rough, uneven surface. Scanning electron microscopy observations showed a rough corneal epithelial surface with numerous cracks and scattered vesicular-like structures in the model group. Furthermore, the model group rats exhibited a significant increase in expression of IL-1β and TNF-α in tears (P < 0.001), and upregulated expression levels of MMP-9, TNF-α, IL-1β, caspase-3, IL-6, and IFN-γ at both the mRNA and protein levels in corneal tissues (P < 0.001). In conclusion, the modified "wire-meshing cylindrical board" model effectively overcomes the limitations of the traditional "jogging board " dry eye model and successfully simulates the etiology of prolonged visual fatigue. This innovative EDE model demonstrates a high degree of relevance to dry eye conditions resulting from prolonged visual tasks, with a high success rate of model induction. Moreover, it proves to be a simple, practical, and easily replicable model, making it highly suitable for further studies on prolonged visual fatigue and facilitating its widespread adoption in research and clinical applications.
Collapse
Affiliation(s)
- Lei Zhao
- Liaoning University of Traditional Chinese Medicine, China; Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Jj Jiajia Yu
- Liaoning University of Traditional Chinese Medicine, China
| | - Yulin Liu
- Liaoning University of Traditional Chinese Medicine, China
| | - Tao Zuo
- Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Huimin Zhou
- Liaoning University of Traditional Chinese Medicine, China
| | - Pin Ju
- Liaoning University of Traditional Chinese Medicine, China
| | - Yuexin Li
- Liaoning University of Traditional Chinese Medicine, China
| | - Yingyue Cao
- Liaoning University of Traditional Chinese Medicine, China
| | - Baoqiang Dong
- Liaoning University of Traditional Chinese Medicine, China.
| |
Collapse
|
6
|
Chiang JCB, Tran V, Wolffsohn JS. The impact of dry eye disease on corneal nerve parameters: A systematic review and meta-analysis. Ophthalmic Physiol Opt 2023; 43:1079-1091. [PMID: 37357424 DOI: 10.1111/opo.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Dry eye disease (DED) is a growing global health problem with a significant impact on the quality of life of patients. While neurosensory abnormalities have been recognised as a contributor to DED pathophysiology, the potential role of in vivo corneal confocal microscopy in detecting nerve loss or damage remains unclear. This systematic review with meta-analysis (PROSPERO registered CRD42022381861) investigated whether DED has an impact on sub-basal corneal nerve parameters. METHODS PubMed, Embase and Web of Science Core Collection databases were searched from inception to 9 December 2022. Studies using laser scanning confocal microscopy to compare corneal nerve parameters of DED with healthy eyes were included. Study selection process and data extraction were performed by two independent members of the review team. RESULTS Twenty-two studies with 916 participants with DED and 491 healthy controls were included, with 21 of these studies included in subsequent meta-analyses. There was a decrease in total corneal nerve length (-3.85 mm/mm2 ; 95% CI -5.16, -2.55), corneal main nerve trunk density (-4.81 number/mm2 ; 95% CI -7.94, -1.68) and corneal nerve branch density (-15.52 number/mm2 ; 95% CI -27.20, -3.84) in DED eyes compared with healthy eyes, with subgroup analysis demonstrating that these differences were more evident in studies using NeuronJ software, a semi-automated procedure. While this review found evidence of loss of corneal nerve parameters in eyes with DED compared with healthy controls, particularly with the use of a semi-automated image analysis method, it is evident that there is substantial heterogeneity between studies in terms of corneal nerve imaging methodology. CONCLUSIONS Standardisation is required in terms of terminology and analysis, with more research needed to potentially improve the clinical applicability and practicality of corneal nerve imaging. Further investigation is also required to confirm the diagnostic accuracy of this imaging modality and its potential for monitoring DED treatment efficacy.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Vincent Tran
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - James S Wolffsohn
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
7
|
Sonkodi B, Marsovszky L, Csorba A, Balog A, Kopper B, Nagy ZZ, Resch MD. Neural Regeneration in Dry Eye Secondary to Systemic Lupus Erythematosus Is Also Disrupted like in Rheumatoid Arthritis, but in a Progressive Fashion. Int J Mol Sci 2023; 24:10680. [PMID: 37445856 DOI: 10.3390/ijms241310680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Our objective in this study was to analyze the aberrant neural regeneration activity in the cornea by means of in vivo confocal microscopy in systemic lupus erythematosus patients with concurrent dry eye disease. We examined 29 systemic lupus erythematosus patients and 29 age-matched healthy control subjects. Corneal nerve fiber density (CNFD, the number of fibers/mm2) and peripheral Langerhans cell morphology were lower (p < 0.05) in systemic lupus erythematosus patients compared to the control group. Interestingly, corneal nerve branch density, corneal nerve fiber length, corneal nerve fiber total branch density, and corneal nerve fiber area showed a negative correlation with disease duration. A negative correlation was also demonstrated between average corneal nerve fiber density and central Langerhans cell density. This is in line with our hypothesis that corneal somatosensory terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk not only disrupts regeneration and keeps transcription activated, but could lead to Piezo1 downregulation and cell activation on Langerhans cells when we consider a chronic path. Hence, Piezo2 containing mechanosensory corneal nerves and dendritic Langerhans cells could also be regarded as central players in shaping the ocular surface neuroimmune homeostasis through the Piezo system. Moreover, lost autoimmune neuroinflammation compensation, lost phagocytic self-eating capacity, and lost transcription regulation, not to mention autoantibodies against vascular heparin sulfate proteoglycans and phospholipids, could all contribute to the progressive fashion of dry eye disease in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
8
|
Yang X, Zuo X, Zeng H, Liao K, He D, Wang B, Yuan J. IFN-γ Facilitates Corneal Epithelial Cell Pyroptosis Through the JAK2/STAT1 Pathway in Dry Eye. INVESTIGATIVE OPTHALMOLOGY & VISUAL SCIENCE 2023; 64:34. [PMID: 36988949 PMCID: PMC10064915 DOI: 10.1167/iovs.64.3.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Purpose To investigate the effect of gamma interferon (IFN-γ) on corneal epithelial pyroptosis in an experimental dry eye (DE) model and explore the underlying molecular mechanisms. Methods Experimental DE was established in adult wild-type (WT) C57BL/6 mice and Ifng-knockout mice on a C57BL/6 background by subcutaneous injection of scopolamine (1.5 mg/0.3 mL, three times per day) and exposure to desiccating stress. An immortalized human corneal epithelial cell line (HCE-T) was treated with IFN-γ under hyperosmolar conditions. Corneal epithelial defects, tear production, and conjunctival goblet cells were detected by fluorescein sodium staining, the phenol red cotton test, and periodic acid-Schiff staining. The mRNA expression was measured by quantitative real-time PCR. Changes in protein expression were analyzed by Western blotting and immunofluorescence staining. Cell Counting Kit-8 and lactate dehydrogenase assays and in situ TUNEL staining were used to assess cell death. Results The expression of IFNG and its related genes was increased in the corneas of DE mice, whereas genetic deletion of Ifng ameliorated desiccating stress-induced dry eye symptoms. We further found that IFN-γ activated the JAK2/STAT1 signaling pathway inducing corneal epithelial pyroptosis. Topical application of a STAT1 inhibitor in vivo or siRNA targeting STAT1 in vitro suppressed pyroptosis of corneal epithelial cells. In addition, the production of reactive oxygen species (ROS) was elevated in DE, and a reduction in excessive ROS release prevented pyroptosis. Conclusions The increase in IFN-γ participates in the pathogenesis of dry eye and promotes corneal epithelial pyroptosis by activating the JAK2/STAT1 signaling pathway. Oxidative stress might be in downstream of JAK2/STAT1, thereby contributing to pyroptosis.
