1
|
Nair SR, Nihad M, Shenoy P S, Gupta S, Bose B. Unveiling the effects of micro and nano plastics in embryonic development. Toxicol Rep 2025; 14:101954. [PMID: 40104046 PMCID: PMC11914762 DOI: 10.1016/j.toxrep.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The improper disposal and degradation of plastics causes the formation and spread of micro and nano-sized plastic particles in the ecosystem. The widespread presence of these micro and nanoplastics leads to their accumulation in the biotic and abiotic components of the environment, thereby affecting the cellular and metabolic functions of organisms. Despite being classified as xenobiotic agents, information about their sources and exposure related to reproductive health is limited. Micro and nano plastic exposure during early developmental stages can cause abnormal embryonic development. It can trigger neurotoxicity and inflammatory responses as well in the developing embryo. In embryonic development, a comprehensive study of their role in pluripotency, gastrulation, and multi-differentiation potential is scarce. Due to ethical concerns associated with the direct use of human embryos, pluripotent cells and its 3D in vitro models (with cell lines) are an alternative source for effective research. Thus, the 3D Embryoid body (EB) model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Pluripotent stem cells such as embryonic and induced pluripotent stem cells derived embryoid bodies (EBs) serve as a robust 3D in vitro model that mimics characteristics similar to that of human embryos. Thus, the 3D EB model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Accordingly, this review discusses the significance of 3D in vitro models in conducting effective embryotoxicity research. Further, we also evaluated the possible sources/routes of microplastic generation and analyzed their surface chemistry and cytotoxic effects reported till date.
Collapse
Affiliation(s)
- Sanjay R Nair
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
2
|
van Melis LVJ, Zimnik KN, Persad AR, Bak T, van Rossum MJH, van Kleef RGDM, Wopken JP, Legler J, Westerink RHS. Exposure to organophosphate flame retardants and phthalates alters neuronal activity and network development. Toxicology 2025; 515:154168. [PMID: 40318837 DOI: 10.1016/j.tox.2025.154168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Exposure to organophosphate flame retardants (OPFRs) and phthalates is associated with neurodevelopmental deficits, impaired neuronal proliferation and differentiation, altered neurotransmitter levels, and impaired learning and memory. Here, we assessed the effects of acute and chronic exposure to the OPFR triphenyl phosphate (TPhP) and several phthalates on neuronal activity and network development in male and female rat primary cortical cultures grown on micro-electrode arrays. Acute exposure to TPhP, diethyl phthalate (DEP), dibutyl phthalate (DBP), and benzyl butyl phthalate (BBzP) inhibited neuronal activity, while chronic exposure to TPhP and DEP induced a hyperexcitation. Chronic exposure to DBP, BBzP, bis(2-ethylhexyl) phthalate (DEHP), and its metabolite mono-2-ethylhexyl phthalate (MEHP) inhibited neuronal network development. Exposure to BBzP and DEHP affected neuronal function at human-relevant concentrations as low as 1 µM. Acute and chronic exposure to the metabolites of DEP, DBP, and BBzP had only limited effects. Although the underlying mechanisms remain to be elucidated, analysis of endocrine mechanisms, including retinoic acid, retinoic X, liver X, and prostaglandin E2 receptor, suggested that the effects of OPFR and phthalates were not endocrine-mediated. Further research is needed to elucidate the mechanisms underlying the different responses to acute and chronic exposure. Taken together, these results add to the evidence that TPhP and various phthalates illicit neurotoxic effects, some at low concentrations. These novel results should be considered in the risk assessment of these chemicals.
Collapse
Affiliation(s)
- Lennart V J van Melis
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - Kyra N Zimnik
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - Arjuna R Persad
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - Teije Bak
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - Manon J H van Rossum
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - J Pepijn Wopken
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - Juliette Legler
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, Utrecht NL-3508 TD, the Netherlands.
| |
Collapse
|
3
|
Raka RN, Xu H, Bu M, Zhang L, Xue X. Distribution of phthalic acid esters in propolis ethanolic extract and capsuled propolis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:621-631. [PMID: 40184400 DOI: 10.1080/19440049.2025.2487500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/06/2025]
Abstract
Phthalate esters (PAEs), commonly used in food packaging materials, pose a potential health risk due to their migration into food matrices. Propolis, a resinous bee product widely consumed for its health benefits, is often packaged in plastics, raising concerns about PAE contamination. However, the occurrence of PAEs within propolis has been scarcely investigated. This study quantified PAE contamination profiles in propolis ethanolic extracts (PE) and propolis capsules (PCs) from China. The GC-MS/MS analysis of 20 PAEs demonstrated high linearity, indicating the reliability of the method. The limits of quantification (LOQ) ranged from 1.3 to 26.2 µg/kg, and the limits of detection (LOD) ranged from 0.4 to 8.6 µg/kg. Matrix effects ranged between 9% and 33%. Five PAEs were detected in PE samples: dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), dibutyl phthalate (DBP) and bis(2-ethylhexyl)phthalate (DEHP). Seventeen PAEs were detected in PC samples, with 15 consistently present in all samples (100% positivity). Diallyl phthalate (DAP), dipropyl phthalate (DPrP) and di-n-octyl phthalate (DNOP) were not detected in any sample. The total mean concentration of the 17 detected PAEs (∑17 PAEs) in the capsules ranged from 0.87 mg/kg to 23.71 mg/kg. This study found that PE and PC had the highest DBP (0.24 mg/kg) and di-heptyl phthalate (DHP: 2.29 mg/kg) levels on average, respectively. While PC showed higher PAE levels than PE. Therefore, this study provides insight into PAE contamination of raw propolis extract and encapsulated propolis.
Collapse
Affiliation(s)
- Rifat Nowshin Raka
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haitao Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meichao Bu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
McNell EE, Stevens DR, Welch BM, Rosen EM, Fenton S, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Exposure to phthalates and replacements during pregnancy in association with gestational blood pressure and hypertensive disorders of pregnancy. ENVIRONMENTAL RESEARCH 2025; 279:121739. [PMID: 40311894 DOI: 10.1016/j.envres.2025.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Exposure to endocrine-disrupting chemicals such as phthalates may increase risk of hypertensive disorders of pregnancy (HDP). Prior studies lack investigation of chemical mixtures, phthalate replacements, or key periods of susceptibility including early pregnancy. In the present study, we used a longitudinal approach to evaluate gestational exposure to phthalates and replacements, as both single-pollutants and mixtures, in association with blood pressure and diagnosis of preeclampsia or any HDP. The Human Placenta and Phthalates prospective pregnancy cohort includes 291 participants recruited from two U.S. clinics. Urinary metabolites of ten phthalates and replacements were quantified at up to 8 time points per individual and averaged to create early (12-15 weeks) and overall (12-38 weeks) pregnancy exposure biomarkers. We collected data on gestational blood pressure (mean = 6.2 measures per participant) and diagnosis of preeclampsia (n = 26 cases) or any HDP (n = 44 cases). Linear mixed effects models estimated associations between exposure biomarkers and repeated blood pressure measures. We estimated exposure biomarker associations with preeclampsia and HDP using Cox proportional hazards or logistic regression models, respectively. Quantile g-computation was used to estimate joint effects of a phthalate or replacement mixture with each outcome. Early pregnancy exposure biomarkers demonstrated greater associations with adverse outcomes compared to overall pregnancy. A one-interquartile range increase in early pregnancy di-isononyl phthalate metabolites (ƩDiNP) was associated with a 1.13 mmHg (95 % confidence interval [CI]: 0.25, 2.37) and 0.90 mmHg (CI: 0.16, 1.65) increase in systolic and diastolic blood pressure, respectively. We also found positive but nonsignificant associations of early pregnancy mono-3-carboxypropyl phthalate, di-2-ethylhexyl terephthalate metabolites, and the high molecular weight phthalate mixture with blood pressure. Early pregnancy ƩDiNP was furthermore associated with increased odds of HDP (odds ratio: 1.37, CI: 1.03, 1.82), but not preeclampsia. In sum, early gestational exposure to DiNP and other high molecular weight phthalates may contribute to HDP.
Collapse
Affiliation(s)
- Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | - Emma M Rosen
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Suzanne Fenton
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
5
|
Hull SD, Hougaard KS, Toft G, Petersen KKU, Flachs EM, Lindh C, Ramlau-Hansen CH, Wise LA, Wilcox A, Liew Z, Bonde JP, Tøttenborg SS. Fetal exposure to a mixture of endocrine-disrupting chemicals and biomarkers of male fecundity: A population-based cohort study. Andrology 2025. [PMID: 40220336 DOI: 10.1111/andr.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Fetal exposure to endocrine-disrupting chemicals (EDCs) has been associated with reduced male fecundity, but with few studies considering chemical mixtures. OBJECTIVES We assessed the association between fetal exposure to a mixture of EDCs and biomarkers of male fecundity in young adulthood. MATERIALS AND METHODS The study population comprised 841 young adult males enrolled in the Fetal Programming of Semen Quality cohort, established as a male offspring sub-cohort within the Danish National Birth Cohort. Maternal blood samples were analyzed for concentrations of per- and polyfluoroalkyl substances (PFAS), phthalate metabolites, and triclosan. We used quantile g-computation to estimate the change in semen characteristics, testicular volume, and reproductive hormone levels with 95% confidence intervals (CI) per one-quartile increase in all chemicals within three chemical mixtures; an overall chemical mixture, a PFAS mixture, and a non-persistent chemical mixture. RESULTS Fetal exposure to a one-quartile increase in the overall chemical mixture was associated with 4.0 million/mL lower sperm concentration (95% CI: -9.1, 1.1), 16.1 million lower total sperm count (95% CI: -33.8, 1.6), 0.5 mL smaller testicular volume (95% CI: -1.2, 0.3), 5% higher proportion of non-progressive and immotile spermatozoa (95% CI: 0.99, 1.11), and 7% higher concentration of FSH (95% CI: 0.99, 1.16), but with limited precision. Effect sizes were greatest in magnitude for sperm concentration and total sperm count. We observed somewhat similar associations for the PFAS mixture and no associations for the non-persistent chemical mixture. DISCUSSION Results suggest that fetal exposure to an overall mixture of EDCs may be adversely associated with several biomarkers of male fecundity, but findings are also compatible with null associations. These associations, if true, appeared to be driven by PFAS, but misclassification due to a single measurement of the phthalate metabolites and triclosan may have attenuated the results.
Collapse
Affiliation(s)
- Sidsel Dan Hull
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- National Research Center for the Working Environment, Copenhagen, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Kajsa Kirstine Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Allen Wilcox
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Sinha S, Ahmad R, Chowdhury K, Islam S, Mehta M, Haque M. Childhood Obesity: A Narrative Review. Cureus 2025; 17:e82233. [PMID: 40231296 PMCID: PMC11995813 DOI: 10.7759/cureus.82233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025] Open
Abstract
Obesity among children has emerged as a worldwide health issue due to childhood obesity becoming a pandemic, and it is often linked to various illnesses, fatal outcomes, and disability in adulthood. Obesity has become an epidemic issue in both developed and developing countries, particularly among youngsters. The most common factors contributing to non-communicable diseases (NCDs) are unhealthy eating habits, desk-bound games, avoidance of physical activity-requiring activities, smoking, alcohol usage, and other added items. All these factors increase NCDs, including obesity, resulting in various morbidities and early death. Additionally, childhood obesity has psychological, emotional, cognitive, societal, and communicative effects. For example, it raises the possibility of issues related to physical appearance, self-esteem, confidence level, feelings of isolation, social disengagement, stigma, depression, and a sense of inequality. Children who consume more energy-dense, high-fat, low-fiber-containing food than they need usually store the excess as body fat. Standardizing indicators and terminology for obesity-related metrics is critical for better understanding the comparability of obesity prevalence and program effectiveness within and between countries. The underlying variables must be altered to reduce or avoid harm to the target organ in children. As a result, reducing childhood obesity is a considerable public health goal for the benefit of society and the long-term well-being of individuals.
