1
|
Aki T, Funakoshi T, Unuma K. Thallium induces metallothionein gene expression in Huh-7 human hepatoma cells. Toxicology 2025; 514:154121. [PMID: 40101890 DOI: 10.1016/j.tox.2025.154121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Thallium (Tl) is one of the most toxic heavy metals and is found ubiquitously in the earth's crust. To investigate the cellular responses to and against Tl cytotoxicity, we conducted DNA microarray analysis using three human cell lines of different origins: SH-SY5Y (neuroblast-derived), HEK293T (embryonic kidney-derived), and Huh-7 (hepatoma-derived) cells. All of the ten genes that showed the highest inductions in Huh-7 cells treated with 60 µM Tl2SO4 for 72 hours are metallothionein (MT) genes. The induction of the MT genes appears specific to Huh-7 cells; increases of 50-140-fold in the ten MT genes were observed in Huh-7 cells, while the increases were less than 4-fold in HEK293T and SH-SY5Y cells by microarray analysis. Investigation of the pathway responsible for Tl2SO4-induced MT expression in Huh-7 cells revealed that the RNA interference-mediated forced downregulation of MTF1 transcription factor resulted in the suppression of Tl2SO4-induced MT gene expressions, but not Tl2SO4-induced cell death, suggesting that MTF1-mediated MT gene expression is insufficient to protect Huh-7 cells against death by Tl2SO4. In contrast, the knockdown of nrf1 worsened Tl2SO4-induced cell death without suppressing MT gene expressions. These results indicate that MT gene induction in response to Tl2SO4 is mediated at least in part by MTF1 in Huh-7 cells. Nevertheless, MT gene induction through MTF1 seems insufficient to prevent the cell death caused by Tl2SO4. Nrf1 appears to be involved in protection against Tl2SO4 toxicity through mechanisms other than MT gene induction.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Lien JC, Hsu SY, Chueh FS, Ma YS, Chu YL, Chou YC, Lai KC, Chen JC, Huang YP, Wu RSC. Newly Synthesized PW06 Induced Cell Apoptosis in Human Glioblastoma Multiforme GBM 8401 Cells Through Caspase- and Mitochondria-Dependent Pathways. J Biochem Mol Toxicol 2025; 39:e70264. [PMID: 40258141 DOI: 10.1002/jbt.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/08/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common, aggressive, and dangerous lethal tumor in the brain, which develops in adults. Currently, the efficiency of chemotherapy treatment for GBM patients is still unsatisfactory. PW06 was synthesized by Dr. Lien's laboratory (China Medical University, Taichung, Taiwan), and it was demonstrated to induce cancer cell apoptosis in human pancreatic carcinoma MIA PaCa-2 cells. However, the anti-cancer activities of PW06 on human GBM cancer cells are not reported. Thus, herein, PW06 was investigated on the anticancer activity on human glioblastoma multiforme GBM 8401 cells. Both PI exclusion and Annexin V/PI double staining methods were conducted for investing cell viability and apoptosis in GBM 8401 cells, respectively; they were analyzed with flow cytometer assay. Results showed that PW06 decreased total viable cell number with the process of cell apoptosis in GBM 8401 cells. Both productions of reactive oxygen species (ROS) and Ca2+, affect mitochondria membrane potential (ΔΨm) levels, and activities of caspase-3, -8, and -9 in GBM 8401 cells after exposure with PW06 were assayed by flow cytometer. Results showed that PW06 promoted ROS production and Ca2+ release from ER but lowered the levels of ΔΨm, and it also induced higher activities in caspase-3, -8, and -9 in GBM 8401 cells. Evaluation of protein expressions associated with apoptosis in GBM 8401 cells after being incubated with PW06 were conducted by Western blot analysis. Results show that PW06 increased GADD153, BiP, ATF-6α, ATF-6β, eIF2α, eIF2αpSer51, CHOP, and caspase-4, and they are associated with ER stress-associated protein expression. However, it induced higher pro-apoptotic proteins (Bax and Bad) expression and inhibited anti-apoptotic proteins (Bcl-2, Bcl-xl, and Mcl-1) expression, even promoting higher cleaved caspase-8, -9, and -3 protein expression and increased EndoG and AIF in GBM 8401 cells. Collectively, it may suggest PW06 exits anti-GBM activity to process cell apoptosis in the human GBM 8401 cells in vitro.
