1
|
Chitakunye AT, Zhang S, Zhu Q, Ni J, Sun Q, Lei Y, Xu J, Ezekiel OC, Li B, Lin H, Zhang M, Cai L. Borate ester-based multifunctional self-healing hydrogels for tissue adhesion and hemostasis. Biomater Sci 2025; 13:3074-3089. [PMID: 40265635 DOI: 10.1039/d4bm01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Uncontrolled bleeding post-surgery or trauma presents a significant medical challenge that often leads to complications such as hypotension, organ dysfunction, and mortality. Effective hemostatic agents are characterized by facilitating rapid bleeding cessation, adequate wet tissue adhesion, easy removal, and minimal hemolysis rate. Building on our previous work with tsPBA@PVA hydrogel, we developed a modified synthesis approach to yield Fe3O4@gel, designed to enhance hemostasis. This system is composed of Fe3O4, N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1,N1,N3,N3-tetramethylpropane-1,3-diaminium, tsPBA, and polyvinyl alcohol, PVA, which undergo a reaction to yield a borate ester. The hydrogel demonstrated excellent self-healing and adhesion properties by forming covalent bonds with diols on material surfaces. Moreover, the presence of polar functional groups within the hydrogel such as -OH, -CH, and -CO groups enabled strong hydrogen bonding with tissue surfaces. The hydrogel could also be easily removed from the wound site without causing rebleeding. In vitro, Fe3O4@gel exhibited a hemolysis rate of less than 5%. Both our in vivo and in vitro results demonstrated the formation of a blood clot enhanced by the presence of Fe3O4 in the hydrogel. These findings suggest the potential of Fe3O4@gel as a promising candidate for promoting hemostasis in wound healing.
Collapse
Affiliation(s)
- Ashleigh Tinotenda Chitakunye
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Shihui Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Qin Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Jianan Ni
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Qiuyu Sun
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Yuxin Lei
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Jie Xu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang 325000, P.R. China
| | - Odinaka Cassandra Ezekiel
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Bingxin Li
- College of Chemistry and Material Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hanxuan Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Miao Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | - Lin Cai
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| |
Collapse
|
2
|
Chen K, Ruan Y, Ma W, Yu X, Hu Y, Li Y, Tang H, Zhang X, Yin Y, Chen D, Song Z. FGF8 Protects Against Polymicrobial Sepsis by Enhancing the Host's Anti-infective Immunity. J Infect Dis 2025; 231:e659-e670. [PMID: 39556487 PMCID: PMC11998567 DOI: 10.1093/infdis/jiae559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Sepsis is characterized by a life-threatening syndrome caused by an unbalanced host response to infection. Fibroblast growth factor 8 (FGF8) has been newly identified to play important roles in inflammation and innate immunity, but its role in host response to sepsis is undefined. METHODS A cecal ligation and puncture (CLP)-induced mouse sepsis model was established to evaluate the immunomodulatory function of FGF8 during sepsis. The underlying molecular mechanisms were elucidated by cell models using relevant molecular biology experiments. The clinical value of FGF8 in the adjuvant diagnosis of sepsis was evaluated using clinical samples. RESULTS FGF8 protein concentrations were elevated in CLP-induced septic mice compared to controls. In vivo, FGF8 blockade using anti-FGF8 antibody significantly increased mortality and bacterial burden and was paralleled by significantly aggravated tissue injury after CLP. Therapeutic administration of recombinant FGF8 (rFGF8) improved the bacterial clearance and mortality of septic mice in a FGFR1-dependent manner. In vitro, FGF8 directly enhanced bacterial phagocytosis and killing of macrophages by enhancing the phosphorylation of the ERK1/2 signaling pathway, which could be abrogated with the ERK1/2 pathway inhibitor U0126. Clinically, serum FGF8 levels in both adult and pediatric patients with sepsis in an intensive care unit were significantly higher than those in healthy controls. CONCLUSIONS These results present a previously unrecognized role of FGF8 in improving survival of sepsis by enhancing host immune defense. Therefore, targeting FGF8 may provide new strategies for the diagnosis and immunotherapy of sepsis.
Collapse
Affiliation(s)
- Kai Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Yanting Ruan
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Wenjing Ma
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xiaoyan Yu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Ying Hu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yue Li
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Tang
- Department of Critical Care Medicine, Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Dapeng Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Zhixin Song
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
3
|
Shin Y, Kwak JS, Kim SK, Chun JS. Fibroblast growth factor 7 (FGF7) causes cartilage destruction, subchondral bone remodeling, and the premature growth plate closure in mice. Osteoarthritis Cartilage 2025; 33:426-436. [PMID: 39638118 DOI: 10.1016/j.joca.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Fibroblast growth factor (FGF) signaling plays a significant role in osteoarthritis (OA) pathogenesis, though the OA-related functions of only a few FGFs have been fully elucidated. This study investigates the specific roles of FGF7 in OA development. METHODS FGF7 expression was analyzed in human (n=6) and mouse (n=10) cartilage. Experimental OA was induced by destabilization of the medial meniscus (DMM). The roles of FGF7 were explored using intra-articular (IA) injection of recombinant FGF7 (rFGF7) and whole-body Fgf7 knockout mice (Fgf7-/-). Subchondral bone remodeling and growth plate morphology were assessed micro computed tomography (µCT) and histological analysis. RESULTS FGF7 was upregulated in OA cartilage. IA injection of rFGF7 led to OA cartilage destruction (OARSI [Osteoarthritis Research Society International] grade; 0.61 [95% CI 0.00-5.33]), while Fgf7-/- mice showed reduced DMM-induced cartilage erosion (OARSI grade; 1.89 [95% CI 1.08-3.00]) compared to wild-type mice (4.92 [95% CI 3.83-5.33]). These effects were associated with changes in matrix-degrading enzyme expression in chondrocytes. Mice receiving IA injection of rFGF7 (20 μg) exhibited increased subchondral bone thickness (68.01 µm [95% CI 61.55-74.46]) and decreased osteoclastogenesis (tartrate-resistant acid phosphatase positivity; 1.94% [95% CI 1.41-2.47]) compared to controls (38.33 µm [95% CI 33.71-42.96]) and (4.23% [95% CI 3.28-5.19]), respectively. Additionally, rFGF7 treatment caused premature closure of growth plates, whereas Fgf7-/- mice exhibited significantly increased growth plate thickness. CONCLUSIONS FGF7 exerts multiple functions in various joint tissues, including promoting cartilage destruction, inducing subchondral bone remodeling (SBP thickening), and triggering premature growth plate closure.
Collapse
MESH Headings
- Animals
- Bone Remodeling/drug effects
- Bone Remodeling/physiology
- Growth Plate/pathology
- Growth Plate/metabolism
- Growth Plate/drug effects
- Growth Plate/diagnostic imaging
- Fibroblast Growth Factor 7/pharmacology
- Fibroblast Growth Factor 7/metabolism
- Fibroblast Growth Factor 7/genetics
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cartilage, Articular/drug effects
- Cartilage, Articular/diagnostic imaging
- Mice
- Mice, Knockout
- Humans
- X-Ray Microtomography
- Male
- Chondrocytes/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/metabolism
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Middle Aged
- Female
- Injections, Intra-Articular
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Youngnim Shin
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji-Sun Kwak
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seul Ki Kim
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
4
|
Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol 2025; 42:108. [PMID: 40087196 DOI: 10.1007/s12032-025-02675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The tumor microenvironment (TME) contains tumor cells, surrounding cells, and secreted factors. It provides a favorable environment for the maintenance of cancer stem cells (CSCs), the spread of cancer cells to metastatic sites, angiogenesis, and apoptosis, as well as the growth, proliferation, invasion, and drug resistance of cancer cells. Cancer cells rely on the activation of oncogenes, inactivation of tumor suppressors, and the support of a normal stroma for their growth, proliferation, and survival, all of which are provided by the TME. The TME is characterized by the presence of various cells, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), CD8 + cytotoxic T cells (CTLs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), endothelial cells, adipocytes, and neuroendocrine (NE) cells. The high expression of inflammatory cytokines, angiogenic factors, and anti-apoptotic factors, as well as drug resistance mechanisms in the TME, contributes to the poor therapeutic efficacy of anticancer drugs and tumor progression. Hence, this review describes the mechanisms through which the TME is involved in apoptosis, angiogenesis, metastasis, and drug resistance in tumor cells.