Collapse
|
9
|
Mechanisms Underlining Inflammatory Pain Sensitivity in Mice Selected for High and Low Stress-Induced Analgesia-The Role of Endocannabinoids and Microglia. Int J Mol Sci 2022; 23:ijms231911686. [PMID: 36232988 PMCID: PMC9570076 DOI: 10.3390/ijms231911686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
In this work we strived to determine whether endocannabinoid system activity could account for the differences in acute inflammatory pain sensitivity in mouse lines selected for high (HA) and low (LA) swim-stress-induced analgesia (SSIA). Mice received intraplantar injections of 5% formalin and the intensity of nocifensive behaviours was scored. To assess the contribution of the endocannabinoid system, mice were intraperitoneally (i.p.) injected with rimonabant (0.3–3 mg/kg) prior to formalin. Minocycline (45 and 100 mg/kg, i.p.) was administered to investigate microglial activation. The possible involvement of the endogenous opioid system was investigated with naloxone (1 mg/kg, i.p.). Cannabinoid receptor types 1 and 2 (Cnr1, Cnr2) and opioid receptor subtype (Oprm1, Oprd1, Oprk1) mRNA levels were quantified by qPCR in the structures of the central nociceptive circuit. Levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled with the mass spectrometry method (LC-MS/MS). In the interphase, higher pain thresholds in the HA mice correlated with increased spinal anandamide and 2-AG release and higher Cnr1 transcription. Downregulation of Oprd1 and Oprm1 mRNA was noted in HA and LA mice, respectively, however no differences in naloxone sensitivity were observed in either line. As opposed to the LA mice, inflammatory pain sensitivity in the HA mice in the tonic phase was attributed to enhanced microglial activation, as evidenced by enhanced Aif1 and Il-1β mRNA levels. To conclude, Cnr1 inhibitory signaling is one mechanism responsible for decreased pain sensitivity in HA mice in the interphase, while increased microglial activation corresponds to decreased pain thresholds in the tonic inflammatory phase.
Collapse
|
10
|
Density and distribution of dendritiform cells in the peripheral cornea of healthy subjects using in vivo confocal microscopy. Ocul Surf 2022; 26:157-165. [PMID: 35998820 DOI: 10.1016/j.jtos.2022.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE To establish dendritiform cell (DC) density and morphological parameters in the central and peripheral cornea in a large healthy cohort, using in vivo confocal microscopy (IVCM). METHODS A prospective, cross-sectional, observational study was conducted in 85 healthy volunteers (n = 85 eyes). IVCM images of corneal center and four peripheral zones were analyzed for DC density and morphology to compare means and assess correlations (p < 0.05 being statistically significant). RESULTS Central cornea had lower DC density (40.83 ± 5.14 cells/mm2; mean ± SEM) as compared to peripheral cornea (75.42 ± 2.67 cells/mm2, p < 0.0001). Inferior and superior zones demonstrated higher DC density (105.01 ± 7.12 and 90.62 ± 4.62 cells/mm2) compared to the nasal and temporal zones (59.93 ± 3.42 and 51.77 ± 2.98 cells/mm2, p < 0.0001). Similarly, lower DC size, field and number of dendrites were observed in the central as compared to the average peripheral cornea (p < 0.0001), with highest values in the inferior zone (p < 0.001 for all, except p < 0.05 for number of dendrites in superior zone). DC parameters did not correlate with age or gender. Inter-observer reliability was 0.987 for DC density and 0.771-0.922 for morphology. CONCLUSION In healthy individuals, the peripheral cornea demonstrates higher DC density and larger morphology compared to the center, with highest values in the inferior zone. We provide the largest normative cohort for sub-stratified DC density and morphology, which can be used in future clinical trials to compare differential changes in diseased states. Furthermore, as DC parameters in the peripheral zones are dissimilar, random sampling of peripheral cornea may be inaccurate.
Collapse
|
11
|
Bereiter DA, Rahman M, Ahmed F, Thompson R, Luong N, Olson JK. Title: P2x7 Receptor Activation and Estrogen Status Drive Neuroinflammatory Mechanisms in a Rat Model for Dry Eye. Front Pharmacol 2022; 13:827244. [PMID: 35479310 PMCID: PMC9037241 DOI: 10.3389/fphar.2022.827244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Dry eye disease (DED) is recognized as a chronic inflammatory condition with an increase in tear osmolarity and loss of tear film integrity. DED is often accompanied by adverse ocular symptoms which are more prevalent in females than males. The basis for ocular hyperalgesia in DED remains uncertain; however, both peripheral and central neural mechanisms are implicated. A model for aqueous deficient DED, exorbital gland excision, was used to determine if activation of the purinergic receptor subtype 7, P2X7R, expressed by non-neural cells in peripheral and central trigeminal nerve pathways, contributed to persistent ocular hyperalgesia. Densitometry of trigeminal brainstem sections revealed increases in P2X7R, the myeloid cell marker Iba1, and the inflammasome, NLRP3, of estradiol-treated DED females compared to estradiol-treated sham females, while expression in DED males and DED females not given estradiol displayed minor changes. No evidence of immune cell infiltration into the trigeminal brainstem was seen in DED rats; however, markers for microglia activation (Iba1) were increased in all groups. Isolated microglia expressed increased levels of P2X7R and P2X4R, IL-1β (Ιnterleukin-1β), NLRP3, and iNOS (nitric oxide synthase). Further, estradiol-treated DED females displayed greater increases in P2X7R, IL-1β and NLRP3 expression compared to untreated DED females. Orbicularis oculi muscle activity (OOemg) evoked by ocular instillation of hypertonic saline (HS) was recorded as a surrogate measure of ocular hyperalgesia and was markedly enhanced in all DED groups compared to sham rats. Systemic minocycline reduced HS-evoked OOemg in all DED groups compared to sham rats. Local microinjection in the caudal trigeminal brainstem of an antagonist for P2X7R (A804598) greatly reduced HS-evoked OOemg activity in all DE groups, while responses in sham groups were not affected. Intra-trigeminal ganglion injection of siRNA for P2X7R significantly reduced HS-evoked OOemg activity in all DED groups, while evoked responses in sham animals were not affected. These results indicated that activation of P2X7R at central and peripheral sites in trigeminal pain pathways contributed to an increase in ocular hyperalgesia and microglia activation in DED males and females. Estrogen treatment in females further amplified ocular hyperalgesia and neuroimmune responses in this model for aqueous deficient DED.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Mostafeezur Rahman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Fabeeha Ahmed
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Randall Thompson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Nhungoc Luong
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Julie K Olson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Tear film and ocular surface neuropeptides: Characteristics, synthesis, signaling and implications for ocular surface and systemic diseases. Exp Eye Res 2022; 218:108973. [PMID: 35149082 DOI: 10.1016/j.exer.2022.108973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
Abstract
Ocular surface neuropeptides are vital molecules primarily involved in maintaining ocular surface integrity and homeostasis. They also serve as communication channels between the nervous system and the immune system, maintaining the homeostasis of the ocular surface. Tear film and ocular surface neuropeptides have a role in disease often due to abnormalities in their synthesis (either high or low production), signaling through defective receptors, or both. This creates imbalances in otherwise normal physiological processes. They have been observed to be altered in many ocular surface and systemic diseases including dry eye disease, ocular allergy, keratoconus, LASIK-induced dry eye, pterygium, neurotrophic keratitis, corneal graft rejection, microbial keratitis, headaches and diabetes. This review examines the characteristics of neuropeptides, their synthesis and their signaling through G-protein coupled receptors. The review also explores the types of neuropeptides within the tears and ocular surface, and how they change in ocular and systemic diseases.
Collapse
|
13
|
Nortey J, Smith D, Seitzman GD, Gonzales JA. Topical Therapeutic Options in Corneal Neuropathic Pain. Front Pharmacol 2022; 12:769909. [PMID: 35173607 PMCID: PMC8841414 DOI: 10.3389/fphar.2021.769909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose of Review: Corneal neuropathic pain can be difficult to treat, particularly due to its lack of response to standard dry eye therapies. We describe a variety of topical therapeutic options that are available to treat corneal neuropathic pain with a significant or primary peripheral component. We also describe possible mechanisms of action for such topical therapies. Recent Findings: Topical corticosteroids and blood-derived tear preparations can be helpful. Newer therapies, including topical lacosamide and low-dose naltrexone are emerging therapeutic options that may also be considered. Summary: Corneal neuropathic pain with a significant peripheral component may be managed with a variety of topical therapeutic options.