Collapse
Affiliation(s)
- Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, Kaohsiung Show Chwan Memorial Hospital, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yung-Lin Chu
- Department of Food Science, College of Agriculture, National Pingtung University of Science Technology, Pingtung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Department of Anesthesiology, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Li B, Yang WW, Yao BC, Chen QL, Zhao LL, Song YQ, Jiang N, Guo ZG. Liriodendrin alleviates myocardial ischemia‑reperfusion injury via partially attenuating apoptosis, inflammation and mitochondria damage in rats. Int J Mol Med 2025; 55:65. [PMID: 39981888 PMCID: PMC11875722 DOI: 10.3892/ijmm.2025.5506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
Myocardial ischemia‑reperfusion (I/R) injury may lead to dysfunction of signaling pathways related to cell apoptosis, inflammation, oxidative stress, and mitochondrial damage. The present study investigated the defensive effect of liriodendrin, as a natural product isolated from Linaria vulgaris, on reperfusion injury in rats and the underlying mechanisms involved in this process. An in vivo rat model of I/R constructed by ligation of the left anterior descending artery, as well as an in vitro model using H9C2 cells under hypoxic conditions, was established to assess the cardioprotective effects of liriodendrin. The biomarkers of myocardial damage, oxidative stress, and inflammatory response were measured with enzyme‑linked immunosorbent assay (ELISA). Gene and protein expression were detected by reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting. Mitochondrial morphology was observed by electron microscopy. The levels of creatine kinase isoenzymes and cardiac troponin T were significantly elevated in the I/R compared with the sham group; liriodendrin mitigated this elevation. The liriodendrin group exhibited a significant reduction in myocardial tissue apoptosis, as indicated by immunohistochemical staining and western blotting. Additionally, ELISA indicated that the I/R group had higher levels of reactive oxygen species (ROS) compared with the liriodendrin group, while the liriodendrin group had higher levels of superoxide dismutase. The in vitro experiments demonstrated that liriodendrin ameliorated hypoxia‑induced injury to mitochondria and suppressed the activation of nuclear factor-κB and B-cell lymphoma-2 associated X protein (Bax). Therefore, the present study demonstrated that liriodendrin impeded ROS‑associated metabolic disorders, maintained mitochondrial homeostasis and partially alleviated cardiomyocyte apoptosis by inhibiting the Bax signaling pathway.
Collapse
Affiliation(s)
- Bo Li
- Department of Intensive Care, Tianjin Chest Hospital, Tianjin 300001, P.R. China
| | - Wei-Wei Yang
- Department of Clinical Laboratory, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Maternity Hospital, Tianjin 300100, P.R. China
| | - Bo-Chen Yao
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300001, P.R. China
| | - Qing-Liang Chen
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300001, P.R. China
| | - Li-Li Zhao
- Tianjin Institute of Cardiovascular Diseases, Tianjin 300001, P.R. China
| | - Yan-Qiu Song
- Tianjin Institute of Cardiovascular Diseases, Tianjin 300001, P.R. China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300001, P.R. China
| | - Zhi-Gang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300001, P.R. China
| |
Collapse
|
4
|
Li M, Hu Y, Wu X, Tong J, Tao J, Tang A, Ji Y, Yao Y, Tao F, Liang C. Placental Ferroptosis May Be Involved in Prenatal Arsenic Exposure Induced Cognitive Impairment in Offspring. Biol Trace Elem Res 2025:10.1007/s12011-025-04525-0. [PMID: 39912999 DOI: 10.1007/s12011-025-04525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
The association between prenatal arsenic (As) exposure and offspring's cognition is still unclear, and the underlying etiology has also not been elucidated. Based on the Ma'anshan Birth Cohort (MABC) study in China, 1814 mother-child pairs were included in this study, and the association of As levels in cord serum with preschoolers' intelligence scores was explored. To validate the results from population study, in vivo models were adopted to observe the association between prenatal As exposure and spatial learning and memory abilities of mice offsprings. The As-exposure induced ferroptosis in the placenta of human beings as well as C57BL/6 J mice and HTR-8/SVneo cells was explored in order to clarify the potential cause of impairment of offspring's cognition related to As exposure, respectively. In the population study, we observed a significant inverse association between natural logarithm transformed (ln) As levels and preschoolers' intelligence scores, especially for the fluid reasoning index (FRI) [(β (95%CI): - 1.07 (- 1.98, - 0.16)] and working memory index (WMI) [β (95%CI): - 1.51 (- 2.76, - 0.25)]. Meanwhile, the data from in vivo models revealed that the learning and memory abilities of offspring mice decreased after prenatal As exposure. The occurrence of ferroptosis-like characteristics in the placenta and HTR-8/SVneo cells after As exposure was observed, accompanying with evident oxidative stress, iron accumulation, mitochondrial damage, and decreased protein levels of GPX4, xCT, and FTH1 (or FPN1). Notably, the ferroptosis-like alterations induced by NaAsO2 can be effectively alleviated by N-acetylcysteine (NAC) and ferrostatin-1 (Fer-1) treatment in HTR-8/SVneo cells, respectively. In conclusion, prenatal As exposure associates with impairment of offspring's cognition, and placental ferroptosis may be involved in the association. Further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Mengzhu Li