Collapse
Affiliation(s)
- Yanhong Xiao
- Harbin Medical University Cancer Hospital, Harbin, 150006, Heilongjiang Province, China
| | - Mahan Hassani
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Li W, Xu G, Li M. Diabetic kidney disease: m6A modification as a marker of disease progression and subtype classification. Front Med (Lausanne) 2025; 12:1494162. [PMID: 40103797 PMCID: PMC11914134 DOI: 10.3389/fmed.2025.1494162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
This paper aims to investigate m6A modification during DKD progression. We evaluated m6A regulators expression in peripheral blood mononuclear cells, whole kidney tissue, glomerular, and tubulointerstitial samples. CIBERSORT and single-sample gene set enrichment analysis analyzed glomerular immune characteristics. Logistic-LASSO regression were used to develop the m6A regulators model that can identify early DKD. Consensus clustering algorithms were used to classify DKD in glomerular samples into m6A modified subtypes based on the expression of m6A regulators. Gene set variation analysis algorithm was used to evaluate the functional pathway enrichment of m6A modified subtypes. Weighted gene co-expression network analysis and protein-protein interaction networks identified m6A modified subtype marker genes. The Nephroseq V5 tool was used to evaluate the correlation between m6A modified subtypes marker genes and renal function. DKD patients' m6A regulators expression differed from the control group in various tissue types. DKD stages have various immune characteristics. The m6A regulators model with YTHDC1, METTL3, and ALKBH5 better identified early DKD. DKD was divided into two subtypes based on the expression of 26 m6A regulators. Subtype 1 was enriched in myogenesis, collagen components, and cytokine receptor interaction, while subtype 2 was enriched in protein secretion, proliferation, apoptosis, and various signaling pathways (e.g., TGFβ signaling pathway, PI3K/AKT/mTOR pathway, and etc.). Finally, AXIN1 and GOLGA4 were identified as possible biomarkers associated with glomerular filtration rate. From the viewpoint of m6A modification, the immune characteristics and molecular mechanisms of DKD at various stages are different, and targeted treatment would improve efficacy.
Collapse
Affiliation(s)
- Wenzhe Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Gaosi Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Manna Li
- Department of Nephrology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Fan X, Li B, Zhang F, Liu M, Kwan H, Liu Z, Su T. FGF19-Activated Hepatic Stellate Cells Release ANGPTL4 that Promotes Colorectal Cancer Liver Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413525. [PMID: 39716892 PMCID: PMC11831508 DOI: 10.1002/advs.202413525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Liver and lung are the most common metastatic sites in colorectal cancer (CRC), where the tumor microenvironment (TME) plays a crucial role in the progression and metastasis of CRC. Understanding the interactions between various types of cells in the TME can suggest innovative therapeutic strategies. Using single-cell RNA sequencing (scRNA-Seq) and clinical samples, fibroblast growth factor-19 (FGF19, rodent FGF15) is found to mediate a significant interaction between CRC cells and cancer-associated fibroblasts (CAFs), activating the hepatic stellate cells (HSCs)-to-CAFs differentiation. In various CRC metastatic mouse models, it is shown that FGF15 has a more pronounced effect on liver metastasis compared to pulmonary metastasis. More importantly, the differentially expressed genes (DEGs) are also identified from the RNA-Seq dataset upon the activation of HSCs by FGF19 and compared the DEGs in matched primary and metastatic mRNA samples from patients with CRC liver metastasis (CRCLM), it is found that the ANGPTL4 gene is significantly associated with HSCs activation. Different mouse models also demonstrated the impact of the FGF19/ANGPTL4 axis on the severity of CRCLM. Importantly, disruption of this axis significantly inhibits CRCLM in vivo. This study is among the first to demonstrate the impact of the FGF19/ANGPTL4 axis on CRCLM, offering a novel therapeutic strategy.
Collapse
Affiliation(s)
- Xueying Fan
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdong519031China
| | - Baoting Li
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Meng Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Hiu‐Yee Kwan
- Centre for Cancer and Inflammation ResearchSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong999077China
- Institute of Research and Continuing EducationHong Kong Baptist UniversityShenzhen518000China
- Institute of Systems Medicine and Health SciencesHong Kong Baptist UniversityHong Kong999077China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdong519031China
| | - Tao Su
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdong519031China
| |
Collapse
|
7
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2025; 145:280-302. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
8
|
Tu Y, Li Y, Qu G, Ning Y, Li B, Li G, Wu M, Li S, Huang Y. A Review of Basic Fibroblast Growth Factor Delivery Strategies and Applications in Regenerative Medicine. J Biomed Mater Res A 2025; 113:e37834. [PMID: 39740125 DOI: 10.1002/jbm.a.37834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/02/2025]
Abstract
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration. Consequently, it has garnered significant attention from scholars both domestically and internationally. However, the instability and degradation properties of bFGF in vivo have limited its clinical application. Significant interest has arisen in the development of novel bFGF delivery systems that can address the shortcomings of bFGF and enhance its bioavailability by controlling the release amount, timing, and location. This article offers a comprehensive overview of the research and recent advances in various bFGF delivery systems, including hydrogels, liposomes, microspheres, and nanoparticles. Subsequently, the applications of bFGF pharmaceutical preparations in various fields are described. Finally, the current clinical applications of bFGF drug formulations and those in clinical trials are discussed, along with their clinical translation and future trends.
Collapse
Affiliation(s)
- Yuhan Tu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Gaoer Qu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| | - Yangyang Ning
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bin Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guoben Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Min Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yangge Huang
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| |
Collapse
|
9
|
de La Bourdonnaye G, Marek M, Ghazalova T, Damborsky J, Pachl P, Brynda J, Stepankova V, Chaloupkova R. Structural analysis of the stable form of fibroblast growth factor 2 - FGF2-STAB. J Struct Biol X 2024; 10:100112. [PMID: 39512606 PMCID: PMC11541812 DOI: 10.1016/j.yjsbx.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a signaling protein that plays a significant role in tissue development and repair. FGF2 binds to fibroblast growth factor receptors (FGFRs) alongside its co-factor heparin, which protects FGF2 from degradation. The binding between FGF2 and FGFRs induces intracellular signaling pathways such as RAS-MAPK, PI3K-AKT, and STAT. FGF2 has strong potential for application in cell culturing, wound healing, and cosmetics but the potential is severely limited by its low protein stability. The thermostable variant FGF2-STAB was constructed by computer-assisted protein engineering to overcome the natural limitation of FGF2. Previously reported characterization of FGF2-STAB revealed an enhanced ability to induce MAP/ERK signaling while having a lower dependence on heparin when compared with FGF2-wt. Here we report the crystal structure of FGF2-STAB solved at 1.3 Å resolution. Protein stabilization is achieved by newly formed hydrophobic interactions, polar contacts, and one additional hydrogen bond. The overall structure of FGF2-STAB is similar to FGF2-wt and does not reveal information on the experimentally observed lower dependence on heparin. A noticeable difference in flexibility in the receptor binding region can explain the differences in signaling between FGF2-STAB and its wild-type counterpart. Our structural analysis provided molecular insights into the stabilization and unique biological properties of FGF2-STAB.
Collapse
Affiliation(s)
- Gabin de La Bourdonnaye
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tereza Ghazalova
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiri Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| |
Collapse
|
10
|
Zhou L, Zhang Y, Yi X, Chen Y, Li Y. Advances in proteins, polysaccharides, and composite biomaterials for enhanced wound healing via microenvironment management: A review. Int J Biol Macromol 2024; 282:136788. [PMID: 39490870 DOI: 10.1016/j.ijbiomac.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Wound management is crucial yet imposes substantial social and economic burdens on patients and healthcare systems. The recent rapid advancements in biomaterials and manufacturing technology have created favorable conditions for expediting wound healing. This review examines the latest developments in biomacromolecule-based wound dressings, with a particular focus on proteins and polysaccharides, and their role in modulating the wound microenvironment. The importance of extracellular matrix (ECM)-inspired materials, such as hydrogels and biomimetic dressings, is emphasized. Additionally, this review explores the functionalization of wound dressings, emphasizing properties such as hemostatic capabilities, pain relief, antimicrobial activity, and innovative smart functions like electroceuticals and wound condition monitoring. The study integrates discussions on both the macroscopic healing outcomes and the microscopic pathophysiological mechanisms, highlighting recent advances in managing wound environments to expedite healing. Finally, the review critically assesses the challenges associated with the clinical translation of these wound-healing materials in the future.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Gronskaia SA, Rusyaeva NV, Belaya ZE, Melnichenko GA. [Non-classical hormones from the fibroblast growth factor family]. PROBLEMY ENDOKRINOLOGII 2024; 70:23-33. [PMID: 39509633 DOI: 10.14341/probl13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 11/15/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of signaling molecules named for their ability to promote the growth and proliferation of fibroblasts and various other cell types. Typically, FGFs exert their effects locally by binding to receptors within the tissues where they are synthesized. However, certain members of this family, such as FGF 19, FGF 21, and FGF 23, diverge from this pattern. Following synthesis, these FGFs enter the bloodstream and act on distant organs and tissues by binding to their receptors and associated cofactors, thereby classified as non-classical hormones within the FGF family.The biological functions of FGFs are diverse and contingent upon the specific receptors and cofactors involved in their signaling pathways. For instance, FGF 19 and FGF 21 play crucial roles in regulating glucose and lipid metabolism, whereas FGF 23 primarily influences phosphorus metabolism. Given their varied roles, FGFs present promising targets for therapeutic interventions and drug development.This review aims to consolidate current understanding of FGF family hormones, elucidating their biological impacts and exploring their potential applications as therapeutic targets.
