1
|
Hornero-Ramirez H, Morisette A, Marcotte B, Penhoat A, Lecomte B, Panthu B, Lessard Lord J, Thirion F, Van-Den-Berghe L, Blond E, Simon C, Caussy C, Feugier N, Doré J, Sanoner P, Meynier A, Desjardins Y, Pilon G, Marette A, Cani PD, Laville M, Vinoy S, Michalski MC, Nazare JA. Multifunctional dietary approach reduces intestinal inflammation in relation with changes in gut microbiota composition in subjects at cardiometabolic risk: the SINFONI project. Gut Microbes 2025; 17:2438823. [PMID: 39710576 DOI: 10.1080/19490976.2024.2438823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months. Metabolic endotoxemia (lipopolysaccharide (LPS), lipopolysaccharide-binding protein over soluble cluster of differentiation-14 (LBP/sCD14), systemic inflammation and cardiovascular risk markers, intestinal inflammation, CM profile and response to a one-week fructose supplementation, were assessed at fasting and post mixed-meal. GM composition and metabolomic analysis were conducted. Mixed linear models were employed, integrating time (pre/post), treatment (MF/control), and sequence/period. Compared to control, MF intervention reduced intestinal inflammation (fecal calprotectin, p = 0.007) and endotoxemia (fasting LPS, p < 0.05), without alteration of systemic inflammation. MF decreased serum branched-chain amino acids compared to control (p < 0.05) and increased B.ovatus, B.uniformis, A.butyriciproducens and unclassified Christensenellaceae.CAG-74 (p < 0.05). CM markers were unchanged. A 2-month dietary intervention combining multiple bioactive compounds improved intestinal inflammation and induced GM modulation. Such strategy appears as an effective strategy to target low-grade inflammation through multi-target approach.
Collapse
Affiliation(s)
- Hugo Hornero-Ramirez
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Arianne Morisette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Bruno Marcotte
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Béryle Lecomte
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Laurie Van-Den-Berghe
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Emilie Blond
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Simon
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Cyrielle Caussy
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Endocrinology, Diabetes and Nutrition Department, Lyon South Hospital, Civil Hospices of Lyon, Pierre-Bénite, France
| | - Nathalie Feugier
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Joël Doré
- INRAE, MGP, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Sanoner
- iSymrise-Diana Food SAS, R&D, Naturals Food & Beverage, Rennes, France
| | - Alexandra Meynier
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, (LDRI) Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Louvain Drug Research Institute; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Vinoy
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| |
Collapse
|
2
|
Kruk A, Popowski D, Średnicka P, Roszko MŁ, Granica S, Piwowarski JP. Selective metabolism of tormentil rhizome constituents by human gut microbiota and its impact on biodiversity ex vivo. Food Chem 2025; 478:143674. [PMID: 40054211 DOI: 10.1016/j.foodchem.2025.143674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Tormentil rhizome was used for centuries in traditional medicine to treat gastrointestinal disorders. Its anti-inflammatory, antioxidant, and antibacterial properties, and unique taste, suggest its potential as a food additive for functional foods. The research aimed to determine gut metabolites of the extract, their impact on microbiota biodiversity, and interactions between them. Gut metabolites were obtained by ex vivo incubation of extract with fecal samples. Among the compounds, only catechin and its oligomers were metabolized by gut microbiota. Triterpenes remained unchanged, while ellagic acid derivatives were undetected in metabolized and unmetabolized forms. The extract also promoted bacteria growth from the Ruminococcaceae family (producers of short-chain fatty acids) and other families, increasing microbiota biodiversity. A mutual interaction occurred between Ruminococcaceae and metabolites, with bacteria influencing metabolite production and metabolites enhancing bacterial growth. The selective metabolism of tormentil rhizome and its interaction with gut microbiota may offer new strategies to improve gut health.
Collapse
Affiliation(s)
- Aleksandra Kruk
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Dominik Popowski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland; Department of Food Analysis, Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland.
| | - Paulina Średnicka
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland.
| | - Marek Ł Roszko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland.
| | - Sebastian Granica
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Lin JG, Sun YW, Wu WL, Jiang WP, Zhung FY, Huang GJ. Multi-Target Protective Effects of Sanghuangporus sanghuang Against 5-Fluorouracil-Induced Intestinal Injury Through Suppression of Inflammation, Oxidative Stress, Epitheli-Al-Mesenchymal Transition, and Tight Junction. Int J Mol Sci 2025; 26:3444. [PMID: 40244381 PMCID: PMC11989720 DOI: 10.3390/ijms26073444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Sanghuang (Sanghuangporus sanghuang, SS) is a medicinal fungus with multiple pharmacological effects, including antioxidant, anti-inflammatory, immune-boosting, and anti-cancer activities. 5-fluorouracil (5-FU) is a commonly used chemotherapeutic agent for the treatment of colorectal cancer. It primarily exerts its antitumor effect by inhibiting DNA and RNA synthesis, leading to cell apoptosis. However, it frequently induces adverse effects These issues limit the clinical application of 5-FU. This research aims to determine the potential of SS as a therapeutic agent in reducing 5-FU-induced intestinal mucositis in a mouse model. The results indicated that 5-FU administration significantly increased diarrhea severity, reduced colon length, caused small intestinal villus atrophy, disrupted intestinal architecture, led to insufficient crypt cell proliferation, and resulted in weight loss. It also significantly upregulated inflammatory responses, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) pathways, and disrupted the integrity of intestinal mucosal tight junction, while elevating pro-inflammatory cytokines and reducing antioxidant capacity. However, SS significantly ameliorating alleviating the adverse impacts of the chemotherapeutic agent on the intestinal mucosa. In conclusion, this investigation provides the first evidence of the protective effects of SS on 5-FU-induced mucositis. These findings suggest SS as a potential therapeutic application, offering a promising strategy for reducing the adverse effects of 5-FU chemotherapy and improving the treatment and quality of life for colorectal cancer patients.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Wen Sun
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Liang Wu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
| | - Wen-Ping Jiang
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Fang-Yu Zhung
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
5
|
Lai Y, Zhu Y, Zhang X, Ding S, Wang F, Hao J, Wang Z, Shi C, Xu Y, Zheng L, Huang W. Gut microbiota-derived metabolites: Potential targets for cardiorenal syndrome. Pharmacol Res 2025; 214:107672. [PMID: 40010448 DOI: 10.1016/j.phrs.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The characteristic of cardiorenal syndrome (CRS) is simultaneous damage to both the heart and kidneys. CRS has caused a heavy burden of mortality and incidence rates worldwide. The regulation of host microbiota metabolism that triggers heart and kidney damage is an emerging research field that promotes a new perspective on cardiovascular risk. We summarize current studies from bench to bedside of gut microbiota-derived metabolites to better understand CRS in the context of gut microbiota-derived metabolites. We focused on the involvement of gut microbiota-derived metabolites in the pathophysiology of CRS, including lipid and cholesterol metabolism disorders, coagulation abnormalities and platelet aggregation, oxidative stress, endothelial dysfunction, inflammation, mitochondrial damage and energy metabolism disorders, vascular calcification and renal fibrosis, as well as emerging therapeutic approaches targeting CRS metabolism in gut microbiota-derived metabolites which provides an innovative treatment approach for CRS to improve patient prognosis and overall quality of life.
Collapse
Affiliation(s)
- Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Xihui Zhang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Shifang Ding
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Jincen Hao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhaomeng Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Congqi Shi
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yongjin Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
6
|
Fadhillah FS, Habibah K, Juniarto AZ, Sobirin MA, Maharani N, Pramono A. Diet and the gut microbiota profiles in individuals at risk of chronic heart failure - A review on the Asian population. Asia Pac J Clin Nutr 2025; 34:141-152. [PMID: 40134053 PMCID: PMC11937497 DOI: 10.6133/apjcn.202504_34(2).0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 07/09/2024] [Indexed: 03/27/2025]
Abstract
BACKGROUND AND OBJECTIVES Chronic Heart Failure (CHF) is one of the leading cardiovascular diseases (CVDs), particularly in the Asian population. Individuals with specific health risks, such as obesity, type 2 diabetes, hypertension, dyslipidemia, and coronary artery disease (CAD), are more susceptible to developing CHF. Current evidence is limited to understanding the link between gut microbiota dysbiosis and CHF. Therefore, this review aims to explore the potential connection between dietary patterns, gut microbiota, and its metabolites in individuals at risk of CHF in the Asian population. METHODS AND STUDY DESIGN A literature review of cross-sectional studies was conducted using primary keywords such as "Asian", "obesity", "type 2 diabetes", "hypertension", "dyslipidemia", "coronary artery disease", and "chronic heart failure". There was no restriction on sample size. RESULTS Several gut microbiotas were found to correlate with CHF risk factors. There were increased levels of Prevotella, Klebsiella, Romboutsia, Catenibacterium, Clostridium, Holdemanella, Ruminococcus, Coprococcus, Parabacteroides, Bacteroides, Lachnoclostridium, Streptococcus, and Megamonas, while decreased levels of Oscillibacter, Bifidobacterium, Lactobacillus, Akkermansia, Roseburia, Faecalibacterium, Pseudobutyrivibrio, and Eubacterium were reported. These microbiota shifts were linked to increased TMAO production and impaired short-chain fatty acids (SCFAs) production. Dietary intake and microbial metabolites were also identified as contributors to the gut microbiota associated with CHF. CONCLUSIONS A potential link exists between the gut microbiota profile and CHF risk factors, possibly mediated by microbial metabolites. Dietary patterns may influence CHF-associated gut microbiota and me-tabolites. Future research is needed to investigate how dietary modifications can modulate gut microbiota and its metabolites in CHF patients.