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan Hu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiajing Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Anni Tang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yanli Ji
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
Chen C, Chen B, Lin Y, He Q, Yang J, Xiao J, Pan Z, Li S, Li M, Wang F, Zhang H, Wang X, Zeng J, Chi W, Meng K, Wang H, Chen P. Cardamonin attenuates iron overload-induced osteoblast oxidative stress through the HIF-1α/ROS pathway. Int Immunopharmacol 2024; 142:112893. [PMID: 39217878 DOI: 10.1016/j.intimp.2024.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoporosis(OP) is a bone disease under research. Iron overload is a significant risk factor. Iron balance is crucial for bone metabolism and biochemical processes. When there is an excess of iron in the body, it tends to produce reactive oxygen species (ROS) which can cause oxidative damage to cells. The flavonoid compound, Cardamonin (CAR), possesses potent anti-inflammatory and anti-iron overload properties that can be beneficial in mitigating the risk of OP. PURPOSE This study investigates the potential therapeutic interventions and underlying mechanisms of CAR for treating OP in individuals with iron overload. METHODS The model of iron-overloaded mice was established by intraperitoneally injecting iron dextran(ID) into the mice. OP severity was evaluated with micro-CT and Hematoxylin-Eosin (HE) staining in vivo. In vitro, the iron-overloaded osteoblast model was induced by ferric ammonium citrate. Cell counting kit 8 assay to evaluate cell viability, Annexin V-FITC/PI assay to detect cell apoptosis. A range of cellular markers were detected, including the variation in mitochondrial membrane potential (MMP), levels of malondialdehyde (MDA), ROS, and lipid hydroperoxide (LPO). RESULTS CAR can reverse bone loss in iron overload-induced OP mouse models in vivo. CAR attenuates the impairment of iron overload on the activity and apoptosis of MC3T3-E1 cells as well as the accumulation of ROS and LPO activation via HIF-1α/ROS pathways. CONCLUSION CAR downregulating HIF-1α pathways prevents inhibition of iron overload-induced osteoblasts dysfunctional by attenuating ROS accumulation, reducing oxidative stress, promotes bone formation, and alleviates OP.
Collapse
Affiliation(s)
- Chuyi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Bohao Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yuewei Lin
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi He
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junzheng Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiacong Xiao
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhaofeng Pan
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Shaocong Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Miao Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Fanchen Wang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Hua Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Xintian Wang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiaxu Zeng
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Weijin Chi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Kai Meng
- Department of Orthopaedics Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China.
| | - Peng Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; Xinjiang Production and Construction Corps 13th Division Red Star Hospital, Hami 839000, PR China; The Affiliated Redstar Hospital of Shihezi University School of Medicine, 832000, PR China.
| |
Collapse
|
6
|
Xu J, Zhang B, Liu X, Du P, Wang W, Zhang C. Curcumin mitigates sodium fluoride toxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117372. [PMID: 39603217 DOI: 10.1016/j.ecoenv.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Fluoride, a naturally occurring element found in water, soil, food, and atmospheric precipitation, can lead to fluorosis and various health issues when consumed excessively. However, the mechanism of fluorosis is still under investigation. This study utilizes Caenorhabditis elegans as a model organism to investigate the effects of fluoride exposure on biological systems and to explore the mechanisms by which curcumin mitigates fluoride-induced toxicity. Three groups were established: a blank control, a sodium fluoride (NaF) exposure group (concentration 5 mmol/L), and a curcumin intervention group (concentration 25 μmol/L). Physiological parameters, lipofuscin levels, intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential, and mitochondrial copy numbers were measured to assess the effects of fluoride toxicity and curcumin protection. RNA-seq and qRT-PCR were utilized to investigate the molecular mechanisms underlying fluoride-induced damage and curcumin's mitigating effects. Results indicated that fluoride-exposed nematodes displayed physiological abnormalities, increased ROS production, higher lipofuscin levels, altered mitochondrial membrane potential and mitochondrial copy number, and activated MAPK signaling pathway genes. Curcumin exhibited protective effects on these parameters, suggesting its potential in preventing fluoride-induced harm by modulating oxidative stress and preserving mitochondrial function. This research enhances our understanding of the mechanisms of fluoride toxicity and highlights the potential benefits of curcumin.