Collapse
|
12
|
Rigueur D. A primer for Fibroblast Growth Factor 16 (FGF16). Differentiation 2024; 140:100817. [PMID: 39632143 DOI: 10.1016/j.diff.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
During the discovery of the Fibroblast Growth Factor superfamily, scientists were determined to uncover all the genes that encoded FGF proteins. In 1998, FGF16 was discovered with classical cloning techniques in human and rat heart samples. FGF16 loss- and gain-of-function experiments in several organisms demonstrated a conserved function in vertebrates, and as a component of the FGF9 subfamily of ligands (FGF-E/-9/-20), is functionally conserved and sufficient to rescue loss-of-function phenotypes in invertebrates, like C. elegans. FGF16 has a broad expression pattern, predominantly expressed in brown adipose tissue, heart, with low but detectable levels in the brain, olfactory bulb, inner ear, muscle, thymus, pancreas, spleen, stomach, small intestine, and gonads (testis and ovary). FGF16 is also expressed moderately in the late developing limb bud. Despite its expression levels, this ligand plays notable roles in autopod metacarpal development; loss of one allele causes congenital metacarpal 4-5 fusion and hand deformities in humans. The broad expression pattern of FGF16 in several tissues underscores its multifaceted roles in stem cell maintenance, proliferation, cell fate specification, and metabolism.
Collapse
Affiliation(s)
- Diana Rigueur
- University of California, Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Zhang Y, Chen Z, Xiao Y, Wu T, Yang H, Liu Y, Zhou R, Xiong Y, Xiong Y, Yang X, Zhou J, Zhou H, Zhang W, Shu Y, Li X, Guo F, Yin J, Liao S, Li Q, Zhu P. Effects of Compound Probiotics on Pharmacokinetics of Cytochrome 450 Probe Drugs in Rats. Drug Metab Dispos 2024; 52:1297-1312. [PMID: 39214665 DOI: 10.1124/dmd.124.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450's metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and β diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug-processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes. SIGNIFICANCE STATEMENT: This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis.
Collapse
Affiliation(s)
- Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Zhi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yayi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xiong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Fugang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jianhui Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Shang Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| |
Collapse
|
14
|
Hsu WH, Cheng JJ, Wu CF, Lin YL. Ajuga taiwanensis Extract Promotes Wound-healing via Activation of PDGFR/MAPK Pathway. PLANTA MEDICA 2024; 90:949-958. [PMID: 39159665 DOI: 10.1055/a-2378-9274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Chronic and prolonged wounds are a serious public problem that may severely affect the quality of life and result in psychological pressure. Fibroblasts play a crucial role in the wound process and in skin pathology. Herbal drugs have long been used for wound care worldwide. Ajuga taiwanensis (Lamiaceae) is a folk medicine for antipyretics, anti-inflammation, and reducing swelling in Taiwan. This study aimed to investigate the effect of A. taiwanensis in wound healing and the underlying mechanisms. Under human dermal fibroblast (HDF) wound-healing activity-guided fractionation, we found that a sub-fraction (AT-M) of A. taiwanensis extract (AT) and the major ingredients significantly promoted wound healing and decreased IL-1β and - 6 expressions on HDFs. Furthermore, the fraction of AT-M enhanced wound healing on C57BL/6 mouse skins, increased PDGFR expressions, and activated the PDGFR/MAPK pathway. Taken together, A. taiwanensis extracts promote wound healing by the PDGFR pathway and lead to enhanced cell spreading and motility, thereby having a possible beneficial effect on wound healing.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jing-Jy Cheng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Department of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Mao QY, Wang XQ, Lin F, Yu MW, Fan HT, Zheng Q, Liu LC, Zhang CC, Li DR, Lin HS. Scorpiones, Scolopendra and Gekko Inhibit Lung Cancer Growth and Metastasis by Ameliorating Hypoxic Tumor Microenvironment via PI3K/AKT/mTOR/HIF-1α Signaling Pathway. Chin J Integr Med 2024; 30:799-808. [PMID: 38850481 DOI: 10.1007/s11655-024-3803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 06/10/2024]
Abstract
OBJECTIVE To investigate whether Buthus martensii karsch (Scorpiones), Scolopendra subspinipes mutilans L. Koch (Scolopendra) and Gekko gecko Linnaeus (Gekko) could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α (PI3K/AKT/mTOR/HIF-1α) signaling pathway. METHODS Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models, with rapamycin and cyclophosphamide as positive controls. Carboxy methyl cellulose solutions of Scorpiones, Scolopendra and Gekko were administered intragastrically as 0.33, 0.33, and 0.83 g/kg, respectively once daily for 21 days. Fluorescent expression were detected every 7 days after inoculation, and tumor growth curves were plotted. Immunohistochemistry was performed to determine CD31 and HIF-1α expressions in tumor tissue and microvessel density (MVD) was analyzed. Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1α signaling pathway-related proteins. Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor (bFGF), transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) in mice. RESULTS Scorpiones, Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α (all P<0.01). Moreover, Scorpiones, Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase (p70S6K) (P<0.05 or P<0.01). In addition, they also decreased the expression of CD31, MVD, bFGF, TGF-β1 and VEGF compared with the model group (P<0.05 or P<0.01). CONCLUSION Scorpiones, Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Qi-Yuan Mao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xue-Qian Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Fei Lin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ming-Wei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hui-Ting Fan
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qi Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lan-Chun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chu-Chu Zhang
- Institute of Traditional Chinese Medicine Information, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dao-Rui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Hong-Sheng Lin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
16
|
Sexton B, Han Y, Dal-Fabbro R, Xu J, Kaigler D, Bottino MC. The role of fibroblast growth factor-2 in modulating the differentiation of periodontal ligament and alveolar bone-derived stem cells. Arch Oral Biol 2024; 165:106027. [PMID: 38870610 DOI: 10.1016/j.archoralbio.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This study examined how range concentrations of Fibroblast Growth Factor-2 (FGF-2) influence the differentiation and activity of human-derived periodontal ligament (hPDLSCs) and alveolar bone-derived stem cells (haBMSCs). DESIGN hPDLSCs and haBMSCs were cultured with varying concentrations of FGF-2 (0, 1, 2.5, 5, 10, 20 ng/mL) and monitored for osteogenic differentiation through alkaline phosphatase (ALP) activity and quantification of gene expression (qRT-PCR) for osteogenesis markers. Additionally, alizarin red staining and a hydroxyproline colorimetric assay evaluated and quantified osteogenic matrix mineralization and collagen deposition. Statistical analyses were performed using one-way ANOVA or two-way ANOVA for multiple comparisons between groups. RESULTS At low FGF-2 concentrations, hPDLSCs differentiated toward an osteogenic lineage, whereas higher concentrations of FGF-2 inhibited osteogenesis and promoted fibroblastic differentiation. The effect of FGF-2 at the lowest concentration tested (1 ng/mL) led to significantly higher ALP activity than osteogenically induced positive controls at early time points and equivalent RUNX2 expression at early and later time points. FGF-2 supplementation of haBMSC cultures was sufficient, at all concentrations, to increase ALP activity at an earlier time point. Mineralization of haBMSC cultures increased significantly within 5-20 ng/mL FGF-2 concentrations under basal growth media conditions (α-minimal essential medium supplemented with 15 % fetal bovine serum and 1 % penicillin/streptomycin). CONCLUSIONS FGF-2 has a dual capacity in promoting osteogenic and fibroblastic differentiation within hPDLSCs contingent upon the dosage and timing of administration, alongside supporting osteogenic differentiation in haBMSCs. These findings underscore the need for precision growth factors dosing when considering the design of biomaterials for periodontal regeneration.
