1
|
Acharya B, Behera A, Moharana S, Prajapati BG, Behera S. Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Chem Res Toxicol 2025; 38:521-541. [PMID: 40105412 DOI: 10.1021/acs.chemrestox.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nanoparticles, defined by their nanoscale dimensions and unique physicochemical properties, are widely utilized in healthcare, electronics, environmental sciences, and consumer products. However, increasing evidence of their potential embryotoxic effects during pregnancy underscores the need for a molecular-level understanding of their interactions during embryonic development. Nanoparticles such as titanium dioxide, silver, cerium oxide, copper oxide, and quantum dots can cross the placental barrier and interfere with crucial developmental processes. At the molecular level, they disrupt signaling pathways like Wnt and Hedgehog, induce oxidative stress and inflammation, and cause genotoxic effects, all critical during sensitive phases, such as organogenesis. Furthermore, these nanoparticles interact directly with cellular components, including DNA, proteins, and lipids, impairing cellular function and viability. Innovative strategies to mitigate nanoparticle toxicity, such as surface modifications and incorporation of biocompatible coatings, are discussed as potential solutions to reduce adverse molecular interactions. Various laboratory animal models used to investigate nanoparticle-induced embryotoxicity are evaluated for their efficacy and limitations, providing insights into their applicability for understanding these effects. This Account examines the molecular mechanisms by which nanoparticles compromise embryonic development and emphasizes the importance of designing safer nanoparticles to minimize maternal-fetal exposure risks, particularly in biomedical applications.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Amulyaratna Behera
- School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha 754022, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha 761211, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon, Pathom 73000, Thailand
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401 India
| | | |
Collapse
|
2
|
Keskin C, Aslan S, Baran MF, Baran A, Eftekhari A, Adıcan MT, Ahmadian E, Arslan S, Mohamed AJ. Green Synthesis and Characterization of Silver Nanoparticles Using Anchusa Officinalis: Antimicrobial and Cytotoxic Potential. Int J Nanomedicine 2025; 20:4481-4502. [PMID: 40242607 PMCID: PMC12002332 DOI: 10.2147/ijn.s511217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Objective Anchusa officinalis L. (A. officinalis) is a herbaceous traditional medicinal plant used in the treatment of some diseases. The presence of its medicinal properties suggested that A. officinalis (AO) leaf extract could be used as a coating agent for the environmentally friendly production of silver nanoparticles (AgNPs). Methods The synthesized biogenic silver nanoparticles (AO-AgNPs) were characterized using different techniques. The antimicrobial activity of AgNPs against common bacterial pathogenic strains was determined by the minimum inhibitory concentration (MIC) method. The presence of phytochemicals was determined by LSMS/MS. The MTT assay was used to investigate AO-AgNPs' cytotoxic activity in malignant (LnCap, Caco2, MDA-MB2, A549) and healthy (HEK-293) cell lines. Results LC-MS/MS analysis detected the presence of rich phytochemicals that may be responsible for reduction reactions. Biogenic AO-AgNPs exhibited effective inhibition of the growth of pathogenic microorganisms at low concentrations. The most effective antimicrobial activity was measured as 0.5 µg/mL MIC against S. aureus, E. coli, and C. albicans. Moreover, AO-AgNPs showed significant inhibition on the growth of cancerous cell lines, especially at a concentration of 25 μg/mL. On the contrary, it was determined that the inhibition rate decreased in the growth of healthy cell lines due to the increase in concentration. The lowest EC50 values were determined as 15.15 µg/mL in A549 cells. Conclusion The obtained results showed that AO could be an important source for the synthesis of AgNPs. Especially their ability to inhibit the growth of antibiotic-resistant pathogenic bacteria at low concentrations compared to common antibiotics indicates that AO-AgNPs can be used as biomedical agents in various areas. Moreover, their suppressive effect on cancerous cell lines showed that they have the potential to be used as an anticancer agent, but due to their proliferative effect on healthy cell lines, care should be taken in determining the appropriate dose.