Collapse
Affiliation(s)
- Susmita Sinha
- Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Kona Chowdhury
- Pediatrics, Enam Medical College and Hospital, Dhaka, BGD
| | - Shamima Islam
- Forensic Medicine, Enam Medical College and Hospital, Dhaka, BGD
| | - Miral Mehta
- Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
7
|
Koc S, Erdogmus E, Bozdemir O, Ozkan-Vardar D, Yaman U, Erkekoglu P, Zeybek ND, Kocer-Gumusel B. Prepubertal phthalate exposure can cause histopathological alterations, DNA methylation and histone acetylation changes in rat brain. Toxicol Ind Health 2025; 41:163-175. [PMID: 39873534 DOI: 10.1177/07482337251315212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60). The rats in the study groups were sacrificed during adulthood, and histopathological changes, epigenetic changes, and oxidative stress parameters were evaluated in brain tissues. Histopathological findings indicating the presence of deterioration in brain tissue morphology were obtained, more prominently in the DEHP-H group. Examining the hippocampus under the light microscope, pyramidal neuron loss was detected only in CA1 of the DEHP-L group, while in DEHP-H rats, pyramidal neuron losses were detected in the CA1, CA2, and CA3 regions. No significant change was observed in brain lipid peroxidation levels with DEHP compared to control. Significant increases in total glutathione (GSH) in both dose groups were considered to be an adaptive response to DEHP-induced oxidative stress. The decrease in DNA methylation in the brain, although not statistically significant, and the increase in histone modification showed that exposure to DEHP may cause epigenetic changes in the brain and these epigenetic changes may also take place as one of the mechanisms underlying the damage observed in the brain. The results suggest that DEHP exposure during early development may have a significant effect on brain development.
Collapse
Affiliation(s)
- Seyda Koc
- Department of Toxicology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| | - Ekin Erdogmus
- Department of Toxicology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| | - Ozlem Bozdemir
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey
| | - Deniz Ozkan-Vardar
- Pharmacy Services, Vocational School of Health Services, Lokman Hekim University, Ankara, Turkey
| | - Unzile Yaman
- Department of Toxicology, Faculty of Pharmacy, Katip Celebi University, İzmir, Turkey
| | - Pınar Erkekoglu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey
| |
Collapse
|
8
|
Perez PA, Silva TY, Toledo J, Gomá L, De Paul AL, Quintar AA, Gutiérrez S. Exposure to environmentally relevant levels of DEHP during development modifies the distribution and expression patterns of androgen receptors in the anterior pituitary in a sex-specific manner. CHEMOSPHERE 2025; 372:144145. [PMID: 39862653 DOI: 10.1016/j.chemosphere.2025.144145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot. In male rats, DEHP increased AR-positive cells at postnatal day (PND) 21, with this effect persisting at PND75. In females, DEHP elevated AR-expressing cells at PND21, but this increase was followed by a reduction in adulthood. Furthermore, DEHP altered AR subcellular localization by reducing nuclear AR expression and increasing its cytoplasmic expression in gonadotrophs, and modified LH content in secretory granules, indicating enhanced secretory activity. In primary pituitary cell cultures DEHP exposure regulated AR subcellular localization by decreasing nuclear AR levels, and disrupting the testosterone effect on AR cytoplasmic-nuclear shuttling in a dose-dependent manner. In conclusion, our study shows alteration of pituitary AR expression and subcellular localization following gestational and lactational DEHP exposure in a sex specific manner, and indicates that DEHP retains AR in the cytoplasm, interfering with testosterone activity in pituitary cells.
Collapse
Affiliation(s)
- Pablo A Perez
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina
| | - Tamara Y Silva
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina
| | - Jonathan Toledo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina
| | - Lourdes Gomá
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina
| | - Ana L De Paul
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina
| | - Amado A Quintar
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina
| | - Silvina Gutiérrez
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina.
| |
Collapse
|
9
|
Hussein RA, Refai RH, El-Zoka AH, Azouz HG, Hussein MF. Association between some environmental risk factors and attention-deficit hyperactivity disorder among children in Egypt: a case-control study. Ital J Pediatr 2025; 51:19. [PMID: 39875928 PMCID: PMC11776284 DOI: 10.1186/s13052-025-01843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Attention-Deficit Hyperactivity Disorder (ADHD) is a complex disease that negatively impacts the social and academic/occupational activities of children and is more common in boys than in girls. METHODS This case-control study aimed to assess the association between some environmental risk factors and ADHD among children in Alexandria, Egypt. It was carried out at the outpatient clinics of El Shatby Pediatric University Hospital in Alexandria, Egypt, with 252 children (126 cases and 126 controls). Hair samples were collected for analysis of lead and manganese levels using Atomic Absorption Spectrophotometer. A pre-designed interview questionnaire was used to determine the important environmental risk factors that may be related to ADHD. RESULTS Children from parents with low levels of education, living in crowded houses, and occupational exposure to chemical agents were found to be risk factors for ADHD. The mean ± SD hair lead level in ADHD children was 2.58 ± 1.95, while in controls was 1.87 ± 0.92, with a statistically significant difference (p < 0.001). The mean ± SD hair manganese level in ADHD children was 2.10 ± 1.54, while in controls was 1.11 ± 0.69, with a statistically significant difference (p < 0.001). The logistic regression model revealed that six factors had a significant association with ADHD: using of newspapers to wrap food 3 or more times a week (adjusted odds ratio (AOR) = 105.11, 95% CI: 11.18-988.26), daily TV watching by child for more than 5 h (AOR = 63.96, 95% CI: 2.56-1601.32), child's eating commercially packed noodles 3 times or more per week (AOR = 57.73, 95% CI: 3.77-593.93), using unpackaged flour in cooking (AOR = 44.47, 95% CI: 1.83-629.80), eating sweets daily by child (AOR = 6.82, 95% CI: 1.23-37.94), and lastly elevated hair Manganese level (AOR = 3.57, 95% CI: 1.24-10.29). CONCLUSIONS ADHD is a multi-factorial disorder, where many environmental risk factors contribute to its development. Future efforts to determine the best preventive strategy in Egypt must be based on a better knowledge of the role of environmental risk factors in the etiology of the disorder. Eliminating non-essential uses of lead and providing public education regarding the importance of safe disposal of lead-acid batteries and computers are necessary.
Collapse
|
10
|
Tomsho KS, Quinn MR, Wang Z, Preston EV, Adamkiewicz G, Joseph NT, Wylie BJ, James-Todd T. Improving the Health and Environmental Health Literacy of Professionals: Evaluating the Effect of a Virtual Intervention on Phthalate Environmental Health Literacy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1571. [PMID: 39767412 PMCID: PMC11675889 DOI: 10.3390/ijerph21121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The American College of Obstetricians and Gynecologists provided updated guidance in 2021, recommending that reproductive health professionals should include discussion of environmental exposures with their patients. However, environmental health is seldom included in medical training, with endocrine-disrupting chemicals, such as phthalates-linked to adverse pregnancy outcomes-being among the least discussed. We developed a one-hour virtual educational intervention to train reproductive health professionals on the routes of phthalate exposure, potential associated health impacts, and suggestions on how to discuss exposure reduction with patients. The intervention was designed to include perspectives from patients, scientists, and clinicians. Using a pre/post/post design, we evaluated the impact of the intervention on reproductive health professionals' phthalate-related reproductive health literacy via a validated environmental health literacy (EHL) scale, their confidence in discussing phthalates, and the frequency of discussions about phthalates with patients. All materials, including the study questionnaires and intervention materials, were administered virtually to reproductive health professionals (n = 203) currently seeing patients working in the United States. After completing the intervention, reproductive health professionals' average EHL increased (pre-course: 22.3, post-course: 23.7, 2 months post-course: 24.0), as did their confidence in discussing phthalates with their patients (pre-course: 1% (2/203) reported being quite confident, post-course: 64% (131/203) reported being quite confident, and 2 months post course: 86% (174/203) reported being quite confident). Additionally, the reported frequency of discussions about phthalates with patients rose substantially (pre-course: 0% (0/203) reported usually discussing phthalates with patients, and 2 months post-course: 86% (175/203) reported usually discussing phthalates with patients): In line with the recommendations of the American College of Obstetricians and Gynecologists, this online phthalate educational intervention tool increased EHL among reproductive health professionals and shifted clinical care to include discussion about phthalates, a reproductive toxicant.
Collapse
Affiliation(s)
- Kathryn S. Tomsho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Marlee R. Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zifan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Emma V. Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Naima T. Joseph
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Blair J. Wylie
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
11
|
Zoppé H, Xavier J, Dupuis A, Migeot V, Bioulac S, Hary R, Bonnet-Brilhault F, Albouy M. Is exposure to Bisphenol A associated with Attention-deficit hyperactivity disorder (ADHD) and associated executive or behavioral problems in children? A comprehensive systematic review. Neurosci Biobehav Rev 2024; 167:105938. [PMID: 39551456 DOI: 10.1016/j.neubiorev.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Numerous studies have investigated environmental risk factors in ADHD, and Bisphenol A (BPA), an endocrine disruptor, is suspected by several reviews. However, the quality of the studies has never been carefully assessed, leading us to rigorously examine associations between BPA exposure and ADHD and associated symptoms in children. Using PRISMA criteria, we conducted a systematic review on the MEDLINE/PubMed, Web of Science, EBSCOhost, PsycINFO, PsycARTICLES and Cochrane databases. We used the ROBINS-E tool to assess the quality, and the GRADE Approach. This study was registered with PROSPERO, CRD42023377150. Out of 10446 screened articles, 46 were included. Unlike pre-existing reviews, most studies failed to find clear links with ADHD or associated symptoms, with a high risk of bias and a very low level of certainty. Our systematic review reveals insufficient evidence regarding the impact of BPA on ADHD, despite some behavioral results that cannot be generalized. Future studies will require improved consideration of confounding factors and more precise sampling methods. This study did not receive specific funding.
Collapse
Affiliation(s)
- Hugo Zoppé
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France.