Collapse
Affiliation(s)
- Benjamin Sexton
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuanyuan Han
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
17
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Marin A, Morales F, Walbaum B. Fibroblast growth factor receptor signaling in estrogen receptor-positive breast cancer: mechanisms and role in endocrine resistance. Front Oncol 2024; 14:1406951. [PMID: 39040443 PMCID: PMC11260626 DOI: 10.3389/fonc.2024.1406951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Fibroblast Growth Factor Receptors (FGFRs) play a significant role in Estrogen Receptor-positive (ER+) breast cancer by contributing to tumorigenesis and endocrine resistance. This review explores the structure, signaling pathways, and implications of FGFRs, particularly FGFR1, FGFR2, FGFR3, and FGFR4, in ER+ breast cancer. FGFR1 is frequently amplified, especially in aggressive Luminal B-like tumors, and its amplification is associated with poor prognosis and treatment resistance. The co-amplification of FGFR1 with oncogenes like EIF4EBP1 and NSD3 complicates its role as a standalone oncogenic driver. FGFR2 amplification, though less common, is critical in hormone receptor regulation, driving proliferation and treatment resistance. FGFR3 and FGFR4 also contribute to endocrine resistance through various mechanisms, including the activation of alternate signaling pathways like PI3K/AKT/mTOR and RAS/RAF/MEK/ERK. Endocrine resistance remains a major clinical challenge, with around 70% of breast cancers initially hormone receptor positive. Despite the success of CDK 4/6 inhibitors in combination with endocrine therapy (ET), resistance often develops, necessitating new treatment strategies. FGFR inhibitors have shown potential in preclinical studies, but clinical trials have yielded limited success due to off-target toxicities and lack of predictive biomarkers. Current clinical trials, including those evaluating FGFR inhibitors like erdafitinib, lucitanib, and dovitinib, have demonstrated mixed outcomes, underscoring the complexity of FGFR signaling in breast cancer. The interplay between FGFR and other signaling pathways highlights the need for comprehensive molecular profiling and personalized treatment approaches. Future research should focus on identifying robust biomarkers and developing combination therapies to enhance the efficacy of FGFR-targeted treatments. In conclusion, targeting FGFR signaling in ER+ breast cancer presents both challenges and opportunities. A deeper understanding of the molecular mechanisms and resistance pathways is crucial for the successful integration of FGFR inhibitors into clinical practice, aiming to improve outcomes for patients with endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Arnaldo Marin
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Oncology Program, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernanda Morales
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Benjamín Walbaum
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Bhowmick T, Biswas S, Mukherjee A. Cellular response during cellular starvation: A battle for cellular survivability. Cell Biochem Funct 2024; 42:e4101. [PMID: 39049191 DOI: 10.1002/cbf.4101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Cellular starvation occurs when a cell is deprived of nutrition and oxygen availability. The genesis of this state of deprivation is exclusively contingent upon the inadequacy in the supply of essential components, namely amino acids, glucose, and oxygen. Consequently, the impact of this altered condition manifests in the regulation of cellular respiratory, metabolic, and stress responses. Subsequently, as a reactive outcome, cell death may transpire through mechanisms such as autophagy or apoptosis, particularly under prolonged circumstances. However, the cell combats such situations by evolving altered activity in their metabolic and protein level. Modulated signaling cascades help them to conquer starvation. But as in a prolonged condition, the battle that a cell has to evolve will come into and result in the form of cellular death. Therefore, in cancer therapy, cellular starvation may also act as a possible way out so that the cancer cell can undergo its death pathway in an induced starved condition. This review has collectively depicted the mechanism of cellular starvation. Besides this, the cellular response in this starved condition has also been summarized. Gaining such knowledge of the causation of cell starvation and cellular response during starvation not only generates new insight into the mechanism of cell survivability but also may act as a beneficial role in combating cellular diseases like cancer.
Collapse
Affiliation(s)
- Tithi Bhowmick
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| | | | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| |
Collapse
|
20
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
21
|
Cheng MF, Abdullah FS, Buechler MB. Essential growth factor receptors for fibroblast homeostasis and activation: Fibroblast Growth Factor Receptor (FGFR), Platelet Derived Growth Factor Receptor (PDGFR), and Transforming Growth Factor β Receptor (TGFβR). F1000Res 2024; 13:120. [PMID: 38988879 PMCID: PMC11234085 DOI: 10.12688/f1000research.143514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor β receptor (TGFβR) on fibroblast cell states.
Collapse
Affiliation(s)
- Maye F. Cheng
- Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | |
Collapse
|
22
|
Cortes-Sandoval S, Seco-Rovira V, Beltrán-Frutos E, Serrano-Sánchez MI, Martínez-Hernández J, Ferrer C, Delgado JL, Insausti CL, Blanquer M, Pastor LM. Heterogeneity of mesenchymal cells in human amniotic membrane at term. Histol Histopathol 2024; 39:573-593. [PMID: 37721417 DOI: 10.14670/hh-18-660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
There is increasing interest in understanding the tissue biology of human amniotic membrane (hAM) given its applications in medicine. One cellular component is mesenchymal cells, which can be extracted, cultured and differentiated "in vitro" into various cell types. These studies show that there is heterogeneity among mesenchymal cells. The aim of this work is to study the membrane in situ to determine whether this cellular heterogeneity exists. The hAMs were obtained from caesarean deliveries at term and analyzed by histological techniques. Types I-III mesenchymal cells and Hofbauer were distinguished by light microscopy. Histochemically, mesenchymal cell types showed successively increasing positivity to: PAS, vimentin, fibronectin, and Concanavalin-A; VGEF, TGF-β2, PDGF-C, FGF-2. By the semiquantitative point of view, the percentage of Type II cells was 60%, significantly higher than the other types. With transmission electron microscopy, an intermediate cell type between II-III was observed. Strong vesiculation of the rough endoplasmic reticulum (RER) with exocytosis was observed. In addition, an accumulation of a similar material to the extracellular matrix in the RER caused its dilation especially in type IIITEM cells. Some of this material acquired a globular structure. These structures were also found free in the extracellular matrix. In conclusion, the mesenchymal cells of the fibroblastic layer of the hAMs studied are heterogeneous, with some undifferentiated and others with a probably senescent fibroblastic phenotype with accumulation in their RER of fibronectin. These results may be of interest to extract mesenchymal cells from hAMs for use in regenerative medicine and to better understand the mechanisms of fetal membrane rupture.
Collapse
Affiliation(s)
- Salvador Cortes-Sandoval
- Department of Obstetrics and Gynecology, Virgen de la Arrixaca Hospital, IMIB, Murcia, Spain
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María I Serrano-Sánchez
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jesús Martínez-Hernández
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Juan L Delgado
- Department of Obstetrics and Gynecology, Virgen de la Arrixaca Hospital, IMIB, Murcia, Spain
| | - Carmen L Insausti
- Hematology Service, Virgen de la Arrixaca University Hospital, IMIB, Murcia, Spain
| | - Miguel Blanquer
- Hematology Service, Virgen de la Arrixaca University Hospital, IMIB, Murcia, Spain
| | - Luis M Pastor
- Department of Cell Biology and Histology, IMIB, School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
| |
Collapse
|
23
|
Meng H, Liao Z, Ji Y, Wang D, Han Y, Huang C, Hu X, Chen J, Zhang H, Li Z, Wang C, Sun H, Sun J, Chen L, Yin J, Zhao J, Xu T, Liu H. FGF7 enhances the expression of ACE2 in human islet organoids aggravating SARS-CoV-2 infection. Signal Transduct Target Ther 2024; 9:104. [PMID: 38654010 PMCID: PMC11039711 DOI: 10.1038/s41392-024-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in β cells. This upregulation increases both insulin secretion and susceptibility of β cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.
Collapse
Affiliation(s)
- Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Yanting Ji
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Chaolin Huang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hengrui Zhang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zonghong Li
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Changliang Wang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Hui Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaqi Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Lihua Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaxiang Yin
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jincun Zhao
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
24
|
Richardson M, Mani R. Oxygen Saturation or Tissue Oxygen Determinations on Skin Whose Viability is at Risk. INT J LOW EXTR WOUND 2024; 23:55-62. [PMID: 37880945 DOI: 10.1177/15347346231206423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The triad of ischaemia, neuropathy, and infection are among the principal causes of lower extremity wounds that are commonly prevalent in patients with diabetic foot (DF) a condition in which peripheral arterial disease commonly co-exists. The prevalence of this condition is increasing globally and with it, the mounting costs of its management. One aspect of management is saving limbs and or digits, a crucial part of this process is assessing tissue viability of skin which is a focus of this review: there are other aspects which are well described in the literature. Amputations are offered to limit the damage resulting from acute/chronic ischaemia. Holstein measured skin perfusion pressure using a radioisotope clearance technique to describe critically ischaemic skin; he found 30 mm Hg as the threshold above which healing may reliably be expected. Recent advances in vascular surgery and related technology have informed evidence-based advice to revascularize and save limbs; in practice, this may leave a wound in the distal skin unhealed; managing these raises questions of tissue viability. Much effort has been made to manage, prevent and to better understand these lower extremity wounds using measurements of tissue oxygen, oxygen saturation and skin imaging. The measurement techniques and their relevant merits are examined in this article. Advances in wound management systems and protocols can also facilitate the repair processes, and those which can have a particular impact on restoring or maintaining tissue perfusion are also discussed in the article.
