1
|
Bridonneau C, Bourgoin P, Debord C, Fernandez M, Launay E, Joram N, Chenouard A. Association Between Postoperative Lymphocyte Count and the Occurrence of Infections After Pediatric Cardiac Surgery With Cardiopulmonary Bypass. Pediatr Infect Dis J 2025; 44:399-404. [PMID: 39637301 DOI: 10.1097/inf.0000000000004654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The objective of this study was to evaluate the association between the minimal count of lymphocyte (Ly_Min) after cardiac surgery with cardiopulmonary bypass and the occurrence of infections within the first 30 postoperative days (POD). METHODS From a local European Congenital Heart Surgeons Association (ECHSA) database, all cardiac surgeries with cardiopulmonary bypass in children under 18 years old between January 2014 and December 2021 were eligible. Infections occurring within 30 POD were prospectively recorded according to ECHSA definitions, and classified into sepsis, pneumonia, wound infection, mediastinitis or endocarditis. For each surgery, Ly_Min was collected during the first 2 POD and the optimal threshold for predicting infection was chosen using receiver operating characteristic curve analysis. Univariate and multivariate logistic regression analyses were performed to identify variables associated with the risk of infection. RESULTS Of 1428 surgeries conducted over the 8-year period, 111 (8%) were complicated by at least 1 infection, including pneumonia (n = 45), wound infection (n = 41), sepsis (n = 24), mediastinitis (n = 20) and endocarditis (n = 3). Mean Ly_Min in the first 2 POD was lower in the infected group compared with the noninfected group (1.32 ± 0.81 vs. 1.81 ± 1.05 × 10 9 /L, P < 0.001). After adjusting for confounders, Ly_Min <1.105 × 10 9 /L within the first 1 POD was independently associated with an increased risk of postoperative infections (adjusted odds ratio = 1.75, 95% confidence interval: 1.10-2.79, P = 0.019). CONCLUSIONS In this large single-center cohort of pediatric cardiac surgeries, Ly_Min during the first 2 POD was associated with the development of infections within 30 days after cardiopulmonary bypass.
Collapse
Affiliation(s)
| | - Pierre Bourgoin
- From the Department of Pediatric Intensive Care
- Department of Anesthesiology
| | - Camille Debord
- Department of Hematology Biology, University Hospital, Nantes, France
| | | | | | | | | |
Collapse
|
2
|
Bhat A, Alsadhan N, Alsadhan N, Alnowaiser D, Gattoo I, Hussain M, Alotbi R, Alruwaili S, AlGoraini Y. Procalcitonin and C-reactive protein as early diagnostic markers of sepsis or septic shock in children who presented with fever to the pediatric emergency department at a tertiary hospital, in Riyadh, Saudi Arabia. Int J Emerg Med 2025; 18:87. [PMID: 40301742 PMCID: PMC12039137 DOI: 10.1186/s12245-025-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Sepsis is a leading cause of morbidity and mortality in children, requiring early recognition for timely intervention. Traditional biomarkers like C-reactive protein (CRP) are widely used but have limitations in specificity and early detection. Procalcitonin (PCT) has emerged as a promising alternative for differentiating bacterial infections from viral illnesses. This study aims to evaluate the diagnostic performance of PCT and CRP in identifying sepsis among febrile pediatric patients presenting to the emergency department (ED). METHODS We conducted a retrospective, observational study at a tertiary hospital from January 2022 to January 2024. A total of 208 children aged 1 month to 14 years with fever (≥ 38 °C) were included. Patients were categorized into sepsis (n = 84) and non-sepsis (n = 124) groups based on clinical assessment and blood culture results. Biomarker levels, patient demographics, clinical outcomes, and disposition were analyzed. RESULTS Elevated PCT and CRP levels were significantly associated with sepsis. PCT demonstrated earlier elevation compared to CRP, correlating with higher rates of PICU admission (34.7% vs. 11.1%, p < 0.001). Blood culture positivity was a strong predictor of severe sepsis (OR: 9.369, p < 0.0003). Logistic regression identified high-grade fever, chronic disease, and viral co-infections as additional risk factors. CONCLUSION PCT is a superior early biomarker for detecting invasive bacterial infections compared to CRP. Incorporating PCT in sepsis protocols can improve early diagnosis, guiding prompt and appropriate management in pediatric ED settings.
Collapse
Affiliation(s)
- Altaf Bhat
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nehal Alsadhan
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Norah Alsadhan
- Emergency Department, Prince Mohammed Bin Abdulziz Hospital, Riyadh, Saudi Arabia, Saudi Arabia
| | - Dimah Alnowaiser
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Imran Gattoo
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Hussain
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rafa Alotbi
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sattam Alruwaili
- Pediatric Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yara AlGoraini
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Zhang SZ, Ding HY, Shen YM, Shao B, Gu YY, Chen QH, Zhang HD, Pei YH, Jiang H. Harness machine learning for multiple prognoses prediction in sepsis patients: evidence from the MIMIC-IV database. BMC Med Inform Decis Mak 2025; 25:152. [PMID: 40165185 PMCID: PMC11959728 DOI: 10.1186/s12911-025-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Sepsis, a severe systemic response to infection, frequently results in adverse outcomes, underscoring the urgency for prompt and accurate prognostic tools. Machine learning methods such as logistic regression, random forests, and CatBoost, have shown potential in early sepsis prediction. The study aimed to create and verify a machine learning model capable of early prognostic identification of patients with sepsis in intensive care units (ICUs). METHODS Patients adhering to inclusion and exclusion criteria from the MIMIC-IV v2.2 database were divided into a training set and a validation set in a 7:3 ratio. Initially, we employed difference analysis to assess the significance of each variable and subsequently screened relevant features with multinomial logistic regression analysis. Logistic regression, random forest, and CatBoost algorithms were used to construct machine learning models to predict rapid recovery, chronic critical illness, and mortality in sepsis. The models were compared through several evaluation indexes including precision, accuracy, recall, F1 score, and the area under the receiver-operating-characteristic curve(AUC) in the validation set to select the optimal model. The best model was visualized and interpreted utilizing the Shapley Additive explanations method. RESULTS 13174 sepsis patients were included. Post the screening process,26 clinical features were obtained to develop three distinct machine learning models. CatBoost exhibited superior performance among the three models with a weighted AUC of 0.771. The prognosis with the highest predictive performance was mortality (AUC = 0.804), followed by the prognoses of rapid recovery (AUC = 0.773) and chronic critical illness(AUC = 0.737). Urine output, respiratory rate, and temperature were the top three important features for the whole model prediction. CONCLUSION The machine learning model developed leveraging the CatBoost algorithm demonstrates the latent capacity to identify sepsis prognosis early. It also suggests that interventions targeting factors such as urine output, respiratory status, and temperature in the early stage may potentially alter the adverse prognosis of sepsis patients. However, the model will still require further external validation in the future.
Collapse
Affiliation(s)
- Su-Zhen Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Hai-Yi Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yi-Ming Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Bing Shao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Gu
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu Province, China
| | - Qiu-Hua Chen
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu Province, China
| | - Hai-Dong Zhang
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu Province, China
| | - Ying-Hao Pei
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu Province, China.
| | - Hua Jiang
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Han Zhong Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Li Y, Ren S, Zhou S. Advances in sepsis research: Insights into signaling pathways, organ failure, and emerging intervention strategies. Exp Mol Pathol 2025; 142:104963. [PMID: 40139086 DOI: 10.1016/j.yexmp.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sepsis is a complex syndrome resulting from an aberrant host response to infection. A hallmark of sepsis is the failure of the immune system to restore balance, characterized by hyperinflammation or immunosuppression. However, the net effect of immune system imbalance and the clinical manifestations are highly heterogeneous among patients. In recent years, research interest has shifted from focusing on the pathogenicity of microorganisms to the molecular mechanisms of host responses which is also associated with biomarkers that can help early diagnose sepsis and guide treatment decisions. Despite significant advancements in medical science, sepsis remains a major challenge in healthcare, contributing to substantial morbidity and mortality worldwide. Further research is needed to improve our understanding of this condition and develop novel therapies to improve outcomes for patients with sepsis. This review explores the related signal pathways of sepsis and underscores recent advancements in understanding its mechanisms. Exploration of diverse biomarkers and the emerging concept of sepsis endotypes offer promising avenues for precision therapy in the future.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Siying Ren
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Shen'ao Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
5
|
Xiong D, Geng H, Lv X, Wang S, Jia L. Inflammatory Response and Anti-Inflammatory Treatment in Persistent Inflammation-Immunosuppression-Catabolism Syndrome (PICS). J Inflamm Res 2025; 18:2267-2281. [PMID: 39968098 PMCID: PMC11834740 DOI: 10.2147/jir.s504694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Many patients now survive their initial critical events but subsequently develop chronic critical illness (CCI). CCI is characterized by prolonged hospital stays, poor outcomes, and significant long-term mortality. The incidence of chronic critical illness (CCI) is estimated to be 34.4 cases per 100,000 population. The incidence varies significantly with age, peaking at 82.1 cases per 100,000 in individuals aged 75-79. The one-year mortality rate among CCI patients approaches 50%. A subset of these patients enters a state of persistent inflammation, immune suppression, and ongoing catabolism, a condition termed persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. In recent years, some progress has been made in treating PICS. For instance, recent advancements such as the persistent expansion of MDSCs (myeloid-derived suppressor cells) and the mechanisms underlying intestinal barrier dysfunction have provided new directions for therapeutic strategies, as discussed below. Persistent inflammation, a key feature of PICS, has received comparatively little research attention. In this review, we examine the potential pathophysiological changes and molecular mechanisms underlying persistent inflammation and its role in PICS. We also discuss current therapies about inflammation and offer recommendations for managing patients with PICS.
Collapse
Affiliation(s)
- Dacheng Xiong
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huixian Geng
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xuechun Lv
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuqi Wang
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lijing Jia
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
6
|
de Moura ELB, Pereira RW. Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. J Clin Med 2024; 13:7038. [PMID: 39685497 DOI: 10.3390/jcm13237038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
Sepsis is a pervasive condition that affects individuals of all ages, with significant social and economic consequences. The early diagnosis of sepsis is fundamental for establishing appropriate treatment and is based on warning scores and clinical characteristics, with positive microbiological cultures being the gold standard. Research has yet to identify a single biomarker to meet this diagnostic demand. Presepsin is a molecule that has the potential as a biomarker for diagnosing sepsis. In this paper, we present a narrative review of the diagnostic and prognostic performance of presepsin in different age groups. Given its particularities, it is identified that presepsin is a potential biomarker for sepsis at all stages of life.