Collapse
Affiliation(s)
- Cumali Keskin
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkiye
| | - Seyhan Aslan
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, 47200, Turkiye
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Turkiye
| | - Ayşe Baran
- Department of Plant and Animal Production, Medicinal and Aromatic Plants Program, Kiziltepe Vocational School, Marin Artuklu University, Mardin, Turkiye
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkiye
- Engineered Biomaterials Research Center, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Mehmet Tevfik Adıcan
- Department of Electricity and Energy, Vocational School, Mardin Artuklu University, Mardin, Turkiye
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkiye
| | - Ali Jimale Mohamed
- Department of Pharmacology, Faculty of Medicine, Somali National University, Mogadishu, 801, Somalia
| |
Collapse
|
3
|
Dong X, Wang X, Zheng X, Jiang H, Liu L, Ma N, Wang S. Targeted nanoparticle delivery system for tumor-associated macrophage reprogramming to enhance TNBC therapy. Cell Biol Toxicol 2025; 41:58. [PMID: 40056273 DOI: 10.1007/s10565-025-10001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Triple-negative breast cancer (TNBC) poses as a daunting and intricate manifestation of breast cancer, highlighted by few treatment options and a poor outlook. The crucial element in fostering tumor growth and immune resistance is the polarization of tumor-associated macrophages (TAMs) into the M2 state within the tumor microenvironment (TME). To address this, we developed M2 targeting peptide-chitosan-curcumin nanoparticles (M2pep-Cs-Cur NPs), a targeted delivery system utilizing chitosan (Cs) as a carrier, curcumin (Cur) as a therapeutic agent, and targeting peptides for specificity. These NPs effectively inhibited TNBC cell proliferation (~ 70%) and invasion (~ 70%), while increasing the responsiveness of tumors to anti-PD-L1 treatment (~ 50% survival enhancement) in vitro and in vivo. Bioinformatics analysis suggested that Cur modulates TAM polarization by influencing key genes such as COX-2, offering insights into its underlying mechanisms. This study highlights the potential of M2pep-Cs-Cur NPs to reverse M2 polarization in TAMs, providing a promising targeted therapeutic strategy to overcome immunotherapy resistance and improve TNBC outcomes.
Collapse
Affiliation(s)
- Xiaoshen Dong
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Xiaoou Wang
- Department of Geriatric Cardiovascular, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Xinyu Zheng
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
- Lab 1, Cancer Institute, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Jiang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Lu Liu
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China
| | - Ningye Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China.
| | - Shuo Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang, 110001, China.
| |
Collapse
|
4
|
Mohebali F, Aghabarari B, Vaezi MR, Zarei Z, Hassanpour G, Alizadeh Z, Latifi A, Mohebali M. Biomacromolecule chitosan carrying meglumine antimoniate coated on a silver/polyurethane nanocomposite as a wound dressing: Therapeutic efficacy on cutaneous leishmaniasis caused by Leishmania major in BALB/c mice. Int J Biol Macromol 2025; 307:141847. [PMID: 40057056 DOI: 10.1016/j.ijbiomac.2025.141847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
The high drug-carrying capacity and biocompatibility of chitosan (CS), a versatile biomacromolecule, have received special attention in recent years. This study focused on CS containing meglumine antimoniate (MA) for treating leishmaniasis, which was coated onto a silver/polyurethane (Ag.MA.CS/PUF). The newly synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma (ICP), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, field emission scanning electron microscope/energy dispersive spectroscopy (FESEM/EDS), and transmission electron microscopy (TEM). To confirm the in vivo results, we administered the Ag.MA.CS/PUF nanocomposite topically to skin lesions caused by L. major (MRHO/IR/75/ER) in 56 inbred BALB/c mice in intervention (n = 42) and control (n = 14) groups, once daily for four weeks. Skin lesion sizes and amastigote counts were measured before treatment and four weeks post-treatment. At these intervals, the average size of skin lesions in the Ag.MA.CS/PUF group decreased by 28 %, from 3.02 ± 0.98 to 2.17 ± 0.33 mm2. In contrast, the average size of lesions in the negative control group significantly increased from 3.58 ± 2.05 to 8.73 ± 5.15 mm2 (p < 0.05). Furthermore, the parasite load in the Ag.MA.CS/PUF nanocomposite group was significantly reduced by 80 % compared to the negative control group (p = 0.001). These findings suggest promising prospects for improving treatment outcomes in the future.