Collapse
Affiliation(s)
- Jianing Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Rehabilitation, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Boning Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Pengyun Du
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chenggang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
7
|
Ouyang L, Li Q, Yang S, Yan L, Li J, Wan X, Cheng H, Li L, Liu P, Xie J, Du G, Zhou F, Feng C, Fan G. Interplay and long-lasting effects of maternal low-level Pb, Hg, and Cd exposures on offspring cognition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117315. [PMID: 39536555 DOI: 10.1016/j.ecoenv.2024.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Lead (Pb), mercury (Hg), and cadmium (Cd) are prevalent and persistent environmental contaminants, causing detrimental effects on millions of individuals worldwide. Our previous research demonstrated that early-life exposure to low-level Pb, Hg, and Cd mixtures may lead to cognitive impairments. However, the association and interaction among low levels of Pb, Hg, or Cd exposure remains unclear. In this study, a two-level full factorial design (5.481, 0.036, and 2.132 mg/L for Pb, Hg, and Cd respectively) was conducted to assess the interplay among maternal Pb, Hg, and Cd exposure on offspring cognition. Following exposure during pregnancy and lactation, a competitive absorption among Pb, Hg, and Cd was observed. Maternal exposure to each metal alone resulted in higher blood and brain concentrations of Pb, Hg, and Cd in offspring compared to co-exposure at equivalent levels. However, behavioral experiments conducted in the Morris water maze and novel object recognition test revealed maternal Pb, Hg, and Cd exposure synergistically impaired offspring's spatial cognition and recognition memory. Importantly, this dysfunction persisted into middle age even without exposure after adulthood. Moreover, the open field test and elevated plus maze indicated maternal low-level Pb, Hg, and Cd co-exposure triggered risk-taking behavior in weaning offspring, with a significant main effect for Pb exposure. No long-lasting effect on risk-taking behavior was detected in middle-aged offspring. Further investigation into molecular mechanisms showed that the dysregulation of corticosterone reaction and immune response might be the potential mechanism underlying Pb, Hg, and Cd co-exposure-induced cognitive impairments. Our study highlights the synergistic and long-lasting effects of multiple heavy metal exposures,underscoring the urgency to prevent exposure to metal mixtures among children and women of childbearing age.
Collapse
Affiliation(s)
- Lu Ouyang
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Qi Li
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Fankun Zhou
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
8
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2024:10.1007/s12011-024-04450-8. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Zhou J, Zheng X, Xi C, Tang X, Jiang Y, Xie M, Fu X. Cr(VI) induced hepatocyte apoptosis through the CTH/H 2S/Drp1 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175332. [PMID: 39117219 DOI: 10.1016/j.scitotenv.2024.175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a highly hazardous heavy metal with multiple toxic effects. Occupational studies indicate that its accumulation in humans can lead to liver damage. However, the exact mechanism underlying Cr(VI)-induced hepatotoxicity remains unknown. In this study, we explored the role of CTH/H2S/Drp1 pathway in Cr(VI)-induced oxidative stress, mitochondrial dysfunction, apoptosis, and liver injury. Our data showed that Cr(VI) triggered apoptosis, accompanied by H2S reduction, reactive oxygen species (ROS) accumulation, and mitochondrial dysfunction in both AML12 cells and mouse livers. Moreover, Cr(VI) reduced cystathionine γ-lyase (CTH) and dynamin related protein 1 (Drp1) S-sulfhydration levels, and elevated Drp1 phosphorylation levels at Serine 616, which promoted Drp1 mitochondrial translocation and Drp1-voltage-dependent anion channel 1 (VDAC1) interactions, ultimately leading to mitochondria-dependent apoptosis. Elevated hydrogen sulfide (H2S) levels eliminated Drp1 phosphorylation at Serine 616 by increasing Drp1 S-sulfhydration, thereby preventing Cr(VI)-induced Drp1-VDAC1 interaction and hepatotoxicity. These findings indicated that Cr(VI) induced mitochondrial apoptosis and hepatotoxicity by inhibiting CTH/H2S/Drp1 pathway and that targeting either CTH/H2S pathway or Drp1 S-sulfhydration could serve as a potential therapy for Cr(VI)-induced liver injury.