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France; CNRS UMR 7295, Cognition and Learning Research Center, Poitiers, France
| | - Antoine Dupuis
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| | - Virginie Migeot
- Public Health Department, CHU Rennes, University of Rennes 1, Rennes 35000, France; INSERM UMR-S 1085, EHESP, Irset, F-35000 Rennes, France
| | - Stéphanie Bioulac
- Service de psychiatrie de l'enfant et l'adolescent, CHU Grenoble Alpes, Grenoble 38000, France; LPNC, UMR 5105 CNRS, Université Grenoble Alpes, France
| | - Richard Hary
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France
| | - Marion Albouy
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| |
Collapse
|
12
|
Ortlund KE, Schantz SL, Aguiar A, Merced-Nieves FM, Woodbury ML, Goin DE, Calafat AM, Milne GL, Eick SM. Oxidative stress as a potential mechanism linking gestational phthalates exposure to cognitive development in infancy. Neurotoxicol Teratol 2024; 106:107397. [PMID: 39362385 PMCID: PMC11646183 DOI: 10.1016/j.ntt.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Gestational exposure to phthalates, endocrine disrupting chemicals widely used in consumer products, has been associated with poor recognition memory in infancy. Oxidative stress may represent one pathway linking this association. Hence, we examined whether exposure to phthalates was associated with elevated oxidative stress during pregnancy, and whether oxidative stress mediates the relationship between phthalate exposure and recognition memory. METHODS Our analysis included a subset of mother-child pairs enrolled in the Illinois Kids Development Study (IKIDS, N = 225, recruitment years 2013-2018). Concentrations of 12 phthalate metabolites were quantified in 2nd trimester urine samples. Four oxidative stress biomarkers (8-isoprostane-PGF2α, 2,3-dinor-5,6-dihydro-8-isoPGF2α, 2,3-dinor-8-isoPGF2α, and prostaglandin-F2α) were measured in 2nd and 3rd trimester urine. Recognition memory was evaluated at 7.5 months, with looking times to familiar and novel stimuli recorded via infrared eye-tracking. Novelty preference (proportion of time looking at a novel stimulus when paired with a familiar one) was considered a measure of recognition memory. Linear mixed effect models were used to estimate associations between monoethyl phthalate (MEP), sum of di(2-ethylhexyl) phthalate metabolites (ΣDEHP), sum of di(isononyl) phthalate metabolites (ΣDINP), and sum of anti-androgenic phthalate metabolites (ΣAA) and oxidative stress biomarkers. Mediation analysis was performed to assess whether oxidative stress biomarkers mediated the effect of gestational phthalate exposure on novelty preference. RESULTS The average maternal age at delivery was 31 years and approximately 50 % of participants had a graduate degree. A natural log unit increase in ΣAA, ΣDINP, and ΣDEHP was associated with a statistically significant increase in 8-isoPGF2α, 2,3-dinor-5,6-dihydro-8-isoPGF2α, and 2,3-dinor-8-isoPGF2α. The association was greatest in magnitude for ΣAA and 2,3-dinor-5,6-dihydro-8-isoPGF2α (β = 0.45, 95 % confidence interval = 0.14, 0.76). The relationship between ΣAA, ΣDINP, ΣDEHP, and novelty preference was partially mediated by 2,3-dinor-8-isoPGF2α. CONCLUSIONS Gestational exposure to some phthalates is positively associated with oxidative stress biomarkers, highlighting one mechanistic pathway through which these chemicals may impair early cognitive development.
Collapse
Affiliation(s)
- Kaegan E Ortlund
- Department of Environmental Sciences, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Andréa Aguiar
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Francheska M Merced-Nieves
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan L Woodbury
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Dana E Goin
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Assessment of maternal phthalate exposure in urine across three trimesters and at delivery (umbilical cord blood and placenta) and its influence on birth anthropometric measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174910. [PMID: 39053554 DOI: 10.1016/j.scitotenv.2024.174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalates, commonly used in plastic manufacturing, have been linked to adverse reproductive effects. Our research from the Saudi Early Autism and Environment Study (2019-2022), involving 672 participants, focused on the impacts of maternal phthalate exposure on birth anthropometric measures. We measured urinary phthalate metabolites in 390 maternal samples collected during each of the three trimesters of pregnancy and in cord serum and placental samples obtained at delivery. We employed various statistical methods to analyze our data. Intraclass correlation coefficients were used to assess the consistency of phthalate measurements, generalized estimating equations were used to explore temporal variations across the trimesters, and linear regression models, adjusted for significant confounders and Bonferroni correction, were used for each birth outcome. Exposure to six phthalates was consistently high across trimesters, with 82 %-100 % of samples containing significant levels of all metabolites, except for mono-benzyl phthalate. We found a 3.15 %-3.73 % reduction in birth weight (BWT), 1.39 %-1.69 % reduction in head circumference (HC), and 3.63 %-5.45 % reduction in placental weight (PWT) associated with a one-unit increase in certain urinary di(2-ethylhexyl) phthalate (DEHP) metabolites during the first trimester. In the second trimester, exposure to MEP, ∑7PAE, and ∑LMW correlated with a 3.15 %-4.5 % increase in the APGAR 5-min score and increases in PWT by 8.98 % for ∑7PAE and 9.09 % for ∑LMW. Our study also highlighted the maternal-to-fetal transfer of DEHP metabolites, indicating diverse impacts on birth outcomes and potential effects on developmental processes. Our study further confirmed the transfer of DEHP metabolites from mothers to fetuses, evidenced by variable rates in the placenta and cord serum, with an inverse relationship suggesting a passive transfer mechanism. Additionally, we observed distinct phthalate profiles across these matrices, adversely impacting birth outcomes. In serum, we noticed increases associated with DEHP metabolites, with birth gestational age rising by 1.01 % to 1.11 %, HC by 2.84 % to 3.67 %, and APGAR 5-min scores by 3.77 % to 3.87 %. Conversely, placental analysis revealed a different impact: BWT decreased by 3.54 % to 4.69 %, HC reductions ranged from 2.57 % to 4.69 %, and chest circumference decreased by 7.13 %. However, the cephalization index increased by 3.67 %-5.87 %. These results highlight the complex effects of phthalates on fetal development, indicating their potential influence on crucial developmental processes like sexual maturation and brain development.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Ren J, Wang Y, Zhang Y, Jin H, Cheng J, Tao F, Zhu Y. Placental Transcriptomic Signatures of Prenatal Phthalate Exposure and Identification of Placenta-Brain Genes Associated with the Effects of Phthalate Exposure on Neurodevelopment in Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19141-19151. [PMID: 39392919 DOI: 10.1021/acs.est.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Prenatal exposure to phthalates may affect placental function and fetal development, but the underlying mechanisms are unclear. The aim of our study was to explore the alterations in the placental transcriptome associated with prenatal phthalate exposure and to further analyze whether the placental-brain axis (PBA) genes play a mediating role in the association between prenatal phthalate exposure and children's neurodevelopment. We included 172 participants from the Ma'anshan Birth Cohort and collected data on seven phthalate metabolites in urine during pregnancy, placental tissue RNA-seq, and neurodevelopment of offspring. Bioinformatics analysis revealed that aberrant regulation of the placental transcriptome was associated with prenatal phthalate exposure. Exposure to phthalates during pregnancy was found to be associated with neurodevelopmental delay in children aged 6, 18, and 48 months using the multiple linear regression model. Meanwhile, employing mediation analysis, nine PBA genes were identified that mediate the association between exposure to phthalates during pregnancy and the neurodevelopment of children. Our study will provide a basis for potential mechanisms by which prenatal exposure to phthalates affects placental function and children's neurodevelopment.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yifan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yimin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jingjing Cheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
- Medical School, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
15
|
Wager JL, Thompson JA. Development and child health in a world of synthetic chemicals. Pediatr Res 2024:10.1038/s41390-024-03547-z. [PMID: 39277650 DOI: 10.1038/s41390-024-03547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Chemical pollution is one of today's most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. IMPACT: Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.
Collapse
Affiliation(s)
- Jessica L Wager
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Libin Cardiovascular Institute, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Zeng B, Wu Y, Huang Y, Colucci M, Bancaro N, Maddalena M, Valdata A, Xiong X, Su X, Zhou X, Zhang Z, Jin Y, Huang W, Bai J, Zeng Y, Zou X, Zhan Y, Deng L, Wei Q, Yang L, Alimonti A, Qi F, Qiu S. Carcinogenic health outcomes associated with endocrine disrupting chemicals exposure in humans: A wide-scope analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135067. [PMID: 38964039 DOI: 10.1016/j.jhazmat.2024.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes. Our study is the first to systematically integrate observational studies and randomized controlled trials from over 20 years and summarize over 300 subgroup associations. We found that most EDCs promote tumor development, and that exposure to residential environmental pollutants may be a major source of pesticide exposure. Furthermore, we found that phytoestrogens exhibit antitumor effects. The findings of this study can aid in the development of global EDCs regulatory health policies and alleviate the severe risks associated with EDCs exposure.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwei Wu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yin Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Xingyu Xiong
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xingyang Su
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Weichao Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jincheng Bai
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuxiao Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Neurodegenerative Disorders Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Qiang Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Tomsho KS, Quinn MR, Preston EV, Adamkiewicz G, James-Todd T. Exploring associations between the Phthalate Environmental Reproductive Health Literacy (PERHL) scale & biomarkers of phthalate exposure: A pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00706-6. [PMID: 39020161 DOI: 10.1038/s41370-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Perinatal exposure to phthalates is associated with adverse health impacts for parents and children. The field of environmental health literacy seeks to measure how environmental health information is conceptualized and used to inform behaviors. We assessed whether scores on the validated Phthalate Environmental Reproductive Health Literacy (PERHL) scale were associated with biomarkers of phthalate exposure. METHODS 42 members of the Environmental Reproductive and Glucose Outcomes (ERGO) cohort completed the PERHL scale and provided spot urine samples. Phthalate summary measures for model outcomes were created by calculating molar sums of specific gravity-corrected metabolite concentrations representing exposure to parent phthalate, Di(2-ethylhexyl)phthalate (DEHP), personal care product (PCP)-associated phthalates, and parent butyl-phthalates. Linear regression models were used to estimate the associations of the PERHL scale scores with phthalate summary measures, controlling for educational attainment (college degree or higher vs. no college degree), age (years), and race and ethnicity (non-Hispanic White vs. non-White). RESULTS Higher scores on the PERHL Scale and subscales were generally associated with lower ΣDEHP, Σbutyl, and ΣPCP metabolite concentrations. A one-point increase in the 'Protective Behavior/Risk Control' subscale score was significantly associated with a -30.3% (95% CI: -50.1, -2.6) decrease in ΣDEHP, and a -30.6% (95% CI: -51.5, -0.63) decrease in Σbutyl metabolite concentrations.