Collapse
Affiliation(s)
- Jeremy Nortey
- School of Medicine, University of North Carolina, Chapel Hill, NC, United Statesa
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, United States
| | - David Smith
- A&O Compounding Pharmacy, Vallejo, CA, United States
| | - Gerami D. Seitzman
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - John A. Gonzales
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: John A. Gonzales,
| |
Collapse
|
14
|
Mu N, Wang H, Chen D, Wang F, Ji L, Zhang C, Li M, Lu P. A Novel Rat Model of Dry Eye Induced by Aerosol Exposure of Particulate Matter. Invest Ophthalmol Vis Sci 2022; 63:39. [PMID: 35089331 PMCID: PMC8802024 DOI: 10.1167/iovs.63.1.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The purpose of this study was to introduce a novel dry eye rat model induced by aerosol exposure of particulate matter (PM). Methods A total of 30 female Sprague Dawley (SD) rats divided into 3 groups: the control group, the low-level exposed group, and the high-level exposed group. The rats in the experience groups were directly exposed to PM samples in the exposure chamber over 14 days. The clinical observation, including tear volume, corneal fluorescein staining, breakup time (BUT), inflammation index, corneal irregularity score, and corneal confocal microscopy. Eyeballs were collected on day 14 for hematoxylin and eosin (H&E) staining and PAS staining. TUNEL assay, CD45, and Ki67 immunostaining was performed and corneal ultrastructural changes were detected by electron microscopy. IL-1β, TNF-α, IFN-γ, and NF-κB Western blot analysis were used to observe the possible pathogenesis. Results In the PM-treated groups, the number of layers in the corneal epithelium and corneal nerve fiber length were significantly decreased compared with that of the control group. The number of corneal epithelial microvilli and chondriosome/desmosomes were drastically reduced in PM-treated groups. Confocal microscopy and CD45 immunohistochemistry showed inflammatory cell infiltration in the PM-treated groups. PM caused apoptosis of corneal and conjunctival epithelial cells while leading to abnormal epithelial cell proliferation, meanwhile, conjunctival goblet cells in the PM-treated group were also significantly reduced. PM significantly increased the levels of IL-1β, TNF-α, IFN-γ, and p-NF-κB-p65 in the cornea. Conclusions Aerosol exposure of PM can reduce the stability of tear film and cause the change of ocular surface, which is similar to the performance of human dry eye, suggesting a novel animal model of dry eye.
Collapse
Affiliation(s)
- Ning Mu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, , Jiangsu Province, P.R. China.,Department of Ophthalmology, the Affiliated Hospital of XuZhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - He Wang
- Department of Ophthalmology, the Affiliated Hospital of XuZhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Dongyan Chen
- Department of Ophthalmology, the Affiliated Hospital of XuZhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Fan Wang
- Department of Ophthalmology, the Affiliated Hospital of XuZhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Ling Ji
- Department of Ophthalmology, the Affiliated Hospital of XuZhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Can Zhang
- Department of Ophthalmology, the Affiliated Hospital of XuZhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Mingxin Li
- Department of Ophthalmology, the Affiliated Hospital of XuZhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, , Jiangsu Province, P.R. China
| |
Collapse
|
15
|
The link module of human TSG-6 (Link_TSG6) promotes wound healing, suppresses inflammation and improves glandular function in mouse models of Dry Eye Disease. Ocul Surf 2021; 24:40-50. [PMID: 34968766 DOI: 10.1016/j.jtos.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 (TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). METHODS We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a mouse model of corneal epithelial debridement. RESULTS Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions remained in ∼50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial debridement wounds. CONCLUSION Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of inflammation.
Collapse
|
16
|
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Immunity and pain in the eye: focus on the ocular surface. Clin Exp Immunol 2021; 207:149-163. [PMID: 35020868 PMCID: PMC8982975 DOI: 10.1093/cei/uxab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Most ocular diseases are associated with pain. While pain has been generally considered a mere (deleterious) additional symptom, it is now emerging that it is a key modulator of innate/adaptive immunity. Because the cornea receives the highest nerve density of the entire body, it is an ideal site to demonstrate interactions between pain and the immune response. Indeed, most neuropeptides involved in pain generation are also potent regulators of innate and adaptive leukocyte physiology. On the other hand, most inflammatory cells can modulate the generation of ocular pain through release of specific mediators (cytokines, chemokines, growth factors, and lipid mediators). This review will discuss the reciprocal role(s) of ocular surface (and specifically: corneal) pain on the immune response of the eye. Finally, we will discuss the clinical implications of such reciprocal interactions in the context of highly prevalent corneal diseases.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy,Correspondence: Giulio Ferrari, Cornea and Ocular Surface Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy. E-mail:
| |
Collapse
|
17
|
GlicoPro, Novel Standardized and Sterile Snail Mucus Extract for Multi-Modulative Ocular Formulations: New Perspective in Dry Eye Disease Management. Pharmaceutics 2021; 13:pharmaceutics13122139. [PMID: 34959420 PMCID: PMC8708832 DOI: 10.3390/pharmaceutics13122139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the mucoadhesive and regenerative properties of a novel lubricating multimolecular ophthalmic solution (GlicoPro®) extracted from snail mucus and its potential anti-inflammatory and analgesic role in the management of dry eye disease (DED). GlicoPro bio-adhesive efficacy was assessed using a lectin-based assay, and its regenerative properties were studied in a human corneal epithelial cell line. In vitro DED was induced in human corneal tissues; the histology and mRNA expression of selected genes of inflammatory and corneal damage biomarkers were analyzed in DED tissues treated with GlicoPro. A higher percentage of bio-adhesivity was observed in corneal cells treated with GlicoPro than with sodium hyaluronate-based compounds. In the scratch test GlicoPro improved in vitro corneal wound healing. Histo-morphological analysis revealed restoration of cellular organization of the corneal epithelium, microvilli, and mucin network in DED corneal tissues treated with GlicoPro. A significant reduction in inflammatory and ocular damage biomarkers was observed. High-performance liquid chromatography-mass spectrometry analysis identified an endogenous opioid, opiorphin, in the peptide fraction of GlicoPro. In conclusion, GlicoPro induced regeneration and bio-adhesivity in corneal cells; moreover, considering its anti-inflammatory and analgesic properties, this novel ophthalmic lubricating solution may be an innovative approach for the management of DED.
Collapse
|
18
|
Guerrero-Moreno A, Liang H, Moreau N, Luzu J, Rabut G, Melik Parsadaniantz S, Labbé A, Baudouin C, Réaux-Le Goazigo A. Corneal Nerve Abnormalities in Painful Dry Eye Disease Patients. Biomedicines 2021; 9:biomedicines9101424. [PMID: 34680542 PMCID: PMC8533181 DOI: 10.3390/biomedicines9101424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background: This study aimed to compare the corneal nerve structural abnormalities detected using in vivo confocal microscopy (IVCM) in patients with neuropathic corneal pain (NCP) secondary to primary meibomian gland dysfunction (MGD) or autoimmune dry eye (AIDE). Methods: A two-stage retrospective nested case-control study was conducted. First, data from patients with either MGD or AIDE were assessed, selecting only cases with no corneal pain (VAS = 0) or severe pain (VAS ≥ 8). Ocular signs and symptoms of the 238 selected patients were compared between painful and painless cases. Next, painful patients with no corneal damage (Oxford score ≤ 1) were selected within each study group, defining the cases with NCP (i.e., "pain without stain"). IVCM images from all groups were compared with prospectively-recruited healthy controls, focusing on dendritiform cell density and nerve abnormalities (density, tortuosity, microneuromas). Results: AIDE patients had more ocular signs/symptoms than MGD patients. Compared with healthy controls, AIDE-related NCP patients showed increased nerve tortuosity and number of neuromas, whereas MGD-related NCP patients had reduced nerve density and increased number, perimeter, and area of microneuromas. Microneuromas were also observed in healthy controls. Furthermore, a higher number of microneuromas was found in MGD-related NCP compared to AIDE-related NCP or painless MGD. Conclusions: MGD-related NCP was associated with significantly more corneal nerve abnormalities than AIDE-related NCP or healthy controls. Although IVCM can be useful to detect NCP-related corneal nerve changes in such patients, the diagnosis of dry eye disease-related NCP will require an association of several IVCM-based criteria without relying solely on the presence of microneuromas.