Collapse
Affiliation(s)
- Fatemeh Mohebali
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Behzad Aghabarari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Karaj, Iran.
| | - Mohammad Reza Vaezi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Zabihollah Zarei
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Meshkin Shahr Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alizadeh
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Latifi
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zheltonozhskaya T, Akopova O, Dąbrowska I, Permyakova N, Klepko V, Klymchuk D. Hybrid nanocarriers with different densities of silver nanoparticles formation features and antimicrobial properties. Sci Rep 2025; 15:6757. [PMID: 40000675 PMCID: PMC11862223 DOI: 10.1038/s41598-025-89021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This work presents the synthesis and characterization of silica/polyacrylamide hybrid carriers Hyb1 and Hyb2 containing different amounts and lengths of grafted PAAm chains, as well as the formation mechanism, structure, and antibacterial efficacy of their nanocomposites with silver nanoparticles (AgNPs). The main difference between Hyb1 and Hyb2 carriers, such as the thickness and permeability of the PAAm "corona", is highlighted. Using the methods of potentiometry, UV-Vis spectroscopy, TEM and viscometry, the influence of the hybrid structure and concentration of reagents on the two-stage process of reduction of Ag+ ions with sodium borohydride in Hyb1-2 aqueous solutions was established. A strong binding of Ag+ ions to both hybrid matrices at the first stage of reduction and a significant influence of the concentration of Ag-salt (and reducing agent) on the rate of accumulation and yield of AgNPs at the second stage were shown. The presence of two types of AgNPs (internal and external) in the resulting nanocomposites was revealed, resulting from the reduction process both in the internal space of the hybrid "corona" and on its surface. The average size of external AgNPs was larger than internal ones and increased with increasing concentration of Ag-salt (and reducing agent). The role of purification in creating more uniform AgNP/Hyb nanocomposites is demonstrated. High antibacterial effectiveness against S. aureus, E. coli, and P. aeruginosa was established using well diffusion and broth microdilution methods. The obtained MIC values ~ (1.25-2.5)·10-3 kg/m3) are compared to those of potent antibiotics such as ciprofloxacin, ceftriaxone and tetracycline.
Collapse
Affiliation(s)
- Tatyana Zheltonozhskaya
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine.
| | - Olga Akopova
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., Kiev, 01601, Ukraine
| | - Irena Dąbrowska
- Institute of Biology and Medicine of the Taras Shevchenko National University of Kyiv, 2 Hlushkova Avenue, Kyiv, 03127, Ukraine
| | - Nataliya Permyakova
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
| | - Valeriy Klepko
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
| | - Dmitro Klymchuk
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkovska Str., Kyiv, 01601, Ukraine
| |
Collapse
|
6
|
Karunakar KK, Edwin ER, Gopalakrishnan M, Cheriyan BV, Ramaiyan V, Karthikha VS, Justin JP. Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal health. Int Urol Nephrol 2025; 57:479-510. [PMID: 39312019 DOI: 10.1007/s11255-024-04212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 01/29/2025]
Abstract
Renal toxicity is a disorder that causes considerable issues in healthcare systems world, highlighting the critical importance of creating alternative treatments. Metallic nanoparticles have recently emerged as promising therapeutic agents for nephroprotection because of their remarkable properties. Numerous disciplines, including medicine, biotechnology, and the food industry, are currently investigating and exploring metallic nanoparticles, such as selenium, silver, and gold, with promising outcomes. In this overview, we provide the most current findings on cutting-edge nephroprotection through metallic nanoparticles, especially selenium, silver, and gold nanoparticles. While outlining the benefits, we outline possible methods for developing metallic nanoparticles, characterization techniques, and nephroprotection therapies. Selenium nanoparticles (SeNPs) minimize oxidative stress, a primary cause of nephrotoxicity through cell regeneration which protects kidneys. Silver nanoparticles (AgNPs) have anti-inflammatory capabilities that help alleviate kidney damage and nephrotoxicity. Gold nanoparticles (AuNPs), which are biocompatible and immune-modifying, reduce inflammation and promote renal cell regeneration, indicating nephroprotective advantages. Renal protection via the use of metallic nanoparticles represents a promising new frontier in the fight against kidney disease and other renal disorders. Metallic nanoparticles of selenium, silver, and gold can protect the kidneys by lowering oxidative stress, reducing inflammation, and improving cell repair. Through their mechanisms, these nanoparticles effectively safeguard and repair kidney function, making them suitable for treating renal diseases. The potential applications of selenium, silver, and gold nanoparticles, as well as their complex modes of action and renal penetration, provide fresh hope for improving renal health and quality of life in patients with kidney disease. The current study highlights therapeutic ability, stability, nephroprotection, and toxicity profiles, as well as the importance of continuous research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Elizabeth Rani Edwin
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Meenaloshini Gopalakrishnan
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India.