Collapse
Affiliation(s)
- Farhan S Fadhillah
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Kona'atul Habibah
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Achmad Z Juniarto
- Department of Medical Study, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Center of Biomedical Research, Diponegoro University, Semarang, Indonesia
| | - Mochamad A Sobirin
- Department of Medical Study, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Nani Maharani
- Department of Medical Study, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Adriyan Pramono
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia. ;
- Center of Nutrition Research, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
7
|
Kovynev A, Charchuta MM, Begtašević A, Ducarmon QR, Rensen PCN, Schönke M. Combination of dietary fiber and exercise training improves fat loss in mice but does not ameliorate MASLD more than exercise alone. Am J Physiol Gastrointest Liver Physiol 2025; 328:G399-G410. [PMID: 40033967 DOI: 10.1152/ajpgi.00317.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Lifestyle interventions, such as diet and exercise, are currently the main therapies against metabolic dysfunction-associated steatotic liver disease (MASLD). However, not much is known about the combined impact of fiber and exercise on the modulation of gut-liver axis and MASLD amelioration. Here, we studied the impact of the combination of exercise training and a fiber-rich diet on the amelioration of MASLD. Male APOE*3-Leiden.CETP mice were fed a high-fat high-cholesterol diet with or without the addition of fiber (10% inulin) and exercise trained on a treadmill, or remained sedentary. Exercise training and fiber supplementation reduced fat mass gain and lowered plasma glucose levels. Only the combination treatment, however, induced fat loss and decreased plasma triglyceride and cholesterol levels compared with sedentary control mice. Exercise training with and without the addition of fiber had a similar ameliorating effect on the MASLD score. Only exercise without fiber decreased the hepatic expression of inflammatory markers. Fiber diet was mainly responsible for remodeling the gut microbial composition, with an increase in the relative abundance of the short-chain fatty acid (SCFA)-producing genera Anaerostipes and Muribaculaceae, whereas, surprisingly, exercise training alone and with fiber resulted in the highest increase of SCFA production. Overall, the combination of exercise training and dietary fiber decreases fat mass and improves glucose and lipid homeostasis but does not have an additional synergistic positive effect on liver health compared with exercise training alone.NEW & NOTEWORTHY The combination of dietary fiber intake and exercise training has a synergetic beneficial effect on the metabolic health, resulting in fat loss, lowered blood glucose, and lowered plasma lipid levels in mice with steatotic liver disease. However, fiber supplementation, despite a positive remodulation of the gut-liver axis, does not have an additional positive effect on liver health compared with exercise training alone.
Collapse
Affiliation(s)
- Artemiy Kovynev
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mikołaj M Charchuta
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Amina Begtašević
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Quinten R Ducarmon
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Ogory RO, Cumberford G, Adewole D. Ahiflower seed and its press cake as sources of nutrients for laying hens and omega-3 fatty acids in their eggs. Poult Sci 2025; 104:104936. [PMID: 40058003 PMCID: PMC11930598 DOI: 10.1016/j.psj.2025.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
240 64-week-old Lohman LSL-Lite laying hens were used to evaluate the effect of ahiflower seed (AS) and its press cake (APC) on egg yolk fatty acid profile, production performance, apparent total tract nutrient digestibility (ATTD), egg quality, eggshell mineral content, and fecal microbiota composition for 12 weeks in a completely randomized design, with 6 replicates of 5 birds in a cage. The diets included a control (CD), CD supplemented with 10 % flaxseed (FS), and CD supplemented with AS at 1, 5, and 10 % inclusion levels and APC at 5, 10, and 15 % inclusion levels. Diet did not affect eggshell Ca (P=0.1168) and P (P=0.8212) levels, and feed conversion ratio (P=0.136), but the 10 % FS reduced body weight gain (P=0.044), hen day egg production (P= 0.000) and feed intake (P<.0001) compared to other treatments. The yolk lightness L* was reduced (P=0.030) by 5 % APC compared to 10 % APC, redness a* was reduced (P= 0.002) by 10 % FS and 15 %APC compared to 10 %APC, CD, and 1 % AS. The 10 % FS and 15 %APC also reduced (P<0.001) yellowness *b compared to 1 %AS and 5 %APC. Apparent metabolizable energy (AME) and nitrogen-corrected apparent metabolizable energy (AMEn) increased (P<0.001) in 10 %FS and all AS and APC levels compared to CD. Compared to CD (87 %), ATTD of energy was increased (P<0.001) in hens fed 10 %FS (93 %), 1 %AS (93 %), and 15 %APC (92 %). However, 10 %FS (78.7 %) and 1 %AS (81.7 %) had higher (P=0.011) ATTD of P than 10 %APC (64.6 %). Similarly, ATTD of Ca was reduced (P<0.001) in hens fed 10 %APC compared to CD and 10 %AS. Compared to other treatments, total n-3 and stearidonic acids were increased (P<0.001) by 10 %FS and 10 %AS, respectively, and the total n-6 FAs and linoleic acid were highest (P=0.001) in 15 %APC. Both 10 %AS and 10 %FS increased (P<0.001) eicosapentaenoic, docosahexaenoic, and alpha-linolenic acid, compared to CD. The n-6/n-3 ratio was reduced (P<0.001) by 10 %FS and 10 %AS compared to APC and CD. Dietary treatments modulated fecal microbiota differently, but notably, Lactobacillus was more abundant when hens were fed 5 %AS compared to other treatments. In conclusion, the dietary supplementation of 10 %AS increased n3-FAs deposition in eggs similar to 10 %FS. However, 10 %FS reduced production performance. All levels of AS and APC increased diet metabolizable energy with no negative effect on production performance.
Collapse
Affiliation(s)
- Roseline O Ogory
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Greg Cumberford
- Natures Crops International, 12682 Route 6, PO Box 248, Kensington, PE C0B 1M0, Canada
| | - Deborah Adewole
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
9
|
Zugman M, Wong M, Jaime-Casas S, Pal SK. The gut microbiome and dietary metabolites in the treatment of renal cell carcinoma. Urol Oncol 2025; 43:244-253. [PMID: 39095306 DOI: 10.1016/j.urolonc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The gut microbiome is interlinked with renal cell carcinoma (RCC) and its response to systemic treatment. Mounting data suggests that certain elements of the gut microbiome may correlate with improved outcomes. New generation sequencing techniques and advanced bioinformatic data curation are accelerating the investigation of specific markers and metabolites that could predict treatment response. A variety of new therapeutic strategies, such as fecal microbiota transplantation, probiotic supplements, and dietary interventions, are currently being developed to modify the gut microbiome and improve anticancer therapies in patients with RCC. This review discusses the preliminary evidence indicating the role of the microbiome in cancer treatment, the techniques and tools necessary for its proper study and some of the current forms with which the microbiome can be modulated to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Zugman
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA; Centro de Oncologia e Hematologia Família Dayan-Daycoval Einstein, Hospital Israelita Albert, São Paulo, São Paulo, Brazil
| | - Megan Wong
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Salvador Jaime-Casas
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
10
|
Jones D, Morrison DJ, Gray SR, Ozanne SE, Celis-Morales C, Jain M, Mattin LR, Gittins M, Alkhedhairi SAA, Dorling JL, Burden S. Dietary intake in healthy older individuals is associated with lipopolysaccharide binding protein a biomarker of gut function: an exploratory cross-sectional study. FRONTIERS IN AGING 2025; 6:1572867. [PMID: 40231185 PMCID: PMC11994966 DOI: 10.3389/fragi.2025.1572867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025]
Abstract
Diet, physical function and gut health are important modifiable factors in ageing. However, it is unclear how ageing affects various domains of gut function. Aims of this cross-sectional study were to explore relationships between nutrient intake, physical function, and biomarkers of gut function in older individuals. Healthy participants (n = 94, mean age 71.1 years SD 5.10, 56% female) were recruited to investigate the relationship between nutrient intake (protein, fibre, carbohydrate, fat), physical function (chair rise time, handgrip strength) and lipopolysaccharide (LPS) binding protein (LBP); a marker of gut permeability. Linear regression models, adjusted for age, fat mass/fat free mass ratio, weight and gender, reported LBP changed by; -161.9 ng/mL (95% CI -323.0, -0.8) for every 1 g increase in daily fibre/1,000 kilocalories; 80.5 ng/mL (6.7, 154.2) for 1% increase in daily energy intake as fat; and -88.1 ng/mL (-146.7, -29.6) for 1% increase in daily energy as carbohydrates. When further adjusted for C-reactive protein (CRP), a marker of inflammation, LBP decreased by an additional 6.9 ng/mL for fibre, increased by an additional 4.0 ng/mL for fat and decreased by an additional 3.7 ng/mL for carbohydrate. These findings suggest that in healthy older adults' nutrient intake is associated with LBP, and CRP appears to slightly modify these associations. There were no associations between LBP and handgrip strength or chair rise time. Results suggest that fibre, fat, and carbohydrates are important for maintaining gut function, potentially mediated by inflammation in older adults, although further research is needed to explore the implications for physical function and CRP as a mediator.
Collapse
Affiliation(s)
- Debra Jones
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Douglas J. Morrison
- Scottish Universities Environmental Research Centre (SUERC), University of Glasgow, Glasgow, United Kingdom
| | - Stuart R. Gray
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Susan E. Ozanne
- Institute of Metabolic Science - Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrookes Hospital Cambridge, Cambridge, United Kingdom
| | - Carlos Celis-Morales
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Mahek Jain
- Scottish Universities Environmental Research Centre (SUERC), University of Glasgow, Glasgow, United Kingdom
| | - Lewis R. Mattin
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Matthew Gittins
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Saleh A. A. Alkhedhairi
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - James L. Dorling
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sorrel Burden
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
- Salford Care Organisation, Northern Care Alliance NHS Trust, Salford, United Kingdom
| |
Collapse
|
11
|
Ma B, Barathan M, Ng MH, Law JX. Oxidative Stress, Gut Microbiota, and Extracellular Vesicles: Interconnected Pathways and Therapeutic Potentials. Int J Mol Sci 2025; 26:3148. [PMID: 40243936 PMCID: PMC11989138 DOI: 10.3390/ijms26073148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress (OS) and gut microbiota are crucial factors influencing human health, each playing a significant role in the development and progression of chronic diseases. This review provides a comprehensive analysis of the complex interplay between these two factors, focusing on how an imbalance between reactive oxygen species (ROS) and antioxidants leads to OS, disrupting cellular homeostasis and contributing to a range of conditions, including metabolic disorders, cardiovascular diseases, neurological diseases, and cancer. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, is essential for regulating immune responses, metabolic pathways, and overall health. Dysbiosis, an imbalance in the gut microbiota composition, is closely associated with chronic inflammation, metabolic dysfunction, and various diseases. This review highlights how the gut microbiota influences and is influenced by OS, complicating the pathophysiology of many conditions. Furthermore, emerging evidence has identified extracellular vesicles (EVs) as critical facilitators of cellular crosstalk between the OS and gut microbiota. EVs also play a crucial role in signaling between the gut microbiota and host tissues, modulating immune responses, inflammation, and metabolic processes. The signaling function of EVs holds promise for the development of targeted therapies aimed at restoring microbial balance and mitigating OS. Personalized therapeutic approaches, including probiotics, antioxidants, and fecal microbiota transplantation-based strategies, can be used to address OS-related diseases and improve health outcomes. Nonetheless, further research is needed to study the molecular mechanisms underlying these interactions and the potential of innovative interventions to offer novel strategies for managing OS-related diseases and enhancing overall human health.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (B.M.); (M.B.); (M.H.N.)