Collapse
Affiliation(s)
| | - Raj Mani
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
- RIHES, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
He P, Zhong S, Lin S, Xia Z, Wang L, Han Y, Xu D, Hu S, Li X, Li P, Wang C. FGF9 is required for Purkinje cell development and function in the cerebellum. iScience 2024; 27:109039. [PMID: 38352230 PMCID: PMC10863307 DOI: 10.1016/j.isci.2024.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Fibroblast growth factor 9 (FGF9) is a member of the fibroblast growth factor family, which is widely expressed in the central nervous system (CNS). It has been reported that deletion of FGF9 leads to defects in cerebellum development, including Purkinje cell defect. However, it is not clear how FGF9 regulating cerebellar development remains to be determined. Our results showed that in addition to disrupt Bergmann fiber scaffold formation and granule neuron migration, deletion of neuronal FGF9 led to ataxia defects. It affected development and function of Purkinje cells, and also changed the action potential threshold and excitation frequency. Mechanistically, depletion of FGF9 significantly changed neurotransmitter contents in Purkinje cells and led to preferential increase in inflammation, even downregulation in ERK signaling. Together, the data demonstrate that neuronal FGF9 is required for the development and function of Purkinje cells in the cerebellum. Insufficient FGF9 during cerebellum development will cause ataxia defects.
Collapse
Affiliation(s)
- Ping He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Shuting Zhong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Shuaijun Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Zhiyan Xia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Liqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Yuhe Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Di Xu
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children’s Hospital Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shuping Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| | - Peijun Li
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children’s Hospital Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325030, Zhejiang, China
| |
Collapse
|
26
|
Li L, Yu B, Lai Y, Shen S, Yan Y, Dong G, Gao X, Cao Y, Ge C, Zhu L, Liu H, Tao S, Yao Z, Li S, Wang X, Hui Q. Scaling up production of recombinant human basic fibroblast growth factor in an Escherichia coli BL21(DE3) plysS strain and evaluation of its pro-wound healing efficacy. Front Pharmacol 2024; 14:1279516. [PMID: 38375209 PMCID: PMC10875678 DOI: 10.3389/fphar.2023.1279516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/03/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction: Human basic fibroblast growth factor (hbFGF) is a highly valuable multifunctional protein that plays a crucial role in various biological processes. In this study, we aim to accomplish the scaling-up production of mature hbFGF (146aa) by implementing a high cell-density fermentation and purification process on a 500-L scale, thereby satisfying the escalating demands for both experimental research and clinical applications. Methods: The hbFGF DNA fragment was cloned into a mpET-3c vector containing a kanamycin resistance gene and then inserted into Escherichia coli BL21 (DE3) plysS strain. To optimize the yield of hbFGF protein, various fermentation parameters were systematically optimized using BOX-Behnken design and further validated in large-scale fermentation (500-L). Additionally, a three-step purification protocol involving CM-Sepharose, heparin affinity, and SP-Sepharose column chromatography was developed to separate and purify the hbFGF protein. Isoelectric focusing electrophoresis, MALDI-TOF/MS analysis, amino acid sequencing, CD spectroscopy, and Western blotting were performed to authenticate its identity. The biological efficacy of purified hbFGF was evaluated using an MTT assay as well as in a diabetic deep second-degree scald model. Results: The engineered strain was successfully constructed, exhibiting high expression of hbFGF and excellent stability. Under the optimized fermentation conditions, an impressive bacterial yield of 46.8 ± 0.3 g/L culture with an expression level of hbFGF reaching 28.2% ± 0.2% was achieved in 500-L scale fermentation. Subsequently, during pilot-scale purification, the final yield of purified hbFGF protein was 114.6 ± 5.9 mg/L culture with RP-HPLC, SEC-HPLC, and SDS-PAGE purity exceeding 98%. The properties of purified hbFGF including its molecular weight, isoelectric point (pI), amino sequence, and secondary structure were found to be consistent with theoretical values. Furthermore, the purified hbFGF exhibited potent mitogenic activity with a specific value of 1.05 ± 0.94 × 106 AU/mg and significantly enhanced wound healing in a deep second-degree scald wound diabetic rat model. Conclusion: This study successfully established a stable and efficient large-scale production process of hbFGF, providing a solid foundation for future industrial production.
Collapse
Affiliation(s)
- Le Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Bingjie Yu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Yingji Lai
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Siyuan Shen
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yawei Yan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Guojun Dong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiangyun Gao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yanrong Cao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Caojie Ge
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Liqin Zhu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Huan Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shanhui Tao
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Zhiang Yao
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Shijun Li
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Qi Hui
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
- Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| |
Collapse
|
27
|
Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone Organoids: Recent Advances and Future Challenges. Adv Healthc Mater 2024; 13:e2302088. [PMID: 38079529 DOI: 10.1002/adhm.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Bone defects stemming from tumorous growths, traumatic events, and diverse conditions present a profound conundrum in clinical practice and research. While bone has the inherent ability to regenerate, substantial bone anomalies require bone regeneration techniques. Bone organoids represent a new concept in this field, involving the 3D self-assembly of bone-associated stem cells guided in vitro with or without extracellular matrix material, resulting in a tissue that mimics the structural, functional, and genetic properties of native bone tissue. Within the scientific panorama, bone organoids ascend to an esteemed status, securing significant experimental endorsement. Through a synthesis of current literature and pioneering studies, this review offers a comprehensive survey of the bone organoid paradigm, delves into the quintessential architecture and ontogeny of bone, and highlights the latest progress in bone organoid fabrication. Further, existing challenges and prospective directions for future research are identified, advocating for interdisciplinary collaboration to fully harness the potential of this burgeoning domain. Conclusively, as bone organoid technology continues to mature, its implications for both clinical and research landscapes are poised to be profound.
Collapse
Affiliation(s)
- Ding Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yihan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
28
|
Yu Cai Lim M, Kiat Ho H. Pharmacological modulation of cholesterol 7α-hydroxylase (CYP7A1) as a therapeutic strategy for hypercholesterolemia. Biochem Pharmacol 2024; 220:115985. [PMID: 38154545 DOI: 10.1016/j.bcp.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.
Collapse
Affiliation(s)
- Megan Yu Cai Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
29
|
Gutmann M, Reinhardt D, Seidensticker C, Raschig M, Hahn L, Moscaroli A, Behe M, Meinel L, Lühmann T. Matrix Metalloproteinase-Responsive Delivery of PEGylated Fibroblast Growth Factor 2. ACS Biomater Sci Eng 2024; 10:156-165. [PMID: 37988287 DOI: 10.1021/acsbiomaterials.3c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Attachment of polyethylene glycol (PEG) chains is a common, well-studied, and Food and Drug Administration-approved method to address the pharmacokinetic challenges of therapeutic proteins. Occasionally, PEGylation impairs the activity of pharmacodynamics (PD). To overcome this problem, disease-relevant cleavable linkers between the polymer and the therapeutic protein can unleash full PD by de-PEGylating the protein at its target site. In this study, we engineered a matrix metalloproteinase (MMP)-responsive fibroblast growth factor 2 (FGF-2) mutant that was site-specifically extended with a PEG polymer chain. Using bioinspired strategies, the bioconjugate was designed to release the native protein at the desired structure/environment with preservation of the proliferative capacity in vitro on NIH3T3 cells. In vivo, hepatic exposure was diminished but not its renal distribution over time compared to unconjugated FGF-2. By releasing the growth factor from the PEG polymer in response to MMP cleavage, restored FGF-2 may enter hard-to-reach tissues and activate cell surface receptors or nuclear targets.
Collapse
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Debora Reinhardt
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Christian Seidensticker
- Medizinische Klinik und Poliklinik Für Innere Medizin II, Klinikum Rechts der Isar der TU München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Lukas Hahn
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Alessandra Moscaroli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| |
Collapse
|
30
|
Chaker SC, Saad M, Mayes T, Lineaweaver WC. Burn Injury-related Growth Factor Expressions and Their Potential Roles in Burn-related Neuropathies. J Burn Care Res 2024; 45:25-31. [PMID: 37978864 DOI: 10.1093/jbcr/irad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 11/19/2023]
Abstract
In the context of burn injury, growth factors (GFs) play a significant role in mediating the complex local and systematic processes that occur. Among the many systemic complications that arise following a burn injury, peripheral neuropathy remains one of the most common. Despite the broad understanding of the effects GFs have on multiple tissues, their potential implications in both wound healing and neuropathy remain largely unexplored. Therefore, this review aims to investigate the expression patterns of GFs prominent during the burn wound healing process and explore the potential contributions these GFs have on the development of burn-related peripheral neuropathy.