| | - Velmurugan Ramaiyan
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - V S Karthikha
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Jerry Peliks Justin
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| |
Collapse
|
7
|
Ghattavi S, Homaei A, Kamrani E. Innovative CuO-melanin hybrid nanoparticles and polytetrafluoroethylene for enhanced antifouling coatings. Colloids Surf B Biointerfaces 2025; 246:114387. [PMID: 39577146 DOI: 10.1016/j.colsurfb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Based on current research, a highly effective, completely biocompatible, and eco-friendly antifouling method was developed. Sepia pharaonis was used to synthesize melanin nanoparticles from its ink. To improve the anti-biofouling characteristics, CuO nanoparticles were synthesized from Padina sp., and a CuO-melanin hybrid nanoparticle complex was created under reflux. The XRD spectrum of the hybrid nanoparticles revealed several prominent peaks, indicating the crystalline structure of the nanoparticles. An EDS analysis identified copper, carbon, and oxygen in the hybrid nanoparticles. According to FE-SEM analysis, CuO-melanin hybrid nanoparticles displayed spherical morphology, with sizes ranging from 15 nm to 55 nm. DLS analysis showed that the hydrodynamic diameter of CuO-melanin hybrid nanoparticles was 187.5 nm. The biological test showed that CuO-melanin nanoparticles had the highst effect on marine bacteria (Phaeobacter sp. (6.25 μg/mL), Alteromonas sp. (12.5 μg/mL)), and algae (Isochrysis galbana Parke) (99 %) after 48 h. The CuO-melanin (3 wt%) exhibited the lowest pseudo-barnacle adhesion strength at 0.021 MPa and the lowest surface free energy, measuring 14.22 mN/m. The field immersion study in a marine environment showed that among the panels tested, the one containing 3 wt% CuO-melanin hybrid nanoparticles with polytetrafluoroethylene yielded the most favorable and efficient outcome, since it led to the lowest measured weight of biofouling at 26.44 g. The findings of this study show that CuO-melanin hybrid nanoparticles combined with polytetrafluoroethylene exhibit highly promising characteristics, make them appealing for antifouling applications.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
8
|
Shahzadi S, Fatima S, Ul Ain Q, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv 2025; 15:3858-3903. [PMID: 39917042 PMCID: PMC11800103 DOI: 10.1039/d4ra07519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
A sustainable and viable alternative for conventional chemical and physical approaches is the green production of silver nanoparticles (SNPs) using plant extracts. This review centers on the diverse applications of plant-mediated SNPs in biomedicine, environmental remediation, and photocatalysis. Ocimum sanctum (tulsi), Curcuma longa (turmeric), and Azadirachta indica (neem) and many others are plant extracts that have been used as stabilizing and reducing agents because of their extensive phytochemical profiles. The resulting SNPs have outstanding qualities, such as better photocatalytic degradation of organic dyes like methylene blue, antibacterial efficacy towards multidrug-resistant pathogens, biocompatibility for possible therapeutic applications, and regulated magnitude (10-50 nm), enhanced rigidity, and tunable surface plasmon resonance. Significant effects of plant extract type, amount, and synthesis parameters on the physical and functional characteristics of SNPs are revealed by key findings. Along with highlighting important issues and potential paths forward, this review also underlines the necessity of scalable production, thorough toxicity evaluations, and investigating the incorporation of SNPs into commercial applications. This work highlights how plant-based SNPs can be used to address global environmental and biological concerns by straddling the division between sustainable chemistry and nanotechnology.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Sehrish Fatima
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Qurat Ul Ain
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Zunaira Shafiq
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | | |
Collapse
|
9
|