| |
Collapse
|
12
|
Sousa RAP, Nunes de Paula JH, Silva RJ, Teixeira SC, França FBF, Gonçalves AHL, Silva TRO, Granero-Rosa MJ, Silva MV, Gomes MDLM, Silva MV, Rodrigues Junior V, Mineo JR, Barbosa BF, Ferro EAV, Oliveira CJF, Gomes AO. Salivary shield: Rhodnius prolixus salivary glandular extract reduces intestinal immunopathology and protects against Toxoplasma gondii infection. Gut Pathog 2025; 17:13. [PMID: 40045369 PMCID: PMC11881255 DOI: 10.1186/s13099-024-00676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/24/2024] [Indexed: 03/09/2025] Open
Abstract
C57BL/6 mice, orally infected with T. gondii, experience pronounced severe intestinal inflammation, causing necrosis, weight loss, and bacterial translocation. In addition, immunomodulatory molecules such as lipocalins, nitrophorins, and apyrases are present in R. prolixus saliva. Our objective was to assess the immunomodulatory effects of the salivary gland extract (SGE) of R. prolixus in mice orally infected by T. gondii. Experimental groups received no treatment (PBS) or SGE (10 µg and 30 µg) in the chronic infection phase and (30 µg) in the acute infection phase. Control groups were non-infected and treated or not treated with SGE (30 µg). SGE was injected intraperitoneally daily, and mice were infected by gavage with 20 cysts of T. gondii (ME-49 strain) on the third treatment day. The treatment duration for the experiment was 23 days for the chronic infection phase (corresponding to 20 days of infection) and 12 days for the acute infection phase (corresponding to 9 days of infection). SGE-treated mice showed reduced small intestine shortening, weight loss, clinical scores, and higher survival rates. Treated mice also exhibited increased secretion of regulatory and protective cytokines (IL-4, IL-2, IL-10, IL-22) and higher levels of IL-4 (chronic phase), IL-2, and IL-22 (acute phase) in the gut. SGE treatment (30 µg) demonstrated protective effects in both the duodenum and ileum of T. gondii-infected mice. Treated animals showed better-preserved villus architecture, increased goblet and Paneth cell counts, and shallower crypts. Correlation data revealed that treated animals exhibited a more regulated and protective immune response. Overall, SGE contributed to the preservation of intestinal integrity and the reduction of inflammation. Thus, we conclude that SGE induces a regulatory response, mitigating inflammation and protecting against T. gondii infection.
Collapse
Affiliation(s)
- Roberto Augusto Pereira Sousa
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | | | - Rafaela José Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Amanda Helena Leão Gonçalves
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Túlio Rodrigues Oliveira Silva
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Maria Julia Granero-Rosa
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Murilo Vieira Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos de Lucca Moreira Gomes
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marcos Vinícius Silva
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Virmondes Rodrigues Junior
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - José Roberto Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Carlo José Freire Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Angelica Oliveira Gomes
- Laboratório de Interações Celulares, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro (UFTM). Av. Getúlio Guaritá, 159-Nossa Sra. da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil.
| |
Collapse
|
13
|
Zhang Y, Li X, Xu S, Li J, Shi L, Wang Z, Chen P, Jia L, Zhang J. The acetylation of Ganoderma applanatum polysaccharides on ameliorating T2DM-induced hepatic and colonic injuries by modulating the Nrf2/keap1-TLR4/NFκB-Bax/Bcl-2 pathways. Int J Biol Macromol 2025; 294:140055. [PMID: 39828155 DOI: 10.1016/j.ijbiomac.2025.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
It was imperative to discover and utilize high-efficiency, non-toxic substances for the prevention and management of type 2 diabetes mellitus (T2DM) and its associated complications, given the escalating prevalence and significant global health burden. In the present study, the acetylated Ganoderma applanatum polysaccharide (A-GAP) was successfully obtained and characterized, demonstrating excellent efficacy in ameliorating organ damage induced by T2DM through targeted modulation of the gut-liver axis. The physiological and molecular biological findings indicated that A-GAP may modulate the Nrf2/Keap1-TLR4/NFκB-Bax/Bcl-2 signaling pathway network, thereby mitigating oxidative stress and the subsequent inflammatory response, ultimately alleviating the inhibitory effects of IRS and insulin resistance. Besides, the regulatory impact of A-GAP on the gut-liver axis had been confirmed by its ability to maintain intestinal barrier integrity and increase levels of intestinal tight junction proteins, effectively preventing endotoxin translocation to the liver. This discovery highlighted the potential of A-GAP as a promising option for functional or nutritional foods and pharmaceuticals in managing T2DM and its complications, showcasing the significance of acetylation in enhancing the bioactivities of natural substances.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Shungao Xu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jinyi Li
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Lian Shi
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Zhiying Wang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Peiying Chen
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Le Jia
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| | - Jianjun Zhang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
14
|
Xu P, Shi S, Yu Z, Li D, Zhang C. Case report: A case report and literature review on spontaneous bacterial peritonitis induced by intestinal barrier damage in a colorectal cancer patient with malnutrition. Front Oncol 2025; 15:1444149. [PMID: 40034595 PMCID: PMC11872932 DOI: 10.3389/fonc.2025.1444149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background Spontaneous bacterial peritonitis (SBP) is an infectious condition characterizing the presence of bacterial infection in the peritoneal fluid with no apparent source of infection within the abdomen. It is extremely rare for patients with malnutrition after colorectal cancer (CRC) surgery to develop SBP. This is the first ever case reported case of SBP resulting from intestinal barrier compromise in a patient with colorectal cancer with malnutrition. Case summary A 72-year-old woman with malnutrition was diagnosed with CRC, and following brief nutritional support, she underwent the laparoscopic-assisted radical right hemicolectomy. The patient was then diagnosed with peritonitis after the operation. An emergency laparotomy was performed, and the patient was finally diagnosed with SBP. The patient ultimately recovered following a series of appropriate postoperative supportive treatments. Conclusion This case highlights the poor outcomes of short preoperative nutritional therapy in CRC patients with malnutrition. Further studies should investigate the role of the intestinal barrier function in the recovery of patients with CRC after surgery.
Collapse
Affiliation(s)
| | | | | | - Da Li
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Ribeiro MGC, Kravchychyn ACP, Bressan J, Hermsdorff HHM. Adiposity and inflammation markers explain mostly part of the plasma zonulin variation in Brazilian adults with overweight/obesity: A cross-sectional analysis from Brazilian nuts study. Clin Nutr 2025; 45:22-30. [PMID: 39731881 DOI: 10.1016/j.clnu.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVE This study evaluated intestinal permeability according to plasma zonulin and its association with adiposity, inflammation, cardiometabolic risk, liver function, and intestinal health markers in adults with overweight/obesity. METHODOLOGY This study is a cross-sectional analysis using baseline data from the Brazilian Nut Study, which involved 123 participants (93 women, age 33.2 ± 8.58 years, BMI 33.9 ± 4.30kg/m2). Subjects were divided into quartiles according to plasma zonulin, assessed by Elisa. Cytokines were assessed by flow cytometry; anthropometric measurements were collected by standard procedure and body composition was assessed by DXA. SCFA analysis was performed by high-performance liquid chromatography, and fecal pH, by a pH meter. Linear regression models were performed (α<5 %). RESULTS Participants included in the last quartile of plasma zonulin had higher values of body fat (%), pro-inflammatory cytokines (CRP, IL-1). According to the multivariate regression model, each one-unit increased in body fat, CRP, IL-12p70, IL-6 and IL-8 resulted correspondingly in an increment of 0.42, 0.14, 0.192, 0.250 and 0.312 ng/ml in plasma zonulin, respectively. Conversely, a one-unit decreased in IL-10 led to an increase of 0.40 ng/ml in plasma zonulin. CONCLUSION Intestinal permeability assessed by plasma zonulin is associated with adiposity, subclinical inflammation and reduced serum HDL levels adults with overweight/obesity, while adiposity and inflammation markers are independent factors for plasma zonulin variation.
Collapse
Affiliation(s)
- Madalena Geralda Cupertino Ribeiro
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
16
|
Meirelles MG, Fénero CIM, Nornberg BF, Camara NOS, Marins LF. In Vivo Measurement of Intestinal Permeability to Macromolecules in Adult Zebrafish ( Danio rerio). Zebrafish 2025; 22:1-10. [PMID: 39895322 DOI: 10.1089/zeb.2024.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Intestinal permeability plays a crucial role in intestinal barrier function. Altered intestinal permeability is well documented in numerous chronic diseases and may serve as a risk factor for disease onset as well as a target for innovative therapeutic strategies. While reliable and sensitive approaches for studying intestinal permeability have been established in animal models, such as mice and zebrafish larvae, methods for investigating this in adult zebrafish remain a considerable challenge. The zebrafish has emerged as a valuable model for studying intestinal development, physiology, and disease. Moreover, zebrafish offer certain advantages over rodent models, such as the ability to evaluate the dynamic interactions of labeled markers in vivo and in real time. In this study, we present a comprehensive pipeline for assessing in vivo intestinal permeability in adult zebrafish using fluorescent-labeled dextran. Detailed protocols for fish handling, reagent preparation, optimization of reagent dosage and delivery routes, and quantification of fluorescent markers in extraintestinal sites are provided. Our findings suggest that zebrafish hold promise as an alternative model for in vivo investigations of intestinal permeability induced by genetic, pathophysiological, and/or pharmacological events.
Collapse
Affiliation(s)
- Marcela G Meirelles
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| | - Camila I M Fénero
- Department of Immunology, Institute of Biomedical Science, University of São Paulo-USP, São Paulo, Brazil
| | - Bruna F Nornberg
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| | - Niels Olsen S Camara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo-USP, São Paulo, Brazil
| | - Luis Fernando Marins
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| |
Collapse
|
17
|
Escalante J, Artaiz O, Diwakarla S, McQuade RM. Leaky gut in systemic inflammation: exploring the link between gastrointestinal disorders and age-related diseases. GeroScience 2025; 47:1-22. [PMID: 39638978 PMCID: PMC11872833 DOI: 10.1007/s11357-024-01451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Global average life expectancy has steadily increased over the last several decades and is projected to reach ~ 77 years by 2050. As it stands, the number of people > 60 years currently outnumbers children younger than 5 years, and by 2050, it is anticipated that the global population of people aged > 60 years will double, surpassing 2.1 billion. This demographic shift in our population is expected to have substantial consequences on health services globally due to the disease burden associated with aging. Osteoarthritis, chronic obstructive pulmonary disease, diabetes, cardiovascular disease, and cognitive decline associated with dementia are among the most common age-related diseases and contribute significantly to morbidity and mortality in the aged population. Many of these age-related diseases have been linked to chronic low-grade systemic inflammation which often accompanies aging. Gastrointestinal barrier dysfunction, also known as "leaky gut," has been shown to contribute to systemic inflammation in several diseases including inflammatory bowel disease and irritable bowel syndrome, but its role in the development and/or progression of chronic low-grade systemic inflammation during aging is unclear. This review outlines current literature on the leaky gut in aging, how leaky gut might contribute to systemic inflammation, and the links between gastrointestinal inflammatory diseases and common age-related diseases to provide insight into a potential relationship between the intestinal barrier and inflammation.