Collapse
Affiliation(s)
- Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Mariam Saad
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Taylor Mayes
- Middle Tennessee State University, Murfreesboro, TN, 37132USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| |
Collapse
|
31
|
Smith TP, Bhushan B, Granata D, Kaas CS, Andersen B, Decoene KW, Ren Q, Liu H, Qu X, Yang Y, Pan J, Chen Q, Münzel M, Kawamura A. Identification and engineering of potent cyclic peptides with selective or promiscuous binding through biochemical profiling and bioinformatic data analysis. RSC Chem Biol 2024; 5:12-18. [PMID: 38179194 PMCID: PMC10763615 DOI: 10.1039/d3cb00168g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
As our understanding of biological systems grows, so does the need to selectively target individual or multiple members of specific protein families in order to probe their function. Many targets of current biological and pharmaceutical interest are part of a large family of closely related proteins and achieving ligand selectivity often remains either an elusive or time-consuming endeavour. Cyclic peptides (CPs) occupy a key niche in ligand space, able to achieve high affinity and selectivity while retaining synthetic accessibility. De novo cyclic peptide ligands can be rapidly generated against a given target using mRNA display. In this study we harness mRNA display technology and the wealth of next generation sequencing (NGS) data generated to explore both experimental approaches and bioinformatic, statistical data analysis of peptide enrichment in cross-screen selections to rapidly generate high affinity CPs with differing intra-family protein selectivity profiles against fibroblast growth factor receptor (FGF-R) family proteins. Using these methods, CPs with distinct selectivity profiles can be generated which can serve as valuable tool compounds to decipher biological questions.
Collapse
Affiliation(s)
- Thomas P Smith
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU UK
| | | | - Daniele Granata
- Digital Science and Innovation, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Christian S Kaas
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Birgitte Andersen
- Global Drug Discovery, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Klaas W Decoene
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Qiansheng Ren
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Haimo Liu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Xinping Qu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Yang Yang
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Jia Pan
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Quijia Chen
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Martin Münzel
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Akane Kawamura
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU UK
- Department of Chemistry, University of Oxford OX1 3TA UK
| |
Collapse
|
32
|
Lee HG, Lim GH, An JH, Park SM, Seo KW, Youn HY. In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines. J Vet Sci 2024; 25:e1. [PMID: 38311316 PMCID: PMC10839173 DOI: 10.4142/jvs.23191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). OBJECTIVES This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. METHODS We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. RESULTS When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. CONCLUSION In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.
Collapse
Affiliation(s)
- Hye-Gyu Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Su-Min Park
- Haemaru Referral Animal Hospital, Seongnam 13590, Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
33
|
Li J, Wang M, Wu X, Xie N, Wang H, Huang J, Sheng F, Ma W. miR-129-5p/FGF2 Axis is Associated with Homocysteine-induced Human Umbilical Vein Endothelial Cell Injury. Comb Chem High Throughput Screen 2024; 27:641-648. [PMID: 37165492 DOI: 10.2174/1386207326666230509100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Homocysteine (Hcy)-induced endothelial cell injury is a key event in atherosclerosis pathogenesis. In this study, we aimed to explore the mechanisms underlying Hcy-induced endothelial injury by assessing the effects of Hcy on endothelial cell proliferation and the microRNA (miR)-129-5p/fibroblast growth factor 2 (FGF2) axis. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with Hcy to construct an endothelial cell injury model. Expression levels of FGF2 in Hcy-induced HUVECs were determined using quantitative real-time polymerase chain reaction and western blotting. An FGF2 overexpression lentiviral vector was constructed to upregulate FGF2 expression in HUVECs via lentivirus transduction. A cell counting kit-8 assay was used to explore the effects of FGF2 overexpression on HUVEC proliferation. An upstream regulatory miRNA was predicted, and its targetbinding relationship with FGF2 was evaluated using a dual-luciferase reporter assay. RESULTS We found that FGF2 expression in HUVECs was inhibited by Hcy treatment. Lentivirus transduction led to the overexpression of FGF2 in HUVECs, which significantly reversed the effect of Hcy on endothelial cell proliferation. miR-129-5p was experimentally validated as an upstream regulator of FGF2, and its decreased levels in HUVECs led to increased FGF2 expression. In addition, HUVEC proliferation was enhanced by the knockdown of miR-129-5p, and this effect was reversed by Hcy treatment. CONCLUSION Taken together, the results of this study revealed that Hcy inhibits FGF2 expression in HUVECs, and FGF2 is regulated by upstream miR-129-5p to improve the effect of Hcy on endothelial cell proliferation.
Collapse
Affiliation(s)
- Jian Li
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Mingzhu Wang
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Xiaoling Wu
- Nanxiang Community Health Service Center, Tongji University School of Medicine, Shanghai, 200065, China
| | - Nanzi Xie
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Haifeng Wang
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Junling Huang
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| | - Fei Sheng
- Nanxiang Community Health Service Center, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wenlin Ma
- Geriatrics Department, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, 200065, China
| |
Collapse
|
34
|
Li F, Cai T, Yu L, Yu G, Zhang H, Geng Y, Kuang J, Wang Y, Cai Y, Xiao J, Wang X, Ding J, Xu H, Ni W, Zhou K. FGF-18 Protects the Injured Spinal cord in mice by Suppressing Pyroptosis and Promoting Autophagy via the AKT-mTOR-TRPML1 axis. Mol Neurobiol 2024; 61:55-73. [PMID: 37581847 DOI: 10.1007/s12035-023-03503-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/11/2023] [Indexed: 08/16/2023]
Abstract
Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.
Collapse
Affiliation(s)
- Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Tingwen Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Letian Yu
- Renji College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiaxuan Kuang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China
| | - Yongli Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Department of Orthopaedics, Huzhou Basic and Clinical Translation of Orthopaedics key Laboratory, Huzhou Central Hospital, 313300, Huzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China.
| |
Collapse
|
35
|
Han D, Guan L, Zhang Y, Yang H, Si L, Jia T, Wu Y, Lv K, Song T, Yang G. FGF13A interacts with NPM1 and UBF and inhibits the invasion of bladder cancer cells. Biochem Biophys Res Commun 2023; 678:1-10. [PMID: 37603967 DOI: 10.1016/j.bbrc.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Bladder cancer (BC) invasion is a critical factor that impacts the prognosis and quality of life of patients. However, the underlying mechanisms of BC invasion is far from clear. Fibroblast growth factor 13 (FGF13), a non-secretory FGF, has been found to be ectopically expressed in various tumors and implicated in tumor development, but its potential association to BC has not been investigated. Here, we reported that the expression of FGF13A, one nucleolar isoform of FGF13, was downregulated in BC patients and negatively associated with tumor invasion. Additionally, we demonstrated that overexpression of FGF13A could inhibit the migration and invasion of BC 5637 and T24 cells. We also confirmed the localization of FGF13A in the nucleolus and its interaction with nucleoproteins NPM1 and UBP. Subsequently, we identified that the N-terminal region of FGF13A was essential for its nucleolus location and interaction with NPM1. Furthermore, we found that FGF13A inhibited the generation of nascent ribosomal RNA and suppressed the migration and invasion of BC cells through its N-terminal region. Our research establishes, for the first time, a correlation between the expression of FGF13A and the onset and progression of BC. This provides novel insights into the role of FGF13A in the development of BC.
Collapse
Affiliation(s)
- Dong Han
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China; Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Lei Guan
- Department of Cardiovascular Medicine, Central Theater General Hospital of PLA, Wuhan, Hubei Providence, China
| | - Yingying Zhang
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Libu Si
- Department of Ultrasound Diagnosis, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Tongyu Jia
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yangyang Wu
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Kaikai Lv
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Tao Song
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China.