El-Sharkawy RM, Ahmed IA, Kharboush TG. Fusarium oxysporum assisted green synthesis of small-sized silver nanoparticles for high antibacterial, and photocatalytic decolorization performances. BMC Microbiol 2025; 25:4. [PMID: 39762728 PMCID: PMC11702280 DOI: 10.1186/s12866-024-03686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers. METHODS This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities. RESULTS The successful biofabrication of smaller-sized SNPs with an average particle size of ~ 5 nm was achieved upon the bioprocess optimization. The developed SNPs exhibited significant antibacterial activity against multidrug-resistant bacterial pathogens in a concentration- and time-dependent manner. The minimum inhibitory concentrations (MICs) for SNPs were 0.078 µg/ml (Escherichia coli), 0.156 µg/ml (Pseudomonas aeruginosa), and 1.25 µg/ml (Enterococcus faecalis), while the minimum bactericidal concentrations (MBCs) were correspondingly 0.156 µg/ml, 0.312 µg/l, and 1.25 µg/ml. SNPs-treated cells displayed bacteriostatic and bactericidal effects as revealed by time-kill assay and the ultrastructure changes observed in SEM and TEM analyses. The results marked the potent antioxidant activity of SNPs against DPPH, O2•-, H2O2, and OH-radicals with IC50 values of 74.3, 96.7, 116.6, and 167.9 µg/ml, respectively. Significantly, the biosynthesized SNPs displayed cytotoxic activity on MCF-7, A549, and HepG-2 cell lines with IC50 values of 89.4, 121.4, and 138.9 µg/ml, respectively. SNPs exhibited promising photocatalytic efficiency at different concentrations and times compared with dark conditions. The highest decolorization percentage of crystal violet dye was 98.60% after 240 min at 100 µg SNPs concentration. CONCLUSIONS The green synthesis of SNPs by F. oxysporum exometabolites is eco-friendly, and inexpensive, with the production of small-size, and greatly stabilized nanoparticles. This study corroborated that SNPs can be highly promising enough to be applied for antibacterial and anticancer control systems, for ameliorating free radical-related disorders, and as a photocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt.
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
- Central Laboratory for Research, Faculty of Medicine, Benha University, Benha, Egypt
| | - Taghrid G Kharboush
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
10
|
Sousa A, Amaro A, Costa VM, Azevedo R, Oliveira S, Viana S, Reis F, Almeida A, Matafome P, Dias-Pereira P, Carvalho F, Fernandes E, Freitas M. Exploring quercetin's protective potential against the pro-inflammatory effects of silver nanoparticles in C57BL/6J mice. Food Chem Toxicol 2025; 195:115081. [PMID: 39510241 DOI: 10.1016/j.fct.2024.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The increasing prevalence of silver nanoparticles (AgNP) in various applications has sparked concerns about their potential adverse effects on human health. Hence, it is crucial to devise strategies to minimize their detrimental effects. Quercetin, a naturally occurring flavonoid present in human diet is known for its broad biological effects, including anti-inflammatory properties. Considering this, quercetin could serve as a promising strategy to protect the body against the harmful effects of AgNP. Thus, this study aimed to evaluate the potential protective role of quercetin against the deleterious effects induced by 5 nm polyvinylpyrrolidone (PVP)-AgNP in C57BL/6J mice. Using a novel administration technology (HaPILLness), mice were given a daily oral dose of AgNP at 1 mg/kg body weight (bw) or 10 mg/kg bw for 14 days, combined with daily IP injections of quercetin at 1 mg/kg bw. Our findings demonstrate that quercetin effectively attenuated the AgNP-induced intestinal inflammatory response, as demonstrated by reduced histological vascular and cellular alterations, along with a notable decrease in cytokine production, attributed to the inhibition of the nuclear factor (NF)-кB inflammatory pathway. Quercetin's protective effects extended to the liver and lungs, by reversing changes in the inflammatory and antioxidant markers cluster of differentiation (CD)4, superoxide dismutase 1 (SOD1) and catalase.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Andreia Amaro
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal
| | - Vera Marisa Costa
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Rui Azevedo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Sara Oliveira
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal; Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), 3046-854, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal
| | - Agostinho Almeida
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paulo Matafome
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal; Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), 3046-854, Coimbra, Portugal
| | - Patrícia Dias-Pereira
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
11
|