Collapse
Affiliation(s)
- Jonathan Escalante
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
| | - Olivia Artaiz
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
| | - Shanti Diwakarla
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Rachel M McQuade
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), The Melbourne University and Western Health, Melbourne, VIC, 3021, Australia.
| |
Collapse
|
18
|
Marcari AB, Paiva AD, Simon CR, Dos Santos MESM. Leaky Gut Syndrome: An Interplay Between Nutrients and Dysbiosis. Curr Nutr Rep 2025; 14:25. [PMID: 39890659 DOI: 10.1007/s13668-025-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE OF REVIEW The gut microbiota (GM) is directly related to health and disease. In this context, disturbances resulting from excessive stress, unbalanced diet, alcohol abuse, and antibiotic use, among other factors, can contribute to microbiota imbalance, with significant impacts on host health. This review provides a comprehensive examination of the literature on the influence of diet on dysbiosis and increased intestinal permeability over the past five years. RECENT FINDINGS Diet can be considered one of the main modulating factors of GM, impacting its composition and functionality. Excessive consumption of simple carbohydrates, saturated fats, and processed foods appears to be directly linked to dysbiosis, which can lead to intestinal hyperpermeability and leaky gut syndrome. On the other hand, diets primarily composed of food groups such as nuts, vegetables, fruits, fish, and poultry in moderate quantities, along with limited consumption of red and processed meats, are associated with a more diverse, healthier, and beneficial GM for the host. It is worth noticing that the use of prebiotics and probiotics, omega-3 supplementation, polyunsaturated fatty acids, and vitamins A, B, C, D, and E can positively modulate the intestinal microbiota by altering its metabolic activity, microbial composition, and improve intestinal barrier function. This review points to a new perspective regarding individualized dietary intervention and the need to integrate it into several aspects of cellular biology, biochemistry, and microbiology to prescribe more effective diets and thus contribute to patients' comprehensive health.
Collapse
Affiliation(s)
- Ana Beatriz Marcari
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Claudio Roberto Simon
- Department of Structural Biology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Maria Emilia Soares Martins Dos Santos
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil.
| |
Collapse
|
19
|
Yang N, Pang YS, Zheng Y, Gong YJ, Ding WJ. Nobiletin restores the intestinal barrier of HFD-induced obese mice by promoting MHC-II expression and lipid metabolism. Mol Med 2025; 31:26. [PMID: 39865231 PMCID: PMC11770984 DOI: 10.1186/s10020-025-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier. Male C57BL/6 J mice were orally administered nobiletin for 14 d. After identification, the obese mice were equally divided into three groups: the HFD group, the low-dose (NOL, 100 mg/kg/d) group and the high-dose nobiletin (NOH, 200 mg/kg/d) group. A normal control group (CON) was also included. Hematoxylin and eosin (HE) staining and immunofluorescence were used to observe the intestinal barrier. RT-qPCR was used to determine the transcriptomic levels of genes involved in intestinal barrier integrity and lipid metabolism. The results revealed that intestinal tight proteins, including ZO-1 and Occludin, were significantly reduced in HFD-fed mice but markedly restored after nobiletin intervention, particularly in NOH mice. Improvements in the intestinal barrier and lipid metabolism associated with major histocompatibility complex class II (MHC-II) and relevant elements were revealed after nobiletin intervention. Enrichment analysis revealed that MHC-II plays an important role in the restoration of the intestinal barrier. Taken together, nobiletin restored intestinal barrier integrity and lipid metabolism by regulating MHC-II expression.
Collapse
Affiliation(s)
- Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Yue-Shan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Yan-Ju Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
20
|
Ning P, Lin S, Shi Y, Liu T. Potential role of gut-related factors in the pathology of cartilage in osteoarthritis. Front Nutr 2025; 11:1515806. [PMID: 39845920 PMCID: PMC11753001 DOI: 10.3389/fnut.2024.1515806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Osteoarthritis (OA) is a common progressive degenerative disease. Gut microbiota (GM) and their metabolites have been closely associated with the onset, progression, and pathology of OA. GM and their metabolites may influence the cartilage directly, or indirectly by affecting the gut, the immune system, and the endocrine system. They function through classical pathways in cartilage metabolism and novel pathways that have recently been discovered. Some of them have been used as targets for the prevention and treatment of OA. The current study sought to describe the major pathological signaling pathways in OA chondrocytes and the potential role of gut-related factors in these pathways.
Collapse
Affiliation(s)
- Peng Ning
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuting Lin
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianjing Liu
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Guzmán-Escalera D, Valdés-Miramontes EH, Iñiguez-Muñoz LE, Reyes-Castillo Z, Espinoza-Gallardo AC. Metabolites Generated from Foods Through Lactic Fermentation and Their Benefits on the Intestinal Microbiota and Health. J Med Food 2025; 28:1-11. [PMID: 39474688 DOI: 10.1089/jmf.2023.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Metabolites generated in foods with lactic fermentation have been subject of research in recent years due to different beneficial effects attributed to them on the microbiota and health in general, including their properties as antihypertensives, antioxidants, anti-inflammatory, immunomodulatory, and antimicrobial, among others. The present review aims to systematically analyze the results of original research that evaluates effects on the microbiota and health in general, mediated by metabolites generated from the lactic fermentation of foods. The review was carried out in the PubMed database, three studies in humans, four in vivo studies in murine models, four in vitro studies, and the rest focused on the quantification of biofunctional qualities in fermented foods were analyzed. The results of the studies compiled in this systematic review reveal the potential of different food matrices and microorganisms to generate metabolites through lactic fermentation with important properties and effects on the intestinal microbiota and other health benefits. Among these benefits is the increase in short chain fatty acids to which anti-inflammatory properties are associated, as well as bioactive peptides with antihypertensive, antithrombotic, antioxidant, anti-inflammatory, and antimicrobial properties.
Collapse
Affiliation(s)
- Daniela Guzmán-Escalera
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Elia Herminia Valdés-Miramontes
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Laura E Iñiguez-Muñoz
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Zyanya Reyes-Castillo
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Ana C Espinoza-Gallardo
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| |
Collapse
|
22
|
Rowghani K, Patel B, Martinez-Guryn K. Dietary impact on the gut microbiome and epigenome and regulation of gut inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:369-398. [DOI: 10.1016/b978-0-443-18979-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Romo EZ, Hong BV, Agus JK, Jin Y, Kang JW, Zivkovic AM. A low-dose prebiotic fiber supplement reduces lipopolysaccharide-binding protein concentrations in a subgroup of young, healthy adults consuming low-fiber diets. Nutr Res 2025; 133:138-147. [PMID: 39733508 DOI: 10.1016/j.nutres.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024]
Abstract
Although the beneficial effects of fiber supplementation on overall health and the gut microbiome are well-known, it is not clear whether fiber supplementation can also alter the concentrations of lipopolysaccharide-binding protein (LBP), a marker of intestinal permeability. A secondary analysis of a previously conducted study was performed. In the randomized-order, placebo-controlled, double-blinded, cross-over study 20 healthy, young participants consuming a low-fiber diet at baseline were administered a daily dose of 12 g of prebiotic fiber compared with a placebo over a period of 4 weeks with a 4-week washout between arms. In this secondary analysis, we hypothesized that the fiber supplement would reduce LBP concentration. We further hypothesized that lecithin cholesterol acyltransferase activity, a measure of high-density lipoprotein functional capacity, would be altered. Fiber supplementation did not significantly alter LBP concentration or lecithin cholesterol acyltransferase activity in the overall cohort. However, in a subgroup of individuals with elevated baseline LBP concentrations, fiber supplementation significantly reduced LBP from 9.27 ± 3.52 to 7.02 ± 2.32 µg/mL (P = .003). Exploratory analyses found positive correlations between microbial genes involved in lipopolysaccharide synthesis and conversely negative correlations with genes involved in antibiotic synthesis and LBP. Positive correlations between LBP and multiple sulfated molecules including sulfated bile acids and perfluorooctanesulfonate, and ibuprofen metabolites were also found. These findings highlight multiple environmental and lifestyle factors such as exposure to industrial chemicals and medication intake, in addition to diet, which may influence the association between the gut microbiome and gut barrier function.
Collapse
Affiliation(s)
- Eduardo Z Romo
- Department of Nutrition, University of California, Davis, CA, USA
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, CA, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, CA, USA
| | - Yanshan Jin
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, CA, USA
| | | |
Collapse
|
24
|
Güzey Akansel M, Baş M, Gençalp C, Kahrıman M, Şahin E, Öztürk H, Gür G, Gür C. Effects of the Ketogenic Diet on Microbiota Composition and Short-Chain Fatty Acids in Women with Overweight/Obesity. Nutrients 2024; 16:4374. [PMID: 39770995 PMCID: PMC11679786 DOI: 10.3390/nu16244374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The ketogenic diet (KD) is a dietary model that can impact metabolic health and microbiota and has been widely discussed in recent years. This study aimed to evaluate the effects of a 6-week KD on biochemical parameters, gut microbiota, and fecal short-chain fatty acids (SCFAs) in women with overweight/obesity. Methods: Overall, 15 women aged 26-46 years were included in this study. Blood samples, fecal samples, and anthropometric measurements were evaluated at the beginning and end of this study. Results: After KD, the mean body mass index decreased from 29.81 ± 4.74 to 27.12 ± 4.23 kg/m2, and all decreases in anthropometric measurements were significant (p < 0.05). Fasting glucose, insulin, homeostasis model assessment of insulin resistance, hemoglobin A1C, urea, and creatinine levels decreased, whereas uric acid levels increased (p < 0.05). Furthermore, increased serum zonulin levels were noted (p = 0.001), whereas fecal butyrate, propionate, acetate, and total SCFA levels decreased (p < 0.05). When the changes in microbiota composition were examined, a decrease in beta diversity (p = 0.001) was observed. After the intervention, a statistically significant increase was noted in the Firmicutes/Bacteroidetes ratio (p = 0.001). Although Oscilibacter, Blautia, and Akkermensia relative abundances increased, Prevotella relative abundance and Bifidobacter abundance, which were the dominant genera before the KD, decreased. Moreover, the abundance of some pathogenic genera, including Escherichia, Klebsilella, and Listeria, increased. Conclusions: In healthy individuals, KD may cause significant changes in microbial composition, leading to dysbiosis and long-term adverse outcomes with changes in serum zonulin and fecal SCFA levels.