| | - Guang Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
36
|
Lawless L, Qin Y, Xie L, Zhang K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients 2023; 15:3564. [PMID: 37630754 PMCID: PMC10459728 DOI: 10.3390/nu15163564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Placental development is a tightly controlled event, in which cell expansion from the trophectoderm occurs in a spatiotemporal manner. Proper trophoblast differentiation is crucial to the vitality of this gestational organ. Obstructions to its development can lead to pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm birth, posing severe health risks to both the mother and offspring. Currently, the only known treatment strategy for these complications is delivery, making it an important area of research. The aim of this review was to summarize the known information on the development and mechanistic regulation of trophoblast differentiation and highlight the similarities in these processes between the human and mouse placenta. Additionally, the known biomarkers for each cell type were compiled to aid in the analysis of sequencing technologies.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
37
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Fibroblast Growth Factor 11 (FGF11) Promotes Progression and Cisplatin Resistance Through the HIF-1α/FGF11 Signaling Axis in Ovarian Clear Cell Carcinoma. Cancer Manag Res 2023; 15:753-763. [PMID: 37525667 PMCID: PMC10387280 DOI: 10.2147/cmar.s414703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Background A poor prognosis is often associated with ovarian clear cell carcinoma (OCCC) due to its relative resistance to platinum-based chemotherapy. Although several studies have been launched to explore the pathogenesis of OCCC, the mechanism of chemoresistance has yet to be uncovered. Methods Nanostring nCounter PanCancer Pathways Panel was performed to explore the expression profiles of OCCC tissues from patients showing different platinum sensitivity. Bioinformatic analysis was performed to select genes associated with chemoresistance and cell function assays, including colony formation, wound healing, transwell and flow cytometric analysis, were used to explore the role of the target gene in the progression of OCCC and resistance to cisplatin (DDP). Results Gene expression profiles and bioinformatic analysis verified that the expression of fibroblast growth factor 11 (FGF11) was significantly increased in platinum-resistant OCCC tissues and increased FGF11 expression was related to poorer survival. Downregulation of FGF11 inhibited the proliferation, migration, and invasion, reversing the DDP resistance of OCCC cells. Mechanically, FGF11 was regulated by hypoxia-inducible factor-1α (HIF-1α) to modulate the DDP sensitivity. Conclusion FGF11 was highly expressed in platinum-resistant OCCC tissues, promoting progression and resistance to DDP through the HIF-1α/FGF11 signaling axis.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chunli Lu
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, People’s Republic of China
| | - Huimei Zhou
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qian Liu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiaxin Yang
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Weng C, Xu J, Yang H, Deng P, Ou H, Xu Y, Zhuang Y, Nie H. Efficacy of recombinant bovine basic fibroblast growth factor to reduce hemorrhage after cervical loop electrosurgical excision procedure. BMC Womens Health 2023; 23:385. [PMID: 37479994 PMCID: PMC10362730 DOI: 10.1186/s12905-023-02474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/10/2023] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVE It has been reported that recombinant bovine basic fibroblast growth factor (rbFGF) may possess possible biological functions in promoting the process of wound healing. Consequently, our study aimed to investigate the hemostatic effect of topically applied rbFGF in patients who underwent a loop electrosurgical excision procedure (LEEP). METHODS In this retrospective analysis, we meticulously examined clinicopathologic data from a cohort of 90 patients who underwent LEEP at our institution between 2020 and 2021. Subsequently, we conducted inquiries with the patients to ascertain the degree of vaginal bleeding experienced during the postoperative periods of 3 and 6 weeks, comparing it to their preoperative menstrual flow. The magnitude of the menstrual volume alteration was then quantified using a menstrual volume multiplier(MVM). The primary endpoints of our investigation were to assess the hemostatic effect of rbFGF by means of evaluating the MVM. Additionally, the secondary endpoints encompassed the assessment of treatment-related side effects of such as infection and dysmenorrhea. RESULTS Our findings demonstrated a significant reduction in hemorrhage following cervical LEEP. Specifically, in the per-protocol analysis, the study group exhibited a statistically significantly decrease in MVM after 3 weeks (0 [0-0] vs. 1 [0-1], respectively; p < 0.001) and after 6 weeks (1 [1] vs. 2 [1-3], respectively; p < 0.001) of the procedure. No notable disparities were observed in the remaining outcomes between the two groups. Moreover, a logistic regression analysis was employed to explore the relationship between significant bleeding and rbFGF treatment (p < 0.001, OR = -2.47, 95% CI -4.07 ~-1.21), while controlling for confounding factors such as age, BMI, and surgical specimen. CONCLUSIONS In conclusion, our study findings highlight that the application of recombinant bovine basic fibroblast growth factorcan effectively mitigate hemorrhage subsequent to cervical loop electrosurgical excision procedure.
Collapse
Affiliation(s)
- Chongrong Weng
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Jian Xu
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Panxia Deng
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Honghui Ou
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Yue Xu
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China
| | - Yuan Zhuang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China.
| | - Huilong Nie
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, People's Republic of China.
| |
Collapse
|
39
|
Su W, Zheng X, Zhou H, Yang S, Zhu X. Fibroblast growth factor 10 delays the progression of osteoarthritis by attenuating synovial fibrosis via inhibition of IL-6/JAK2/STAT3 signaling in vivo and in vitro. Mol Immunol 2023; 159:46-57. [PMID: 37271009 DOI: 10.1016/j.molimm.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 06/06/2023]
Abstract
Synovial fibrosis is a driver in the progression of osteoarthritis (OA). Fibroblast growth factor 10 (FGF10) has prominent anti-fibrotic effects in many diseases. Thus, we explored the anti-fibrosis effects of FGF10 in OA synovial tissue. In vitro, fibroblast-like synoviocytes (FLSs) were isolated from OA synovial tissue and stimulated with TGF-β to establish a cell model of fibrosis. After treatment with FGF10, we assessed the effects on FLS proliferation and migration using CCK-8, EdU, and scratch assays, and collagen production was observed using Sirius Red Stain. The JAK2/STAT3 pathway and expression of fibrotic markers were evaluated through western blotting (WB) and immunofluorescence (IF). In vivo, we treated mice with OA induced by surgical destabilization of the medial meniscus (DMM) with FGF10 and assessed the anti-OA effect using histological and immunohistochemical (IHC) staining of MMP13, and fibrosis was evaluated using HE and Masson's trichrome staining. The expression of IL-6/JAK2/STAT3 pathway components was determined using ELISA, WB, IHC, and IF. In vitro, FGF10 inhibited TGF-β-induced FLS proliferation and migration, decreased collagen deposition, and improved synovial fibrosis. Moreover, FGF10 mitigated synovial fibrosis and improved the symptoms of OA in DMM-induced OA mice. Overall, FGF10 had promising anti-fibrotic effects on FLSs and improved OA symptoms in mice. The IL-6/STAT3/JAK2 pathway plays key roles in the anti-fibrosis effect of FGF10. This study is the first to demonstrate that FGF10 inhibited synovial fibrosis and attenuated the progression of OA by inhibiting the IL-6/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Wei Su
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Ningbo First Hospital, Ningbo, China
| | | | | | - Shengwu Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiongbai Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
40
|
Kim YS, Lee HJ, Handoko GA, Kim J, Kim SB, Won M, Park JH, Ahn J. Production of a 135-residue long N-truncated human keratinocyte growth factor 1 in Escherichia coli. Microb Cell Fact 2023; 22:98. [PMID: 37170276 PMCID: PMC10173505 DOI: 10.1186/s12934-023-02097-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Palifermin (trade name Kepivance®) is an amino-terminally truncated recombinant human keratinocyte growth factor 1 (KGF-1) with 140 residues that has been produced using Escherichia coli to prevent and treat oral mucositis following radiation or chemotherapy. In this study, an amino-terminally shortened KGF-1 variant with 135 residues was produced and purified in E. coli, and its cell proliferation activity was evaluated. RESULTS We expressed soluble KGF-1 fused to thioredoxin (TRX) in the cytoplasmic fraction of E. coli to improve its production yield. However, three N-truncated forms (KGF-1 with 140, 138, and 135 residues) were observed after the removal of the TRX protein from the fusion form by cleavage of the human enterokinase light chain C112S (hEKL C112S). The shortest KGF-1 variant, with 135 residues, was expressed by fusion with TRX via the hEKL cleavage site in E. coli and purified at high purity (> 99%). Circular dichroism spectroscopy shows that purified KGF-1135 had a structure similar to that of the KGF-1140 as a random coiled form, and MCF-7 cell proliferation assays demonstrate its biological activity. CONCLUSIONS We identified variations in N-terminus-truncated KGF-1 and selected the most stable form. Furthermore, by a simple two-step purification, highly purified KGF-1135 was obtained that showed biological activity. These results demonstrate that KGF-1135 may be considered an alternative protein to KGF-1.
Collapse
Affiliation(s)
- Young Su Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Gabriella Aphrodita Handoko
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jaehui Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul, 03722, Korea
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, KRIBB, Cheongju, 20736, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
41
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 431] [Impact Index Per Article: 215.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
42
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
43
|
Kim YS, Lee HJ, Handoko GA, Kim J, Won M, Park JH, Ahn J. High-level production of keratinocyte growth factor 2 in Escherichia coli. Protein Expr Purif 2023; 204:106229. [PMID: 36641112 DOI: 10.1016/j.pep.2022.106229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
Recombinant human keratinocyte growth factor 2 (KGF-2), also known as repifermin, is used in various therapeutic applications. However, KGF-2 production has not been optimized for facilitating large-scale production. Therefore, we attempted to attain high-level production of bioactive KGF-2. KGF-2 was fused with 6HFh8 (6HFh8-KGF-2) at the tobacco etch virus protease cleavage site. The 6HFh8-KGF-2 was expressed in Escherichia coli with high expression levels of approximately 33% and 20% of soluble protein in flask culture and 5 L fermentation, respectively. 6HFh8-KGF-2 was purified via nickel affinity chromatography. To maintain a stable form of KGF-2, the conditions of the cleavage reaction were optimized based on the isoelectric point. KGF-2 was purified via ion-exchange chromatography to high purity (>99%) with an optimal purification yield (91%). Circular dichroism spectroscopy demonstrated that purified KGF-2 had a secondary structure and thermal stability similar to that of commercial KGF-2. Bioactivity assays indicated that purified KGF-2 could induce MCF-7 cell proliferation in the same manner as commercial KGF-2. These results demonstrate that bioactive KGF-2 was overexpressed in E. coli and purified to high quality. Our findings indicated that bioactive KGF-2 can be produced in large quantities in E. coli.