Collapse
Affiliation(s)
- Kathryn S Tomsho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Marlee R Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
18
|
Al-Beltagi M, Saeed NK, Bediwy AS, Shaikh MA, Elbeltagi R. Microphallus early management in infancy saves adulthood sensual life: A comprehensive review. World J Clin Pediatr 2024; 13:89224. [PMID: 38947989 PMCID: PMC11212752 DOI: 10.5409/wjcp.v13.i2.89224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024] Open
Abstract
Microphallus/Micropenis is a rare condition with significant physical and psychological implications for affected individuals. This article comprehensively reviews micropenis, its etiology, epidemiology, and various treatment options. We conducted a thorough literature review to collect relevant information on micropenis and microphallus, as well as related disorders. Our primary databases were PubMed, Medline, and Google Scholar. We searched for articles published in English between 2000 and 2023. Our analysis included 67 review articles, 56 research studies, 11 case reports, one guideline, and one editorial. Our search terms included "microphallus", "micropenis", "congenital hypogonadotropic hypogonadism", "androgen insensitivity syndrome", "pediatric management of micropenis", "testosterone therapy", and "psychosocial implications of micropenis". We focused on diagnosing micropenis and related conditions, including hormonal assessments, medical and surgical treatment options, psychosocial and psychological well-being, sexual development of adolescents, and sociocultural influences on men's perceptions of penile size. Additionally, we explored parenting and family dynamics in cases of micropenis and disorders of sex development, implications of hormonal treatment in neonates, and studies related to penile augmentation procedures and their effectiveness. The article highlights the importance of early diagnosis and intervention in addressing the physical and psychological well-being of individuals with micropenis. Surgical procedures, such as penile lengthening and girth enhancement, and non-surgical approaches like hormonal therapy are explored. The significance of psychological support, education, and lifestyle modifications is emphasized. Early management and comprehensive care are crucial for individuals with micropenis, from infancy to adolescence and beyond. A multidisciplinary approach involving urologists, endocrinologists, and mental health professionals is recommended. Regular assessment of treatment effectiveness and the need for updated guidelines are essential to provide the best possible care. Healthcare professionals should prioritize early diagnosis, and neonatologists should measure stretched penile length in neonates. A collaborative effort is needed among professionals, parents, and affected individuals to create a supportive environment that recognizes worth beyond physical differences. Continuous research and evidence-based updates are crucial for improving care standards.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Department of Medical Microbiology Section and Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Department of Medical Microbiology Section and Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pulmonology, University Medical Center, Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Majed A Shaikh
- Department of Pediatrics, Ibn Al Nafees Hospital, Manama 54533, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Busiateen 15503, Bahrain
| |
Collapse
|
19
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
20
|
Tomsho KS, Quinn MR, Adamkiewicz G, James-Todd T. Development of a Phthalate Environmental Reproductive Health Literacy (PERHL) Scale. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47013. [PMID: 38669179 PMCID: PMC11050996 DOI: 10.1289/ehp13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Substantial evidence exists linking phthalate exposure to adverse reproductive health outcomes. Current US federal regulations of consumer product chemicals place the onus on individuals to mitigate their exposure to phthalates, with assumptions of sufficient environmental health literacy (EHL). Few validated scales for people of reproductive age exist to evaluate phthalate-specific EHL. OBJECTIVES Our objective is to develop a multidimensional scale characterizing latent factors of phthalate knowledge, risk perception, and self-efficacy to inform individual-level interventions for reducing phthalate exposure. METHODS We distributed a survey with 31 items to 117 participants in the Environmental Reproductive and Glucose Outcomes (ERGO) cohort who gave birth within the last 5 years. Exploratory factor analysis (EFA) was used to identify underlying latent factors. Internal reliability was assessed via omega hierarchical coefficient. Average sum scores for each latent factor and the overall Phthalate Environmental Reproductive Health Literacy (PERHL) score were calculated. Associations between latent factors, overall PERHL score, and sociodemographic characteristics were explored using linear models. RESULTS Six latent factors were identified as follows: "Awareness of Phthalate Reproductive Health Impacts," "Uncertainty," "Protective Behavior/Risk Control," "Regulatory Interest," "Awareness of Phthalate Exposure Pathways," and "General Phthalate Knowledge." Each factor demonstrated acceptable to strong internal reliability, with coefficients ranging between 0.63 and 0.93. Non-white participants had lower scores for the "Awareness of Phthalate Reproductive Health Impacts" [β : - 0.35 , 95% confidence interval (CI): - 0.63 , - 0.07 ], "Awareness of Phthalate Exposure Pathways" (β : - 0.32 , 95% CI: - 0.57 , - 0.07 ), and "General Phthalate Knowledge" (β : - 0.36 , 95% CI: - 0.66 , - 0.06 ), but no significant difference in scores on "Uncertainty" (β : 0.17, 95% CI: - 0.16 , 0.50), "Protective Behavior/Risk Control" (β : - 0.04 , 95% CI: - 0.36 , 0.28), or "Regulatory Interest" (β : - 0.21 , 95% CI: - 0.51 , 0.09). No associations were seen for age or educational attainment and latent or sum factors. DISCUSSION Six latent factors were identified for the PERHL scale. Non-white race and ethnicity was associated with lower scores for knowledge-related scale factors. https://doi.org/10.1289/EHP13128.
Collapse
Affiliation(s)
- Kathryn S. Tomsho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marlee R. Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Thayagabalu S, Cacho N, Sullivan S, Smulian J, Louis‐Jacques A, Bourgeois M, Chen H, Weerasuriya W, Lemas DJ. A systematic review of contaminants in donor human milk. MATERNAL & CHILD NUTRITION 2024; 20:e13627. [PMID: 38268226 PMCID: PMC10981490 DOI: 10.1111/mcn.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Donor human milk (DHM) from a milk bank is the recommended feeding method for preterm infants when the mother's own milk (MOM) is not available. Despite this recommendation, information on the possible contamination of donor human milk and its impact on infant health outcomes is poorly characterised. The aim of this systematic review is to assess contaminants present in DHM samples that preterm and critically ill infants consume. The data sources used include PubMed, EMBASE, CINAHL and Web of Science. A search of the data sources targeting DHM and its potential contaminants yielded 426 publications. Two reviewers (S. T. and D. L.) conducted title/abstract screening through Covidence software, and predetermined inclusion/exclusion criteria yielded 26 manuscripts. Contaminant types (bacterial, chemical, fungal, viral) and study details (e.g., type of bacteria identified, study setting) were extracted from each included study during full-text review. Primary contaminants in donor human milk included bacterial species and environmental pollutants. We found that bacterial contaminants were identified in 100% of the papers in which bacterial contamination was sought (16 papers) and 61.5% of the full data set (26 papers), with the most frequently identified genera being Staphylococcus (e.g., Staphylococcus aureus and coagulase-negative Staphylococcus) and Bacillus (e.g., Bacillus cereus). Chemical pollutants were discovered in 100% of the papers in which chemical contamination was sought (eight papers) and 30.8% of the full data set (26 papers). The most frequently identified chemical pollutants included perfluoroalkyl substances (six papers), toxic metal (one paper) and caffeine (one paper). Viral and fungal contamination were identified in one paper each. Our results highlight the importance of establishing standardisation in assessing DHM contamination and future studies are needed to clarify the impact of DHM contaminants on health outcomes.
Collapse
Affiliation(s)
- Sionika Thayagabalu
- Department of Health Outcomes and Biomedical Informatics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Nicole Cacho
- Department of Pediatrics, Division of NeonatologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Sandra Sullivan
- Envision Healthcare, HCA Florida North Florida HospitalGainesvilleFloridaUSA
| | - John Smulian
- Department of Obstetrics and Gynecology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Center for Perinatal Outcomes Research, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Adetola Louis‐Jacques
- Department of Obstetrics and Gynecology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Center for Perinatal Outcomes Research, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Marie Bourgeois
- Department of Public HealthUniversity of South FloridaTampaFloridaUSA
| | - Henian Chen
- Department of Public HealthUniversity of South FloridaTampaFloridaUSA
| | | | - Dominick J. Lemas
- Department of Health Outcomes and Biomedical Informatics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Obstetrics and Gynecology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Center for Perinatal Outcomes Research, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
22
|
Panneel L, Cleys P, Poma G, Ait Bamai Y, Jorens PG, Covaci A, Mulder A. Ongoing exposure to endocrine disrupting phthalates and alternative plasticizers in neonatal intensive care unit patients. ENVIRONMENT INTERNATIONAL 2024; 186:108605. [PMID: 38569425 DOI: 10.1016/j.envint.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Due to endocrine disrupting effects, di-(2-ethylhexyl) phthalate (DEHP), a plasticizer used to soften plastic medical devices, was restricted in the EU Medical Devices Regulation (EU MDR 2017/745) and gradually replaced by alternative plasticizers. Neonates hospitalized in the neonatal intensive care unit (NICU) are vulnerable to toxic effects of plasticizers. From June 2020 to August 2022, urine samples (n = 1070) were repeatedly collected from premature neonates (n = 132, 4-10 samples per patient) born at <31 weeks gestational age and/or <1500 g birth weight in the Antwerp University Hospital, Belgium. Term control neonates (n = 21, 1 sample per patient) were included from the maternity ward. Phthalate and alternative plasticizers' metabolites were analyzed using liquid-chromatography coupled to tandem mass spectrometry. Phthalate metabolites were detected in almost all urine samples. Metabolites of alternative plasticizers, di-(2-ethylhexyl)-adipate (DEHA), di-(2-ethylhexyl)-terephthalate (DEHT) and cyclohexane-1,2-dicarboxylic-di-isononyl-ester (DINCH), had detection frequencies ranging 30-95 %. Urinary phthalate metabolite concentrations were significantly higher in premature compared to control neonates (p = 0.023). NICU exposure to respiratory support devices and blood products showed increased phthalate metabolite concentrations (p < 0.001). Phthalate exposure increased from birth until four weeks postnatally. The estimated phthalate intake exceeded animal-derived no-effect-levels (DNEL) in 10 % of samples, with maximum values reaching 24 times the DNEL. 29 % of premature neonates had at least once an estimated phthalate intake above the DNEL. Preterm neonates are still exposed to phthalates during NICU stay, despite the EU Medical Devices Regulation. NICU exposure to alternative plasticizers is increasing, though currently not regulated, with insufficient knowledge on their hazard profile.
Collapse
Affiliation(s)
- Lucas Panneel
- Neonatal Intensive Care Unit, Antwerp University Hospital, Edegem, Belgium; Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium.
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Yu Ait Bamai
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Philippe G Jorens
- Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium; Department of Intensive Care Medicine and Clinical Pharmacology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Antonius Mulder
- Neonatal Intensive Care Unit, Antwerp University Hospital, Edegem, Belgium; Laboratory for Experimental Medicine and Paediatrics, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
23
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
24
|
Antoniou EE, Otter R. Phthalate Exposure and Neurotoxicity in Children: A Systematic Review and Meta-analysis. Int J Public Health 2024; 69:1606802. [PMID: 38590582 PMCID: PMC10999525 DOI: 10.3389/ijph.2024.1606802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Objectives: This systematic review aims to assess the relationship between prenatal and childhood exposure to phthalates and neurodevelopmental outcomes, identifying periods of heightened susceptibility. Data sources considered studies examining repeated phthalate exposure during pregnancy and childhood on neurodevelopment. Methods: Evaluation included bias risk and study quality criteria. Evidence was synthesized by groups of low and high phthalate molecular weight and exposure measured prenatally and postnatally and outcome measured in childhood. Beta coefficients and their standard errors were extracted, leading to meta-analyses of various neurodevelopmental outcomes: cognition, motor skills, language, behavior, and temperament. Results: Eleven pregnancy and birth cohort studies were identified as relevant. For each phthalate group and outcome combination, there was low or very low evidence of an association, except for prenatal and postnatal phthalate exposure and behavioral development and postnatal exposure and cognition. Conclusion: The estimated effects sizes were relatively small and strong evidence for periods of heightened susceptibility could not be elucidated. No distinction between phthalates of low molecular weight and those of high molecular weight with regards to the outcomes was found.