Collapse
Affiliation(s)
- Adrian Guerrero-Moreno
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, 75012 Paris, France; (A.G.-M.); (H.L.); (N.M.); (S.M.P.); (C.B.)
| | - Hong Liang
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, 75012 Paris, France; (A.G.-M.); (H.L.); (N.M.); (S.M.P.); (C.B.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, 75012 Paris, France; (J.L.); (G.R.); (A.L.)
| | - Nathan Moreau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, 75012 Paris, France; (A.G.-M.); (H.L.); (N.M.); (S.M.P.); (C.B.)
| | - Jade Luzu
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, 75012 Paris, France; (J.L.); (G.R.); (A.L.)
| | - Ghislaine Rabut
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, 75012 Paris, France; (J.L.); (G.R.); (A.L.)
| | - Stéphane Melik Parsadaniantz
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, 75012 Paris, France; (A.G.-M.); (H.L.); (N.M.); (S.M.P.); (C.B.)
| | - Antoine Labbé
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, 75012 Paris, France; (J.L.); (G.R.); (A.L.)
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France
| | - Christophe Baudouin
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, 75012 Paris, France; (A.G.-M.); (H.L.); (N.M.); (S.M.P.); (C.B.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, 75012 Paris, France; (J.L.); (G.R.); (A.L.)
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France
| | - Annabelle Réaux-Le Goazigo
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, 75012 Paris, France; (A.G.-M.); (H.L.); (N.M.); (S.M.P.); (C.B.)
- Correspondence: ; Tel.: +33-153462572
| |
Collapse
|
19
|
Cox SM, Kheirkhah A, Aggarwal S, Abedi F, Cavalcanti BM, Cruzat A, Hamrah P. Alterations in corneal nerves in different subtypes of dry eye disease: An in vivo confocal microscopy study. Ocul Surf 2021; 22:135-142. [PMID: 34407488 PMCID: PMC11549962 DOI: 10.1016/j.jtos.2021.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To evaluate corneal subbasal nerve alterations in evaporative and aqueous-deficient dry eye disease (DED) as compared to controls. METHODS In this retrospective, cross-sectional, controlled study, eyes with a tear break-up time of less than 10 s were classified as DED. Those with an anesthetized Schirmer's strip of less than 5 mm were classified as aqueous-deficient DED. Three representative in vivo confocal microscopy images were graded for each subject for total, main, and branch nerve density and numbers. RESULTS Compared to 42 healthy subjects (42 eyes), the 70 patients with DED (139 eyes) showed lower total (18,579.0 ± 687.7 μm/mm2 vs. 21,014.7 ± 706.5, p = 0.026) and main (7,718.9 ± 273.9 vs. 9,561.4 ± 369.8, p < 0.001) nerve density, as well as lower total (15.5 ± 0.7/frame vs. 20.5 ± 1.3, p = 0.001), main (3.0 ± 0.1 vs. 3.8 ± 0.2, p = 0.001) and branch (12.5 ± 0.7 vs. 16.5 ± 1.2, p = 0.004) nerve numbers. Compared to the evaporative DED group, the aqueous-deficient DED group showed reduced total nerve density (19,969.9 ± 830.7 vs. 15,942.2 ± 1,135.7, p = 0.006), branch nerve density (11,964.9 ± 749.8 vs. 8,765.9 ± 798.5, p = 0.006), total nerves number (16.9 ± 0.8/frame vs. 13.0 ± 1.2, p = 0.002), and branch nerve number (13.8 ± 0.8 vs. 10.2 ± 1.1, p = 0.002). CONCLUSIONS Patients with DED demonstrate compromised corneal subbasal nerves, which is more pronounced in aqueous-deficient DED. This suggests a role for neurosensory abnormalities in the pathophysiology of DED.
Collapse
Affiliation(s)
- Stephanie M Cox
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ahmad Kheirkhah
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shruti Aggarwal
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Farshad Abedi
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Bernardo M Cavalcanti
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrea Cruzat
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Zhang Q, Wu Y, Song Y, Qin G, Yang L, Talwar SS, Lin T, Talwar GDS, Zhang H, Xu L, Moore JE, Pazo EE, He W. Screening Evaporative Dry Eyes Severity Using an Infrared Image. J Ophthalmol 2021; 2021:8396503. [PMID: 34484814 PMCID: PMC8410437 DOI: 10.1155/2021/8396503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dry eye disease (DED) is a multifactorial and one of the most common problems treated in an ophthalmic outpatient clinic. Due to the variability in presentation, diagnosis of DED consists of a combination of subjective and objective clinical tests. The purpose of this study was to assess the effectiveness of a handheld smartphone-based infrared thermal (IRT) camera for screening symptomatic evaporative DED. METHODS This observational sex-matched control study assessed IRT images of 184 right eyes (46 normal and 138 DED) of 184 participants. Evaporative DED was assessed using noninvasive tear breakup time, fluorescein staining, and the Chinese version of the ocular surface disease index (C-OSDI) questionnaire and categorized into their respective dry eye symptomology group (none, mild, moderate, or severe). The ocular surface temperature (OST) at 8 anatomical regions of interest (ROI) (nasal conjunctiva, nasal limbus, nasal cornea, central cornea, inferior cornea, temporal limbus, temporal cornea, and temporal conjunctiva) were measured and compared using a handheld smartphone-based IRT camera. The effectiveness of these 8 ROIs OST in detecting varying severity of DED was evaluated in terms of correlations with severity of DED and their area under the curve (AUC). RESULTS OST at the 8 anatomical ROI was significantly higher in DED participants than in the non-DED group (p < 0.05) except for inferior cornea, temporal limbus, and temporal conjunctival regions (>0.05). Analyzing 8 anatomical ROIs revealed that the nasal limbus had the highest Pearson correlation with the severity of DED (0.64, p < 0.001). Additionally, the nasal limbus ROI achieved the highest AUC of 0.79 (CI: 0.73-0.85; p < 0.05), sensitivity, and specificity (0.96 and 0.91) when comparing its ability to discriminated DED vs. non-DED eyes. CONCLUSIONS Rather than a diagnostic tool, handheld smartphone-based IRT images can be considered as a rapid, noninvasive, and hygienic screening tool in discriminating DED and non-DED and potentially alleviating inconvenience experienced during conventional tests.