Sarkhel S, Shuvo SM, Ansari MA, Mondal S, Kapat P, Ghosh A, Sarkar T, Biswas R, Atanase LI, Carauleanu A. Nanotechnology-Based Approaches for the Management of Diabetes Mellitus: An Innovative Solution to Long-Lasting Challenges in Antidiabetic Drug Delivery. Pharmaceutics 2024; 16:1572. [PMID: 39771551 PMCID: PMC11678074 DOI: 10.3390/pharmaceutics16121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease. This manuscript explores the multifaceted utilization of nanomaterials in diabetes care, emphasizing the unique features of nano-based medication delivery methods and smart drug delivery mechanisms. Additionally, this paper talks about research on nanocarrier-integrated oral, transdermal, and inhalable insulin delivery; dendrimer- and nanocarrier-coupled antisense oligonucleotide-driven gene therapy; the implementation of gold nanoparticles and quantum dots for glucose surveillance; and nucleic acid therapies. There are certain restrictions when using medication delivery methods that are commonly available to handle diabetes. In order to increase efficacy and safety, the rapidly developing science of nanotechnology is also being explored and employed in medical biology. Nanomaterials like liposomes, dendrimers, niosomes, polymeric and metallic nanocarriers, and solid lipid nanoparticles are among the nanocarriers that have been developed for better delivery of various oral hypoglycemic agents in comparison to conventional therapies. These nanocarriers provide great control over elevated blood glucose levels, making them one of the most intriguing and promising technologies available today. Furthermore, adding additional ligands to nanocarriers allows for more focused distribution while protecting the encapsulated hypoglycemic drugs.
Collapse
Affiliation(s)
- Shounak Sarkhel
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Saikat Mollick Shuvo
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata 700109, WB, India;
| | - Md Ahesan Ansari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Sourav Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Pritam Kapat
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Arindam Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Tanima Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Ranu Biswas
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Leonard Ionut Atanase
- Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Alexandru Carauleanu
- Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iasi, Romania;
| |
Collapse
|
12
|
Krishna SBN, Sheik AG, Pillay K, Ahmed Hamza M, Mohammed Elamir MY, Selim S. Nanotechnology in action: silver nanoparticles for improved eco-friendly remediation. PeerJ 2024; 12:e18191. [PMID: 39372718 PMCID: PMC11456292 DOI: 10.7717/peerj.18191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Nanotechnology is an exciting area with great potential for use in biotechnology due to the far-reaching effects of nanoscale materials and their size-dependent characteristics. Silver and other metal nanoparticles have attracted a lot of attention lately because of the exceptional optical, electrical, and antimicrobial characteristics they possess. Silver nanoparticles (AgNPs) stand out due to their cost-effectiveness and abundant presence in the earth's crust, making them a compelling subject for further exploration. The vital efficacy of silver nanoparticles in addressing environmental concerns is emphasized in this thorough overview that dives into their significance in environmental remediation. Leveraging the distinctive properties of AgNPs, such as their antibacterial and catalytic characteristics, innovative solutions for efficient treatment of pollutants are being developed. The review critically examines the transformative potential of silver nanoparticles, exploring their various applications and promising achievements in enhancing environmental remediation techniques. As environmental defenders, this study advocates for intensified investigation and application of silver nanoparticles. Furthermore, this review aims to assist future investigators in developing more cost-effective and efficient innovations involving AgNPs carrying nanoprobes. These nanoprobes have the potential to detect numerous groups of contaminants simultaneously, with a low limit of detection (LOD) and reliable reproducibility. The goal is to utilize these innovations for environmental remediation purposes.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
| | - Karen Pillay
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Manhal Ahmed Hamza
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | | | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
13
|