Collapse
Affiliation(s)
| | - Rainer Otter
- Industrial Petrochemicals Europe, BASF SE, Ludwigshafen, Germany
| |
Collapse
|
25
|
Xiao H, Hu L, Tang T, Zhong J, Xu Q, Cai X, Xiang F, Yang P, Mei H, Zhou A. Prenatal phthalate exposure and neurodevelopmental differences in twins at 2 years of age. BMC Public Health 2024; 24:533. [PMID: 38378488 PMCID: PMC10880363 DOI: 10.1186/s12889-024-17946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Previous studies of singletons evaluating prenatal phthalate exposure and early neurodevelopment reported mixed results and the associations could be biased by parental, obstetrical, and genetic factors. METHODS A co-twin control design was employed to test whether prenatal phthalate exposure was associated with children's neurocognitive development. We collected information from 97 mother-twin pairs enrolled in the Wuhan Twin Birth Cohort between March 2016 and October 2018. Fourteen phthalate metabolites were measured in maternal urine collected at each trimester. Neurodevelopmental differences in twins at the age of two were examined as the outcome of interest. Multiple informant model was used to examine the covariate-adjusted associations of prenatal phthalate exposure with mental development index (MDI) and psychomotor development index (PDI) scores assessed at 2 years of age based on Bayley Scales of Infant Development (Second Edition). This model also helps to identify the exposure window of susceptibility. RESULTS Maternal urinary levels of mono-2-ethyl-5-oxohexyl phthalate (MEOHP) (β = 1.91, 95% CI: 0.43, 3.39), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) (β = 1.56, 95% CI: 0.33, 2.79), and the sum of di-(2-ethylhexyl) phthalate metabolites (∑DEHP) (β = 1.85, 95% CI: 0.39, 3.31) during the first trimester showed the strongest and significant positive associations with intra-twin MDI difference. When stratified with twin chorionicity, the positive associations of monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), individual DEHP metabolites, and ∑DEHP exposure during pregnancy with intra-twin neurodevelopmental differences were more significant in monochorionic diamniotic (MCDA) twins than those in dichorionic diamniotic (DCDA) twins. CONCLUSIONS Neurodevelopmental differences in MCDA twins were strongly associated with prenatal phthalate exposure. Our findings warrant further confirmation in longitudinal studies with larger sample sizes.
Collapse
Affiliation(s)
- Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tingting Tang
- Operating Room, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jufang Zhong
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Xu
- Delivery Room, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Feiyan Xiang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, PR China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, 510632, Guangzhou, Guangdong, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Aifen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
26
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
27
|
Merrill SM, Letourneau N, Giesbrecht GF, Edwards K, MacIsaac JL, Martin JW, MacDonald AM, Kinniburgh DW, Kobor MS, Dewey D, England-Mason G, The APrON Study Team. Sex-Specific Associations between Prenatal Exposure to Di(2-ethylhexyl) Phthalate, Epigenetic Age Acceleration, and Susceptibility to Early Childhood Upper Respiratory Infections. EPIGENOMES 2024; 8:3. [PMID: 38390895 PMCID: PMC10885049 DOI: 10.3390/epigenomes8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karlie Edwards
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael S Kobor
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - The APrON Study Team
- University of Calgary, Calgary, AB T2N 1N4, Canada
- University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
28
|
Vacca M, Calabrese FM, Loperfido F, Maccarini B, Cerbo RM, Sommella E, Salviati E, Voto L, De Angelis M, Ceccarelli G, Di Napoli I, Raspini B, Porri D, Civardi E, Garofoli F, Campiglia P, Cena H, De Giuseppe R. Maternal Exposure to Endocrine-Disrupting Chemicals: Analysis of Their Impact on Infant Gut Microbiota Composition. Biomedicines 2024; 12:234. [PMID: 38275405 PMCID: PMC10813257 DOI: 10.3390/biomedicines12010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Endocrine disruptors (EDCs) are chemicals that interfere with the endocrine system. EDC exposure may contribute to the development of obesity, type 2 diabetes, and cardiovascular diseases by impacting the composition of an infant's gut microbiota during the first 1000 days of life. To explore the relationship between maternal urinary levels of Bisphenol-A and phthalates (UHPLC-MS/MS), and the composition of the infant gut microbiota (16S rDNA) at age 12 months (T3) and, retrospectively, at birth (T0), 1 month (T1), and 6 months (T2), stool samples from 20 infants breastfed at least once a day were analyzed. Metataxonomic bacteria relative abundances were correlated with EDC values. Based on median Bisphenol-A levels, infants were assigned to the over-exposed group (O, n = 8) and the low-exposed group (B, n = 12). The B-group exhibited higher gut colonization of the Ruminococcus torques group genus and the O-group showed higher abundances of Erysipelatoclostridium and Bifidobacterium breve. Additionally, infants were stratified as high-risk (HR, n = 12) or low-risk (LR, n = 8) exposure to phthalates, based on the presence of at least three phthalates with concentrations exceeding the cohort median values; no differences were observed in gut microbiota composition. A retrospective analysis of gut microbiota (T0-T2) revealed a disparity in β-diversity between the O-group and the B-group. Considering T0-T3, the Linear Discriminant Effect Size indicated differences in certain microbes between the O-group vs. the B-group and the HR-group vs. the LR-group. Our findings support the potential role of microbial communities as biomarkers for high EDC exposure levels. Nevertheless, further investigations are required to deeply investigate this issue.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Beatrice Maccarini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Rosa Maria Cerbo
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Luana Voto
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Ilaria Di Napoli
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Benedetta Raspini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
- Clinical Nutrition Unit, General Medicine, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| |
Collapse
|
29
|
Lee R, Lee WY, Park HJ. Diuron-induced fetal Leydig cell dysfunction in in vitro organ cultured fetal testes. Reprod Toxicol 2024; 123:108497. [PMID: 37949197 DOI: 10.1016/j.reprotox.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Diuron is a phenylurea herbicide widely used in the agricultural industry. In recent years, the risk of infertility and developmental defects has increased due to exposure to environmental pollutants. In this study, we investigated the toxicity of diuron in fetal mouse testes using three-dimensional organ cultures. Fetal testes derived from embryonic day (E) 14.5 were cultured with 200 µM diuron for 5 days. The results revealed that diuron did not impair fetal germ cell proliferation or the expression levels of germ cell markers such as Ddx4, Dazl, Oct 4, Nanog, Plzf, and TRA 98. Similarly, the gene or protein expression of the Sertoli cell markers Sox9 and Wt1 in diuron-exposed fetal testes did not change after 5 days of culture. In contrast, diuron increased fetal Leydig cell markers (FLC), Cyp11a1, Cyp17a1, Thbs2, and Pdgf α, and decreased adult Leydig cell (ALC) markers, Sult1e1, Hsd173, Ptgds, and Vcam1. However, 3-βHSD, an FLC and ALC marker, was consistently maintained upon exposure to diuron in fetal testes compared to non-treated groups. In conclusion, our study demonstrates that diuron negatively impacts Fetal Leydig cell development, although it does not affect germ and Sertoli cells.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonbuk 54874, Republic of Korea; Department of Animal Biotechnology, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Won-Young Lee
- Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonbuk 54874, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
30
|
Laccetta G, Di Chiara M, Cardillo A, De Nardo MC, Terrin G. The effects of industrial chemicals bonded to plastic materials in newborns: A systematic review. ENVIRONMENTAL RESEARCH 2023; 239:117298. [PMID: 37821060 DOI: 10.1016/j.envres.2023.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Phthalates are a family of industrial chemicals noncovalently bonded to plastic materials to enhance flexibility and durability. These compounds are extensively used in a variety of consumer products and even in many medical devices. Newborns present a higher susceptibility to phthalates. OBJECTIVE To assess the short- and long-term health consequences of exposure to phthalates during the neonatal period. METHODS Systematic review in accordance with the PRISMA statements. Eligible articles in English language were searched in MEDLINE, Scopus, ISI Web of Science, and Ovid databases using the following terms: "phthalate", "newborn", and "neonate". Unpublished data were searched in ClinicalTrials.gov website. All in vivo studies of any design published before May 16th, 2023 and fulfilling the following criteria were included: 1) investigations in which preterm and/or term newborns underwent one or more measurement of concentrations of phthalates on biological samples taken during the neonatal period; 2) studies in which quantitative measurement of phthalates was related to any kind of health outcome. Subgroup analysis was conducted by type of outcome. The quality assessment was performed according to the criteria from the "NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies". RESULTS 11,895 records were identified; finally, 5 articles were included for review. A mixture of phthalates was associated with improved performance on the NNNS summary scales of Attention, Handling, and Non-optimal reflexes before NICU discharge. At 2 months' corrected age, some phthalates were positively associated with problem-solving and gross motor abilities; increased levels of mono (2-ethylhexyl) phthalate, mono (2-ethyl-5-carboxypentyl) phthalate, and sum of di (2-ethylhexyl) phthalate (DEHP) metabolites (∑3DEHP and ∑4DEHP) were associated with worse fine motor performance. Furthermore, DEHP was associated with transient alteration of gut microbiota and increased IgM production after vaccine. A linear positive association between a mixture of phthalates and slope of the first growth spurt was even reported in preterm newborns. No relationship emerged between phthalates and bronchopulmonary dysplasia. Three studies out of 5 had fair quality. CONCLUSION Given some methodological issues and the paucity of related studies, further investigations of flawless quality aimed at clarifying the relationship between early exposure to phthalates and health outcomes are needed.
Collapse
Affiliation(s)
- Gianluigi Laccetta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Annalisa Cardillo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maria Chiara De Nardo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
31
|
Rosi E, Crippa A, Pozzi M, De Francesco S, Fioravanti M, Mauri M, Molteni M, Morello L, Tosti L, Metruccio F, Clementi E, Nobile M. Exposure to environmental pollutants and attention-deficit/hyperactivity disorder: an overview of systematic reviews and meta-analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111676-111692. [PMID: 37828261 PMCID: PMC10643318 DOI: 10.1007/s11356-023-30173-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Although heritability estimates suggest a role for genetic components, environmental risk factors have been described as relevant in the etiology of attention deficit/hyperactivity disorder (ADHD). Several studies have investigated the role of toxicological pollution, i.e., air pollution, heavy metals, POPs, and phthalates. Clear evidence for association of ADHD and environmental factors has not been provided yet. To answer this, we have assessed all available systematic reviews and meta-analyses that focused on the association between pollutant exposure and either ADHD diagnosis or symptoms. More than 1800 studies were screened of which 14 found eligible. We found evidence of a significant role for some pollutants, in particular heavy metals and phthalates, in the increased risk of developing ADHD symptoms. However, at the current stage, data from existing literature also do not allow to weight the role of the different environmental pollutants. We also offer a critical examination of the reviews/meta-analyses and provide indications for future studies in this field. PROSPERO registration: CRD42022341496.