Collapse
Affiliation(s)
- Jie Zhou
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| | - Xin Zheng
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xinyi Tang
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Yinjie Jiang
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Minjuan Xie
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Xiaoyi Fu
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| |
Collapse
|
10
|
Zhang Y, Wang C, Jia R, Long H, Zhou J, Sun G, Wang Y, Zhang Z, Rong X, Jiang Y. Transfer from ciliate to zebrafish: Unveiling mechanisms and combined effects of microplastics and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135645. [PMID: 39191009 DOI: 10.1016/j.jhazmat.2024.135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The impacts and toxicological mechanisms of microplastics (MPs) or heavy metals on aquatic ecosystems have been the subject of extensive research and initial understanding. However, the combined toxicity of co-pollutants on organisms and cumulative toxic effects along the food chain are still underexplored. In this study, the ciliate protozoan Paramecium caudatum and zebrafish Danio rerio were used to represent the microbial loop and the higher trophic level, respectively, to illustrate the progressive exposure of MPs and cadmium (Cd2+). The findings indicate that MPs (ca. 1 ×105 items/L) containing with Cd2+ (below 0.1 µg/L) could permeate the bodies of zebrafish through trophic levels after primary ingestion by ciliates. This could cause adverse effects on zebrafish, including alterations in bioindicators (total sugar, triglycerides, lactate, and glycogen) associated with metabolism, delayed hepatic development, disruption of intestinal microbiota, DNA damage, inflammatory responses, and abnormal cellular apoptosis. In addition, the potential risks associated with the transfer of composite pollutants through the microbial loop into traditional food chain were examined, offering novel insights on the evaluation of the ecological risks associated with MPs. As observed, understanding the bioaccumulation and toxic effects of combined pollutants in zebrafish holds crucial implications for food safety and human health.
Collapse
Affiliation(s)
- Yan Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongan Long
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - YunLong Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Wang X, Wu X, Ma W, Wang Q, Chen Y, Zhao X, Lu Y. Antimony exposure affects oocyte quality and early embryo development via excessive mitochondrial oxidation and dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117084. [PMID: 39305772 DOI: 10.1016/j.ecoenv.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024]
Abstract
Antimony (Sb) is a metalloid, widely presents in the environment and associates with human health. In this study, we aimed to decipher whether Sb exposure is harmful to female reproduction and explore the underlying mechanisms. The ICR mice were exposed to 0, 5, 10, and 20 mg/kg acetate potassium Sb tartrate trihydrate by intraperitoneal injection for 10 days, then mouse oocytes were collected for further analysis. We first found a significant decrease in the proportion of MII-stage oocytes obtained from supernumerary ovulation in the fallopian tubes and early embryo development under Sb treatment. Then a series of tests showed Sb affects oocyte maturation by damaging the cytoskeleton of microtubule and actin. Moreover, the abnormal distribution of cortical granules and their component Ovastacin in oocytes, combined with reduced expression levels of Juno, affected sperm-oocyte binding and led to fertilization failure. Based on the sequencing results and experimental validation, it was demonstrated that Sb exposure impairs mitochondrial distribution and membrane potential, elevated levels of mitochondrial superoxide, finally caused energy supply deficits. Mitochondrial damage in oocytes after Sb exposure results in the excessive oxidative stress and early apoptosis. Taken together, these data suggest that Sb exposure decreases oocyte quality and female fertilization ability by impairing mitochondrial function and redox perturbation.
Collapse
Affiliation(s)
- Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Qingxin Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Yuqi Chen
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China.
| |
Collapse
|
12
|
Zhang Z, Wu H, Zhang A, Tan M, Yan S, Jiang D. Transfer of heavy metals along the food chain: A review on the pest control performance of insect natural enemies under heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135587. [PMID: 39186843 DOI: 10.1016/j.jhazmat.2024.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Forest conservation institute, Chinese Academy of Forestry, Harbin 150040, China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Singh D, Bist P, Choudhary S. Co-exposure to multiple heavy metals and metalloid induces dose dependent modulation in antioxidative, inflammatory, DNA damage and apoptic pathways progressing to renal dysfunction in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104537. [PMID: 39214194 DOI: 10.1016/j.etap.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Humans are exposed to a cocktail of heavy metal toxicants at the same time in the environment rather than single metal. The kidney is often a site of early damage due to high renal contact to these pollutants. This study was done to examine the cumulative toxic effect of multiple elements prevalent in the environment. To explore the effect of subchronic exposure to heavy metal mixture male and female Swiss albino mice were randomly divided into 14 groups and given varying doses [MPL (maximum permissible limit), 1X, 5X, 10X, 50X, or 100X] of the multiple metals and metalloid mixtures via drinking water for 8 weeks. It was determined that metal treatment caused increased metal load in renal tissue. The kidney function deteriorated in response to 10X, 50X, 100X concentration of the dosing mixture was found associated to oxidative stress, glomerular damage, necrosis, cell death and further exacerbation of the inflammation.