Collapse
Affiliation(s)
- Edmilson Leal Bastos de Moura
- Health Sciences Doctoral Program, University of Brasília (UnB), Brasilia 70910-900, Distrito Federal, Brazil
- School of Health Sciences, Distrito Federal University (UnDF), Brasilia 70710-907, Distrito Federal, Brazil
| | - Rinaldo Wellerson Pereira
- Health Sciences Doctoral Program, University of Brasília (UnB), Brasilia 70910-900, Distrito Federal, Brazil
- Genomic Sciences and Biotechnology Graduate Program, Catholic University of Brasilia, Brasilia 71966-700, Distrito Federal, Brazil
| |
Collapse
|
7
|
Shen L, Tao C, Zhu K, Cai L, Yang S, Jin J, Ren Y, Xiao Y, Zhang Y, Lai D, Tou J. Key platelet genes play important roles in predicting the prognosis of sepsis. Sci Rep 2024; 14:23530. [PMID: 39384856 PMCID: PMC11464784 DOI: 10.1038/s41598-024-74052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Sepsis is a life-threatening organ malfunction induced by an imbalanced immunological reaction to infection in the host. Many studies have utilized traditional RNA sequencing (RNA-seq) data to identify important biological targets to predict sepsis prognosis. However, alterations in core cells and functional status cannot be effectively detected in sepsis patients. The goal of this study was to identify key cells through single-cell RNA-seq (scRNA-seq), and combine bulk RNA-seq data and multiple algorithm analysis to construct a stable prognostic model for sepsis. The scRNA-seq and bulk RNA-seq data from sepsis patients were collected from the Gene Expression Omnibus (GEO) database. The R package "Seurat" was used to process the scRNA-seq data. Cell communication was investigated using the R package "CellChat". The pseudo-time of the cells was calculated using the R package "monocle". The R package "limma" was used to identify differentially expressed genes (DEGs) between the sepsis group and the control group. Weighted gene correlation network analysis (WGCNA) was used to identify critical modules. Eight kinds of machine learning and 90 algorithm combinations were used to construct the prognostic model for sepsis. Quantitative real-time PCR (qRT‒PCR) was performed to determine the expression of key genes in the cecal ligation and puncture (CLP)-induced sepsis mouse model. The immunological status and related properties of DEGs were then investigated in the high- and low-risk groups delineated by the model. By combining the scRNA-seq data from nine samples, 13 clusters and 9 cell types were identified. CellChat analysis revealed that the number and strength of interactions between platelets and a variety of cells increased. We identified key platelet genes from the scRNA-seq data and combined these genes and the results of differential analysis and WGCNA of the bulk RNA-seq data. After univariate Cox regression analysis, we calculated the Cindex of the model constructed by the combination of 90 algorithms, and we finally determined the "CoxBoost + Lasso" combination. Multivariate Cox regression was used to construct the final prognostic model. The qRT-PCR results revealed significant differences in five key prognostic genes between the CLP and sham groups. The data was classified into high- and low-risk groups based on the model score. The high-risk group had a poorer survival rate and less immune infiltration. We identified the importance of platelets in sepsis patients through scRNA-seq, and established prognostic models with key genes that were identified via scRNA-seq combined with bulk RNA-seq analysis. The results of this model were closely associated with patient survival rates and immunological status and this model is useful for the prognostic management of sepsis.
Collapse
Affiliation(s)
- Leiting Shen
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chang Tao
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Linghao Cai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Sisi Yang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingyi Jin
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yichao Ren
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Xiao
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuebai Zhang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Jinfa Tou
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
8
|
Krieg B, Dayton M, Alfonso N. Re-revision Extensor Mechanism Reconstruction Because of Nonunion and Tendon Failure After Total Knee Arthroplasty. Orthopedics 2024; 47:e273-e276. [PMID: 39163604 DOI: 10.3928/01477447-20240809-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Extensor mechanism (EM) disruption after total knee arthroplasty (TKA) is devastating, especially in cases of re-rupture. A 67-year-old man with diabetes had patellar tendon rupture after revision TKA and then had migration of the bone block after Achilles tendon allograft with bone block (ATBB) augmentation with cerclage. A third reconstruction was performed with open reduction and internal fixation and high-strength braided suture augmentation. Five months postoperatively, the patient had regained full range of motion with intact EM and hardware. The risk of re-rupture is high in ATBB, and the primary issues in this case were nonunion and tendinous compromise. A construct that encompasses compression and buttressing of the bone block with tendon augmentation potentially addresses the risks of recurrent EM rupture in more complex cases. [Orthopedics. 2024;47(5):e273-e276.].
Collapse
|
9
|
Bodinier M, Peronnet E, Llitjos JF, Kreitmann L, Brengel-Pesce K, Rimmelé T, Fleurie A, Textoris J, Venet F, Maucort-Boulch D, Monneret G. Integrated clustering of multiple immune marker trajectories reveals different immunotypes in severely injured patients. Crit Care 2024; 28:240. [PMID: 39010113 PMCID: PMC11247757 DOI: 10.1186/s13054-024-04990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The immune response of critically ill patients, such as those with sepsis, severe trauma, or major surgery, is heterogeneous and dynamic, but its characterization and impact on outcomes are poorly understood. Until now, the primary challenge in advancing our understanding of the disease has been to concurrently address both multiparametric and temporal aspects. METHODS We used a clustering method to identify distinct groups of patients, based on various immune marker trajectories during the first week after admission to ICU. In 339 severely injured patients, we initially longitudinally clustered common biomarkers (both soluble and cellular parameters), whose variations are well-established during the immunosuppressive phase of sepsis. We then applied this multi-trajectory clustering using markers composed of whole blood immune-related mRNA. RESULTS We found that both sets of markers revealed two immunotypes, one of which was associated with worse outcomes, such as increased risk of hospital-acquired infection and mortality, and prolonged hospital stays. This immunotype showed signs of both hyperinflammation and immunosuppression, which persisted over time. CONCLUSION Our study suggest that the immune system of critically ill patients can be characterized by two distinct longitudinal immunotypes, one of which included patients with a persistently dysregulated and impaired immune response. This work confirms the relevance of such methodology to stratify patients and pave the way for further studies using markers indicative of potential immunomodulatory drug targets.
Collapse
Affiliation(s)
- Maxime Bodinier
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Estelle Peronnet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Jean-François Llitjos
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Anesthesiology and Critical Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003, Lyon, France
| | - Louis Kreitmann
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Karen Brengel-Pesce
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Thomas Rimmelé
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Anesthesiology and Critical Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003, Lyon, France
| | - Aurore Fleurie
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Julien Textoris
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Anesthesiology and Critical Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003, Lyon, France
| | - Fabienne Venet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude, Bernard-Lyon 1, Lyon, France
| | - Delphine Maucort-Boulch
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Équipe Biostatistique-Santé, Laboratoire de Biométrie Et Biologie Évolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France.
| |
Collapse
|
10
|
Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol 2024; 15:1434688. [PMID: 39040114 PMCID: PMC11260823 DOI: 10.3389/fimmu.2024.1434688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Sepsis is described as a life-threatening organ dysfunction and a heterogeneous syndrome that is a leading cause of morbidity and mortality in intensive care settings. Severe sepsis could incite an uncontrollable surge of inflammatory cytokines, and the host immune system's immunosuppression could respond to counter excessive inflammatory responses, characterized by the accumulated anti-inflammatory cytokines, impaired function of immune cells, over-proliferation of myeloid-derived suppressor cells and regulatory T cells, depletion of immune effector cells by different means of death, etc. In this review, we delve into the underlying pathological mechanisms of sepsis, emphasizing both the hyperinflammatory phase and the associated immunosuppression. We offer an in-depth exploration of the critical mechanisms underlying sepsis, spanning from individual immune cells to a holistic organ perspective, and further down to the epigenetic and metabolic reprogramming. Furthermore, we outline the strengths of artificial intelligence in analyzing extensive datasets pertaining to septic patients, showcasing how classifiers trained on various clinical data sources can identify distinct sepsis phenotypes and thus to guide personalized therapy strategies for the management of sepsis. Additionally, we provide a comprehensive summary of recent, reliable biomarkers for hyperinflammatory and immunosuppressive states, facilitating more precise and expedited diagnosis of sepsis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Richardson L, Graham JK. Embracing a New Evidence-Based Thought Paradigm of Sepsis. CLIN NURSE SPEC 2024; 38:171-174. [PMID: 38889057 DOI: 10.1097/nur.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT In 1991, sepsis was first defined by the Society of Critical Care Medicine as the systemic inflammatory response syndrome, in the presence of infection. Systemic inflammatory response syndrome is an adaptive host response to infection, as well as to other insults like trauma and stress. Research pertaining to sepsis was guided by this adaptive definition for 25 years. After established guidelines for sepsis management were challenged in 2014, sepsis was redefined in 2016 as a dysregulated host response to infection. However, there still remains no consensus on which immunologic or metabolic mechanisms have become dysregulated. We sought to examine sepsis literature published after the 2016 consensus definition and compare it to the original systemic inflammatory response syndrome paradigm proposed in 1991. The purpose of this intensive analysis was to recommend a new sepsis archetype, with consideration to dysregulated immunologic and metabolic mechanisms that have recently been identified in sepsis. Nurses and other clinicians must shift their thought paradigm toward an evidence-based dysregulated model, in order to improve on sepsis recognition and management.