Collapse
Affiliation(s)
- Eleonora Rosi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy.
| | - Alessandro Crippa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Stefano De Francesco
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- Sigmund Freud University, Sigmund Freud University of Milan, 20143, Milan, Italy
| | - Mariachiara Fioravanti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Maddalena Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Luisa Morello
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- Sigmund Freud University, Sigmund Freud University of Milan, 20143, Milan, Italy
| | - Luca Tosti
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Francesca Metruccio
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Maria Nobile
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| |
Collapse
|
32
|
Munk Andreasen S, Frederiksen H, Bilenberg N, Andersson AM, Juul A, Kyhl HB, Kold Jensen T. Maternal concentrations of phthalates and Attention-Deficit Hyperactivity Disorder (ADHD-) related symptoms in children aged 2 to 4 years from Odense child cohort. ENVIRONMENT INTERNATIONAL 2023; 180:108244. [PMID: 37797478 DOI: 10.1016/j.envint.2023.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Phthalates are endocrine disrupting chemicals used in everyday consumer products. Several epidemiological studies have examined the association between prenatal phthalate concentration and Attention-Deficit Hyperactivity Disorder (ADHD) in offspring, but the findings have been inconclusive. OBJECTIVES To investigate the association between maternal urinary concentrations of phthalate metabolites during pregnancy and ADHD related symptoms in children at 2 to 4 years in a large prospective cohort. METHODS In the Odense Child Cohort from Denmark were women recruited in early pregnancy from 2010 to 2012. Phthalate concentrations were measured in urine samples collected in 3rd trimester and separated into low and high weight phthalates. Parents filled in the Child Behavior Checklist for ages 1.5 to 5 years (CBCL/1½-5), including a 6-item ADHD symptom scale at children aged 2 to 4 years. Data were analysed by use of adjusted negative binomial regression. RESULTS A total of 658 mother-child pairs were included. Urinary phthalate metabolite concentrations were generally low compared to previous cohorts. A doubling in maternal concentration of the low-weighted phthalate metabolite MCPP was significantly associated with lower ADHD symptoms score in children (IRR: 0.95 (95 % CI 0.91-0.98)), strongest in girls (IRR: 0.92 (0.87-0.98)). Sex differences were observed. High maternal phthalate metabolite concentrations were associated with lower ADHD symptom score in girls, significant trends across tertile of MCPP and MnBP (p = 0.018, p = 0.038, respectively). In boys, maternal concentrations of high-molecular-weight phthalates (MBzP, ∑DiNP and ∑DEHP) were associated with an almost significantly higher ADHD symptom score (IRR for a doubling in concentration: 1.04 (95 % CI: 0.99-1.10), IRR: 1.05 (95 % CI: 0.97-1.13), IRR: 1.04 (95 % CI: 0.99-1.10), respectively). CONCLUSION Maternal concentration of the low-weighted phthalate metabolite MCPP was significantly associated with a lower ADHD symptom score in children, strongest in girls. Maternal concentrations of high-molecular-weight phthalates were associated with non-significant increase in ADHD symptom score in boys.
Collapse
Affiliation(s)
- Sarah Munk Andreasen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark
| | - Niels Bilenberg
- Department of Child and Adolescent Psychiatry, Odense, Mental Health Services in Region of Southern Denmark, University of Southern Denmark, Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark.
| |
Collapse
|
33
|
Mervish N, Valle C, Teitelbaum SL. Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program. CURR EPIDEMIOL REP 2023; 10:148-157. [PMID: 38318392 PMCID: PMC10840994 DOI: 10.1007/s40471-023-00323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Nancy Mervish
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
34
|
Özel F, Stratmann M, Lindh C, Gennings C, Bornehag CG, Rüegg J. Prenatal exposure to phthalates and gender-specific play behavior at seven years of age in the SELMA study. ENVIRONMENT INTERNATIONAL 2023; 178:108029. [PMID: 37331180 DOI: 10.1016/j.envint.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND A growing body of evidence shows that prenatal exposure to phthalates affects child development. Since many phthalates have been shown to alter endocrine signaling, they may influence reproductive development, neurodevelopment, and child behavior. Indeed, a few studies reported associations between prenatal phthalate exposure and gender-specific play behavior. However, evidence for this relationship is limited, and previous findings are based on single phthalates, while human exposure entails mixtures of chemicals. OBJECTIVE We aimed to investigate the associations between prenatal exposure to single phthalates, as well as a phthalate mixture, and gender-specific play behavior. METHODS A total of 715 mother-child pairs from the Swedish Environmental Longitudinal, Mother and Child, Asthma and Allergy (SELMA) study were included. In the median week 10 of pregnancy, phthalate metabolites were measured in urine. Gender-specific play behavior was measured with Preschool Activities Inventory at the age of seven years. Linear and weighted quantile sum regressions were used; data was stratified by sex. Models were adjusted for child and maternal age, maternal education, parental attitudes toward play behavior, and urinary creatinine concentration. RESULTS For boys, single compound analyses revealed negative associations of prenatal exposure to di-isononyl phthalate (DINP) concentrations with masculine (β = -1.44; 95% CI = -2.72, -0.16) and composite (β = -1.43; 95% CI = -2.72, -0.13) scores. Suggestive associations were also observed with a mixture approach identifying DINP as the main contributor of the association of decreased masculine play. Among girls, higher urinary concentrations of 2,4-methyl-7-oxyooctyl-oxycarbonyl-cyclohexane carboxylic acid (MOiNCH) was associated with decreased feminine (β = -1.59; 95% CI = -2.62, -0.57) and masculine scores (β = -1.22; 95% CI = -2.14, -0.29), whereas the mixture analyses did not yield conclusive results for girls. CONCLUSION Our findings suggest associations of prenatal exposure to DINP with decreased masculine play behavior in boys while the results for girls were not fully conclusive.
Collapse
Affiliation(s)
- Fatih Özel
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden; Centre for Women's Mental Health during the Reproductive Lifespan - Womher, Uppsala University, Uppsala, Sweden; Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| | - Marlene Stratmann
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden; Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
35
|
Khalfallah O, Barbosa S, Phillippat C, Slama R, Galera C, Heude B, Glaichenhaus N, Davidovic L. Cytokines as mediators of the associations of prenatal exposure to phenols, parabens, and phthalates with internalizing behaviours at age 3 in boys: A mixture exposure and mediation approach. ENVIRONMENTAL RESEARCH 2023; 229:115865. [PMID: 37062478 DOI: 10.1016/j.envres.2023.115865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/21/2023]
Abstract
Childhood internalizing disorders refer to inwardly focused negative behaviours such as anxiety, depression, and somatic complains. Interactions between psychosocial, genetic, and environmental risk factors adversely impact neurodevelopment and can contribute to internalizing disorders. While prenatal exposure to single endocrine disruptors (EDs) is associated with internalizing behaviours in infants, the associations with prenatal exposure to EDs in mixture remain poorly addressed. In addition, the biological mediators of EDs in mixture effects on internalizing behaviours remain unexplored. EDs do not only interfere with endocrine function, but also with immune function and inflammatory processes. Based on this body of evidence, we hypothetised that inflammation at birth is a plausible biological pathway through which prenatal exposure to EDs in mixture could operate to influence offspring internalizing behaviours. Based on the EDEN birth cohort, we investigated whether exposure to a mixture of EDs increased the odds of internalizing disorders in 459 boy infants at age 3, and whether the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α measured at birth were mediators of this effect. To determine both the joint and individual associations of prenatal exposure to EDs with infant internalizing behaviours and the possible mediating role of cytokines, we used the counterfactual hierarchical Bayesian Kernel Machine Regression (BKMR) regression-causal mediation analysis. We show that prenatal exposure to a complex mixture of EDs has limited effects on internalizing behaviours in boys at age 3. We also show that IL-1β, IL-6, and TNF-α are unlikely mediators or suppressors of ED mixture effects on internalizing behaviours in boys at age 3. Further studies on larger cohorts are warranted to refine the deleterious effects of EDs in mixtures on internalizing behaviours and identify possible mediating pathways.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | - Susana Barbosa
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Claire Phillippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences 38000 Grenoble, France
| | - Remy Slama
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences 38000 Grenoble, France
| | - Cédric Galera
- Institut National de La Santé et de La Recherche Médicale UMR 1219, Bordeaux Population Health Centre, Université de Bordeaux, Hôpital Charles Perrens, Bordeaux, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Nicolas Glaichenhaus
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France; Fondation FondaMental, Créteil, France
| | - Laetitia Davidovic
- Centre National de La Recherche Scientifique, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France; Fondation FondaMental, Créteil, France.
| |
Collapse
|
36
|
Lin J, Cheng S, Zhang J, Zhao L, Yuan S, Zhang L, Yin Y. Racial differences in the associations of urinary phthalate metabolites with depression risk. ENVIRONMENTAL RESEARCH 2023; 226:115670. [PMID: 36907347 DOI: 10.1016/j.envres.2023.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the composite effects of different kinds of phthalates on depression risk in the U.S population. METHODS 11731 participants were included from the National Health and Nutrition Examination Survey (NHANES), a national cross-sectional survey. Twelve urinary phthalate metabolites were used to evaluate the level of phthalates exposure. Phthalates levels were devided into four quartiles. High phthalate was defined as having values in the highest quartile. RESULTS Urinary mono-isobutyl phthalate (MiBP) and mono-benzyl phthalate (MBzP) were estimated as the independent risk factors for depression by mutivariate logistic regression analyses. Compared with the lowest quartile group of MiBP or MBzP, an incrementally higher risk of depression and moderate/severe depression was observed in the highest quartile (all Ptrend <0.05). It was observed that incrementally higher risk of depression and moderate/severe depression were associated with more numbers of high phthalates parameter (Ptrend <0.001 and Ptrend = 0.003, respectively). A significant interaction between race (Non-Hispanic Black vs. Mexican American) and 2 parameters (having value in the highest quartile of both MiBP and MBzP) was detected for depression (Pinteraction = 0.023) and moderate/severe depression (Pinteraction = 0.029). CONCLUSION Individuals with more numbers of high phthalates parameter were at higher risk of depression and moderate/severe depression. Non-Hispanic Black participants were more likely to be affected by high levels of MiBP and MBzP exposure than Mexican American participants.
Collapse
Affiliation(s)
- Jilei Lin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siying Cheng
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liebin Zhao
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China; Pediatric AI Clinical Application and Research Center, Shanghai Children's Medical Center, Shanghai, China.
| |
Collapse
|
37
|
Lucaccioni L, Palandri L, Passini E, Trevisani V, Calandra Buonaura F, Bertoncelli N, Talucci G, Ferrari A, Ferrari E, Predieri B, Facchinetti F, Iughetti L, Righi E. Perinatal and postnatal exposure to phthalates and early neurodevelopment at 6 months in healthy infants born at term. Front Endocrinol (Lausanne) 2023; 14:1172743. [PMID: 37293488 PMCID: PMC10244530 DOI: 10.3389/fendo.2023.1172743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Background Phthalates are non-persistent chemicals largely used as plasticizers and considered ubiquitous pollutants with endocrine disrupting activity. The exposure during sensible temporal windows as pregnancy and early childhood, may influence physiological neurodevelopment. Aims and Scope The aim of this study is to analyze the relationship between the urinary levels of phthalate metabolites in newborn and infants and the global development measured by the Griffiths Scales of Children Development (GSCD) at six months. Methods Longitudinal cohort study in healthy Italian term newborn and their mothers from birth to the first 6 months of life. Urine samples were collected at respectively 0 (T0), 3 (T3), 6 (T6) months, and around the delivery for mothers. Urine samples were analyzed for a total of 7 major phthalate metabolites of 5 of the most commonly used phthalates. At six months of age a global child development assessment using the third edition of the Griffith Scales of Child Development (GSCD III) was performed in 104 participants. Results In a total of 387 urine samples, the seven metabolites analyzed appeared widespread and were detected in most of the urine samples collected at any time of sampling (66-100%). At six months most of the Developmental Quotients (DQs) falls in average range, except for the subscale B, which presents a DQ median score of 87 (85-95). Adjusted linear regressions between DQs and urinary phthalate metabolite concentrations in mothers at T0 and in infants at T0, T3 and T6 identified several negative associations both for infants' and mothers especially for DEHP and MBzP. Moreover, once stratified by children's sex, negative associations were found in boys while positive in girls. Conclusions Phthalates exposure is widespread, especially for not regulated compounds. Urinary phthalate metabolites were found to be associated to GSCD III scores, showing inverse association with higher phthalate levels related to lower development scores. Our data suggested differences related to the child's sex.