Collapse
Affiliation(s)
- Damini Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Priyanka Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
14
|
Barbosa DCS, Holanda VN, Lima EMA, Cavalcante MKA, Brelaz-de-Castro MCA, Chaves EJF, Rocha GB, Silva CJO, Oliveira RN, Figueiredo RCBQ. 1,2,4-Oxadiazole Derivatives: Physicochemical Properties, Antileishmanial Potential, Docking and Molecular Dynamic Simulations of Leishmania infantum Target Proteins. Molecules 2024; 29:4654. [PMID: 39407583 PMCID: PMC11478322 DOI: 10.3390/molecules29194654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Visceral leishmaniasis (VL), caused by protozoa of the genus Leishmania, remains a significant public health concern due to its potentially lethal nature if untreated. Current chemotherapy options are limited by severe toxicity and drug resistance. Derivatives of 1,2,4-oxadiazole have emerged as promising drug candidates due to their broad biological activity. This study investigated the effects of novel 1,2,4-oxadiazole derivatives (Ox1-Ox7) on Leishmania infantum, the etiological agent of VL. In silico predictions using SwissADME suggest that these compounds have high oral absorption and good bioavailability. Among them, Ox1 showed the most promise, with higher selectivity against promastigotes and lower cytotoxicity towards L929 fibroblasts and J774.G8 macrophages. Ox1 exhibited selectivity indices of 18.7 and 61.7 against L. infantum promastigotes and amastigotes, respectively, compared to peritoneal macrophages. Ultrastructural analyses revealed severe morphological damage in both parasite forms, leading to cell death. Additionally, Ox1 decreased the mitochondrial membrane potential in promastigotes, as shown by flow cytometry. Molecular docking and dynamic simulations indicated a strong affinity of Ox1 for the L. infantum CYP51 enzyme. Overall, Ox1 is a promising and effective compound against L. infantum.
Collapse
Affiliation(s)
- Deyzi C. S. Barbosa
- Department of Microbiology, Aggeu Magalhães Institute (IAM-FIOCRUZ), Recife 50740-465, PE, Brazil;
| | - Vanderlan N. Holanda
- Department of Biomedicine, University Center of Vitória de Santo Antão (UNIVISA), Vitória de Santo Antão 55610-050, PE, Brazil
| | - Elton M. A. Lima
- Center for Exact and Natural Sciences, Federal University of Pernambuco (UFPE), Recife 50740-560, PE, Brazil
| | - Marton K. A. Cavalcante
- Parasitology Laboratory, Academic Center of Vitória, Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil
- Department of Immunology, Aggeu Magalhães Institute (IAM-FIOCRUZ), Recife 50740-465, PE, Brazil
| | - Maria Carolina A. Brelaz-de-Castro
- Parasitology Laboratory, Academic Center of Vitória, Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil
- Department of Immunology, Aggeu Magalhães Institute (IAM-FIOCRUZ), Recife 50740-465, PE, Brazil
| | - Elton J. F. Chaves
- Department of Chemistry, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Gerd B. Rocha
- Department of Chemistry, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Carla J. O. Silva
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Recife 50740-540, PE, Brazil;
| | - Ronaldo N. Oliveira
- Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, PE, Brazil;
| | | |
Collapse
|
15
|
Luo F, Bi J, Liu Q, Fan G, Fang Q, Qin X, Zhang X, Huang X, Li H, Guo W, Liu B, Yan L, Mei S, Wang Y, Song L. Association of exposure to multiple metals with hemoglobin levels in Chinese children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173954. [PMID: 38876334 DOI: 10.1016/j.scitotenv.2024.173954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Previous studies have linked single metal to hemoglobin levels in children and adolescents; however, studies with regards to metal mixtures are still limited. OBJECTIVE We aimed to investigate the associations of single metal and metal mixtures with hemoglobin levels in children and adolescents. METHODS We conducted a cross-sectional study of 2064 children and adolescents aged 6 to 19 years in Liuzhou, China in 2018. The concentrations of 15 metals in urine were determined by inductively coupled plasma mass spectrometry. Generalized linear regression and weighted quantile sum (WQS) regression were used to estimate the associations of single metal and metal mixtures with hemoglobin levels, respectively. RESULTS The multivariable-adjusted β-values for the highest versus the first quartiles of urinary metal concentrations were - 1.57 (95 % confidence interval [CI]: -3.01, -0.13) for chromium, -2.47 (95 % CI: -3.90, -1.05) for nickel and 1.88 (95 % CI: 0.49, 3.28) for copper. In addition, we found a significant negative association between the WQS index and hemoglobin levels (adjusted β = -0.93, 95 % CI: -1.69, -0.19), with nickel contributing the most to the WQS index at 59.0 %. Subgroup analyses showed that exposure to urinary nickel or metal mixtures were associated with decreased hemoglobin levels in adolescents, but not in children (all Pinteration < 0.001). CONCLUSION Among children and adolescents, urinary chromium and nickel concentrations were associated with decreased hemoglobin levels, while copper showed a positive relationship. Moreover, a negative association was observed between exposure to metal mixtures and hemoglobin levels. These findings need to be further validated in prospective studies.