Collapse
Affiliation(s)
- Qing Zhang
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yi Wu
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yilin Song
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guanghao Qin
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lanting Yang
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Tiezhu Lin
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
- Wenzhou Medical University, Jiaxing, China
| | | | - Hongda Zhang
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
| | - Ling Xu
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
| | | | - Emmanuel Eric Pazo
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
| | - Wei He
- He Eye Specialist Hospital, No. 128 North Huanghe Street, Shenyang, China
| |
Collapse
|
21
|
Yu L, Yu C, Dong H, Mu Y, Zhang R, Zhang Q, Liang W, Li W, Wang X, Zhang L. Recent Developments About the Pathogenesis of Dry Eye Disease: Based on Immune Inflammatory Mechanisms. Front Pharmacol 2021; 12:732887. [PMID: 34421626 PMCID: PMC8375318 DOI: 10.3389/fphar.2021.732887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Dry eye disease is a common and frequently occurring ophthalmology with complex and diverse causes, and its incidence is on the upward trend. The pathogenesis of DED is still completely clear. However, the immune response based on inflammation has been recognized as the core basis of this disease. In this review, we will systematically review the previous research on the treatment of DED in immune inflammation, analyze the latest views and research hotspots, and provide reference for the prevention and treatment of DED.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunjing Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Dong
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Mu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiaosi Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Liang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjia Li
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
de Paiva CS, Trujillo-Vargas CM, Schaefer L, Yu Z, Britton RA, Pflugfelder SC. Differentially Expressed Gene Pathways in the Conjunctiva of Sjögren Syndrome Keratoconjunctivitis Sicca. Front Immunol 2021; 12:702755. [PMID: 34349764 PMCID: PMC8326832 DOI: 10.3389/fimmu.2021.702755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune condition that targets the salivary and lacrimal glands, with cardinal clinical signs of dry eye (keratoconjunctivitis sicca, KCS) and dry mouth. The conjunctiva of SS patients is often infiltrated by immune cells that participate in the induction and maintenance of local inflammation. The purpose of this study was to investigate immune-related molecular pathways activated in the conjunctiva of SS patients. Female SS patients (n=7) and controls (n=19) completed a series of oral, ocular surface exams. Symptom severity scores were evaluated using validated questionnaires (OSDI and SANDE). All patients fulfilled the ACR/EULAR criteria for SS and the criteria for KCS. Fluorescein and lissamine green dye staining evaluated tear-break-up time (TBUT), corneal and conjunctival disease, respectively. Impression cytology of the temporal bulbar conjunctiva was performed to collect cells lysed and subjected to gene expression analysis using the NanoString Immunology Panel. 53/594 differentially expressed genes (DEGs) were observed between SS and healthy controls; 49 DEGs were upregulated, and 4 were downregulated (TRAF5, TGFBI, KLRAP1, and CMKLRI). The top 10 DEGs in descending order were BST2, IFITM1, LAMP3, CXCL1, IL19, CFB, LY96, MX1, IL4R, CDKN1A. Twenty pathways had a global significance score greater or equal to 2. Spearman correlations showed that 29/49 upregulated DEGs correlated with either TBUT (inverse) or OSDI or conjunctival staining score (positive correlations). Venn diagrams identified that 26/29 DEGs correlated with TBUT, 5/26 DEGs correlated with OSDI, and 16/26 correlated with conjunctival staining scores. Five upregulated DEGs (CFB, CFI, IL1R1, IL2RG, IL4R) were uniquely negatively correlated with TBUT. These data indicate that the conjunctiva of SS patients exhibits a phenotype of immune activation, although some genes could be inhibitory. Some of the DEGs and pathways overlap with previous DEGs in salivary gland biopsies, but new DEGs were identified, and some of these correlated with symptoms and signs of dry eye. Our results indicate that gene analysis of conjunctiva imprints is a powerful tool to understand the pathogenesis of SS and develop new therapeutic targets.
Collapse
Affiliation(s)
- Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Laura Schaefer
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
23
|
Alam J, de Paiva CS, Pflugfelder SC. Desiccation Induced Conjunctival Monocyte Recruitment and Activation - Implications for Keratoconjunctivitis. Front Immunol 2021; 12:701415. [PMID: 34305940 PMCID: PMC8297564 DOI: 10.3389/fimmu.2021.701415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Lacrimal gland secretory dysfunction in Sjögren syndrome (SS) causes ocular surface desiccation that is associated with increased cytokine expression and number of antigen-presenting cells (APCs) in the conjunctiva. This study evaluated the hypothesis that desiccating stress (DS) alters the percentage and gene expression of myeloid cell populations in the conjunctiva. Methods DS was induced by pharmacologic suppression of tear secretion and exposure to drafty low humidity environment. Bone marrow chimeras and adoptive transfer of CD45.1+ bone marrow cells to CD45.2+ C-C chemokine receptor 2 knockout (CCR2-/-) mice were used to track DS-induced myeloid cell recruitment to the conjunctiva. Flow cytometry evaluated myeloid cell populations in conjunctivae obtained from non-stressed eyes and those exposed to DS for 5 days. CD11b+ myeloid lineage cells were gated on monocyte (Ly6C), macrophage (CD64, MHCII) and DC (CD11c, MHCII) lineage markers. NanoString immune arrays were performed on sorted MHCII+ and MHCII- monocyte/macrophage cell populations. Results DS significantly increased the recruitment of adoptively transferred MHCII positive and negative myeloid cells to the conjunctiva in a CCR2 dependent fashion. The percentage of resident conjunctival monocytes (Ly6C+CD64-) significantly decreased while CD64+MHCII+ macrophages increased over 5 days of DS (P<0.05 for both). Comparison of gene expression between the MHCII- monocyte and MHCII+ populations in non-stressed conjunctiva revealed a ≥ 2 log2 fold increase in 95 genes and decrease in 46 genes. Upregulated genes are associated with antigen presentation, cytokine/chemokine, M1 macrophage and NLRP3 inflammasome pathways. DS increased innate inflammatory genes in monocytes and MHCII+ cells and increased M1 macrophage (Trem1, Ido1, Il12b, Stat5b) and decreased homeostasis (Mertk) and M2 macrophage (Arg1) genes in MHCII+ cells. Conclusions There are myeloid cell populations in the conjunctiva with distinct phenotype and gene expression patterns. DS recruits myeloid cells from the blood and significantly changes their phenotype in the conjunctiva. DS also alters expression of an array of innate inflammatory genes. Immature monocytes in the unstressed conjunctiva appear to cascade to MHCII+ macrophages during DS, suggesting that DS promotes maturation of monocytes to antigen presenting cells with increased expression of inflammatory genes that may contribute to the pathogenesis of SS keratoconjunctivitis sicca.
Collapse
Affiliation(s)
- Jehan Alam
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
24
|
Assessment of reliability and validity of the 5-scale grading system of the point-of-care immunoassay for tear matrix metalloproteinase-9. Sci Rep 2021; 11:12394. [PMID: 34117341 PMCID: PMC8196078 DOI: 10.1038/s41598-021-92020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023] Open
Abstract
We evaluated the reliability and validity of the 5-scale grading system to interpret the point-of-care immunoassay for tear matrix metalloproteinase (MMP)-9. Six observers graded red bands of photographs of the readout window in MMP-9 immunoassay kit (InflammaDry) two times with 2-week interval based on the 5-scale grading system (i.e. grade 0–4). Interobserver and intraobserver reliability were evaluated using intraclass correlation coefficients. The interobserver agreements were analyzed according to the severity of tear MMP-9 expression. To validate the system, a concentration calibration curve was made using MMP-9 solutions with reference concentrations, then the distribution of MMP-9 concentrations was analyzed according to the 5-scale grading system. Both intraobserver and interobserver reliability was excellent. The readout grades were significantly correlated with the quantified colorimetric densities. The interobserver variance of readout grades had no correlation with the severity of the measured densities. The band density continued to increase up to a maximal concentration (i.e. 5000 ng/mL) according to the calibration curve. The difference of grades reflected the change of MMP-9 concentrations sensitively, especially between grade 2 and 4. Together, our data indicate that the subjective 5-scale grading system in the point-of-care MMP-9 immunoassay is an easy and reliable method with acceptable accuracy.
Collapse
|
25
|
Capsazepine decreases corneal pain syndrome in severe dry eye disease. J Neuroinflammation 2021; 18:111. [PMID: 33975636 PMCID: PMC8114509 DOI: 10.1186/s12974-021-02162-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED. Methods Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests. Results First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED. Conclusion These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.
Collapse
|
26
|
Xu J, Chen P, Yu C, Liu Y, Hu S, Di G. In vivo Confocal Microscopic Evaluation of Corneal Dendritic Cell Density and Subbasal Nerve Parameters in Dry Eye Patients: A Systematic Review and Meta-analysis. Front Med (Lausanne) 2021; 8:578233. [PMID: 33898473 PMCID: PMC8058423 DOI: 10.3389/fmed.2021.578233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: To conduct a systematic review and meta-analysis of the available research on evaluating changes in corneal dendritic cell density (CDCD) and the main subbasal nerve parameters (SNPs) on the ocular surface and assessing the diagnostic performance of in vivo confocal microscopy in patients with dry eye disease. Methods: A computerized systematic review of literature published in PUBMED, EMBASE, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials until May 8, 2020 was performed. All statistical analyses were conducted in RevMan V.5.3 software. The weighted mean differences (WMDs) and standardized mean differences (SMDs) with 95% confidence intervals (CI) between dry eye patients and healthy subjects were presented as results. Results: A total of 11 studies with 755 participants were recruited, and 931 eyes were included in this meta-analysis. However, not all studies reported both CDCD and SNPs. CDCD in the central cornea was higher (WMD = 51.06, 95% CI = 39.42-62.71), while corneal nerve fiber density (CNFD) and corneal nerve fiber length (CNFL) were lower (WMD = -7.96, 95% CI = -12.12 to -3.81; SMD = -2.30, 95%CI = -3.26 to -1.35) in dry eye patients in comparison with the corresponding values in healthy controls (all p < 0.00001). Conclusion: Taken together, while CNFD and CNFL were lower in dry eye patients, central CDCD showed a significant increase in these patients in comparison with the corresponding values in healthy controls.