Collapse
Affiliation(s)
- Laura Lucaccioni
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Palandri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Passini
- Post graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Viola Trevisani
- Post graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Natascia Bertoncelli
- Neonatology Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Talucci
- Neonatology Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- Post graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Righi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
38
|
Grossklaus R, Liesenkötter KP, Doubek K, Völzke H, Gaertner R. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients 2023; 15:2249. [PMID: 37242131 PMCID: PMC10223865 DOI: 10.3390/nu15102249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review critically discusses the publications of the last 30 years on the impact of mild to moderate iodine deficiency and the additional impact of endocrine disrupters during pregnancy on embryonal/fetal brain development. An asymptomatic mild to moderate iodine deficiency and/or isolated maternal hypothyroxinemia might affect the development of the embryonal/fetal brain. There is sufficient evidence underlining the importance of an adequate iodine supply for all women of childbearing age in order to prevent negative mental and social consequences for their children. An additional threat to the thyroid hormone system is the ubiquitous exposure to endocrine disrupters, which might exacerbate the effects of iodine deficiency in pregnant women on the neurocognitive development of their offspring. Ensuring adequate iodine intake is therefore essential not only for healthy fetal and neonatal development in general, but it might also extenuate the effects of endocrine disruptors. Individual iodine supplementation of women of childbearing age living in areas with mild to moderate iodine deficiency is mandatory as long as worldwide universal salt iodization does not guarantee an adequate iodine supply. There is an urgent need for detailed strategies to identify and reduce exposure to endocrine disrupters according to the "precautional principle".
Collapse
Affiliation(s)
- Rolf Grossklaus
- Department of Food Safety, Federal Institute for Risk Assessment, D-10589 Berlin, Germany;
| | | | - Klaus Doubek
- Professional Association of Gynecologists, D-80337 Munich, Germany
| | - Henry Völzke
- Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany;
| | - Roland Gaertner
- Medical Clinic IV, University of Munich, D-80336 Munich, Germany
| |
Collapse
|
39
|
Wu N, Tao L, Tian K, Wang X, He C, An S, Tian Y, Liu X, Chen W, Zhang H, Xu P, Liao D, Liao J, Wang L, Fang D, Hu Z, Yuan H, Huang J, Chen X, Zhang L, Hou X, Zeng R, Liu X, Xiong S, Xie Y, Liu Y, Li Q, Shen X, Zhou Y, Shang X. Risk assessment and environmental determinants of urinary phthalate metabolites in pregnant women in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53077-53088. [PMID: 36849691 DOI: 10.1007/s11356-023-26095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Pregnant women are widely exposed to phthalic acid esters (PAEs) that are commonly used in most aspects of modern life. However, few studies have examined the cumulative exposure of pregnant women to a variety of PAEs derived from the living environmental conditions in China. Therefore, this study aimed to determine the urinary concentrations of nine PAE metabolites in pregnant women, examine the relationship between urinary concentrations and residential characteristics, and conduct a risk assessment analysis. We included 1,888 women who were in their third trimester of pregnancy, and we determined their urinary concentrations of nine PAE metabolites using high-performance gas chromatography-mass spectrometry. The risk assessment of exposure to PAEs was calculated based on the estimated daily intake. A linear regression model was used to analyze the relationship between creatinine-adjusted PAE metabolite concentrations and residential characteristics. The detection rate of five PAE metabolites in the study population was > 90%. Among the PAE metabolites adjusted by creatinine, the urinary metabolite concentration of monobutyl phthalate was found to be the highest. Residential factors, such as housing type, proximity to streets, recent decorations, lack of ventilation in the kitchen, less than equal to three rooms, and the use of coal/kerosene/wood/wheat straw fuels, were all significantly associated with high PAE metabolite concentrations. Due to PAE exposure, ~ 42% (n = 793) of the participants faced potential health risks, particularly attributed to dibutyl phthalate, diisobutyl phthalate, and di(2-ethyl)hexyl phthalate exposure. Living in buildings and using coal/kerosene/wood/wheat straw as domestic fuel can further increase the risks.
Collapse
Affiliation(s)
- Nian Wu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xia Wang
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Caidie He
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Songlin An
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yingkuan Tian
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Juan Liao
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Linglu Wang
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Derong Fang
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Zhongmei Hu
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Hongyu Yuan
- The People's Hospital of Xishui County, Chishui Xilu, Xishui County, Zunyi, Guizhou Province, 564600, People's Republic of China
| | - Jingyi Huang
- The People's Hospital of Xishui County, Chishui Xilu, Xishui County, Zunyi, Guizhou Province, 564600, People's Republic of China
| | - Xiaoshan Chen
- The People's Hospital of Meitan County, Chacheng Avenue, Meitan County, Zunyi, Guizhou Province, 564100, People's Republic of China
| | - Li Zhang
- The People's Hospital of Meitan County, Chacheng Avenue, Meitan County, Zunyi, Guizhou Province, 564100, People's Republic of China
| | - Xiaohui Hou
- School of Preclinical Medicine, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Quan Li
- Department of Obstetrics, Affiliated Hospital of Zunyi Medical University, NO.149 Dalian Lu, Zunyi, 563006, People's Republic of China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, No.6 Xuefu Xilu, Zunyi, 563006, People's Republic of China.
| | - Xuejun Shang
- Department of Urology, Jinling Hospital School of Medicine, Nanjing University, No.305 East Zhongshan Road, Nanjing, 210002, China
| |
Collapse
|
40
|
Lapehn S, Houghtaling S, Ahuna K, Kadam L, MacDonald JW, Bammler TK, LeWinn KZ, Myatt L, Sathyanarayana S, Paquette AG. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type. Arch Toxicol 2023; 97:831-847. [PMID: 36695872 PMCID: PMC9968694 DOI: 10.1007/s00204-023-03444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Kylia Ahuna
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, University of California-San Francisco, San Francisco, CA 94143 USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
41
|
Wang H, He H, Wei Y, Gao X, Zhang T, Zhai J. Do phthalates and their metabolites cause poor semen quality? A systematic review and meta-analysis of epidemiological studies on risk of decline in sperm quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34214-34228. [PMID: 36504299 DOI: 10.1007/s11356-022-24215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
A systematic review and meta-analysis were conducted to understand the association of phthalates and their metabolites with sperm quality in humans. By June 30, 2022, relevant literature on the effects of phthalates and their metabolites on sperm quality were searched and collected using three English-language databases including PubMed, EMbase, and Web of Science. Two researchers independently screened literature, extracted data, and assessed risk of bias. Stata 11 and RevMan 5.3 were used to conduct meta-analysis, test publication bias, and sensitivity analysis. A total of 12 literature were included for meta-analysis, excluding literature with different effect sizes. The results of meta-analysis indicated that monobutyl phthalate (MBP) and monobenzyl phthalate (MBzP) in urine were negatively correlated with semen concentration, and the results were statistically significant (MBP, pooled odds ratio (OR), 95% confidence interval (CI): 2.186 (1.471, 3.248), P < 0.05) and (MBzP, pooled OR (95%CI): 1.882 (1.471, 3.248), P < 0.05). Furthermore, the level of Di-(2-ethylhexyl) phthalate (DEHP) in semen was negatively correlated with semen concentration and the combined effect size was (pooled correlation coefficients (r) (95%CI): -0.225 (-0.319, -0.192), P < 0.05). However, the associations between MBP and MBzP with sperm motility and sperm morphology were not statistically significant (P > 0.05). And there was also no significant correlation between monoethyl phthalate (MEP), monomethyl phthalate (MMP), and mono-2-ethylhexyl phthalate (MEHP) and semen parameters, including semen concentration, sperm motility, and sperm morphology (P > 0.05). In summary, this current study provides moderate-certainty evidence for the data demonstrated that is a negative correlation between urine MBP levels, urine MBzP levels, and semen DEHP levels with semen concentration. In the future, more longitudinal cohort studies are needed to help elucidate the overall association.
Collapse
Affiliation(s)
- Houpeng Wang
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Huan He
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Xin Gao
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Taifa Zhang
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
42
|
Wylie AC, Short SJ. Environmental Toxicants and the Developing Brain. Biol Psychiatry 2023; 93:921-933. [PMID: 36906498 DOI: 10.1016/j.biopsych.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Early life represents the most rapid and foundational period of brain development and a time of vulnerability to environmental insults. Evidence indicates that greater exposure to ubiquitous toxicants like fine particulate matter (PM2.5), manganese, and many phthalates is associated with altered developmental, physical health, and mental health trajectories across the lifespan. Whereas animal models offer evidence of their mechanistic effects on neurological development, there is little research that evaluates how these environmental toxicants are associated with human neurodevelopment using neuroimaging measures in infant and pediatric populations. This review provides an overview of 3 environmental toxicants of interest in neurodevelopment that are prevalent worldwide in the air, soil, food, water, and/or products of everyday life: fine particulate matter (PM2.5), manganese, and phthalates. We summarize mechanistic evidence from animal models for their roles in neurodevelopment, highlight prior research that has examined these toxicants with pediatric developmental and psychiatric outcomes, and provide a narrative review of the limited number of studies that have examined these toxicants using neuroimaging with pediatric populations. We conclude with a discussion of suggested directions that will move this field forward, including the incorporation of environmental toxicant assessment in large, longitudinal, multimodal neuroimaging studies; the use of multidimensional data analysis strategies; and the importance of studying the combined effects of environmental and psychosocial stressors and buffers on neurodevelopment. Collectively, these strategies will improve ecological validity and our understanding of how environmental toxicants affect long-term sequelae via alterations to brain structure and function.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Center for Health Minds, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
43
|
Kadac-Czapska K, Knez E, Gierszewska M, Olewnik-Kruszkowska E, Grembecka M. Microplastics Derived from Food Packaging Waste-Their Origin and Health Risks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:674. [PMID: 36676406 PMCID: PMC9866676 DOI: 10.3390/ma16020674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics' processing stage can also be released. Both microplastics and additives can negatively affect human and animal health. Determination of the negative consequences of microplastics on the environment and health is not possible without knowing the course of degradation processes of packaging waste and their products. In this article, we present the sources of microplastics, the causes and places of their formation, the transport of such particles, the degradation of plastics most often used in the production of packaging for food storage, the factors affecting the said process, and its effects.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| |
Collapse
|
44
|
Sree CG, Buddolla V, Lakshmi BA, Kim YJ. Phthalate toxicity mechanisms: An update. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109498. [PMID: 36374650 DOI: 10.1016/j.cbpc.2022.109498] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Phthalates are one of the most widely used plasticizers in polymer products, and they are increasingly being exposed to people all over the world, generating health concerns. Phthalates are often used as excipients in controlled-release capsules and enteric coatings, and patients taking these drugs may be at risk. In both animals and human, phthalates are mainly responsible for testicular dysfunction, ovarian toxicity, reduction in steroidogenesis. In this regard, for a better understanding of the health concerns corresponding to phthalates and their metabolites, still more research is required. Significantly, multifarious forms of phthalates and their biomedical effects are need to be beneficial to investigate in the various tissues or organs. Based on these investigations, researchers can decipher their toxicity concerns and related mechanisms in the body after phthalate's exposure. This review summarizes the chemical interactions, mechanisms, and their biomedical applications of phthalates in animals and human.