Collapse
Affiliation(s)
- Fei Luo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xukuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaofeng Huang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Heng Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wenwen Guo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Binghai Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lianyan Yan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
16
|
Kurmangaliyeva S, Baktikulova K, Tkachenko V, Seitkhanova B, Shapambayev N, Rakhimzhanova F, Almagambetova A, Kurmangaliyev K. An Overview of Hexavalent Chromium-Induced Necroptosis, Pyroptosis, and Ferroptosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04376-1. [PMID: 39287767 DOI: 10.1007/s12011-024-04376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Heavy metals are common environmental industrial pollutants. Due to anthropogenic activity, chromium, especially its hexavalent form [Cr(VI)], is a widespread environmental contaminant that poses a threat to human health. In this review paper, we summarize the currently reported molecular mechanisms involved in chromium toxicity with a focus on the induction of pro-inflammatory non-apoptotic cell death pathways such as necroptosis, pyroptosis, and ferroptosis. The review highlights the ability of chromium to induce necroptosis, pyroptosis, and ferroptosis revealing the signaling pathways involved. Cr(VI) can induce RIPK1/RIPK3-dependent necroptosis both in vitro and in vivo. Chromium toxicity is associated with pyroptotic NLRP3 inflammasome/caspase-1/gasdermin D-dependent secretion of IL-1β and IL-18. Furthermore, this review emphasizes the role of redox imbalance and intracellular iron accumulation in Cr(VI)-induced ferroptosis. Of note, the crosstalk between the investigated lethal subroutines in chromium-induced toxicity is primarily mediated by reactive oxygen species (ROS), which are suggested to act as a rheostat determining the cell death pathway in cells exposed to chromium. The current study provides novel insights into the pro-inflammatory effects of chromium, since necroptosis, pyroptosis, and ferroptosis affect inflammation owing to their immunogenic properties linked primarily with damage-associated molecular patterns. Inhibition of these non-apoptotic lethal subroutines can be considered a therapeutic strategy to reduce the toxicity of heavy metals, including chromium.
Collapse
Affiliation(s)
- Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kristina Baktikulova
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan.
| | - Viktoriya Tkachenko
- State Institution "Republican Scientific and Practical Centre of Sports, " 8 Narochanskaya St, Minsk, Republic of Belarus
| | - Bibigul Seitkhanova
- Department of Microbiology, Virology and Immunology, South Kazakhstan Medical Academy, Al-Farabi Sq, Shymkent, Republic of Kazakhstan
| | - Nasriddin Shapambayev
- Department of General Practitioner - 1, Khoja Akhmet Yasawi International Kazakh-Turkish University, 7/7 Baitursynov St, Shymkent, Republic of Kazakhstan
| | - Farida Rakhimzhanova
- Department of Microbiology, NCJSC "Semey Medical University, " 103 Abay St, Semey, Republic of Kazakhstan
| | - Altyn Almagambetova
- Department of Phthisiology and Dermatovenerology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kairat Kurmangaliyev
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| |
Collapse
|
17
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
18
|
Osmanlıoğlu HÖ, Nazıroğlu M. Resveratrol Modulates Diabetes-Induced Neuropathic Pain, Apoptosis, and Oxidative Neurotoxicity in Mice Through TRPV4 Channel Inhibition. Mol Neurobiol 2024; 61:7269-7286. [PMID: 38976129 PMCID: PMC11339089 DOI: 10.1007/s12035-024-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is caused by several factors, including reactive free oxygen radicals (ROS)-induced excessive Ca2+ influx. Transient receptor potential (TRP) vanilloid 4 (TRPV4) is a member of the Ca2+-permeable TRP superfamily. Resveratrol (RESV) has been extensively utilized in TRP channel regulation due to its pharmacological properties, which include antioxidant and TRP inhibitory effects. The protective function of RESV and the contribution of TRPV4 to streptozotocin (STZ)-induced neuropathic pain in mice are still unclear. Here, we evaluated the effects of RESV through the modulation of TRPV4 on Ca2+ influx, ROS-mediated pain, apoptosis, and oxidative damage in the mouse dorsal root ganglion (DRGs). From the 32 mice, four groups were induced: control, RESV, STZ, and STZ + RESV. We found that the injection of RESV reduced the changes caused by the STZ-induced stimulation of TRPV4, which in turn increased mechanical/thermal neuropathic pain, cytosolic Ca2+ influx, TRPV4 current density, oxidants (lipid peroxidation, mitochondrial ROS, and cytosolic ROS), and apoptotic markers (caspase-3, -8, and -9). The RESV injection also increased the STZ-mediated reduction of viability of DRG and the amounts of glutathione, glutathione peroxidase, vitamin A, β-carotene, and vitamin E in the brain, erythrocytes, plasma, liver, and kidney. All of these findings suggest that TRPV4 stimulation generates oxidative neurotoxicity, neuropathic pain, and apoptosis in the STZ-induced diabetic mice. On the other hand, neurotoxicity and apoptosis were reduced due to the downregulation of TRPV4 carried out through the RESV injection.