Navarrete-Olvera K, Niño-Martínez N, De Alba-Montero I, Patiño-Marín N, Ruiz F, Bach H, Martínez-Castañón GA. The Push-Out Bond Strength, Surface Roughness, and Antimicrobial Properties of Endodontic Bioceramic Sealers Supplemented with Silver Nanoparticles. Molecules 2024; 29:4422. [PMID: 39339417 PMCID: PMC11434183 DOI: 10.3390/molecules29184422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This study evaluated push-out bond test (POBT), surface roughness, and antimicrobial properties against Enterococcus faecalis of bioceramic sealers supplemented with silver nanoparticles (AgNPs). The sealers tested were CeraSeal®, EndoSequence® BC SealerTM, and Bio-C® Sealer. The POBT was measured with a Universal Testing Machine, and the type of failure was evaluated with a stereomicroscope. The roughness average (Sa) and peak-valley height (Sy) values were evaluated by atomic force microscopy. The bacterial growth inhibition was evaluated using a disk diffusion test, and antimicrobial activity was determined with the plate microdilution method. The POBT showed no significant difference between sealers with and those without NPs in cervical and apical thirds (p > 0.05). In the middle third, the adhesion force was significant for Endosequence BC Sealer® (p < 0.05). The results showed that the Sa and Sy parameters, when AgNPs were added, did not show a statistically significant difference compared to the groups without nanoparticles (p > 0.05). All tested sealers showed bacterial growth inhibition, but no significant difference was found. Their efficacy, in descending order of antibacterial activity when AgNPs were added, is as follows: EndoSequence® BC SealerTM > Bio-C® Sealer > CeraSeal®. The incorporation of AgNPs into bioceramics improves antimicrobial activity without affecting mechanical properties.
Collapse
Affiliation(s)
- Karla Navarrete-Olvera
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosi, Sierra Leona No. 550 Col. Lomas 2da. Sección, San Luis Potosí 78210, Mexico;
| | - Nereyda Niño-Martínez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosi, Av. Parque Chapultepec No. 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico; (N.N.-M.); (I.D.A.-M.); (F.R.)
| | - Idania De Alba-Montero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosi, Av. Parque Chapultepec No. 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico; (N.N.-M.); (I.D.A.-M.); (F.R.)
| | - Nuria Patiño-Marín
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosi, Av. Dr. Manuel Nava No. 2, Zona Universitaria, San Luis Potosí 78290, Mexico;
| | - Facundo Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosi, Av. Parque Chapultepec No. 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico; (N.N.-M.); (I.D.A.-M.); (F.R.)
| | - Horacio Bach
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Gabriel-Alejandro Martínez-Castañón
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosi, Av. Dr. Manuel Nava No. 2, Zona Universitaria, San Luis Potosí 78290, Mexico;
| |
Collapse
|
14
|
Jangid H, Singh S, Kashyap P, Singh A, Kumar G. Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Front Pharmacol 2024; 15:1438227. [PMID: 39175537 PMCID: PMC11338803 DOI: 10.3389/fphar.2024.1438227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction: Silver nanoparticles (AgNPs) have gained significant attention in biomedical applications due to their unique physicochemical properties. This review focuses on the roles of AgNPs in antimicrobial activity, anticancer therapy, and wound healing, highlighting their potential to address critical health challenges. Methods: A bibliometric analysis was conducted using publications from the Scopus database, covering research from 2002 to 2024. The study included keyword frequency, citation patterns, and authorship networks. Data was curated with Zotero and analyzed using Bibliometrix R and VOSviewer for network visualizations. Results: The study revealed an increasing trend in research on AgNPs, particularly in antimicrobial applications, leading to 8,668 publications. Anticancer and wound healing applications followed, with significant contributions from India and China. The analysis showed a growing focus on "green synthesis" methods, highlighting a shift towards sustainable production. Key findings indicated the effectiveness of AgNPs in combating multidrug-resistant bacteria, inducing apoptosis in cancer cells, and promoting tissue regeneration in wound healing. Discussion: The widespread research and applications of AgNPs underscore their versatility in medical interventions. The study emphasizes the need for sustainable synthesis methods and highlights the potential risks, such as long-term toxicity and environmental impacts. Future research should focus on optimizing AgNP formulations for clinical use and further understanding their mechanisms of action. Conclusion: AgNPs play a pivotal role in modern medicine, particularly in addressing antimicrobial resistance, cancer treatment, and wound management. Ongoing research and international collaboration are crucial for advancing the safe and effective use of AgNPs in healthcare.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Sudhakar Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Piyush Kashyap