Collapse
Affiliation(s)
- Chendruru Geya Sree
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
45
|
Menezo Y, Elder K, Clement P, Clement A, Patrizio P. Biochemical Hazards during Three Phases of Assisted Reproductive Technology: Repercussions Associated with Epigenesis and Imprinting. Int J Mol Sci 2022; 23:ijms23168916. [PMID: 36012172 PMCID: PMC9408922 DOI: 10.3390/ijms23168916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Medically assisted reproduction, now considered a routine, successful treatment for infertility worldwide, has produced at least 8 million live births. However, a growing body of evidence is pointing toward an increased incidence of epigenetic/imprinting disorders in the offspring, raising concern that the techniques involved may have an impact on crucial stages of early embryo and fetal development highly vulnerable to epigenetic influence. In this paper, the key role of methylation processes in epigenesis, namely the essential biochemical/metabolic pathways involving folates and one-carbon cycles necessary for correct DNA/histone methylation, is discussed. Furthermore, potential contributors to epigenetics dysregulation during the three phases of assisted reproduction: preparation for and controlled ovarian hyperstimulation (COH); methylation processes during the preimplantation embryo culture stages; the effects of unmetabolized folic acid (UMFA) during embryogenesis on imprinting methyl “tags”, are described. Advances in technology have opened a window into developmental processes that were previously inaccessible to research: it is now clear that ART procedures have the potential to influence DNA methylation in embryonic and fetal life, with an impact on health and disease risk in future generations. Critical re-evaluation of protocols and procedures is now an urgent priority, with a focus on interventions targeted toward improving ART procedures, with special attention to in vitro culture protocols and the effects of excessive folic acid intake.
Collapse
Affiliation(s)
- Yves Menezo
- Laboratoire Clément, 17 Avenue d’Eylau, 75016 Paris, France
- Correspondence:
| | - Kay Elder
- Bourn Hall Clinic, Cambridge CB1 0BE, UK
| | | | - Arthur Clement
- Laboratoire Clément, 17 Avenue d’Eylau, 75016 Paris, France
| | - Pasquale Patrizio
- Reproductive Endocrinology & Infertility, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
46
|
Crobeddu B, Jutras-Carignan A, Kolasa É, Mounier C, Robaire B, Plante I. Gestational and lactational exposure to the emergent alternative plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) impairs lipid metabolism to a greater extent than the commonly used Di(2-ethylhexyl) phthalate (DEHP) in the adult rat mammary gland. Toxicol Sci 2022; 189:268-286. [PMID: 35861430 DOI: 10.1093/toxsci/kfac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their endocrine disruption properties, phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) can affect the hormone-dependent development of the mammary gland. Over the past few years, DEHP has been partially replaced by 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) which also have potential endocrine disrupting properties. The goal of the present study is to understand the impact of a gestational and lactational exposure to DEHP and DINCH on mammary gland development using Sprague-Dawley rats. Both plasticizers altered the adipocytes of the mammary gland fat pad of adult progeny, as demonstrated by a decrease in their size, folding of their membrane and modulations of the lipid profiles. DEHP treatments decreased the expression of Rxrα and Scd1 at the low and high dose, respectively, but did not affect any of the other genes studied. DINCH modulation of lipid metabolism could be observed at puberty by a decreased expression of genes implicated in triglyceride synthesis, lipid transport and lipolysis, but by an increased expression of genes of the β-oxidation pathway and of genes involved in lipid storage and fatty acid synthesis at adulthood, compared to control and DEHP-treated rats. A strong upregulation of different inflammatory markers was observed following DINCH exposure only. Together, our results indicate that a gestational and lactational exposure to DINCH has earlier and more significant effects on lipid homeostasis, adipogenesis and the inflammatory state of the adult mammary gland than DEHP exposure. The long-term consequence of these effects on mammary gland health remained to be determined.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Antoine Jutras-Carignan
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Élise Kolasa
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Catherine Mounier
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
47
|
Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, Tiwari RR, Kumar M, Nagpal R. Impact of Environmental Pollutants on Gut Microbiome and Mental Health via the Gut–Brain Axis. Microorganisms 2022; 10:microorganisms10071457. [PMID: 35889175 PMCID: PMC9317668 DOI: 10.3390/microorganisms10071457] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Over the last few years, the microbiome has emerged as a high-priority research area to discover missing links between brain health and gut dysbiosis. Emerging evidence suggests that the commensal gut microbiome is an important regulator of the gut–brain axis and plays a critical role in brain physiology. Engaging microbiome-generated metabolites such as short-chain fatty acids, the immune system, the enteric nervous system, the endocrine system (including the HPA axis), tryptophan metabolism or the vagus nerve plays a crucial role in communication between the gut microbes and the brain. Humans are exposed to a wide range of pollutants in everyday life that impact our intestinal microbiota and manipulate the bidirectional communication between the gut and the brain, resulting in predisposition to psychiatric or neurological disorders. However, the interaction between xenobiotics, microbiota and neurotoxicity has yet to be completely investigated. Although research into the precise processes of the microbiota–gut–brain axis is growing rapidly, comprehending the implications of environmental contaminants remains challenging. In these milieus, we herein discuss how various environmental pollutants such as phthalates, heavy metals, Bisphenol A and particulate matter may alter the intricate microbiota–gut–brain axis thereby impacting our neurological and overall mental health.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
- Correspondence: (M.K.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (M.K.); (R.N.)
| |
Collapse
|
48
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
49
|
Tanner S, Thomson S, Drummond K, O'Hely M, Symeonides C, Mansell T, Saffery R, Sly PD, Collier F, Burgner D, Sugeng EJ, Dwyer T, Vuillermin P, Ponsonby AL, On Behalf Of The Barwon Infant Study Investigator Group. A Pathway-Based Genetic Score for Oxidative Stress: An Indicator of Host Vulnerability to Phthalate-Associated Adverse Neurodevelopment. Antioxidants (Basel) 2022; 11:659. [PMID: 35453345 PMCID: PMC9030597 DOI: 10.3390/antiox11040659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 01/12/2023] Open
Abstract
The developing brain is highly sensitive to environmental disturbances, and adverse exposures can act through oxidative stress. Given that oxidative stress susceptibility is determined partly by genetics, multiple studies have employed genetic scores to explore the role of oxidative stress in human disease. However, traditional approaches to genetic score construction face a range of challenges, including a lack of interpretability, bias towards the disease outcome, and often overfitting to the study they were derived on. Here, we develop an alternative strategy by first generating a genetic pathway function score for oxidative stress (gPFSox) based on the transcriptional activity levels of the oxidative stress response pathway in brain and other tissue types. Then, in the Barwon Infant Study (BIS), a population-based birth cohort (n = 1074), we show that a high gPFSox, indicating reduced ability to counter oxidative stress, is linked to higher autism spectrum disorder risk and higher parent-reported autistic traits at age 4 years, with AOR values (per 2 additional pro-oxidant alleles) of 2.10 (95% CI (1.12, 4.11); p = 0.024) and 1.42 (95% CI (1.02, 2.01); p = 0.041), respectively. Past work in BIS has reported higher prenatal phthalate exposure at 36 weeks of gestation associated with offspring autism spectrum disorder. In this study, we examine combined effects and show a consistent pattern of increased neurodevelopmental problems for individuals with both a high gPFSox and high prenatal phthalate exposure across a range of outcomes, including high gPFSox and high DEHP levels against autism spectrum disorder (attributable proportion due to interaction 0.89; 95% CI (0.62, 1.16); p < 0.0001). The results highlight the utility of this novel functional genetic score and add to the growing evidence implicating gestational phthalate exposure in adverse neurodevelopment.
Collapse
Affiliation(s)
- Samuel Tanner
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Sarah Thomson
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Katherine Drummond
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- The Minderoo Foundation, Perth, WA 6000, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter D Sly
- Children's Health Research Centre, University of Queensland, South Brisbane, QLD 4101, Australia
- WHO Collaborating Centre for Children's Health and Environment, South Brisbane, QLD 4104, Australia
| | - Fiona Collier
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Barwon Health, Geelong, VIC 3216, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Eva J Sugeng
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Terence Dwyer
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Barwon Health, Geelong, VIC 3216, Australia
| | - Anne-Louise Ponsonby
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | | |
Collapse
|
50
|
Predieri B, Alves CAD, Iughetti L. New insights on the effects of endocrine-disrupting chemicals on children. J Pediatr (Rio J) 2022; 98 Suppl 1:S73-S85. [PMID: 34921754 PMCID: PMC9510934 DOI: 10.1016/j.jped.2021.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Endocrine disrupting chemicals (EDCs) are present in many areas and materials of the common life, and exposure to these chemicals can occur from products to personal care, from air and food. This review aims to summarize the more recent epidemiological findings for the impact of EDCs on endocrine system health in children, including effects in growth, metabolism, sexual development, and reproduction. SOURCES The MEDLINE database (PubMed) was searched on August 24th, 2021, filtering for EDCs, endocrine disruptors, children, and humans. SUMMARY OF THE FINDINGS Intrauterine exposure of EDCs can have transgenerational effects, thus laying the foundation for disease in later life. The dose-response relationship may not always be predictable as even low-level exposures that may occur in everyday life can have significant effects on a susceptible individual. Although individual compounds have been studied in detail, the effects of a combination of these chemicals are yet to be studied to understand the real-life situation where human beings are exposed to a "cocktail effect" of these EDCs. Epidemiological studies in humans suggest EDCs' effects on prenatal growth, thyroid function, glucose metabolism, obesity, puberty, and fertility mainly through epigenetic mechanisms. CONCLUSIONS EDCs cause adverse effects in animals, and their effects on human health are now known and irrefutable. Because people are typically exposed to multiple endocrine disruptors, assessing public health effects is difficult. Legislation to ban EDCs and protect especially pregnant women and young children is required and needs to be revised and adjusted to new developments on a regular basis.
Collapse
Affiliation(s)
- Barbara Predieri
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy
| | - Crésio A D Alves
- Universidade Federal da Bahia (UFBA), Faculdade de Medicina, Hospital Universitário Prof. Edgard Santos, Unidade de Endocrinologia Pediátrica, Salvador, BA, Brazil
| | - Lorenzo Iughetti
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy.
| |
Collapse
|