Collapse
Affiliation(s)
- Haci Ömer Osmanlıoğlu
- Department of Anesthesiology and Reanimation, Medical Faculty, Suleyman Demirel University, 32260, Isparta, Türkiye
| | - Mustafa Nazıroğlu
- Neuroscience Application and Research Center (NOROBAM), Suleyman Demirel University, Isparta, Türkiye.
- BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, and Industry Ltd, Isparta, Türkiye.
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Türkiye.
| |
Collapse
|
19
|
Sirotkin AV, Fabová Z, Loncová B, Bauerová M, Harrath AH. The adipokines progranulin and omentin can directly regulate feline ovarian granulosa cell functions. Res Vet Sci 2024; 175:105321. [PMID: 38843689 DOI: 10.1016/j.rvsc.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/17/2024]
Abstract
The aim of the present study was to determine the effects of the adipokines progranulin and omentin on the basic functions of feline ovarian cells. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the proliferation (accumulation of PCNA and cyclin B1), apoptosis (accumulation of Bax and caspase 3) and progesterone release of cultured feline ovarian granulosa cells by quantitative immunocytochemistry and enzyme-linked immunosorbent assays (ELISAs). Both progranulin and omentin increased cell proliferation and decreased apoptosis. Both progranulin and omentin promoted progesterone release. The present findings demonstrate that the adipokines progranulin and omentin can directly regulate basic feline ovarian cell functions.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia.
| | - Zuzana Fabová
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Barbora Loncová
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Maria Bauerová
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
21
|
Scatozza F, Giardina MM, Valente C, Vigiano Benedetti V, Facchiano A. Anti-Melanoma Effects of Miconazole: Investigating the Mitochondria Involvement. Int J Mol Sci 2024; 25:3589. [PMID: 38612401 PMCID: PMC11011910 DOI: 10.3390/ijms25073589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.
Collapse
|
22
|
Ma J, Li J, Wei S, Ge Q, Wu J, Xue L, Qi Y, Xu S, Jin H, Gao C, Lin J. Delivery of dental pulp stem cells by an injectable ROS-responsive hydrogel promotes temporomandibular joint cartilage repair via enhancing anti-apoptosis and regulating microenvironment. J Tissue Eng 2024; 15:20417314241260436. [PMID: 38911101 PMCID: PMC11193934 DOI: 10.1177/20417314241260436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Temporomandibular joint (TMJ) cartilage repair poses a considerable clinical challenge, and tissue engineering has emerged as a promising solution. In this study, we developed an injectable reactive oxygen species (ROS)-responsive multifunctional hydrogel (RDGel) to encapsulate dental pulp stem cells (DPSCs/RDGel in short) for the targeted repair of condylar cartilage defect. The DPSCs/RDGel composite exhibited a synergistic effect in the elimination of TMJ OA (osteoarthritis) inflammation via the interaction between the hydrogel component and the DPSCs. We first demonstrated the applicability and biocompatibility of RDGel. RDGel encapsulation could enhance the anti-apoptotic ability of DPSCs by inhibiting P38/P53 mitochondrial apoptotic signal in vitro. We also proved that the utilization of DPSCs/RDGel composite effectively enhanced the expression of TMJOA cartilage matrix and promoted subchondral bone structure in vivo. Subsequently, we observed the synergistic improvement of DPSCs/RDGel composite on the oxidative stress microenvironment of TMJOA and its regulation and promotion of M2 polarization, thereby confirmed that M2 macrophages further promoted the condylar cartilage repair of DPSCs. This is the first time application of DPSCs/RDGel composite for the targeted repair of TMJOA condylar cartilage defects, presenting a novel and promising avenue for cell-based therapy.
Collapse
Affiliation(s)
- Jinjin Ma
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Li
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shibo Wei
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qinwen Ge
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jie Wu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leilei Xue
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yezi Qi
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyi Xu
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Changyou Gao
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jun Lin
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|