Collapse
Affiliation(s)
- Jing Xu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaning Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shaohua Hu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Abstract
A biomarker is a "characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions." Recently, calls for biomarkers for ocular surface diseases have increased, and advancements in imaging technologies have aided in allowing imaging biomarkers to serve as a potential solution for this need. This review focuses on the state of imaging biomarkers for ocular surface diseases, specifically non-invasive tear break-up time (NIBUT), tear meniscus measurement and corneal epithelial thickness with anterior segment optical coherence tomography (OCT), meibomian gland morphology with infrared meibography and in vivo confocal microscopy (IVCM), ocular redness with grading scales, and cellular corneal immune cells and nerve assessment by IVCM. Extensive literature review was performed for analytical and clinical validation that currently exists for potential imaging biomarkers. Our summary suggests that the reported analytical and clinical validation state for potential imaging biomarkers is broad, with some having good to excellent intra- and intergrader agreement to date. Examples of these include NIBUT for dry eye disease, ocular redness grading scales, and detection of corneal immune cells by IVCM for grading and monitoring inflammation. Further examples are nerve assessment by IVCM for monitoring severity of diabetes mellitus and neurotrophic keratitis, and corneal epithelial thickness assessment with anterior segment OCT for the diagnosis of early keratoconus. However, additional analytical validation for these biomarkers is required before clinical application as a biomarker.
Collapse
|
28
|
Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, Réaux-Le Goazigo A. Morphological and Functional Changes of Corneal Nerves and Their Contribution to Peripheral and Central Sensory Abnormalities. Front Cell Neurosci 2020; 14:610342. [PMID: 33362474 PMCID: PMC7758484 DOI: 10.3389/fncel.2020.610342] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
The cornea is the most densely innervated and sensitive tissue in the body. The cornea is exclusively innervated by C- and A-delta fibers, including mechano-nociceptors that are triggered by noxious mechanical stimulation, polymodal nociceptors that are excited by mechanical, chemical, and thermal stimuli, and cold thermoreceptors that are activated by cooling. Noxious stimulations activate corneal nociceptors whose cell bodies are located in the trigeminal ganglion (TG) and project central axons to the trigeminal brainstem sensory complex. Ocular pain, in particular, that driven by corneal nerves, is considered to be a core symptom of inflammatory and traumatic disorders of the ocular surface. Ocular surface injury affecting corneal nerves and leading to inflammatory responses can occur under multiple pathological conditions, such as chemical burn, persistent dry eye, and corneal neuropathic pain as well as after some ophthalmological surgical interventions such as photorefractive surgery. This review depicts the morphological and functional changes of corneal nerve terminals following corneal damage and dry eye disease (DED), both ocular surface conditions leading to sensory abnormalities. In addition, the recent fundamental and clinical findings of the importance of peripheral and central neuroimmune interactions in the development of corneal hypersensitivity are discussed. Next, the cellular and molecular changes of corneal neurons in the TG and central structures that are driven by corneal nerve abnormalities are presented. A better understanding of the corneal nerve abnormalities as well as neuroimmune interactions may contribute to the identification of a novel therapeutic targets for alleviating corneal pain.
Collapse
Affiliation(s)
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, Paris, France.,CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | | | | |
Collapse
|
29
|
Periman LM, Mah FS, Karpecki PM. A Review of the Mechanism of Action of Cyclosporine A: The Role of Cyclosporine A in Dry Eye Disease and Recent Formulation Developments. Clin Ophthalmol 2020; 14:4187-4200. [PMID: 33299295 PMCID: PMC7719434 DOI: 10.2147/opth.s279051] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease of the ocular surface and tear film that has gained awareness as a public health problem. Characteristics of DED include tear film instability, hyperosmolarity, and ocular surface inflammation, which can occur independently or may be a sequela of numerous ocular diseases, ocular surgery or contact lens wear. Much has been learned about the impact of the disease to help affected individuals who report symptoms of poor vision, pain, and tearing. Recently, new research highlights the importance of the role of ocular surface inflammation and damage in DED-leading to a vicious cycle of inflammation as well as loss of tear film homeostasis. DED immunopathophysiology is characterized by four stages: initiation, amplification, recruitment, and re-initiation. Cyclosporine is proven to be a valuable ophthalmic therapeutic for DED through its immunomodulatory actions and regulation of the adaptive immune response. Cyclosporine mechanism of action is well described in the published literature and the myriad of benefits in all four stages lend a broad-based immunomodulatory function particularly suitable for addressing DED. Furthermore, cyclosporine has unique goblet cell density improvement capabilities as well as anti-apoptotic properties. Topical formulations of cyclosporine are centered around addressing the highly lipophilic nature of the molecule. The poor aqueous solubility of cyclosporine traditionally presented technical challenges in drug delivery to the ocular surface. Newer formulations such as cationic emulsions and nanomicellar aqueous solutions address formulation, tissue concentration, and drug delivery challenges.
Collapse
|
30
|
Fakih D, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. TRPM8: A Therapeutic Target for Neuroinflammatory Symptoms Induced by Severe Dry Eye Disease. Int J Mol Sci 2020; 21:E8756. [PMID: 33228217 PMCID: PMC7699525 DOI: 10.3390/ijms21228756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.
Collapse
Affiliation(s)
- Darine Fakih
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- R&D Department, Laboratoires Théa, 12 rue Louis Biérot, F-63000 Clermont-Ferrand, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, F-75012 Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| |
Collapse
|
31
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
32
|
Schlereth SL, Hos D, Matthaei M, Hamrah P, Schmetterer L, O'Leary O, Ullmer C, Horstmann J, Bock F, Wacker K, Schröder H, Notara M, Haagdorens M, Nuijts RMMA, Dunker SL, Dickman MM, Fauser S, Scholl HPN, Wheeler-Schilling T, Cursiefen C. New Technologies in Clinical Trials in Corneal Diseases and Limbal Stem Cell Deficiency: Review from the European Vision Institute Special Interest Focus Group Meeting. Ophthalmic Res 2020; 64:145-167. [PMID: 32634808 DOI: 10.1159/000509954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022]
Abstract
To discuss and evaluate new technologies for a better diagnosis of corneal diseases and limbal stem cell deficiency, the outcomes of a consensus process within the European Vision Institute (and of a workshop at the University of Cologne) are outlined. Various technologies are presented and analyzed for their potential clinical use also in defining new end points in clinical trials. The disease areas which are discussed comprise dry eye and ocular surface inflammation, imaging, and corneal neovascularization and corneal grafting/stem cell and cell transplantation. The unmet needs in the abovementioned disease areas are discussed, and realistically achievable new technologies for better diagnosis and use in clinical trials are outlined. To sum up, it can be said that there are several new technologies that can improve current diagnostics in the field of ophthalmology in the near future and will have impact on clinical trial end point design.
Collapse
Affiliation(s)
- Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany, .,Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany,
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Pedram Hamrah
- Cornea Service and Center for Translational Ocular Immunology, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore.,Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Olivia O'Leary
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Wacker
- Eye Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michel Haagdorens
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Antwerp, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Antwerp, Belgium
| | - Rudy M M A Nuijts
- University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Suryan L Dunker
- University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mor M Dickman
- University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sascha Fauser
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas Wheeler-Schilling
- European Vision Institute EEIG, Brussels, Belgium.,Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Jirsova K, Seidler Stangova P, Palos M, Mahelkova G, Kalasova S, Rybickova I, Utheim TP, Vesela V. Aberrant HLA-DR expression in the conjunctival epithelium after autologous serum treatment in patients with graft-versus-host disease or Sjögren's syndrome. PLoS One 2020; 15:e0231473. [PMID: 32315325 PMCID: PMC7173771 DOI: 10.1371/journal.pone.0231473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to determine the effect of autologous serum (AS) eye drops on the density of human leucocyte antigen (HLA)-DR-positive epithelial cells and Langerhans cells on the ocular surface of patients with bilateral severe dry eye disease (DED) due to graft-versus-host disease (GvHD) or Sjögren’s syndrome (SS). The study was conducted on 24 patients (48 eyes). AS was applied 6–10 times daily for 3 months together with regular artificial tear therapy. HLA-DR-positive cells were detected by direct immunocytochemistry on upper bulbar conjunctiva imprints obtained before and after treatment. The application of AS drops led to a statistically significant increase in the mean density of aberrant HLA-DR-positive conjunctival epithelial cells (p < 0.05) and HLA-DR-positive Langerhans cells (p < 0.05) in the GvHD group. Aberrant HLA-DR-positive epithelial cells in the SS group were decreased non-significantly. All patients reported a significant decrease in the Ocular Surface Disease Index (p < 0.01), which indicates improvement of the patient’s subjective feelings after therapy. There was an expected but non-significant decrease of aberrant HLA-DR-positive conjunctival epithelial cells in the SS group only. However, the increased density of HLA-DR-positive cells, indicating slight subclinical inflammation, does not outweigh the positive effect of AS in patients with DED from GvHD.