Collapse
Affiliation(s)
- Young Su Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Gabriella Aphrodita Handoko
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Jaehui Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
44
|
Wang NQ, Jia WH, Yin L, Li N, Liang MD, Shang JM, Hou BY, Zhang L, Qiang GF, Du GH, Yang XY. Sex difference on fibroblast growth factors (FGFs) expression in skin and wound of streptozotocin(STZ)-induced type 1 diabetic mice. Mol Biol Rep 2023; 50:1981-1991. [PMID: 36536184 DOI: 10.1007/s11033-022-08094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.
Collapse
Affiliation(s)
- Nuo-Qi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Wei-Hua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Mei-Dai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Jia-Min Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China.
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Jia 2nd, Nanwei Road, Xicheng district, 100050, Beijing, P.R. China.
| |
Collapse
|
45
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
46
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
47
|
Pan YN, Jia C, Yu JP, Wu ZW, Xu GC, Huang YX. Fibroblast growth factor 9 reduces TBHP-induced oxidative stress in chondrocytes and diminishes mouse osteoarthritis by activating ERK/Nrf2 signaling pathway. Int Immunopharmacol 2023; 114:109606. [PMID: 36700776 DOI: 10.1016/j.intimp.2022.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) is a degenerative and progressive disease that affects joints. Pathologically, it is characterized by oxidative stress-mediated excessive chondrocyte apoptosis and mitochondrial dysfunction. Fibroblast growth factor 9 (FGF9) has been shown to exert antioxidant effects and prevent degenerative diseases by activating ERK-related signaling pathways. However, the mechanism of FGF9 in the pathogenesis of OA and its relationship with anti-oxidative stress and related pathways are unclear. In this study, mice with medial meniscus instability (DMM) were used as the in vivo model whereas TBHP-induced chondrocytes served as the in vitro model to explore the mechanism underlying the effects of FGF9 in OA and its association with anti-oxidative stress. Results showed that FGF9 reduced oxidative stress, apoptosis, and mitochondrial dysfunction in TBHP-treated chondrocytes and promoted the nuclear translocation of Nrf2 to activate the Nrf2/HO1 signaling pathway. Interestingly, silencing the Nrf2 gene or blocking the ERK signaling pathway abolished the antioxidant effects of FGF9. FGF9 treatment reduced joint space narrowing, cartilage ossification, and synovial thickening in the DMM model mice. In conclusion, the present findings demonstrate that FGF9 can inhibit TBHP-induced oxidative stress in chondrocytes through the ERK and Nrf2-HO1 signaling pathways and prevent the progression of OA in vivo.
Collapse
Affiliation(s)
- Yi-Nan Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chao Jia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jia-Pei Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhou-Wei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guo-Chao Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi-Xing Huang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
48
|
Yonehara R, Kumachi S, Kashiwagi K, Wakabayashi-Nakao K, Motohashi M, Murakami T, Yanagisawa T, Arai H, Murakami A, Ueno Y, Nemoto N, Tsuchiya M. A novel agonist with homobivalent single-domain antibodies that bind the FGF receptor 1 domain III functions as an FGF2 ligand. J Biol Chem 2022; 299:102804. [PMID: 36529290 PMCID: PMC9852558 DOI: 10.1016/j.jbc.2022.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor (FGF) is a multifunctional protein that exhibits a wide range of biological effects. Most commonly, it acts as a mitogen, but it also has regulatory, morphological, and endocrine effects. The four receptor subtypes of FGF are activated by more than 20 different FGF ligands. FGF2, one of the FGF ligands, is an essential factor for cell culture in stem cells for regenerative medicine; however, recombinant FGF2 is extremely unstable. Here, we successfully generated homobivalent agonistic single-domain antibodies (variable domain of heavy chain of heavy chain antibodies referred to as VHHs) that bind to domain III and induce activation of the FGF receptor 1 and thus transduce intracellular signaling. This agonistic VHH has similar biological activity (EC50) as the natural FGF2 ligand. Furthermore, we determined that the agonistic VHH could support the proliferation of human-induced pluripotent stem cells (PSCs) and human mesenchymal stem cells, which are PSCs for regenerative medicine. In addition, the agonistic VHH could maintain the ability of mesenchymal stem cells to differentiate into adipocytes or osteocytes, indicating that it could maintain the properties of PSCs. These results suggest that the VHH agonist may function as an FGF2 mimetic in cell preparation of stem cells for regenerative medicine with better cost effectiveness.
Collapse
Affiliation(s)
- Ryo Yonehara
- Epsilon Molecular Engineering, Inc, Saitama, Japan.
| | | | | | | | | | | | | | - Hidenao Arai
- Epsilon Molecular Engineering, Inc, Saitama, Japan
| | | | | | - Naoto Nemoto
- Epsilon Molecular Engineering, Inc, Saitama, Japan
| | | |
Collapse
|
49
|
Fibroblast growth factor 5 overexpression ameliorated lipopolysaccharide-induced apoptosis of hepatocytes through regulation of the phosphoinositide-3-kinase/protein kinase B pathway. Chin Med J (Engl) 2022; 135:2859-2868. [PMID: 36728504 PMCID: PMC9943982 DOI: 10.1097/cm9.0000000000002540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory syndrome induced by several infectious agents. Multiple organs are affected by sepsis, including the liver, which plays an important role in metabolism and immune homeostasis. Fibroblast growth factors (FGFs) participate in several biological processes, although the role of FGF5 in sepsis is unclear. METHODS In this study, lipopolysaccharide (LPS) was administrated to mice to establish a sepsis-induced liver injury. A similar in vitro study was conducted using L-02 hepatocytes. Western blot and immunohistochemistry staining were performed to evaluate the FGF5 expression level in liver tissues and cells. Inflammatory cell infiltrations, cleaved-caspase-3 expressions, reactive oxygen species and levels of inflammatory cytokines were detected by immunofluorescence, dihydroethidium staining, and reverse transcription quantitative polymerase chain reaction analysis, respectively. Flow cytometry was used to detect the apoptosis level of cells. In addition, ribonucleic acid (RNA)-sequencing was applied to explore the possible mechanism by which FGF5 exerted effects. RESULTS LPS administration caused FGF5 down-regulation in the mouse liver as well as in L-02 hepatocytes. Additionally, with FGF5 overexpression, liver injury and the level of hepatocyte apoptosis were ameliorated. Further, RNA sequencing performed in hepatocytes revealed the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) pathway as a possible pathway regulated by FGF5 . This was supported using an inhibitor of the PI3K/AKT pathway, which abrogated the protective effect of FGF5 in LPS-induced hepatocyte injury. CONCLUSION The anti-apoptotic effect of FGF5 on hepatocytes suffering from LPS has been demonstrated and was dependent on the activation of the PI3K/AKT signaling pathway.
Collapse
|
50
|
Lee DG, Kim YK, Baek KH. The bHLH Transcription Factors in Neural Development and Therapeutic Applications for Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232213936. [PMID: 36430421 PMCID: PMC9696289 DOI: 10.3390/ijms232213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The development of functional neural circuits in the central nervous system (CNS) requires the production of sufficient numbers of various types of neurons and glial cells, such as astrocytes and oligodendrocytes, at the appropriate periods and regions. Hence, severe neuronal loss of the circuits can cause neurodegenerative diseases such as Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Treatment of such neurodegenerative diseases caused by neuronal loss includes some strategies of cell therapy employing stem cells (such as neural progenitor cells (NPCs)) and gene therapy through cell fate conversion. In this report, we review how bHLH acts as a regulator in neuronal differentiation, reprogramming, and cell fate determination. Moreover, several different researchers are conducting studies to determine the importance of bHLH factors to direct neuronal and glial cell fate specification and differentiation. Therefore, we also investigated the limitations and future directions of conversion or transdifferentiation using bHLH factors.
Collapse
Affiliation(s)
- Dong Gi Lee
- Joint Section of Science in Environmental Technology, Food Technology, and Molecular Biotechnology, Ghent University, Incheon 21569, Korea
| | - Young-Kwang Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7134
| |
Collapse
|