Collapse
Affiliation(s)
- Müge Güzey Akansel
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey; (M.B.); (M.K.)
| | - Cansu Gençalp
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey; (M.B.); (M.K.)
| | - Meryem Kahrıman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey; (M.B.); (M.K.)
| | - Eray Şahin
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34572, Turkey;
| | - Hakan Öztürk
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey;
| | - Gürsel Gür
- Agriculture and Rural Development Support Institution, Ankara 06490, Turkey;
| | - Ceren Gür
- Bağcılar Training and Research Hospital, University of Health Sciences, Istanbul 34200, Turkey;
| |
Collapse
|
25
|
Jia G, Jia M, Li C. The moderating effect of dietary fiber intake on the association between sleep pattern and liver fibrosis in metabolic dysfunction-associated steatotic liver disease: a study from NHANES. BMC Gastroenterol 2024; 24:457. [PMID: 39695427 DOI: 10.1186/s12876-024-03538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Insufficient nocturnal sleep was associated with a higher risk of fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Dietary fiber intake may improve the stimulate the secretion of sleep cytokines, inhibit the inflammatory pathway, contribute to regulating sleep disorders and alleviate liver fibrosis. The associations of dietary fiber intake, sleep patterns, with liver fibrosis remain unclear. The study aimed to explore the associations between dietary fiber, sleep, and liver fibrosis, as well as the moderating effect of dietary fiber intake between sleep patterns and liver fibrosis in MASLD patients. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2017 to 2020, a cross-sectional study included participants with MASLD was performed to assess the relationship between sleep patterns, dietary fiber intake, and liver fibrosis. Weighted univariate and multivariate logistic regression models were used to examine the linear connection between sleep pattern, dietary fiber intake, and liver fibrosis. Restricted cubic spline (RCS) method was also performed to describe the nonlinear relationship. A two-part linear regression model was also used to estimate threshold effects. The moderating effect of dietary fiber intake was further investigated in different subgroups. All results were presented as odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Totally, 1343 MASLD patients were included for final analysis. Among them, 207 (15.41%) have liver fibrosis. Dietary fiber intake did not correlate significantly with sleep pattern in patients with MASLD (Spearman's r = -0.028, P = 0.1678). Poor sleep pattern was related to higher odds of liver fibrosis (OR = 3.23, 95%CI: 1.05-9.90), while dietary fiber intake ≥ 15 gm/day was associated with lower liver fibrosis risk (OR = 0.51, 95%CI: 0.32-0.83). On the association between sleep pattern and liver fibrosis stratified by dietary fiber intake revealed that poor sleep patterns (OR = 15.13, 95%CI: 4.40-52.01) remained associated with increased liver fibrosis risk among individuals with dietary fiber intake < 15 gm/day. No connection was observed between poor sleep patterns and liver fibrosis in MASLD patients with higher dietary fiber intake, with moderate dietary fiber supplementation beneficial in mitigating poor sleep patterns associated with liver fibrosis. The similar findings were also found in patients aged < 50 years old, ≥ 50 years old, females, those with and without CVD groups, hypertension, and dyslipidemia. Particularly, dietary fiber intake also moderates the relationship between sleep patterns and liver fibrosis in the F4 stage (OR = 13.26, 95%CI: 4.08-43.11). CONCLUSION Dietary fiber intake affects the relationship between sleep patterns and liver fibrosis in MASLD patients.
Collapse
Affiliation(s)
- Guoqing Jia
- Department of Gastrointestinal, Beijing Shunyi Hospital, No.3 Guangming South Street, Shunyi District, Beijing, Shunyi, 101300, P.R. China
| | - Mengzhen Jia
- Department of Gastrointestinal, Beijing Shunyi Hospital, No.3 Guangming South Street, Shunyi District, Beijing, Shunyi, 101300, P.R. China
| | - Chuntao Li
- Department of Gastrointestinal, Beijing Shunyi Hospital, No.3 Guangming South Street, Shunyi District, Beijing, Shunyi, 101300, P.R. China.
| |
Collapse
|
26
|
Todorovic N, Martinelli S, Nannini G, Weiskirchen R, Amedei A. Etiology-Dependent Microbiome Differences in Hepatocellular Carcinoma Development. Int J Mol Sci 2024; 25:13510. [PMID: 39769276 PMCID: PMC11677376 DOI: 10.3390/ijms252413510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic liver disease is characterised by persistent inflammation, tissue damage, and regeneration, which leads to steatosis, fibrosis, and, lastly, cirrhosis and hepatocellular carcinoma (HCC). HCC, the most prevalent form of primary liver cancer, is one of the leading causes of cancer-related mortality worldwide. The gut microbiota plays a fundamental role in human physiology, and disturbances in its critical balance are widely recognised as contributors to various pathological conditions, including chronic liver diseases, both infectious and non-infectious in nature. Growing interest in microbiota research has recently shifted the focus towards the study of intratumoural microbiota, referred to as the "oncobiome", which can significantly impact the development and progression of HCC. In this review, we discuss existing research and provide an overview of the microbiota influence on viral hepatitis, particularly in shaping the progression of liver disease caused by the hepatitis B and hepatitis C viruses. We also explore microbial dysbiosis and its contribution to the silent and dangerous progression of non-alcoholic fatty liver disease. Additionally, we address the impact of alcohol on the liver and its interaction with the microbiota, tracing the pathway from inflammation to cirrhosis and cancer. The review emphasises the most common etiologies of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nevena Todorovic
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
27
|
Veshkini A, Kühn C, Dengler F, Bachmann L, Liermann W, Helm C, Ulrich R, Delling C, Hammon HM. Cryptosporidium parvum infection alters the intestinal mucosa transcriptome in neonatal calves: impacts on epithelial barriers and transcellular transport systems. Front Cell Infect Microbiol 2024; 14:1495309. [PMID: 39703373 PMCID: PMC11656319 DOI: 10.3389/fcimb.2024.1495309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Cryptosporidium parvum (C. parvum) is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment. Methods At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with C. parvum oocysts (in-house strain LE-01-Cp-15). On day 8 after infection, calves were slaughtered and jejunum mucosa samples were taken. The RNA was extracted from collected samples and subjected to sequencing. Differentially expressed genes (DEG) between the infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05 and used for gene ontology (GO) and pathway enrichment analysis in Cytoscape (v3.9.1). Results and discussion To study the pathophysiology of infectious diarrhea on intestinal permeability, 459 genes related to epithelial cell barrier integrity and paracellular and transmembrane transport systems were selected from 12,908 identified genes in mucus. Among, there were 61 increased and 109 decreased gene transcripts belonged to adhesion molecules (e.g. ADGRD1 and VCAM1), ATP-binding cassette (ABC, e.g. ABCC2 and ABCD1) and solute carrier (SLC, e.g. SLC28A2 and SLC38A3) transporters, and ion channels (e.g. KCNJ15). Our results suggest deregulation of cellular junctions and thus a possibly increased intestinal permeability, whereas deregulation of ABC and SLC transporters and ion channels may influence the absorption/secretion of amino acids, carbohydrates, fats, and organic compounds, as well as acid-based balance and osmotic hemostasis. Besides pathogen-induced gene expression alterations, part of the DEG may have been triggered or consequently affected by inflammatory mechanisms. The study provided a deeper understanding of the pathophysiology of infectious diarrhea in neonatal calves and the host-pathogen interactions at the transcript level. For further studies with a particular focus on the transport system, these results could lead to a new approach to elucidating pathophysiological regulatory mechanisms.
Collapse
Affiliation(s)
- Arash Veshkini
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christa Kühn
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
- Agricultural and Environmental Faculty, University Rostock, Rostock, Germany
| | - Franziska Dengler
- Institute of Animal Sciences, University of Hohenheim, Hohenheim, Germany
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Neubrandenburg, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christiane Helm
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Reiner Ulrich
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Cora Delling
- Institute of Veterinary Parasitology, Leipzig University, Leipzig, Germany
| | - Harald M. Hammon
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
28
|
Keremane VR, Yashwanthkumar MH, Uppin V, Halami P, Talahalli RR. Lactobacillus fermentum MCC2760 Attenuates Heated Oil-Induced Brain Oxidative Stress and Inflammation via Modulation of NRF2 and NF-kB in Rats. Mol Nutr Food Res 2024; 68:e2400656. [PMID: 39491792 DOI: 10.1002/mnfr.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
SCOPE Reusing deep-fried oil is a common practice to cut costs, and their consumption may affect brain function. Hence, the study investigates the modulatory potential of Lactobacillus fermentum MCC2760 (LF) on heated oil-induced brain oxidative stress (OS) and inflammation that may have a bearing on cognition in experimental rats. METHODS AND RESULTS Female Wistar rats are fed with diets containing native sunflower oil (N-SFO), native canola oil (N-CNO), heated sunflower oil (H-SFO), heated canola oil (H-CNO), heated sunflower oil with probiotic (H-SFO + LF), or heated canola oil with probiotic (H-CNO + LF} for 60 days. Compared to respective controls, heated oils significantly (p < 0.05) increased OS by decreasing antioxidant defense enzymes and nuclear factor erythroid 2-related factor 2 (NRF2) activity. Further, heated oil elevates brain expression of cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), prostaglandin-E receptor 4 (EP-4), intercellular adhesion molecule 1 (ICAM-1), nitric oxide synthase 2 (NOS-2), followed by an increased production of proinflammatory eicosanoids (prostaglandin E2 [PGE2] and leukotriene B4 [LTB4]) and cytokines (tumor necrosis factor-α [TNF-α], monocyte chemoattractant protein-1 [MCP-1], interleukin-1β [IL-1β], and interleukin-6 [IL-6]). The increased nuclear translocation of nuclear factor kappa beta (NF-kB) in heated oil-fed groups' brains corroborates the heightened inflammatory response. Heated oils decrease neurotrophins and neuron development markers. However, administration of LF abrogates the heated oil-induced alterations significantly (p < 0.05). CONCLUSIONS The present study is novel in demonstrating the protective role of probiotic LF against heated-oil-induced brain OS and inflammation in rats.
Collapse
Affiliation(s)
- Vyshali Ramesh Keremane
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Vinayak Uppin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Prakash Halami
- Department of Microbiology & Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Ramaprasad Ravichandra Talahalli
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
29
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024; 16:1937-1953. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
30
|
Jurjus R, Jurjus A. Dietary Nutrition: The Friend or the Foe to Gastrointestinal Health. Nutrients 2024; 16:4137. [PMID: 39683531 DOI: 10.3390/nu16234137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Over the years and even centuries, instincts, habits, cultures, social determinants, wars, and health needs were, and still are, factors that have shaped our dietary nutrition [...].