Collapse
Affiliation(s)
- Lindsay Richardson
- Author Affiliations: Grad Student (Ms Richardson) and Assistant Professor (Dr Graham), San Diego State University; and Clinical Nurse Specialist (Dr Graham), Sharp HealthCare, San Diego, California
| | | |
Collapse
|
12
|
Tang Y, Chen L, Yang J, Zhang S, Jin J, Wei Y. Gut microbes improve prognosis of Klebsiella pneumoniae pulmonary infection through the lung-gut axis. Front Cell Infect Microbiol 2024; 14:1392376. [PMID: 38903943 PMCID: PMC11188585 DOI: 10.3389/fcimb.2024.1392376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Background The gut microbiota plays a vital role in the development of sepsis and in protecting against pneumonia. Previous studies have demonstrated the existence of the gut-lung axis and the interaction between the gut and the lung, which is related to the prognosis of critically ill patients; however, most of these studies focused on chronic lung diseases and influenza virus infections. The purpose of this study was to investigate the effect of faecal microbiota transplantation (FMT) on Klebsiella pneumoniae-related pulmonary infection via the gut-lung axis and to compare the effects of FMT with those of traditional antibiotics to identify new therapeutic strategies. Methods We divided the mice into six groups: the blank control (PBS), pneumonia-derived sepsis (KP), pneumonia-derived sepsis + antibiotic (KP + PIP), pneumonia-derived sepsis + faecal microbiota transplantation(KP + FMT), antibiotic treatment control (KP+PIP+PBS), and pneumonia-derived sepsis+ antibiotic + faecal microbiota transplantation (KP + PIP + FMT) groups to compare the survival of mice, lung injury, inflammation response, airway barrier function and the intestinal flora, metabolites and drug resistance genes in each group. Results Alterations in specific intestinal flora can occur in the gut of patients with pneumonia-derived sepsis caused by Klebsiella pneumoniae. Compared with those in the faecal microbiota transplantation group, the antibiotic treatment group had lower levels of proinflammatory factors and higher levels of anti-inflammatory factors but less amelioration of lung pathology and improvement of airway epithelial barrier function. Additionally, the increase in opportunistic pathogens and drug resistance-related genes in the gut of mice was accompanied by decreased production of favourable fatty acids such as acetic acid, propionic acid, butyric acid, decanoic acid, and secondary bile acids such as chenodeoxycholic acid 3-sulfate, isodeoxycholic acid, taurodeoxycholic acid, and 3-dehydrocholic acid; the levels of these metabolites were restored by faecal microbiota transplantation. Faecal microbiota transplantation after antibiotic treatment can gradually ameliorate gut microbiota disorder caused by antibiotic treatment and reduce the number of drug resistance genes induced by antibiotics. Conclusion In contrast to direct antibiotic treatment, faecal microbiota transplantation improves the prognosis of mice with pneumonia-derived sepsis caused by Klebsiella pneumoniae by improving the structure of the intestinal flora and increasing the level of beneficial metabolites, fatty acids and secondary bile acids, thereby reducing systemic inflammation, repairing the barrier function of alveolar epithelial cells, and alleviating pathological damage to the lungs. The combination of antibiotics with faecal microbiota transplantation significantly alleviates intestinal microbiota disorder, reduces the selection for drug resistance genes caused by antibiotics, and mitigates lung lesions; these effects are superior to those following antibiotic monotherapy.
Collapse
Affiliation(s)
- Yuxiu Tang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liquan Chen
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Suqing Zhang
- Department of School of Biology & Basic Medicine Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Jin
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Wei
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Biswas N, Bahr A, Howard J, Bonin JL, Grazda R, MacNamara KC. Survivors of polymicrobial sepsis are refractory to G-CSF-induced emergency myelopoiesis and hematopoietic stem and progenitor cell mobilization. Stem Cell Reports 2024; 19:639-653. [PMID: 38608679 PMCID: PMC11103789 DOI: 10.1016/j.stemcr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Sepsis survivors exhibit immune dysfunction, hematological changes, and increased risk of infection. The long-term impacts of sepsis on hematopoiesis were analyzed using a surgical model of murine sepsis, resulting in 50% survival. During acute disease, phenotypic hematopoietic stem and progenitor cells (HSPCs) were reduced in the bone marrow (BM), concomitant with increased myeloid colony-forming units and extramedullary hematopoiesis. Upon recovery, BM HSPCs were increased and exhibited normal function in the context of transplantation. To evaluate hematopoietic responses in sepsis survivors, we treated recovered sham and cecal ligation and puncture mice with a mobilizing regimen of granulocyte colony-stimulating factor (G-CSF) at day 20 post-surgery. Sepsis survivors failed to undergo emergency myelopoiesis and HSPC mobilization in response to G-CSF administration. G-CSF is produced in response to acute infection and injury to expedite the production of innate immune cells; therefore, our findings contribute to a new understanding of how sepsis predisposes to subsequent infection.
Collapse
Affiliation(s)
- Nirupam Biswas
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Amber Bahr
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jennifer Howard
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jesse L Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Rachel Grazda
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
14
|
Barrios EL, Leary JR, Darden DB, Rincon JC, Willis M, Polcz VE, Gillies GS, Munley JA, Dirain ML, Ungaro R, Nacionales DC, Gauthier MPL, Larson SD, Morel L, Loftus TJ, Mohr AM, Maile R, Kladde MP, Mathews CE, Brusko MA, Brusko TM, Moldawer LL, Bacher R, Efron PA. The post-septic peripheral myeloid compartment reveals unexpected diversity in myeloid-derived suppressor cells. Front Immunol 2024; 15:1355405. [PMID: 38720891 PMCID: PMC11076668 DOI: 10.3389/fimmu.2024.1355405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jack R. Leary
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Dijoia B. Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C. Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Micah Willis
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marvin L. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ricardo Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Dina C. Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marie-Pierre L. Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D. Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Laurence Morel
- Department of Microbiology and Immunology, University of Texas San Antonio School of Medicine, San Antonio, TX, United States
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
15
|
Sun Y, Sun S, Chen P, Dai Y, Yang D, Lin Y, Yi L. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis. Pharmacol Res 2024; 202:107113. [PMID: 38387744 DOI: 10.1016/j.phrs.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Lisha Yi
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
16
|
Yang Q, Langston JC, Prosniak R, Pettigrew S, Zhao H, Perez E, Edelmann H, Mansoor N, Merali C, Merali S, Marchetti N, Prabhakarpandian B, Kiani MF, Kilpatrick LE. Distinct functional neutrophil phenotypes in sepsis patients correlate with disease severity. Front Immunol 2024; 15:1341752. [PMID: 38524125 PMCID: PMC10957777 DOI: 10.3389/fimmu.2024.1341752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Sepsis is a clinical syndrome defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis is a highly heterogeneous syndrome with distinct phenotypes that impact immune function and response to infection. To develop targeted therapeutics, immunophenotyping is needed to identify distinct functional phenotypes of immune cells. In this study, we utilized our Organ-on-Chip assay to categorize sepsis patients into distinct phenotypes using patient data, neutrophil functional analysis, and proteomics. Methods Following informed consent, neutrophils and plasma were isolated from sepsis patients in the Temple University Hospital ICU (n=45) and healthy control donors (n=7). Human lung microvascular endothelial cells (HLMVEC) were cultured in the Organ-on-Chip and treated with buffer or cytomix ((TNF/IL-1β/IFNγ). Neutrophil adhesion and migration across HLMVEC in the Organ-on-Chip were used to categorize functional neutrophil phenotypes. Quantitative label-free global proteomics was performed on neutrophils to identify differentially expressed proteins. Plasma levels of sepsis biomarkers and neutrophil extracellular traps (NETs) were determined by ELISA. Results We identified three functional phenotypes in critically ill ICU sepsis patients based on ex vivo neutrophil adhesion and migration patterns. The phenotypes were classified as: Hyperimmune characterized by enhanced neutrophil adhesion and migration, Hypoimmune that was unresponsive to stimulation, and Hybrid with increased adhesion but blunted migration. These functional phenotypes were associated with distinct proteomic signatures and differentiated sepsis patients by important clinical parameters related to disease severity. The Hyperimmune group demonstrated higher oxygen requirements, increased mechanical ventilation, and longer ICU length of stay compared to the Hypoimmune and Hybrid groups. Patients with the Hyperimmune neutrophil phenotype had significantly increased circulating neutrophils and elevated plasma levels NETs. Conclusion Neutrophils and NETs play a critical role in vascular barrier dysfunction in sepsis and elevated NETs may be a key biomarker identifying the Hyperimmune group. Our results establish significant associations between specific neutrophil functional phenotypes and disease severity and identify important functional parameters in sepsis pathophysiology that may provide a new approach to classify sepsis patients for specific therapeutic interventions.
Collapse
Affiliation(s)
- Qingliang Yang
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Jordan C. Langston
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Roman Prosniak
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Samantha Pettigrew
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Edwin Perez
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hannah Edelmann
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nadia Mansoor
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Carmen Merali
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Salim Merali
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | | | - Mohammad F. Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, United States
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E, Mussini C, Girardis M, Gibellini L, Cossarizza A, De Biasi S. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024; 13:439. [PMID: 38474403 PMCID: PMC10931424 DOI: 10.3390/cells13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.
Collapse
Affiliation(s)
- Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Linda Masini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Irene Coloretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Marianna Meschiari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Erica Franceschini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Cristina Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| |
Collapse
|
18
|
Huang S, Chen Y, Gong F, Chen W, Zheng Y, Zhao B, Shi W, Yang Z, Qu H, Mao E, Chen E. Septic macrophages induce T cells immunosuppression in a cell-cell contact manner with the involvement of CR3. Heliyon 2024; 10:e23266. [PMID: 38187232 PMCID: PMC10770445 DOI: 10.1016/j.heliyon.2023.e23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND In addition to excessive inflammation, immunosuppression has been recognized as a contributing factor to poor prognosis of sepsis. Although it has been reported that T cells can become functionally impaired during sepsis, the underlying mechanisms responsible for this phenomenon remain unclear. This study aims to elucidate the mechanisms by which macrophages induce immunosuppression in T cells. METHODS In an in vivo setting, C57BL-6J mice were subjected to cecal ligation and puncture (CLP) with or without depletion of macrophages, and the functions of T cells were assessed. In vitro experiments involved direct co-culture or separate culture of T cells and septic macrophages using a transwell system, followed by analysis of T cell immunity. Additionally, a siRNA targeting CD18 on macrophages was utilized to investigate the role of complement receptor 3 (CR3). RESULTS Both macrophages and T cells exhibited immunosuppression during sepsis. In the in vivo experiments, the absence of macrophages partially alleviated T cell immunosuppression, as evidenced by restored vitality, increased production of TNF-α and IFN-γ, elevated CD8+ T cell levels, and decreased CD25+ T cell levels. In the in vitro experiments, direct co-culture of T cells with septic macrophages resulted in diminished T cell immunity, which was improved when T cells and macrophages were separated by a chamber wall. The expression of CR3 (CD11b/CD18) was upregulated on septic macrophages, and silencing of CD18 led to decreased TNF-α production by T cells, reduced CD4+ T cell numbers, and increased CD25+ T cell numbers. CONCLUSION In sepsis, macrophages induce immunosuppression in T cells through direct cell-cell contact, with the involvement of CR3.