Collapse
Affiliation(s)
- Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| | - Petra Seidler Stangova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michalis Palos
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Gabriela Mahelkova
- Department of Ophthalmology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, and Department of Physiology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Sarka Kalasova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Rybickova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Viera Vesela
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
34
|
Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflammation 2019; 16:268. [PMID: 31847868 PMCID: PMC6918709 DOI: 10.1186/s12974-019-1656-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Background Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. Methods A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. Results We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1β), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1β, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. Conclusions Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.
Collapse
|
35
|
López-de la Rosa A, Fernández I, García-Vázquez C, Arroyo-Del Arroyo C, González-García MJ, Enríquez-de-Salamanca A. Conjunctival Neuropathic and Inflammatory Pain-Related Gene Expression with Contact Lens Wear and Discomfort. Ocul Immunol Inflamm 2019; 29:587-606. [PMID: 31825696 DOI: 10.1080/09273948.2019.1690005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To identify alterations in neuropathic and inflammatory pain gene expression associated with contact lens (CL) wear and CL discomfort (CLD).Methods: Eight non-wearers, eight asymptomatic CL wearers (CLWs) and eight symptomatic CLWs were included. Conjunctival cells were collected by impression cytology and the mRNA expression levels of 85 genes were analyzed. Differentially expressed genes between non-wearers and CLWs and between asymptomatic and symptomatic CLWs were analyzed. An enrichment analysis was also performed.Results: Twelve genes were upregulated (including IL10, PDYN and PENK) and 28 downregulated (CCL2, IL1A, IL1B, IL2 and NGF) in CLWs (p ≤ 0.050). Eleven genes were upregulated (CCL2, IL1A, IL1B, IL2 and NGF) and nine downregulated (PDYN and PENK) in symptomatic CLWs (p ≤ 0.035). Enriched overrepresented terms were related to pain, neuronal transmission and inflammation.Conclusion: Contact lens wear might produce a desensitization-like mechanism responsible for comfortable CL wear. A malfunction of this mechanism might contribute to CLD.
Collapse
Affiliation(s)
- Alberto López-de la Rosa
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.,Department of Theoretical Physics, Atomic and Optics, University of Valladolid, Valladolid, Spain
| | - Itziar Fernández
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.,Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Carmen García-Vázquez
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
| | - Cristina Arroyo-Del Arroyo
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.,Department of Theoretical Physics, Atomic and Optics, University of Valladolid, Valladolid, Spain
| | - María J González-García
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.,Department of Theoretical Physics, Atomic and Optics, University of Valladolid, Valladolid, Spain.,Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Amalia Enríquez-de-Salamanca
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.,Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
36
|
The Innate Immune Cell Profile of the Cornea Predicts the Onset of Ocular Surface Inflammatory Disorders. J Clin Med 2019; 8:jcm8122110. [PMID: 31810226 PMCID: PMC6947418 DOI: 10.3390/jcm8122110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Ocular surface inflammatory disorder (OSID) is a spectrum of disorders that have features of several etiologies whilst displaying similar phenotypic signs of ocular inflammation. They are complicated disorders with underlying mechanisms related to several autoimmune disorders, such as rheumatoid arthritis (RA), Sjögren’s syndrome, and systemic lupus erythematosus (SLE). Current literature shows the involvement of both innate and adaptive arms of the immune system in ocular surface inflammation. The ocular surface contains distinct components of the immune system in the conjunctiva and the cornea. The normal conjunctiva epithelium and sub-epithelial stroma contains resident immune cells, such as T cells, B cells (adaptive), dendritic cells, and macrophages (innate). The relative sterile environment of the cornea is achieved by the tolerogenic properties of dendritic cells in the conjunctiva, the presence of regulatory lymphocytes, and the existence of soluble immunosuppressive factors, such as the transforming growth factor (TGF)-β and macrophage migration inhibitory factors. With the presence of both innate and adaptive immune system components, it is intriguing to investigate the most important leukocyte population in the ocular surface, which is involved in immune surveillance. Our meta-analysis investigates into this with a focus on both infectious (contact lens wear, corneal graft rejection, Cytomegalovirus, keratitis, scleritis, ocular surgery) and non-infectious (dry eye disease, glaucoma, graft-vs-host disease, Sjögren’s syndrome) situations. We have found the predominance of dendritic cells in ocular surface diseases, along with the Th-related cytokines. Our goal is to improve the knowledge of immune cells in OSID and to open new dimensions in the field. The purpose of this study is not to limit ourselves in the ocular system, but to investigate the importance of dendritic cells in the disorders of other mucosal organs (e.g., lungs, gut, uterus). Holistically, we want to investigate if this is a common trend in the initiation of any disease related to the mucosal organs and find a unified therapeutic approach. In addition, we want to show the power of computational approaches to foster a collaboration between computational and biological science.
Collapse
|
37
|
Thia ZZ, Tong L. Update on the role of impression cytology in ocular surface disease. Taiwan J Ophthalmol 2019; 9:141-149. [PMID: 31572650 PMCID: PMC6759557 DOI: 10.4103/tjo.tjo_57_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding of the molecular pathology of ocular surface disease (OSD) is poor, and treatment is highly unsatisfactory. To facilitate treatment of OSD, a relatively noninvasive procedure, i.e. impression cytology (IC) has been shown to be useful. Recently, the technologies employed in research studies using IC in OSD have vastly improved, and standardized IC has even been used in clinical trials of dry eye. Here, this review aims to describe the advances of IC in the last 10 years, which serves as an update on the progress in this field since the last major review of IC. OSD that has been recently evaluated include meibomian gland dysfunction, Sjogren's syndrome, Steven–Johnson syndrome, and postmenopausal dry eye. The recent studies (4 longitudinal, 18 cross-sectional analyses) which utilized IC analyzed DNA, RNA, proteins, and ocular surface cells, including memory T-lymphocytes, dendritic cells (DCs), neutrophils, conjunctival epithelial cells, and goblet cells. These studies employed quantification of transcripts associated with inflammation, proteins involved in oxidative stress, enzymes such as matrix metalloproteinases, and cell surface proteins by flow cytometry, such as HLA-DR, cytokine and chemokine receptors, markers for T cell differentiation, and DC activation, in addition to the more traditional morphological evaluation of squamous metaplasia and staining for goblet cells. Some challenges in the clinical use of IC have also been described, including issues related to storage and normalization of data. In summary, advances in IC have permitted a more robust evaluation of the ocular surface and will facilitate progress in the understanding and treatment of OSD.