Collapse
Affiliation(s)
- Rosalyn Jurjus
- U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
31
|
Jovandaric MZ, Jovanović K, Raus M, Babic S, Igic T, Kotlica B, Milicevic S. The Significance of Plant Nutrition in the Creation of the Intestinal Microbiota-Prevention of Chronic Diseases: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1969. [PMID: 39768848 PMCID: PMC11678629 DOI: 10.3390/medicina60121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Dysbiosis of the gastrointestinal tract is the most common cause of disease in childhood and adulthood. The formation of the intestinal microbiome begins in utero, and composition modification during life depends mainly on various genetic, nutritional, and environmental factors. The main cause of intestinal dysbiosis is improper nutrition due to a short period of breastfeeding, insufficient intake of fresh fruits and vegetables, and/or consumption of a large amount of processed food. The benefits of a diet based on grains, legumes, fruits, and vegetables are reflected in reducing the risk of cancer, cardiovascular diseases, myocardial infarction, stroke, rheumatoid arthritis, high blood pressure, asthma, allergies, and kidney stones. Anaerobic fermentation of fibers produces short-chain fatty acids (SCFA) that have an anti-inflammatory role and great importance in shaping the intestinal microbiota. Factors associated with high fiber in a plant-based diet promote increased insulin sensitivity. Insulin and insulin-like growth factor 1 (IGF-I) act as promoters of most normal and pre-neoplastic tissues. Conclusion: A plant-based diet high in fiber prevents disease by creating metabolites in the gut that reduce oxidative stress.
Collapse
Affiliation(s)
- Miljana Z. Jovandaric
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Kristina Jovanović
- Department of Neurology, University Children’s Hospital, 11000 Belgrade, Serbia
| | - Misela Raus
- Department of Neonatology, University Children’s Hospital, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Babic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Tamara Igic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Boba Kotlica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Srboljub Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Aroche R, Gao G, Li Y, Zhang Y, Rodríguez R, Martínez Y, Li X. Effect of Anacardium occidentale Leaf Powder on Growth Performance, Diarrhea Incidence, Blood Biochemistry, and Intestinal Traits in Weaned Piglets. Animals (Basel) 2024; 14:3382. [PMID: 39682348 DOI: 10.3390/ani14233382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
To evaluate the phytobiotic effect of Anacardium occidentale leaf powder (AOLP) on growth performance, diarrhea incidence, blood biochemistry, and intestinal traits, seventy-two weaned piglets were randomly distributed into four groups (six replicates/group and three pigs/replicate) for 28 days, receiving a control diet (T0) or being supplemented with 5 (T1), 10 (T2), or 15 (T3) g/kg of AOLP. The diets did not affect the growth performance (p > 0.05); however, the AOLP groups had a decreased diarrhea incidence and malondialdehyde concentration (p < 0.05; 28 days). However, the AOLP groups had increased immunoglobulins (G and M) and villus heights (p < 0.05) in the duodenum. Likewise, T3 improved the number of goblet cells in the villi and the whole intestine (p < 0.01), the Mucin2 area in the jejunum and ileum (p < 0.05), occludin gene expression in the jejunum (p < 0.01), and acetic and valeric acid production (p < 0.05). Microbial diversity at the genus level was not different (p > 0.05); however, T3 increased the abundance of the Lactobacillus genus. These findings suggest that dietary supplementation with AOLP improved intestinal health by increasing antioxidant, immune, anti-inflammatory, and antidiarrheal activity in the weaned piglets.
Collapse
Affiliation(s)
- Roisbel Aroche
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal Husbandry, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Román Rodríguez
- Animal Production Study Center, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba
| | - Yordan Martínez
- Faculty of Veterinary Medicine, University of Fondwa, Léogâne 6210, Haiti
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
33
|
Yang L, Wang Y, Li X, Chen Y, Liang J, He L, Jiang D, Huang S, Hou S. The Hydrophobic Amino Acid-Rich Fish Collagen Peptide Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice via Repairing the Intestinal Barrier, Regulating Intestinal Flora and AA Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25690-25703. [PMID: 39514440 DOI: 10.1021/acs.jafc.4c07217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The incidence of ulcerative colitis (UC) is increasing annually, but treatment option is limited. Fish collagen peptide (FCP) is a food source collagen peptide that has shown promise in alleviating UC symptoms. However, its impact on the intestinal barrier and intestinal metabolic homeostasis in UC remains unclear. This study aimed to analyze the peptide sequences and absolute amino acid (AA) content of FCP, assessing its effects on UC in mice induced by dextran sulfate sodium (DSS). FCP was examined by liquid chromatography and tandem mass spectrometry (LC-MS/MS) analysis. The 3% DSS was utilized to induce UC in murine models, followed by the assessment of the therapeutic efficacy of FCP. Clinical manifestations of UC mice were meticulously evaluated and scored. Subsequently, samples were procured for histological examination and intestinal epithelial barrier integrity analysis as well as macrogenomic and metabolomic profiling. Here, it shows that abundant peptide sequences and AAs were in FCP, particularly enriched in hydrophobic AAs (HAAs). Furthermore, it was observed that FCP effectively reversed colon shortening and reduced the extent of histological damage. Additionally, FCP suppressed the abnormal expression of inflammatory factors and intestinal barrier proteins and modulated the dysbiosis of gut microbiota toward a balanced state. These alterations led to the activation of intestinal alkaline AA and various AA metabolisms, ultimately contributing to the mitigation of UC symptoms. In summary, the diverse peptide sequences and high AAs in FCP, particularly rich in HAAs, can alleviate DSS-induced UC via preserving intestinal barrier integrity, regulating gut microbiota, and modulating AA metabolism.
Collapse
Affiliation(s)
- Limei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yiting Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Xuan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yonger Chen
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Lian He
- Guangzhou Huashang College, Guangzhou, Guangdong 510006, PR China
| | - Dongxu Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
34
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
35
|
Lee K, Gwon H, Kim JY, Shim JJ, Lee JH. Exosomes from Limosilactobacillus fermentum Ameliorate Benzalkonium Chloride-Induced Inflammation in Conjunctival Cells. Int J Mol Sci 2024; 25:12282. [PMID: 39596346 PMCID: PMC11595052 DOI: 10.3390/ijms252212282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Dry eye is characterized by persistent instability and decreased tear production, which are accompanied by epithelial lesions and inflammation on the surface of the eye. In our previous paper, we reported that supplementation with Limosilactobacillus fermentum HY7302 (HY7302) could inhibit corneal damage in a benzalkonium chloride (BAC)-induced mouse model of dry eye, through its effects in gut microbiome regulation. The aim of this study was to determine what functional extracellular substances can alter the inflammatory response of conjunctival cells. We isolated exosomes from HY7302 probiotic culture supernatant, analyzed their morphological characteristics, and found that their average size was 143.8 ± 1.1 nm, which was smaller than the exosomes from the L. fermentum KCTC 3112 strain. In addition, HY7302-derived exosomes significantly reduced the levels of genes encoding pro-inflammatory cytokines, including interleukin (IL)-20, IL-8, IL-6, and IL-1B, in BAC-treated human conjunctival cells. Moreover, HY7302-derived exosomes significantly increased the levels of genes encoding tight junction proteins, including TJP1, TJP2, and occludin-1, in Caco-2 cells. Lastly, the HY7302 exosomes reduced mRNA expression levels of IL1B, IL20, IL6, IL8, and NFAT5 in a transwell coculture system. Our findings indicate that HY7302 exosomes have potential for use in the treatment of ocular inflammation-related dry eye disease, through gut-eye axis communication via exosomes.
Collapse
Affiliation(s)
| | | | - Joo Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.G.); (J.J.S.); (J.H.L.)
| | | | | |
Collapse
|
36
|
MORALES-CANO KL, RIVERA-ALAMILLO YC, OLIART-ROS RM, PEÑA-MONTES C. Modulation of the gut microbiota by dietary intervention with Acanthocereus tetragonus improves the health status of Wistar rats with metabolic syndrome. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 44:100-109. [PMID: 40171391 PMCID: PMC11957756 DOI: 10.12938/bmfh.2024-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 04/03/2025]
Abstract
The gastrointestinal tract is an ecosystem with heterogeneous patterns, distributions, and environments, resulting in different microbial compositions in each gut segment. The relationship between diet and microbiota determines this heterogeneity. Consumption of diets high in fat and carbohydrates (HLHC) is associated with gut dysbiosis, low microbial diversity, and metabolic syndrome (MetS). Functional fiber consumption improves the profile and diversity of the gut microbiota (GM); it stimulates the production of short-chain fatty acids (SCFAs), which act as signaling molecules that maintain the gut barrier integrity and induce hormone synthesis that regulates satiety and glucose metabolism, reducing some MetS parameters. The effect of a dietary intervention with Acanthocereus tetragonus (At), a cactus rich in fiber, antioxidants, amino acids, and minerals traditionally consumed by the Mexican population, is reported here. For this purpose, Wistar rats were randomly divided into three study groups: a control (C) group, a MetS group, and an At-supplemented group. In the MetS and At groups, an HLHC was administered for 12 weeks, inducing MetS. After 18 weeks, stool samples were collected for microbiota sequencing. HLHC administration favored Firmicutes and decreased the abundance of Bacteriodetes at the phylum level in the MetS group. At the genus level, the dietary intervention with At increased the presence of Roseburia, Ruminococcus, Blautia, Bacteroides, and Christensenella, reflecting the effect of A. tetragonus consumption on GM. At diet administration reduced body weight; the plasma glucose, insulin, and lipid levels; and insulin resistance.