Collapse
Affiliation(s)
- Shunwei Huang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Weiwei Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Yanjun Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Bing Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Wen Shi
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Hongping Qu
- Department of Intensive Care, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Shanghai, China
| |
Collapse
|
19
|
Wang X, Du C, Subramanian S, Turner L, Geng H, Bu HF, Tan XD. Severe gut mucosal injury induces profound systemic inflammation and spleen-associated lymphoid organ response. Front Immunol 2024; 14:1340442. [PMID: 38259439 PMCID: PMC10800855 DOI: 10.3389/fimmu.2023.1340442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Clinical evidence indicates a connection between gut injuries, infections, inflammation, and an increased susceptibility to systemic inflammation. Nevertheless, the animal models designed to replicate this progression are inadequate, and the fundamental mechanisms are still largely unknown. This research explores the relationship between gut injuries and systemic inflammation using a Dextran Sulfate Sodium (DSS)-induced colonic mucosal injury mouse model. Continuous treatment of adult mice with 4% DSS drinking water yielded a remarkable mortality rate by day 7, alongside intensified gut injury and detectable peripheral inflammation. Moreover, RNAscope in situ hybridization with 16S rRNA probe noted bacterial penetration into deeper colon compartments of the mice following treatment with DSS for 7 days. Histological analysis revealed inflammation in the liver and lung tissues of DSS-treated mice. In addition, we found that DSS-treated mice exhibited elevation of Alanine transaminase (ALT) and Aspartate transaminase (AST) in peripheral blood and pro-inflammatory cytokine levels in the liver. Notably, the DSS-treated mice displayed a dampened metabolic profile, reduced CD45 marker expression, and an increase in apoptosis within the lymphoid organ such as spleen. These findings suggest that high-dose DSS-induced gut injury gives rise to sepsis-like systemic inflammation characterized by multiple organ injury and profound splenocyte apoptosis and dysfunction of CD45+ cells in the spleen, indicating the role of the spleen in the pathogenesis of gut-derived systemic inflammation. Together, the severe colonic mucosal injury model facilitates research into gut damage and associated peripheral immune responses, providing a vital framework for investigating mechanisms related to clinically relevant, gut-derived systemic inflammation.
Collapse
Affiliation(s)
- Xiao Wang
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chao Du
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Saravanan Subramanian
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Lucas Turner
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hua Geng
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Heng-Fu Bu
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Xiao-Di Tan
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Holmes D, Colaneri M, Palomba E, Gori A. Exploring post-SEPSIS and post-COVID-19 syndromes: crossovers from pathophysiology to therapeutic approach. Front Med (Lausanne) 2024; 10:1280951. [PMID: 38249978 PMCID: PMC10797045 DOI: 10.3389/fmed.2023.1280951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Sepsis, driven by several infections, including COVID-19, can lead to post-sepsis syndrome (PSS) and post-acute sequelae of COVID-19 (PASC). Both these conditions share clinical and pathophysiological similarities, as survivors face persistent multi-organ dysfunctions, including respiratory, cardiovascular, renal, and neurological issues. Moreover, dysregulated immune responses, immunosuppression, and hyperinflammation contribute to these conditions. The lack of clear definitions and diagnostic criteria hampers comprehensive treatment strategies, and a unified therapeutic approach is significantly needed. One potential target might be the renin-angiotensin system (RAS), which plays a significant role in immune modulation. In fact, RAS imbalance can exacerbate these responses. Potential interventions involving RAS include ACE inhibitors, ACE receptor blockers, and recombinant human ACE2 (rhACE2). To address the complexities of PSS and PASC, a multifaceted approach is required, considering shared immunological mechanisms and the role of RAS. Standardization, research funding, and clinical trials are essential for advancing treatment strategies for these conditions.
Collapse
Affiliation(s)
- Darcy Holmes
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Colaneri
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Emanuele Palomba
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Gori
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| |
Collapse
|
21
|
Kundu A, Ghosh P, Bishayi B. Vitexin along with verapamil downregulates efflux pump P-glycoprotein in macrophages and potentiate M1 to M2 switching via TLR4-NF-κB-TNFR2 pathway in lipopolysaccharide treated mice. Immunobiology 2024; 229:152767. [PMID: 38103391 DOI: 10.1016/j.imbio.2023.152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Pratiti Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
22
|
Bottom-Tanzer SF, Poyant JO, Louzada MT, Abela D, Boudouvas A, Poon E, Power L, Kim WC, Hojman HM, Bugaev N, Johnson BP, Bawazeer MA, Mahoney EJ. Longitudinal study evaluating post-ICU syndrome differences between acute care surgery and trauma SICU survivors. J Trauma Acute Care Surg 2023; 95:893-898. [PMID: 37314426 DOI: 10.1097/ta.0000000000003977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Post-intensive care unit (ICU) syndrome (PICS) occurs at an exorbitant rate in surgical ICU (SICU) survivors. It remains unknown if critical illness due to trauma versus acute care surgery (ACS) may represent different pathophysiologic entities. In this longitudinal study, we determined if admission criteria in a cohort of trauma and ACS patients were associated with differences in the occurrence of PICS. METHODS Patients were 18 years or older, admitted to a Level I trauma center to the trauma or ACS services, remained in the SICU for ≥72 hours, and were seen in an ICU Recovery Center at 2 weeks, 12 weeks, and 24 weeks after hospital discharge. Post-ICU syndrome sequelae were diagnosed by dedicated specialist staffing using clinical criteria and screening questionnaires. The PICS symptoms were distilled into physical, cognitive, and psychiatric categories. Preadmission histories, hospital courses, and recovery data were collected via retrospective chart review. RESULTS One hundred twenty-six patients were included: 74 (57.3%) trauma patients and 55 (42.6%) ACS patients. Prehospital psychosocial histories were similar between groups. Acute care surgery patients had a significantly longer hospital course, higher APACHE II and III scores, were intubated for longer, and had higher rates of sepsis, acute renal failure, open abdomen, and hospital readmissions. At the 2-week follow-up visit, ACS patients had higher rates of PICS sequelae (ACS, 97.8% vs. trauma 85.3%; p = 0.03), particularly in the physical (ACS, 95.6% vs. trauma 82.0%, p = 0.04), and psychiatric domains (ACS, 55.6% vs. trauma 35.0%, p = 0.04). At the 12-week and 24-week visits, rates of PICS symptoms were comparable between groups. CONCLUSION The occurrence of PICS is extraordinarily high in both trauma and ACS SICU survivors. Despite entering the SICU with similar psychosocial histories, the two cohorts have different pathophysiologic experiences, which are associated with a higher rate of impairment in the ACS patients during early follow-up. LEVEL OF EVIDENCE Therapeutic/Care Management; Level III.
Collapse
Affiliation(s)
- Samantha F Bottom-Tanzer
- From the Tufts University School of Medicine & Tufts Graduate School of Biomedical Sciences (S.F.B.-T., D.A., L.P.); Department of Pharmacy (J.O.P.), Tufts Medical Center; Department of General Surgery, Tufts Medical Center (M.T.L.), Tufts University School of Medicine,; Department of Physical and Occupational Therapy (A.B., E.P.), Tufts Medical Center; Division of Trauma & Acute Care Surgery (W.C.K., H.M.H., N.B., B.P.J., M.A.B.), Tufts Medical Center, Tufts University School of Medicine, Boston; and Division of Surgical Critical Care (E.J.M.), Lahey Hospital & Medical Center, Burlington, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
He W, Xu C, Mao D, Zheng Y, Wang N, Wang M, Mao N, Wang T, Li Y. Recent advances in pyroptosis, liver disease, and traditional Chinese medicine: A review. Phytother Res 2023; 37:5473-5494. [PMID: 37622684 DOI: 10.1002/ptr.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.
Collapse
Affiliation(s)
- Wenxing He
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Canli Xu
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yang Zheng
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nan Mao
- Department of Acupuncture-Moxibustion and Tuina, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ting Wang
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanjie Li
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
24
|
Efron PA, Brakenridge SC, Mohr AM, Barrios EL, Polcz VE, Anton S, Ozrazgat-Baslanti T, Bihorac A, Guirgis F, Loftus TJ, Rosenthal M, Leeuwenburgh C, Mankowski R, Moldawer LL, Moore FA. The persistent inflammation, immunosuppression, and catabolism syndrome 10 years later. J Trauma Acute Care Surg 2023; 95:790-799. [PMID: 37561664 PMCID: PMC10615691 DOI: 10.1097/ta.0000000000004087] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
With the implementation of new intensive care unit (ICU) therapies in the 1970s, multiple organ failure (MOF) emerged as a fulminant inflammatory phenotype leading to early ICU death. Over the ensuing decades, with fundamental advances in care, this syndrome has evolved into a lingering phenotype of chronic critical illness (CCI) leading to indolent late post-hospital discharge death. In 2012, the University of Florida (UF) Sepsis Critical Illness Research Center (SCIRC) coined the term Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) to provide a mechanistic framework to study CCI in surgical patients. This was followed by a decade of research into PICS-CCI in surgical ICU patients in order to define the epidemiology, dysregulated immunity, and long-term outcomes after sepsis. Other focused studies were performed in trauma ICU patients and emergency department sepsis patients. Early deaths were surprisingly low (4%); 63% experienced rapid recovery. Unfortunately, 33% progressed to CCI, of which 79% had a poor post-discharge disposition and 41% were dead within one year. These patients had biomarker evidence of PICS, and these biomarkers enhanced clinical prediction models for dismal one-year outcomes. Emergency myelopoiesis appears to play a central role in the observed persistent immune dysregulation that characterizes PICS-CCI. Older patients were especially vulnerable. Disturbingly, over half of the older CCI patients were dead within one year and older CCI survivors remained severely disabled. Although CCI is less frequent (20%) after major trauma, PICS appears to be a valid concept. This review will specifically detail the epidemiology of CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effect on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, dysregulated erythropoiesis, and potential therapeutic interventions. A review of UF SCIRC’s research efforts characterizing CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effects on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, and dysregulated erythropoiesis.