Collapse
Affiliation(s)
- Zhang-Zhe Thia
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Corneal and External Eye Disease Service, Singapore National Eye Center, Singapore.,Singapore Eye Research Institute, Singapore.,Eye-academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
38
|
Corneal epithelial dendritic cell density in the healthy human cornea: A meta-analysis of in-vivo confocal microscopy data. Ocul Surf 2019; 17:753-762. [PMID: 31279064 DOI: 10.1016/j.jtos.2019.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Numerous studies have reported a wide range of corneal epithelial dendritic cells (CEDC) density using in-vivo confocal microscopy in healthy participants. It is necessary to establish normal CEDC values for healthy corneas to enable differentiation from pathological corneas. This meta-analysis aimed to establish CEDC density and distribution and examine their relationship with age and sex. METHODS A systematic review of the literature of studies using the Heidelberg Retinal Tomograph with Rostock Corneal Module and reporting CEDC density in healthy subjects up to December 2018 was conducted via Medline, Google Scholar, Scopus, PubMed, Embase and Cochrane library. A random effect modeling approach was used to obtain the results of meta-analysis and meta-regression was conducted to estimate the effect of age and sex. RESULTS 38 studies reported central and 9 reported peripheral inferior CEDC density of 1203 participants (mean age 46.0 ± 12.2, range 18-81 years). CEDC density in the central and peripheral inferior cornea was 26.4 ± 13.6 cells/mm2 (95% CI:22.5-26.8) and 74.9 ± 22.7 cells/mm2 (95%CI:59.8-90.0), respectively. No effect of age was found on central CEDC density (p = 0.63); whereas peripheral CEDC density decreased with increasing age (p = 0.02). CEDC density was not influenced by sex at either location (p > 0.48). CONCLUSION This study established that the density at the peripheral inferior cornea is three-fold higher than at the central cornea. Peripheral but not central CEDC density decreased with increasing age. There are limited studies in youth (<18 years), precluding a more detailed analysis. Sex does not appear to be a significant factor in CEDC density.
Collapse
|
39
|
Meng YF, Xin Q, Lu J, Xiao P, Li J. Association Between Single Nucleotide Polymorphisms in the Vitamin D Receptor and Incidence of Dry Eye Disease in Chinese Han Population. Med Sci Monit 2019; 25:4759-4765. [PMID: 31243261 PMCID: PMC6611217 DOI: 10.12659/msm.915434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Dry eye disease (DED) is a chronic dysfunction of the ocular surface and has become an important public problem. Vitamin D receptor (VDR) gene polymorphism has been found to be associated with different kinds of diseases. The relationship between single nucleotide polymorphisms (SNPs) in the VDR gene should be studied. Material/Methods In the present case-control study, we investigated the association of VDR gene polymorphism with DED risk. Clinical data including age, gender, body mass index (BMI, kg/m2), smoking history, diabetes, and blood pressure were recorded. Serum 25-hydroxy vitamin D (25[OH]D) was chosen as the main parameter that reflected the level of vitamin D. We identified SNPs of VDR gene Apa-1, Bsm-1, Fok-1, and Taq-1 in both DED cases and healthy controls. Results A total of 124 DED cases and 135 healthy controls were included in this study. It was reported that aa in Apa-1 (OR=2.803, 95% CI, 1.350–5.820) and tt in Taq-1 (OR=0.362, 95% CI, 0.141–0.930) were associated with increased the risk of DED. Analysis of the allele frequencies of VDR gene polymorphisms among DED patients and healthy controls showed that allele differences in Apa-1 were significantly associated with higher risk. Conclusions SNPs of VDR gene (Apa-1 and Taq-1) were associated with the risk of DED. No significant association of Bsm-1 and Fok-1 in VDR gene demonstrated significant effect in the incidence of DED. Thus, we found that several SNPs of VDR gene could provide significant pathogenic effects in the risk of DED.
Collapse
Affiliation(s)
- Yi-Fang Meng
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, Jiangsu, China (mainland)
| | - Qian Xin
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, Jiangsu, China (mainland)
| | - Jiong Lu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, Jiangsu, China (mainland)
| | - Pan Xiao
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, Jiangsu, China (mainland)
| | - Jian Li
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, Jiangsu, China (mainland)
| |
Collapse
|
40
|
Colorado LH, Markoulli M, Edwards K. The Relationship Between Corneal Dendritic Cells, Corneal Nerve Morphology and Tear Inflammatory Mediators and Neuropeptides in Healthy Individuals. Curr Eye Res 2019; 44:840-848. [PMID: 30909745 DOI: 10.1080/02713683.2019.1600196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: To determine the association between corneal dendritic cell (DC) density and corneal nerve morphology and tear film inflammatory mediators and neuromediators in healthy individuals. Methods: Flush tears were collected from 21 healthy participants aged 39.7 ± 9.9 years and analyzed for total protein content (TPC), substance P, matrix-metalloproteinase-9 (MMP-9), tissue inhibitor of MMPs-1 (TIMP-1), tumor necrosis factor-a (TNF-α) and interleukin-6 (IL-6). In vivo confocal microscopy was used to assess DC density and corneal nerve morphology. Corneal nerve variables measured were corneal nerve fiber length (CNFL), fiber density (CNFD), branch density (CNBD), fiber total branch density (CTBD), fiber area (CNFA), fiber width (CNFW) and fractal dimension (CNFrac). Results: Participants with DC density over 50 cells/mm2 correlated with CNBD-average (r = 0.7, p = 0.02), CNBD-high (r = 0.6, p = 0.02), CNBD-low (r = 0.6, p = 0.02) CTBD-average (r = 0.7, p = 0.01), CTBD-high (r = 0.6, p = 0.03), CTBD-low (r = 0.7, p = 0.01), CNFA-average (r = 0.7, p = 0.00), CNFA-high (r = 0.7, p = 0.01), CNFA-low (r = 0.8, p < 0.001), CNFrac-SD (r = -0.6, p = 0.04), CNFrac-low (r = 0.6, p = 0.04) and CNFL-low (r = 0.7, p = 0.02). The percentage of MMP-9 correlated with DC density in the entire cohort (r = 0.47, p = 0.03). Conclusions: Corneal nerve measures showed a strong correlation with higher DC density, suggesting that the number of cells maybe be modulated by the corneal nerves in the central cornea. MMP-9 also showed a moderate correlation with DC, supporting an inflammatory role.
Collapse
Affiliation(s)
- Luisa H Colorado
- a Institute of Health and Biomedical Innovation, School of Optometry and Vision Science, Queensland University of Technology , Brisbane , Australia
| | - Maria Markoulli
- b School of Optometry & Vision Science, University of New South Wales , Sydney , Australia
| | - Katie Edwards
- a Institute of Health and Biomedical Innovation, School of Optometry and Vision Science, Queensland University of Technology , Brisbane , Australia
| |
Collapse
|
41
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
42
|
Melik Parsadaniantz S, Rostène W, Baudouin C, Réaux-Le Goazigo A. [Understanding chronic ocular pain]. Biol Aujourdhui 2018; 212:1-11. [PMID: 30362450 DOI: 10.1051/jbio/2018017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 11/15/2022]
Abstract
Dry eye disease (DED) is a common chronic condition with multifactorial etiologies that is increasing in prevalence worldwide, up to 20% in the elderly. The economic burden and impact of DED on vision, quality of life, work productivity, psychological and physical impact of pain, are considerable. Chronic ocular pain is the most common symptom of DED and there is currently no topical ocular analgesic therapy available to treat this debilitating disease. Eye pain can be perceived as itch, irritation, dryness, grittiness, burning, aching, and light sensitivity. Ocular pain is triggered by corneal nociceptors (cornea being the most sensory innervated tissue of the body). It was clearly established that repeated direct damage to ocular surface and per se corneal nerves can cause peripheral and central sensitization mechanisms explaining the ocular pain in some patients with DED. However, the brain regions and the neuronal pathways associated with ocular pain are still unclear. Thus, a better characterization of chronic ocular pain and an understanding of the peripheral and central molecular and cellular mechanisms involved are crucial issues for developing effective management and therapeutic strategy to alleviate ocular pain. In this review, we first describe the nociceptive corneal nerve pathways and the classification and the neurochemistry of primary afferents innervating the cornea. Then, an update of the fundamental and clinical studies related to the inflammatory processes linked to ocular pain is detailed. The last part of the review presents the diagnostic tools used in clinic for evaluating corneal sensitivity and corneal inflammation.
Collapse
Affiliation(s)
| | - William Rostène
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France - Département d'Ophtalmologie III, Hôpital National des Quinze-Vingts, Paris, France - Département d'Ophtalmologie, Hôpital Ambroise Paré, APHP, Université de Versailles Saint-Quentin en Yvelines, Versailles, France
| | | |
Collapse
|