Collapse
Affiliation(s)
- Karla Lizzeth MORALES-CANO
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| | - Yokebed Cecilia RIVERA-ALAMILLO
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| | - Rosa Maria OLIART-ROS
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| | - Carolina PEÑA-MONTES
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| |
Collapse
|
37
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
38
|
Fitzpatrick JA, Gibson PR, Taylor KM, Halmos EP. The effect of dietary emulsifiers and thickeners on intestinal barrier function and its response to acute stress in healthy adult humans: A randomised controlled feeding study. Aliment Pharmacol Ther 2024; 60:863-875. [PMID: 39072856 DOI: 10.1111/apt.18172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Although dietary emulsifiers are implicated in the pathogenesis of Crohn's disease, their effect has not been studied in humans. AIM To determine the effects of high- and low-emulsifier diets (HED, LED) on intestinal barrier function in healthy subjects in unstressed and acutely stressed states. METHODS We conducted a single-blinded, cross-over, controlled feeding trial in 22 healthy adults. After recording 7 days of their habitual diet, we randomised participants to HED or LED with ≥3-week washout between diets. On dietary completion, acute stress was induced via intravenous corticotrophin-releasing hormone. We assessed dietary adherence, effects on 2-h urinary lactulose: rhamnose ratio (LRR), serum concentrations of lipopolysaccharide-binding protein, soluble-CD14 and markers of epithelial injury and inflammation. RESULTS Dietary adherence was excellent. In an unstressed state, median (interquartile range) LRR during HED was 0.030 (0.018-0.042); on LED, this was 0.042 (0.029-0.078; p = 0.04). LPB concentrations were lower on HED than LED (p = 0.026), but no differences were observed for epithelial injury or inflammation. Under acute stress, LRR increased by 89% (-1% to 486%) on HED (p = 0.004), differing (p = 0.001) from 39% (1%-90%) decrease on LED (p = 0.009). Soluble-CD14 also increased (p < 0.001). The LED had a prolonged carry-over effect on suppressing HED-induced changes during stress. Similar changes in LRR and soluble-CD14 were observed when HED was used as the first diet (both p < 0.01). CONCLUSION High intake of emulsifiers improved barrier function in the unstressed state, but increased intestinal permeability to stress, without evidence of inflammation. A LED was protective of the stress effect.
Collapse
Affiliation(s)
| | - Peter R Gibson
- Department of Gastroenterology, Monash University, Melbourne, Victoria, Australia
| | - Kirstin M Taylor
- Department of Gastroenterology, Monash University, Melbourne, Victoria, Australia
| | - Emma P Halmos
- Department of Gastroenterology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Iacucci M, Santacroce G, Majumder S, Morael J, Zammarchi I, Maeda Y, Ryan D, Di Sabatino A, Rescigno M, Aburto MR, Cryan JF, Ghosh S. Opening the doors of precision medicine: novel tools to assess intestinal barrier in inflammatory bowel disease and colitis-associated neoplasia. Gut 2024; 73:1749-1762. [PMID: 38851294 PMCID: PMC11422792 DOI: 10.1136/gutjnl-2023-331579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/18/2024] [Indexed: 06/10/2024]
Abstract
Mounting evidence underscores the pivotal role of the intestinal barrier and its convoluted network with diet and intestinal microbiome in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CRC). Moreover, the bidirectional association of the intestinal barrier with the liver and brain, known as the gut-brain axis, plays a crucial role in developing complications, including extraintestinal manifestations of IBD and CRC metastasis. Consequently, barrier healing represents a crucial therapeutic target in these inflammatory-dependent disorders, with barrier assessment predicting disease outcomes, response to therapy and extraintestinal manifestations.New advanced technologies are revolutionising our understanding of the barrier paradigm, enabling the accurate assessment of the intestinal barrier and aiding in unravelling the complexity of the gut-brain axis. Cutting-edge endoscopic imaging techniques, such as ultra-high magnification endocytoscopy and probe-based confocal laser endomicroscopy, are new technologies allowing real-time exploration of the 'cellular' intestinal barrier. Additionally, novel advanced spatial imaging technology platforms, including multispectral imaging, upconversion nanoparticles, digital spatial profiling, optical spectroscopy and mass cytometry, enable a deep and comprehensive assessment of the 'molecular' and 'ultrastructural' barrier. In this promising landscape, artificial intelligence plays a pivotal role in standardising and integrating these novel tools, thereby contributing to barrier assessment and prediction of outcomes.Looking ahead, this integrated and comprehensive approach holds the promise of uncovering new therapeutic targets, breaking the therapeutic ceiling in IBD. Novel molecules, dietary interventions and microbiome modulation strategies aim to restore, reinforce, or modulate the gut-brain axis. These advancements have the potential for transformative and personalised approaches to managing IBD.
Collapse
Affiliation(s)
- Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Snehali Majumder
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jennifer Morael
- APC Microbiome Ireland, Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | - Irene Zammarchi
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - David Ryan
- Department of Radiology, School of Medicine, University College Cork, Cork, Ireland
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Maria Rescigno
- IRCSS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria R Aburto
- APC Microbiome Ireland, Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Zhou Y, Wei Z, Tan J, Sun H, Jiang H, Gao Y, Zhang H, Schroyen M. Alginate oligosaccharide supplementation improves boar semen quality under heat stress. STRESS BIOLOGY 2024; 4:37. [PMID: 39251532 PMCID: PMC11383898 DOI: 10.1007/s44154-024-00177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 09/11/2024]
Abstract
Heat stress is a serious problem that affects animal husbandry by reducing growth and reproductive performance of animals. Adding plant extracts to the diet is an effective way to help overcome this problem. Alginate oligosaccharide (AOS) is a natural non-toxic antioxidant with multiple biological activities. This study analyzed the potential mechanism of AOS in alleviating heat stress and improving semen quality in boars through a combination of multiple omics tools. The results indicated that AOS could significantly increase sperm motility (P < 0.001) and sperm concentration (P < 0.05). At the same time, AOS improved the antioxidant capacity of blood and semen, and increased blood testosterone (P < 0.05) level. AOS could improve the metabolites in sperm, change the composition of gut microbiota, increase the relative abundance of beneficial bacteria such as Pseudomonas (P < 0.01), Escherichia-Shigella (P < 0.05), Bifidobacterium (P < 0.01), reduce the relative abundance of harmful bacteria such as Prevotella_9 (P < 0.05), Prevotellaceae_UCG-001 (P < 0.01), and increase the content of short chain fatty acids. Proteomic results showed that AOS increased proteins related to spermatogenesis, while decreasing heat shock protein 70 (P < 0.05) and heat shock protein 90 (P < 0.01). These results were verified using immunofluorescence staining technology. There was a good correlation among sperm quality, sperm metabolome, sperm proteome, and gut microbiota. In conclusion, AOS can be used as a feed additive to increase the semen quality of boars to enhance reproductive performance under heat stress.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- School of Agriculture and Food Science, University College Dublin, Belfeld, Dublin 4, Ireland
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haidi Jiang
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, 137000, Jilin, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
41
|
M M, Vellapandian C. Exploring the Long-Term Effect of Artificial Sweeteners on Metabolic Health. Cureus 2024; 16:e70043. [PMID: 39449954 PMCID: PMC11501561 DOI: 10.7759/cureus.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Artificial sweeteners (ASs) are widely used as low-calorie sugar substitutes for managing conditions like diabetes and obesity, but recent evidence suggests their health effects may be more complex than previously understood. High consumption has been associated with increased risks of metabolic disorders, cardiovascular diseases, certain cancers, and, somewhat paradoxically, weight gain, adverse pregnancy outcomes, and potential risks for individuals with low seizure thresholds. Studies, including the Women's Health Initiative, have linked artificially sweetened beverages to an elevated risk of stroke, coronary heart disease, and mortality, independent of established risk factors. Concerns extend to gut health, where ASs like saccharin have been linked to inflammatory bowel diseases, gut microbiota disruption, increased intestinal permeability, and dysbiosis, leading to metabolic disturbances such as impaired glucose tolerance, insulin resistance, and heightened systemic inflammation. These disruptions reduce the production of short-chain fatty acids crucial for insulin sensitivity, further contributing to the development of metabolic disorders like type 2 diabetes mellitus. Given these potential health risks, this review underscores the need for cautious use, informed consumer choices, and stringent regulatory oversight, while emphasizing the necessity for further research to elucidate long-term health effects and develop strategies to mitigate these risks.
Collapse
Affiliation(s)
- Meenatchi M
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Chitra Vellapandian
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
42
|
Yao X, Wan R, Li C, Li G, Zhang B, Deng Z, Li H. The hypoglycemic effect of enzymatic modified dietary fiber from bamboo shoot on type 2 diabetes rats. J Food Sci 2024; 89:5900-5911. [PMID: 39150747 DOI: 10.1111/1750-3841.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024]
Abstract
Bamboo shoot is a healthy food rich in dietary fiber (DF). However, its highly insoluble DF and fibrous texture limit its application in industrially processed foods. To achieve industrial processing of bamboo shoot, cellulase was used to improve the physical characteristics of bamboo shoot DF in this study. After enzymatic hydrolysis, the content of soluble DF (SDF) of bamboo shoot increased by 99.28% (from 5.53% to 11.02%) significantly (p < 0.01). At the same time, the effect of enzymatic-modified bamboo SDF (EMBSDF) on streptozotocin-induced type 2 diabetes rats was explored. Results demonstrated that the high dose of EMBSDF (312.8 mg/kg) treated rats showed significant improvements in terms of glucose tolerance and insulin sensitivity (p < 0.01) compared with the diabetes rats. Meantime, it was observed that the levels of glucagon-like peptide-1, adiponectin and interleukin-4 of high dose of EMBSDF compared with diabetes rats were increased (p < 0.01) by 57.79%, 159.13%, and 6.17%, respectively. The tumor necrosis factor-α, C-reactive protein, and leptin levels were decreased (p < 0.01) by 62.89%, 31.53%, and 7.84%, respectively. Furthermore, apparent kidney and pancreas histology improvements were found in high-dose and mid-dose EMBSDF-treated diabetes rats. These results indicated that the modified DF significantly improved diabetes.
Collapse
Affiliation(s)
- Xiangjie Yao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Renkou Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Chunxiao Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Gongjing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
43
|
Liu Q, Xu Y, Lv X, Guo C, Zhu H, Yang L, Wang Y. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine alleviates diet-induced hyperlipidemia by modulating intestinal gene expression profiles and metabolic pathway. Life Sci 2024; 352:122891. [PMID: 38977060 DOI: 10.1016/j.lfs.2024.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
There is a growing body of evidence suggesting that the composition of intestinal flora plays a significant role in regulating lipid metabolism. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (IMMH007) is a new candidate compound for regulating blood cholesterol and other lipids. In this study, we conducted metagenomic and metabolomic analyses on samples from high-fat diet-fed (HFD) hamsters treated with IMMH007. Our findings revealed that IMM-H007 reversed the imbalance of gut microbiota caused by a high-fat diet. Additionally, it activated adiponectin receptor and pantothenate and CoA biosynthesis pathway-related genes, which are known to regulate lipid and glucose metabolism. Furthermore, IMM-H007 promotes cholesterol metabolism by reducing the abundance of genes and species associated with 7α-dehydroxylation and bile salt hydrolase (BSH). Metabolomics and pharmacological studies have shown that IMM-H007 effectively improved glucose and lipid metabolism disorders caused by HFD, reduced the aggregation of secondary bile acids (SBAs), significantly increased the content of hyodeoxycholic acid (HDCA), and also activated the expression of VDR in the small intestine. As a result, there was a reduction in the leakage of diamine oxidase (DAO) into the bloodstream in hamsters, accompanied by an upregulation of ZO-1 expression in the small intestine. The results suggested that IMM-H007 regulated glucose and lipid metabolism, promoted cholesterol metabolism through activating the expression of VDR, inhibiting inflammatory and improving the permeability of the intestinal barrier. Thus, our study provides new understanding of how IMM-H007 interacts with intestinal function, microbiota, and relevant targets, shedding light on its mechanism of action.