Collapse
Affiliation(s)
- Philip A Efron
- From the Department of Surgery and Anesthesiology (P.A.E., A.M.M., M.R.), University of Florida, Gainesville, Florida, Department of Surgery (S.C.B.), University of Washington, Seattle, Washington; Department of Surgery (E.L.B., V.E.P., T.J.L., L.L.M., F.A.M.), Department of Physiology and Aging (S.A., C.L., R.M.), Department of Medicine (T.O.-B., A.B.), University of Florida, Gainesville; and Department of Emergency Medicine (F.G.), University of Florida, Jacksonville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Amarasinghe HE, Zhang P, Whalley JP, Allcock A, Migliorini G, Brown AC, Scozzafava G, Knight JC. Mapping the epigenomic landscape of human monocytes following innate immune activation reveals context-specific mechanisms driving endotoxin tolerance. BMC Genomics 2023; 24:595. [PMID: 37805492 PMCID: PMC10559536 DOI: 10.1186/s12864-023-09663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states. METHODS We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h). Another subset of monocytes was left untreated (naïve). We identified context-specific regulatory elements based on epigenetic signatures for chromatin accessibility (ATAC-seq) and regulatory non-coding RNAs from total RNA sequencing. RESULTS We present an atlas of differential gene expression for endotoxin and interferon response, identifying widespread context specific changes. Across assayed states, only 24-29% of genes showing differential exon usage are also differential at the gene level. Overall, 19.9% (6,884 of 34,616) of repeatedly observed ATAC peaks were differential in at least one condition, the majority upregulated on stimulation and located in distal regions (64.1% vs 45.9% of non-differential peaks) within which sequences were less conserved than non-differential peaks. We identified enhancer-derived RNA signatures specific to different monocyte states that correlated with chromatin accessibility changes. The endotoxin tolerance models showed distinct chromatin accessibility and transcriptomic signatures, with integrated analysis identifying genes and pathways involved in the inflammatory response, detoxification, metabolism and wound healing. We leveraged eQTL mapping for the same monocyte activation states to link potential enhancers with specific genes, identifying 1,946 unique differential ATAC peaks with 1,340 expression associated genes. We further use this to inform understanding of reported GWAS, for example involving FCHO1 and coronary artery disease. CONCLUSION This study reports context-specific regulatory elements based on transcriptomic profiling and epigenetic signatures for enhancer-derived RNAs and chromatin accessibility in immune tolerant monocyte states, and demonstrates the informativeness of linking such elements and eQTL to inform future mechanistic studies aimed at defining therapeutic targets of immunosuppression and diseases.
Collapse
Affiliation(s)
- Harindra E Amarasinghe
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Ping Zhang
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Justin P Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Alice Allcock
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew C Brown
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
27
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Fu XZ, Wang Y. Interferon-γ regulates immunosuppression in septic mice by promoting the Warburg effect through the PI3K/AKT/mTOR pathway. Mol Med 2023; 29:95. [PMID: 37434129 PMCID: PMC10337057 DOI: 10.1186/s10020-023-00690-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The main cause of high mortality from sepsis is that immunosuppression leads to life-threatening organ dysfunction, and reversing immunosuppression is key to sepsis treatment. Interferon γ (IFNγ) is a potential therapy for immunosuppression of sepsis, promoting glycolysis to restore metabolic defects in monocytes, but the mechanism of treatment is unclear. METHODS To explore the immunotherapeutic mechanism of IFNγ, this study linked the Warburg effect (aerobic glycolysis) to immunotherapy for sepsis and used cecal ligation perforation (CLP) and lipopolysaccharide (LPS) to stimulate dendritic cells (DC) to establish in vivo and in vitro sepsis models, Warburg effect inhibitors (2-DG) and PI3K pathway inhibitors (LY294002) were used to explore the mechanism by which IFNγ regulates immunosuppression in mice with sepsis through the Warburg effect. RESULTS IFNγ markedly inhibited the reduction in cytokine secretion from lipopolysaccharide (LPS)-stimulated splenocytes. IFNγ-treated mice had significantly increased the percentages of positive costimulatory receptor CD86 on Dendritic cells expressing and expression of splenic HLA-DR. IFNγ markedly reduced DC-cell apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax. CLP-induced formation of regulatory T cells in the spleen was abolished in IFNγ -treated mice. IFNγ treatment reduced the expression of autophagosomes in DC cells. IFNγ significant reduce the expression of Warburg effector-related proteins PDH, LDH, Glut1, and Glut4, and promote glucose consumption, lactic acid, and intracellular ATP production. After the use of 2-DG to suppress the Warburg effect, the therapeutic effect of IFNγ was suppressed, demonstrating that IFNγ reverses immunosuppression by promoting the Warburg effect. Moreover, IFNγ increased the expression of phosphoinositide 3-kinases (PI3K), protein kinase B (Akt), rapamycin target protein (mTOR), hypoxia-inducible factor-1 (HIF-1α), pyruvate dehydrogenase kinase (PDK1) protein, the use of 2-DG and LY294002 can inhibit the expression of the above proteins, LY294002 also inhibits the therapeutic effect of IFNγ. CONCLUSIONS It was finally proved that IFNγ promoted the Warburg effect through the PI3K/Akt/mTOR pathway to reverse the immunosuppression caused by sepsis. This study elucidates the potential mechanism of the immunotherapeutic effect of IFNγ in sepsis, providing a new target for the treatment of sepsis.
Collapse
Affiliation(s)
- Xu-Zhe Fu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
29
|
van den Haak DAC, Otten L, Koenen HJPM, Smeets RL, Piet B, Pickkers P, Kox M, ter Heine R. Evidence‐based rationale for low dose nivolumab in critically ill patients with sepsis‐induced immunosuppression. Clin Transl Sci 2023. [DOI: 10.1111/cts.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Demy A. C. van den Haak
- Department of Pharmacy and Research Institute for Medical Innovation Radboud University Medical Center Nijmegen The Netherlands
| | - Leila‐Sophie Otten
- Department of Pharmacy and Research Institute for Medical Innovation Radboud University Medical Center Nijmegen The Netherlands
| | - Hans J. P. M. Koenen
- Laboratory Medicine, Laboratory for Medical Immunology Radboud University Medical Center Nijmegen The Netherlands
| | - Ruben L. Smeets
- Laboratory Medicine, Laboratory for Medical Immunology Radboud University Medical Center Nijmegen The Netherlands
| | - Berber Piet
- Department of Pulmonology Radboud University Medical Center Nijmegen The Netherlands
| | - Peter Pickkers
- Department of Intensive Care and Radboud Center for Infectious Diseases (RCI) Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Matthijs Kox
- Department of Intensive Care and Radboud Center for Infectious Diseases (RCI) Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - Rob ter Heine
- Department of Pharmacy and Research Institute for Medical Innovation Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
30
|
Harkless R, Singh K, Christman J, McCarty A, Sen C, Jalilvand A, Wisler J. Microvesicle-Mediated Transfer of DNA Methyltransferase Proteins Results in Recipient Cell Immunosuppression. J Surg Res 2023; 283:368-376. [PMID: 36427447 PMCID: PMC10862496 DOI: 10.1016/j.jss.2022.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/29/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Patients with sepsis exhibit significant, persistent immunologic dysfunction. Evidence supports the hypothesis that epigenetic regulation of key cytokines plays an important role in this dysfunction. In sepsis, circulating microvesicles (MVs) containing elevated levels of DNA methyltransferase (DNMT) mRNA cause gene methylation and silencing in recipient cells. We sought to examine the functional role of MV DNMT proteins in this immunologic dysfunction. METHODS In total, 33 patients were enrolled within 24 h of sepsis diagnosis (23 sepsis, 10 critically ill controls). Blood and MVs were collected on days 1, 3, and 5 of sepsis, and protein was isolated from the MVs. Levels of DNMT protein and activity were quantified. MVs were produced in vitro by stimulating naïve monocytes with lipopolysaccharide. Methylation was assessed using bisulfate site-specific qualitative real-time polymerase chain reaction. RESULTS The size of MVs in the patients with sepsis decreased from days 1 to 5 compared to the control group. Circulating MVs contained significantly higher levels of DNMT 1 and 3A, protein. We recapitulated the production of these DNMT-containing MVs in vitro by treating monocytes with lipopolysaccharide. We found that exposing naïve monocytes to these MVs resulted in increased promoter methylation of tumor necrosis factor alpha. CONCLUSIONS An analysis of the isolated MVs revealed higher levels of DNMT proteins in septic patients than those in nonseptic patients. Exposing naïve monocytes to DNMT-containing MVs produced in vitro resulted in hypermethylation of tumor necrosis factor alpha, a key cytokine implicated in postsepsis immunosuppression. These results suggest that DNMT-containing MVs cause epigenetic changes in recipient cells. This study highlights a novel role for MVs in the immune dysfunction of patients with sepsis.
Collapse
Affiliation(s)
- Ryan Harkless
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - John Christman
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Adara McCarty
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Chandan Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anahita Jalilvand
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Jon Wisler
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio.
| |
Collapse
|
31
|
Wójcik B, Superata J, Tuleja T, Kobielska E, Szyguła Z. Advances in Management of Fournier's Gangrene by Coupling Intensive Hospital Treatment With Innovative Post-discharge Hyperbaric Oxygen Therapy Rehabilitation: A Case Report. Cureus 2023; 15:e36639. [PMID: 37101986 PMCID: PMC10123327 DOI: 10.7759/cureus.36639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
Fournier's gangrene (FG) is a rare form of necrotizing soft tissue infection characterized by an acute, aggressive, and rapidly progressive course. In this case report, we describe advanced therapy combining critical care, surgery, pharmacotherapy, extended biochemical/cellular blood diagnostics, and post-discharge hyperbaric oxygen therapy rehabilitation. Such an intervention resulted in survival and improved health status and quality of life of the patient with FG and septic shock.
Collapse
Affiliation(s)
- Barbara Wójcik
- Department of Clinical Rehabilitation, University of Physical Education, Krakow, POL
| | - Jerzy Superata
- Department of Clinical Rehabilitation, University of Physical Education, Krakow, POL
| | - Tomasz Tuleja
- Burns and Plastic Surgery Centre of Malopolska, Department of Adult Plastic and Reconstructive Surgery, Ludwik Rydygier Memorial Hospital, Krakow, POL
| | - Ewa Kobielska
- Burns and Plastic Surgery Centre of Malopolska, Department of Hyperbaric Oxygen Therapy, Ludwik Rydygier Memorial Hospital, Krakow, POL
| | - Zbigniew Szyguła
- Department of Sport Medicine and Human Nutrition, University of Physical Education, Krakow, POL
| |
Collapse
|
32
|
Ronco C, Chawla L, Husain-Syed F, Kellum JA. Rationale for sequential extracorporeal therapy (SET) in sepsis. Crit Care 2023; 27:50. [PMID: 36750878 PMCID: PMC9904264 DOI: 10.1186/s13054-023-04310-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/07/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis and septic shock remain drivers for morbidity and mortality in critical illness. The clinical picture of patients presenting with these syndromes evolves rapidly and may be characterised by: (a) microbial host invasion, (b) establishment of an infection focus, (c) opsonisation of bacterial products (e.g. lipopolysaccharide), (d) recognition of pathogens resulting in an immune response, (e) cellular and humoral effects of circulating pathogen and pathogen products, (f) immunodysregulation and endocrine effects of cytokines, (g) endothelial and organ damage, and (h) organ crosstalk and multiple organ dysfunction. Each step may be a potential target for a specific therapeutic approach. At various stages, extracorporeal therapies may target circulating molecules for removal. In sequence, we could consider: (a) pathogen removal from the circulation with affinity binders and cartridges (specific), (b) circulating endotoxin removal by haemoperfusion with polymyxin B adsorbers (specific), (c) cytokine removal by haemoperfusion with sorbent cartridges or adsorbing membranes (non-specific), (d) extracorporeal organ support with different techniques for respiratory and cardiac support (CO2 removal or extracorporeal membrane oxygenation), and renal support (haemofiltration, haemodialysis, or ultrafiltration). The sequence of events and the use of different techniques at different points for specific targets will likely require trials with endpoints other than mortality. Instead, the primary objectives should be to achieve the desired action by using extracorporeal therapy at a specific point.
Collapse
Affiliation(s)
- Claudio Ronco
- International Renal Research Institute of Vicenza, IRRIV Foundation, Department of Nephrology, Dialysis and Transplantation, St. Bortolo Hospital, aULSS8 Berica, Via Rodolfi, 37, 36100, Vicenza, Italy.
- Department of Medicine (DIMED), University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.
| | - Lakhmir Chawla
- Department of Medicine, Veterans Affairs Medical Center, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Faeq Husain-Syed
- Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany
- Division of Nephrology, University of Virginia School of Medicine, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - John A Kellum
- Center for Critical Care Nephrology, CRISMA, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
- Spectral Medical, 135 The West Mall, Unit 2, Toronto, M9C 1C2, Canada
| |
Collapse
|
33
|
Moioffer SJ, Berton RR, McGonagill PW, Jensen IJ, Griffith TS, Badovinac VP. Inefficient Recovery of Repeatedly Stimulated Memory CD8 T Cells after Polymicrobial Sepsis Induction Leads to Changes in Memory CD8 T Cell Pool Composition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:168-179. [PMID: 36480268 PMCID: PMC9840817 DOI: 10.4049/jimmunol.2200676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023]
Abstract
Long-lasting sepsis-induced immunoparalysis has been principally studied in primary (1°) memory CD8 T cells; however, the impact of sepsis on memory CD8 T cells with a history of repeated cognate Ag encounters is largely unknown but important in understanding the role of sepsis in shaping the pre-existing memory CD8 T cell compartment. Higher-order memory CD8 T cells are crucial in providing immunity against common pathogens that reinfect the host or are generated by repeated vaccination. In this study, we analyzed peripheral blood from septic patients and show that memory CD8 T cells with defined Ag specificity for recurring CMV infection proliferate less than bulk populations of central memory CD8 T cells. Using TCR-transgenic T cells to generate 1° and higher-order (quaternary [4°]) memory T cells within the same host, we demonstrate that the susceptibility and loss of both memory subsets are similar after sepsis induction, and sepsis diminished Ag-dependent and -independent (bystander) functions of these memory subsets equally. Both the 1° and 4° memory T cell populations proliferated in a sepsis-induced lymphopenic environment; however, due to the intrinsic differences in baseline proliferative capacity, expression of receptors (e.g., CD127/CD122), and responsiveness to homeostatic cytokines, 1° memory T cells become overrepresented over time in sepsis survivors. Finally, IL-7/anti-IL-7 mAb complex treatment early after sepsis induction preferentially rescued the proliferation and accumulation of 1° memory T cells, whereas recovery of 4° memory T cells was less pronounced. Thus, inefficient recovery of repeatedly stimulated memory cells after polymicrobial sepsis induction leads to changes in memory T cell pool composition, a notion with important implications in devising strategies to recover the number and function of pre-existing memory CD8 T cells in sepsis survivors.
Collapse
Affiliation(s)
| | - Roger R. Berton
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Isaac J. Jensen
- Columbia University Irving Medical Center, University of Minnesota, Minneapolis, MN
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN,,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
34
|
Pandolfi F, Brun-Buisson C, Guillemot D, Watier L. One-year hospital readmission for recurrent sepsis: associated risk factors and impact on 1-year mortality-a French nationwide study. Crit Care 2022; 26:371. [PMID: 36447252 PMCID: PMC9710072 DOI: 10.1186/s13054-022-04212-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/15/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Sepsis is a complex health condition, leading to long-term morbidity and mortality. Understanding the risk factors for recurrent sepsis, as well as its impact on mid- and long-term mortality among other risk factors, is essential to improve patient survival. METHODS A risk factor analysis, based on French nationwide medico-administrative data, was conducted on a cohort of patients above 15 years old, hospitalized with an incident sepsis in metropolitan France between 1st January 2018 and 31st December 2018 and who survived their index hospitalization. Two main analyses, focusing on outcomes occurring 1-year post-discharge, were conducted: a first one to assess risk factors for recurrent sepsis and a second to assess risk factors for mortality. RESULTS Of the 178017 patients surviving an incident sepsis episode in 2018 and included in this study, 22.3% died during the 1-year period from discharge and 73.8% had at least one hospital readmission in acute care, among which 18.1% were associated with recurrent sepsis. Patients aged between 56 and 75, patients with cancer and renal disease, with a long index hospital stay or with mediastinal or cardiac infection had the highest odds of recurrent sepsis. One-year mortality was higher for patients with hospital readmission for recurrent sepsis (aOR 2.93; 99% CI 2.78-3.09). Among all comorbidities, patients with cancer (aOR 4.35; 99% CI 4.19-4.52) and dementia (aOR 2.02; 99% CI 1.90-2.15) had the highest odds of 1-year mortality. CONCLUSION Hospital readmission for recurrent sepsis is one of the most important risk factors for 1-year mortality of septic patients, along with age and comorbidities. Our study suggests that recurrent sepsis, as well as modifiable or non-modifiable other risk factors identified, should be considered in order to improve patient care pathway and survival.
Collapse
Affiliation(s)
- Fanny Pandolfi
- grid.508487.60000 0004 7885 7602Epidemiology and Modeling of Bacterial Evasion to Antibacterials Unit (EMEA), Institut Pasteur, Université Paris Cité, Paris, France ,grid.12832.3a0000 0001 2323 0229Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles Saint Quentin-en-Yvelines/Université Paris Saclay, Paris, France
| | - Christian Brun-Buisson
- grid.508487.60000 0004 7885 7602Epidemiology and Modeling of Bacterial Evasion to Antibacterials Unit (EMEA), Institut Pasteur, Université Paris Cité, Paris, France ,grid.12832.3a0000 0001 2323 0229Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles Saint Quentin-en-Yvelines/Université Paris Saclay, Paris, France
| | - Didier Guillemot
- grid.508487.60000 0004 7885 7602Epidemiology and Modeling of Bacterial Evasion to Antibacterials Unit (EMEA), Institut Pasteur, Université Paris Cité, Paris, France ,grid.12832.3a0000 0001 2323 0229Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles Saint Quentin-en-Yvelines/Université Paris Saclay, Paris, France ,grid.50550.350000 0001 2175 4109AP-HP, Paris Saclay, Public Health, Medical Information, Clinical Research, Le Kremlin-Bicêtre, France
| | - Laurence Watier
- grid.508487.60000 0004 7885 7602Epidemiology and Modeling of Bacterial Evasion to Antibacterials Unit (EMEA), Institut Pasteur, Université Paris Cité, Paris, France ,grid.12832.3a0000 0001 2323 0229Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles Saint Quentin-en-Yvelines/Université Paris Saclay, Paris, France
| |
Collapse
|
35
|
Ferreira BL, Sousa MB, Leite GGF, Brunialti MKC, Nishiduka ES, Tashima AK, van der Poll T, Salomão R. Glucose metabolism is upregulated in the mononuclear cell proteome during sepsis and supports endotoxin-tolerant cell function. Front Immunol 2022; 13:1051514. [PMID: 36466921 PMCID: PMC9718365 DOI: 10.3389/fimmu.2022.1051514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 07/24/2023] Open
Abstract
Metabolic adaptations shape immune cell function. In the acute response, a metabolic switch towards glycolysis is necessary for mounting a proinflammatory response. During the clinical course of sepsis, both suppression and activation of immune responses take place simultaneously. Leukocytes from septic patients present inhibition of cytokine production while other functions such as phagocytosis and production of reactive oxygen species (ROS) are preserved, similarly to the in vitro endotoxin tolerance model, where a first stimulation with lipopolysaccharide (LPS) affects the response to a second stimulus. Here, we sought to investigate how cellular metabolism is related to the modulation of immune responses in sepsis and endotoxin tolerance. Proteomic analysis in peripheral blood mononuclear cells (PBMCs) from septic patients obtained at intensive care unit admission showed an upregulation of proteins related to glycolysis, the pentose phosphate pathway (PPP), production of ROS and nitric oxide, and downregulation of proteins in the tricarboxylic acid cycle and oxidative phosphorylation compared to healthy volunteers. Using the endotoxin-tolerance model in PBMCs from healthy subjects, we observed increased lactate production in control cells upon LPS stimulation, while endotoxin-tolerant cells presented inhibited tumor necrosis factor-α and lactate production along with preserved phagocytic capacity. Inhibition of glycolysis and PPP led to impairment of phagocytosis and cytokine production both in control and in endotoxin-tolerant cells. These data indicate that glucose metabolism supports leukocyte functions even in a condition of endotoxin tolerance.