Collapse
Affiliation(s)
- Qifeng Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Core Facilities, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Xu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueqi Lv
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congcong Guo
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
44
|
Li Z, Wan M, Wang M, Duan J, Jiang S. Modulation of gut microbiota on intestinal permeability: A novel strategy for treating gastrointestinal related diseases. Int Immunopharmacol 2024; 137:112416. [PMID: 38852521 DOI: 10.1016/j.intimp.2024.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Accumulating evidence emphasizes the critical reciprocity between gut microbiota and intestinal barrier function in maintaining the gastrointestinal homeostasis. Given the fundamental role caused by intestinal permeability, which has been scrutinized as a measurable potential indicator of perturbed barrier function in clinical researches, it seems not surprising that recent decades have been marked by augmented efforts to determine the interaction between intestinal microbes and permeability of the individual. However, despite the significant progress in characterizing intestinal permeability and the commensal bacteria in the intestine, the mechanisms involved are still far from being thoroughly revealed. In the present review, based on multiomic methods, high-throughput sequencing and molecular biology techniques, the impacts of gut microbiota on intestinal permeability as well as their complex interaction networks are systematically summarized. Furthermore, the diseases related to intestinal permeability and main causes of changes in intestinal permeability are briefly introduced. The purpose of this review is to provide a novel prospection to elucidate the correlation between intestinal microbiota and permeability, and to explore a promising solution for diagnosis and treatment of gastrointestinal related diseases.
Collapse
Affiliation(s)
- Zhuotong Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
45
|
Zhu G, Yan L, Fang L, Fan C, Sun H, Zhou X, Zhang Y, Shi Z. Possible immune mechanisms of gut microbiota and its metabolites in the occurrence and development of immune thrombocytopenia. Front Microbiol 2024; 15:1426911. [PMID: 39171254 PMCID: PMC11335631 DOI: 10.3389/fmicb.2024.1426911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by increased platelet destruction and impaired production, leading to an elevated bleeding tendency. Recent studies have demonstrated an important link between the gut microbiota and the onset and progression of several immune diseases in humans, emphasizing that gut microbiota-derived metabolites play a non-negligible role in autoimmune diseases. The gut microbiota and its metabolites, such as short-chain fatty acids, oxidized trimethylamine, tryptophan metabolites, secondary bile acids and lipopolysaccharides, can alter intestinal barrier permeability by modulating immune cell differentiation and cytokine secretion, which in turn affects the systemic immune function of the host. It is therefore reasonable to hypothesize that ecological dysregulation of the gut microbiota may be an entirely new factor in the triggering of ITP. This article reviews the potential immune-related mechanisms of the gut microbiota and representative metabolites in ITP, as well as the important influence of leaky gut on the development of ITP, with a view to enriching the theoretical system of ITP-related gut microecology and providing new ideas for the study of ITP.
Collapse
Affiliation(s)
- Gengda Zhu
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixiang Yan
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijun Fang
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Hematology and Blood Diseases Hospital, National Clinical Medical Research Center for Blood Diseases, Tianjin, China
| | - Chenyang Fan
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Sun
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinli Zhou
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yucheng Zhang
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhexin Shi
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
46
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
47
|
Zhuang K, Shu X, Meng W, Zhang D. Blended-protein changes body weight gain and intestinal tissue morphology in rats by regulating arachidonic acid metabolism and secondary bile acid biosynthesis induced by gut microbiota. Eur J Nutr 2024; 63:1605-1621. [PMID: 38512357 DOI: 10.1007/s00394-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The impact of dietary nutrients on body growth performance and the composition of gut microbes and metabolites is well-established. In this study, we aimed to determine whether dietary protein can regulate the physiological indexes and changes the intestinal tissue morphology in rats, and if dietary protein was a crucial regulatory factor for the composition, function, and metabolic pathways of the gut microbiota. METHOD A total of thirty male Sprague Dawley (SD) rats (inbred strain, weighted 110 ± 10 g) were randomly assigned to receive diets containing animal-based protein (whey protein, WP), plant-based protein (soybean protein, SP), or a blended protein (soybean-whey proteins, S-WP) for a duration of 8 weeks. To investigate the effects of various protein supplement sources on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing association study and fecal metabolomics profiling on the SD rats. Additionally, we performed analyses of growth indexes, serum biochemical indexes, and intestinal morphology. RESULTS The rats in S-WP and WP group exhibited a significantly higher body weight and digestibility of dietary protein compared to the SP group (P < 0.05). The serum total protein content of rats in the WP and S-WP groups was significantly higher (P < 0.05) than that in SP group, and the SP group exhibited significantly lower (P < 0.05) serum blood glucose levels compared to the other two groups. The morphological data showed the rats in the S-WP group exhibited significantly longer villus height and shallower crypt depth (P < 0.05) than the SP group. The gut microbial diversity of the SP and S-WP groups exhibited a higher level than that of the WP group, and the microbiomes of the WP and S-WP groups are more similar compared to those of the SP group. The Arachidonic acid metabolism pathway is the most significant KEGG pathway when comparing the WP group and the SP group, as well as when comparing the SP group and the S-WP group. CONCLUSION The type of dietary proteins exerted a significant impact on the physiological indices of SD rats. Intake of S-WP diet can enhance energy provision, improve the body's digestion and absorption of nutrients, as well as promote intestinal tissue morphology. In addition, dietary protein plays a crucial role in modulating fecal metabolites by regulating the composition of the gut microbiota. Metabolomics analysis revealed that the changes in the levels of arachidonic acid metabolites and secondary bile acid metabolite induced by Clostridium_sensu_stricto_1 and [Eubacterium]_coprostanoligenes_group maybe the primarily causes of intestinal morphological differences.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weihong Meng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
- National Coarse Cereals Engineering Research Center, Daqing, China.
| |
Collapse
|
48
|
Wang W, Zhang J, Li Y, Su S, Wei L, Li L, Hu R. Lactoferrin alleviates chronic low‑grade inflammation response in obese mice by regulating intestinal flora. Mol Med Rep 2024; 30:138. [PMID: 38873986 PMCID: PMC11200051 DOI: 10.3892/mmr.2024.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic low‑grade inflammation defines obesity as a metabolic disorder. Alterations in the structure of gut flora are strongly associated with obesity. Lactoferrin (LF) has a biological function in regulating intestinal flora. The present study aimed to investigate the therapeutic and anti‑-inflammatory effects of LF in obese mice based on intestinal flora. A total of 30 C57BL/6 mice were divided into three groups consisting of 10 mice each. Subsequently, one group was fed a normal diet (Group K), another group was fed a high‑fat diet (Group M) and the remaining group switched from regular drinking to drinking 2% LF water (Group Z2) after 2 weeks of high‑fat diet; all mice were fed for 12 weeks. After the experiment, the mouse blood lipid and lipopolysaccharide levels, levels of inflammatory factors and intestinal tight junction proteins were assessed. Mouse stool samples were analyzed using 16S ribosomal RNA sequencing. The results showed that LF reduced serum total cholesterol, triglycerides and low‑density lipoprotein levels, elevated high‑density lipoprotein levels, suppressed metabolic endotoxemia and attenuated chronic low‑grade inflammatory responses in obese mice. In addition, LF upregulated zonula occludens‑1 and occludin protein expression levels in the intestine, thereby improving intestinal barrier integrity. LF altered the intestinal microbial structure of obese mice, reduced the ratio of Firmicutes and an elevated ratio of Bacteroidota, modifying the bacterial population to the increased relative abundance of Alistipes, Acidobacteriota, Psychrobacter and Bryobacter.
Collapse
Affiliation(s)
- Wuji Wang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Jing Zhang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Yanyi Li
- Nursing College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Si Su
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Lisi Wei
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Li Li
- Basic Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| | - Rilebagen Hu
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010100, P.R. China
| |
Collapse
|
49
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
50
|
Feng R, Wang Q, Yu T, Hu H, Wu G, Duan X, Jiang R, Xu Y, Huang Y. Quercetin ameliorates bone loss in OVX rats by modulating the intestinal flora-SCFAs-inflammatory signaling axis. Int Immunopharmacol 2024; 136:112341. [PMID: 38810309 DOI: 10.1016/j.intimp.2024.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Osteoporosis (OP) is a common systemic skeletal disorder characterized by an imbalance in bone homeostasis, involving increased osteoclastic bone formation and decreased osteoblastic bone resorption. Quercetin is a plant polyphenol that has been found to exhibit various biological activities, including antioxidant, anti-inflammatory, and antimicrobial effects. Previous studies have demonstrated its potential to improve postmenopausal OP, although the exact mechanism remains unclear. This study aims to investigate the anti-osteoporotic mechanism of quercetin based on the "intestinal flora - short-chain fatty acids (SCFAs) - inflammatory" signaling axis. METHODS In this study, we established an ovariectomized (OVX)-induced rat model, quercetin intervention and evaluated the effects on rats following antibiotic (ABX) treatment and fecal microbiota transplantation (FMT). After 6 weeks of intervention, the rats were euthanized, and samples from their femur, tibia, lumbar spine, serum, colon and feces were collected, and bone strength, intestinal flora structure, SCFAs levels and cytokine levels were assessed. RESULTS Quercetin modulates the intestinal flora by increasing potentially probiotic bacteria (i.e., Lactobacillales, Prevotellaceae, and Blautia) and decreasing potentially pathogenic bacteria (Desulfobacterota, Erysipelotrichales, Romboutsia, and Butyricoccaceae). It also increases SCFAs content and reduces colonic permeability by enhancing tight junction proteins (ZO-1, Occludin). Furthermore, quercetin lowers proinflammatory cytokine levels (LPS, IL-1β, and TNF-α), which enhances bone strength and prevents OVX-induced bone loss. CONCLUSIONS Quercetin may effectively reduce bone loss in OVX rats via the "intestinal flora - SCFAs - inflammatory" signaling pathway.
Collapse
Affiliation(s)
- Ruibing Feng
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China
| | - Qing Wang
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China
| | - Tiantian Yu
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Hao Hu
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Gang Wu
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Xiaofeng Duan
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China
| | - Ruixuan Jiang
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Yifan Xu
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China
| | - Yong Huang
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China.
| |
Collapse
|