Collapse
Affiliation(s)
- Bianca Lima Ferreira
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Bragança Sousa
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Erika Sayuri Nishiduka
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Reinaldo Salomão
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Antoni AC, Pylaeva E, Budeus B, Jablonska J, Klein-Hitpaß L, Dudda M, Flohé SB. TLR2-induced CD8+ T-cell deactivation shapes dendritic cell differentiation in the bone marrow during sepsis. Front Immunol 2022; 13:945409. [PMID: 36148245 PMCID: PMC9488929 DOI: 10.3389/fimmu.2022.945409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is associated with profound immune dysregulation that increases the risk for life-threatening secondary infections: Dendritic cells (DCs) undergo functional reprogramming due to yet unknown changes during differentiation in the bone marrow (BM). In parallel, lymphopenia and exhaustion of T lymphocytes interfere with antigen-specific adaptive immunity. We hypothesized that there exists a link between T cells and the modulation of DC differentiation in the BM during murine polymicrobial sepsis. Sepsis was induced by cecal ligation and puncture (CLP), a model for human bacterial sepsis. At different time points after CLP, the BM and spleen were analyzed in terms of T-cell subpopulations, activation, and Interferon (IFN)-γ synthesis as well as the number of pre-DCs. BM-derived DCs were generated in vitro. We observed that naïve and virtual memory CD8+ T cells, but not CD4+ T cells, were activated in an antigen-independent manner and accumulated in the BM early after CLP, whereas lymphopenia was evident in the spleen. The number of pre-DCs strongly declined during acute sepsis in the BM and almost recovered by day 4 after CLP, which required the presence of CD8+ T cells. Adoptive transfer experiments and in vitro studies with purified T cells revealed that Toll-like receptor 2 (TLR2) signaling in CD8+ T cells suppressed their capacity to secrete IFN-γ and was sufficient to change the transcriptome of the BM during sepsis. Moreover, the diminished IFN-γ production of CD8+ T cells favored the differentiation of DCs with increased production of the immune-activating cytokine Interleukin (IL)-12. These data identify a novel role of CD8+ T cells in the BM during sepsis as they sense TLR2 ligands and control the number and function of de novo differentiating DCs.
Collapse
Affiliation(s)
- Anne-Charlotte Antoni
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpaß
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- *Correspondence: Stefanie B. Flohé,
| |
Collapse
|
37
|
Xue W, Pang J, Liu J, Wang H, Guo H, Chen Y. Septic cardiomyopathy: characteristics, evaluation, and mechanism. EMERGENCY AND CRITICAL CARE MEDICINE 2022; 2:135-147. [DOI: 10.1097/ec9.0000000000000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Sepsis is a common clinical disease; if there is no early active treatment, it is likely to develop into multiple organ dysfunction syndrome and even cause death. Septic cardiomyopathy is a complication of sepsis-related cardiovascular failure, characterized by reversible left ventricular dilatation and decreased ventricular systolic and/or diastolic function. At present, echocardiography and biomarkers are often used to screen septic cardiomyopathy in clinics. Although there is still a lack of clear diagnostic criteria for septic cardiomyopathy, according to existing studies, the pathogenesis of several septic cardiomyopathy has been clarified, such as immune response caused by infection and mitochondrial dysfunction. This review summarizes the characteristics, pathophysiology, and diagnosis of septic cardiomyopathy and focuses on the mechanisms of infection immunity and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
38
|
Bick A, Buys W, Engler A, Madel R, Atia M, Faro F, Westendorf AM, Limmer A, Buer J, Herbstreit F, Kirschning CJ, Peters J. Immune hyporeactivity to bacteria and multiple TLR-ligands, yet no response to checkpoint inhibition in patients just after meeting Sepsis-3 criteria. PLoS One 2022; 17:e0273247. [PMID: 35981050 PMCID: PMC9387870 DOI: 10.1371/journal.pone.0273247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Rationale
The immune profile of sepsis patients is incompletely understood and hyperinflammation and hypoinflammation may occur concurrently or sequentially. Immune checkpoint inhibition (ICI) may counter hypoinflammation but effects are uncertain. We tested the reactivity of septic whole blood to bacteria, Toll-like receptor (TLR) ligands and to ICI.
Methods
Whole blood assays of 61 patients’ samples within 24h of meeting sepsis-3 criteria and 12 age and sex-matched healthy volunteers. Measurements included pattern/danger-associated molecular pattern (P/DAMP), cytokine concentrations at baseline and in response to TLR 2, 4, and 7/8 ligands, heat-inactivated Staphylococcus aureus or Escherichia coli, E.coli lipopolysaccharide (LPS), concentration of soluble and cellular immune checkpoint molecules, and cytokine concentrations in response to ICI directed against programmed-death receptor 1 (PD1), PD1-ligand 1, or cytotoxic T-lymphocyte antigen 4, both in the absence and presence of LPS.
Main results
In sepsis, concentrations of P/DAMPs and inflammatory cytokines were increased and the latter increased further upon incubation ex vivo. However, cytokine responses to TLR 2, 4, and 7/8 ligands, heat-inactivated S. aureus or E. coli, and E. coli LPS were all depressed. Depression of the response to LPS was associated with increased in-hospital mortality. Despite increased PD-1 expression on monocytes and T-cells, and monocyte CTLA-4 expression, however, addition of corresponding checkpoint inhibitors to assays failed to increase inflammatory cytokine concentrations in the absence and presence of LPS.
Conclusion
Patients first meeting Sepsis-3 criteria reveal 1) depressed responses to multiple TLR-ligands, bacteria, and bacterial LPS, despite concomitant inflammation, but 2) no response to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Alexandra Bick
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Willem Buys
- Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Andrea Engler
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | | | - Mazen Atia
- Universität Duisburg-Essen, Essen, Germany
| | | | - Astrid M. Westendorf
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Andreas Limmer
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jan Buer
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Frank Herbstreit
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Carsten J. Kirschning
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
39
|
Hensler E, Petros H, Gray CC, Chung CS, Ayala A, Fallon EA. The Neonatal Innate Immune Response to Sepsis: Checkpoint Proteins as Novel Mediators of This Response and as Possible Therapeutic/Diagnostic Levers. Front Immunol 2022; 13:940930. [PMID: 35860251 PMCID: PMC9289477 DOI: 10.3389/fimmu.2022.940930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis, a dysfunctional immune response to infection leading to life-threatening organ injury, represents a significant global health issue. Neonatal sepsis is disproportionately prevalent and has a cost burden of 2-3 times that of adult patients. Despite this, no widely accepted definition for neonatal sepsis or recommendations for management exist and those created for pediatric patients are significantly limited in their applicability to this unique population. This is in part due to neonates' reliance on an innate immune response (which is developmentally more prominent in the neonate than the immature adaptive immune response) carried out by dysfunctional immune cells, including neutrophils, antigen-presenting cells such as macrophages/monocytes, dendritic cells, etc., natural killer cells, and innate lymphoid regulatory cell sub-sets like iNKT cells, γδ T-cells, etc. Immune checkpoint inhibitors are a family of proteins with primarily suppressive/inhibitory effects on immune and tumor cells and allow for the maintenance of self-tolerance. During sepsis, these proteins are often upregulated and are thought to contribute to the long-term immunosuppression seen in adult patients. Several drugs targeting checkpoint inhibitors, including PD-1 and PD-L1, have been developed and approved for the treatment of various cancers, but no such therapeutics have been approved for the management of sepsis. In this review, we will comparatively discuss the role of several checkpoint inhibitor proteins, including PD-1, PD-L1, VISTA, and HVEM, in the immune response to sepsis in both adults and neonates, as well as posit how they may uniquely propagate their actions through the neonatal innate immune response. We will also consider the possibility of leveraging these proteins in the clinical setting as potential therapeutics/diagnostics that might aid in mitigating neonatal septic morbidity/mortality.
Collapse
Affiliation(s)
- Emily Hensler
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Habesha Petros
- Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Chyna C. Gray
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States,*Correspondence: Alfred Ayala,
| | - Eleanor A. Fallon
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States,Graduate Program in Biotechnology, Brown University, Providence, RI, United States
| |
Collapse
|
40
|
Zhang S, Guan X, Liu W, Zhu Z, Jin H, Zhu Y, Chen Y, Zhang M, Xu C, Tang X, Wang J, Cheng W, Lin W, Ma X, Chen J. YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis. Cell Death Discov 2022; 8:244. [PMID: 35508474 PMCID: PMC9068740 DOI: 10.1038/s41420-022-00872-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Pyroptosis is inflammation-associated caspase-1-dependent programmed cell death, which confers a crucial role in sepsis. The present study intends to investigate the regulatory network and function of the microarray-predicted YTHDF1 in caspase-1-dependent pyroptosis of sepsis. Peripheral blood of patients with sepsis was collected to determine WWP1 and YTHDF1 expression. An in vitro sepsis cell model was induced in RAW264.7 cells using lipopolysaccharide (LPS) and ATP and an in vivo septic mouse model by cecal ligation and perforation (CLP). After gain- and loss-of-function assays in vitro and in vivo, TNF-α and IL-1β levels and the cleavage of gasdermin-D (GSDMD) were detected by ELISA and Western blot assay, followed by determination of lactate dehydrogenase (LDH) activity. Immunoprecipitation and meRIP assay were performed to detect the ubiquitination of NLRP3 and the m6A modification of WWP1 mRNA. The binding of WWP1 to YTHDF1 was explored using RIP-RT-qPCR and dual luciferase gene reporter assay. It was noted that WWP1 and YTHDF1 were downregulated in clinical sepsis samples, LPS + ATP-treated RAW264.7 cells, and CLP-induced mice. The ubiquitination of NLRP3 was promoted after overexpression of WWP1. WWP1 translation could be promoted by YTHDF1. Then, WWP1 or YTHDF1 overexpression diminished LDH activity, NLRP3 inflammasomes and caspase-1-mediated cleavage of GSDMD in LPS + ATP-induced RAW264.7 cells. Overexpressed YTHDF1 restrained inflammatory response in CLP-induced mice. Collectively, the alleviatory effect of m6A reader protein YTHDF1 may be achieved through promotion of NLRP3 ubiquitination and inhibition of caspase-1-dependent pyroptosis by upregulating WWP1.
Collapse
Affiliation(s)
- Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Xinmin Guan
- Department of Emergency Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Wei Liu
- Department of Endocrinology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Zhe Zhu
- Department of Respiratory Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Hong Jin
- Department of Emergency Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Youfeng Zhu
- Department of Emergency Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Min Zhang
- Department of Respiratory Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Xu Tang
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Jing Wang
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Wang Cheng
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Weihua Lin
- Department of Burns, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, P.R. China
| | - Xiaoke Ma
- Xidian University, School of Computer Science and Technology, Xi'an, 710071, P.R. China
| | - Jianliang Chen
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, 515041, P.R. China
| |
Collapse
|
41
|
Zheng Y, Liu B, Deng X, Chen Y, Huang Y, Zhang Y, Xu Y, Sang L, Liu X, Li Y. Construction and validation of a robust prognostic model based on immune features in sepsis. Front Immunol 2022; 13:994295. [PMID: 36532037 PMCID: PMC9756843 DOI: 10.3389/fimmu.2022.994295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose Sepsis, with life-threatening organ failure, is caused by the uncontrolled host response to infection. Immune response plays an important role in the pathophysiology of sepsis. Immune-related genes (IRGs) are promising novel biomarkers that have been used to construct the diagnostic and prognostic model. However, an IRG prognostic model used to predict the 28-day mortality in sepsis was still limited. Therefore, the study aimed to develop a prognostic model based on IRGs to identify patients with high risk and predict the 28-day mortality in sepsis. Then, we further explore the circulating immune cell and immunosuppression state in sepsis. Materials and methods The differentially expressed genes (DEGs), differentially expressed immune-related genes (DEIRGs), and differentially expressed transcription factors (DETFs) were obtained from the GEO, ImmPort, and Cistrome databases. Then, the TFs-DEIRGs regulatory network and prognostic prediction model were constructed by Cox regression analysis and Pearson correlation analysis. The external datasets also validated the reliability of the prognostic model. Based on the prognostic DEIRGs, we developed a nomogram and conducted an independent prognosis analysis to explore the relationship between DEIRGs in the prognostic model and clinical features in sepsis. Besides, we further evaluate the circulating immune cells state in sepsis. Results A total of seven datasets were included in our study. Among them, GSE65682 was identified as a discovery cohort. The results of GSEA showed that there is a significant correlation between sepsis and immune response. Then, based on a P value <0.01, 69 prognostic DEIRGs were obtained and the potential molecular mechanisms of DEIRGs were also clarified. According to multivariate Cox regression analysis, 22 DEIRGs were further identified to construct the prognostic model and identify patients with high risk. The Kaplan-Meier survival analysis showed that high-risk groups have higher 28-day mortality than low-risk groups (P=1.105e-13). The AUC value was 0.879 which symbolized that the prognostic model had a better accuracy to predict the 28-day mortality. The external datasets also prove that the prognostic model had an excellent prediction value. Furthermore, the results of correlation analysis showed that patients with Mars1 might have higher risk scores than Mars2-4 (P=0.002). According to the previous study, Mars1 endotype was characterized by immunoparalysis. Thus, the sepsis patients in high-risk groups might exist the immunosuppression. Between the high-risk and low-risk groups, circulating immune cells types were significantly different, and risk score was significantly negatively correlated with naive CD4+ T cells (P=0.019), activated NK cells (P=0.0045), monocytes (P=0.0134), and M1 macrophages (P=0.0002). Conclusions Our study provides a robust prognostic model based on 22 DEIRGs which can predict 28-day mortality and immunosuppression status in sepsis. The higher risk score was positively associated with 28-day mortality and the development of immunosuppression. IRGs are a promising biomarker that might facilitate personalized treatments for sepsis.
Collapse
Affiliation(s)
- Yongxin Zheng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baiyun Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiumei Deng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yubiao Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ling Sang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yimin Li,
| |
Collapse
|
42
|
van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54:2450-2464. [PMID: 34758337 DOI: 10.1016/j.immuni.2021.10.012] [Citation(s) in RCA: 448] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to an infection. This recently implemented definition does not capture the heterogeneity or the underlying pathophysiology of the syndrome, which is characterized by concurrent unbalanced hyperinflammation and immune suppression. Here, we review current knowledge of aberrant immune responses during sepsis and recent initiatives to stratify patients with sepsis into subgroups that are more alike from a clinical and/or pathobiological perspective, which could be key for identification of patients who are more likely to benefit from specific immune interventions.
Collapse
Affiliation(s)
- Tom van der Poll
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - Manu Shankar-Hari
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, London, UK; Guy's and St Thomas' NHS Foundation Trust, Department of Intensive Care Medicine, London, UK
| | - W Joost Wiersinga
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
43
|
Moriyama K, Nishida O. Targeting Cytokines, Pathogen-Associated Molecular Patterns, and Damage-Associated Molecular Patterns in Sepsis via Blood Purification. Int J Mol Sci 2021; 22:8882. [PMID: 34445610 PMCID: PMC8396222 DOI: 10.3390/ijms22168882] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Sepsis is characterized by a dysregulated immune response to infections that causes life-threatening organ dysfunction and even death. When infections occur, bacterial cell wall components (endotoxin or lipopolysaccharide), known as pathogen-associated molecular patterns, bind to pattern recognition receptors, such as toll-like receptors, to initiate an inflammatory response for pathogen elimination. However, strong activation of the immune system leads to cellular dysfunction and ultimately organ failure. Damage-associated molecular patterns (DAMPs), which are released by injured host cells, are well-recognized triggers that result in the elevation of inflammatory cytokine levels. A cytokine storm is thus amplified and sustained in this vicious cycle. Interestingly, during sepsis, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. Thus, the concept of blood purification has evolved to include inflammatory cells and mediators. In this review, we summarize recent advances in knowledge regarding the role of lipopolysaccharides, cytokines, DAMPs, and neutrophils in the pathogenesis of sepsis. Additionally, we discuss the potential of blood purification, especially the adsorption technology, for removing immune cells and molecular mediators, thereby serving as a therapeutic strategy against sepsis. Finally, we describe the concept of our immune-modulating blood purification system.
Collapse
Affiliation(s)
- Kazuhiro Moriyama
- Laboratory for Immune Response and Regulatory Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan;
| |
Collapse
|
44
|
Darden DB, Ghita GL, Wang Z, Stortz JA, Lopez MC, Cox MC, Hawkins RB, Rincon JC, Kelly LS, Fenner BP, Ozrazgat-Baslanti T, Leeuwenburgh C, Bihorac A, Loftus TJ, Moore FA, Brakenridge SC, Baker HV, Bacher R, Mohr AM, Moldawer LL, Efron PA. Chronic Critical Illness Elicits a Unique Circulating Leukocyte Transcriptome in Sepsis Survivors. J Clin Med 2021; 10:3211. [PMID: 34361995 PMCID: PMC8348105 DOI: 10.3390/jcm10153211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Surgical sepsis has evolved into two major subpopulations: patients who rapidly recover, and those who develop chronic critical illness (CCI). Our primary aim was to determine whether CCI sepsis survivors manifest unique blood leukocyte transcriptomes in late sepsis that differ from transcriptomes among sepsis survivors with rapid recovery. In a prospective cohort study of surgical ICU patients, genome-wide expression analysis was conducted on total leukocytes in human whole blood collected on days 1 and 14 from sepsis survivors who rapidly recovered or developed CCI, defined as ICU length of stay ≥ 14 days with persistent organ dysfunction. Both sepsis patients who developed CCI and those who rapidly recovered exhibited marked changes in genome-wide expression at day 1 which remained abnormal through day 14. Although summary changes in gene expression were similar between CCI patients and subjects who rapidly recovered, CCI patients exhibited differential expression of 185 unique genes compared with rapid recovery patients at day 14 (p < 0.001). The transcriptomic patterns in sepsis survivors reveal an ongoing immune dyscrasia at the level of the blood leukocyte transcriptome, consistent with persistent inflammation and immune suppression. Furthermore, the findings highlight important genes that could compose a prognostic transcriptomic metric or serve as therapeutic targets among sepsis patients that develop CCI.
Collapse
Affiliation(s)
- Dijoia B. Darden
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Gabriela L. Ghita
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA; (G.L.G.); (Z.W.); (R.B.)
| | - Zhongkai Wang
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA; (G.L.G.); (Z.W.); (R.B.)
| | - Julie A. Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; (M.-C.L.); (H.V.B.)
| | - Michael C. Cox
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Russell B. Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Jaimar C. Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Lauren S. Kelly
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Brittany P. Fenner
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Tezcan Ozrazgat-Baslanti
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA; (T.O.-B.); (C.L.)
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA; (T.O.-B.); (C.L.)
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Tyler J. Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Frederick A. Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Scott C. Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; (M.-C.L.); (H.V.B.)
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA; (G.L.G.); (Z.W.); (R.B.)
| | - Alicia M. Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| | - Philip A. Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (D.B.D.); (J.A.S.); (M.C.C.); (R.B.H.); (J.C.R.); (L.S.K.); (B.P.F.); (T.J.L.); (F.A.M.); (S.C.B.); (A.M.M.); (L.L.M.)
| |
Collapse
|