- School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), Adama, Ethiopia
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| |
Collapse
|
15
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
16
|
Tripathi S, Sharma S, Rai P, Mahra S, Tripathi DK, Sharma S. Synergy of plant growth promoting rhizobacteria and silicon in regulation of AgNPs induced stress of rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108720. [PMID: 38901227 DOI: 10.1016/j.plaphy.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024]
Abstract
Silver Nanoparticles (AgNPs), as an emerging pollutant, have been receiving significant attention as they deepen the concern regarding the issue of food security. Silicon (Si) and plant growth-promoting rhizobacteria (PGPR) are likely to serve as a sustainable approach to ameliorating abiotic stress and improving plant growth through various mechanisms. The present study aims to evaluate the synergistic effect of Si and PGPRs on growth, physiological, and molecular response in rice seedlings (Oryza sativa) under AgNPs stress. Data suggested that under AgNPs exposure, the root and shoot growth, photosynthetic pigments, antioxidant enzymes (CAT and APX), expression of antioxidant genes (OsAPX and OsGR), silicon transporter (OsLsi2), and auxin hormone-related genes (OsPIN10 and OsYUCCA1) were significantly decreased which accompanied with the overproduction of reactive oxygen species (ROS), nitric oxide (NO) and might be due to higher accumulation of Ag in plant cells. Interestingly, the addition of Si along with the AgNPs enhances the level of ROS generation, thus oxidative stress, which causes severe damage in all the above-tested parameters. On the other hand, application of PGPR alone and along with Si reduced the toxic effect of AgNPs through the improvement of growth, biochemical, and gene regulation (OsAPX and OsGR, OsPIN10 and OsYUCCA1). However, the addition of L-NAME along with PGPR and silicon drastically lowered the AgNPs induced toxicity through lowering the oxidative stress and maintained the overall growth of rice seedlings, which suggests the role of endogenous NO in Si and PGPRs mediated management of AgNPs toxicity in rice seedlings.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Samarth Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| |
Collapse
|
17
|
Rodrigues AS, Batista JGS, Rodrigues MÁV, Thipe VC, Minarini LAR, Lopes PS, Lugão AB. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front Microbiol 2024; 15:1440065. [PMID: 39149204 PMCID: PMC11325591 DOI: 10.3389/fmicb.2024.1440065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoparticles play a crucial role in the field of nanotechnology, offering different properties due to their surface area attributed to their small size. Among them, silver nanoparticles (AgNPs) have attracted significant attention due to their antimicrobial properties, with applications that date back from ancient medicinal practices to contemporary commercial products containing ions or silver nanoparticles. AgNPs possess broad-spectrum biocidal potential against bacteria, fungi, viruses, and Mycobacterium, in addition to exhibiting synergistic effects when combined with certain antibiotics. The mechanisms underlying its antimicrobial action include the generation of oxygen-reactive species, damage to DNA, rupture of bacterial cell membranes and inhibition of protein synthesis. Recent studies have highlighted the effectiveness of AgNPs against various clinically relevant bacterial strains through their potential to combat antibiotic-resistant pathogens. This review investigates the proteomic mechanisms by which AgNPs exert their antimicrobial effects, with a special focus on their activity against planktonic bacteria and in biofilms. Furthermore, it discusses the biomedical applications of AgNPs and their potential non-preparation of antibiotic formulations, also addressing the issue of resistance to antibiotics.
Collapse
Affiliation(s)
- Adriana S Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Jorge G S Batista
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Murilo Á V Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Velaphi C Thipe
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Luciene A R Minarini
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Patricia S Lopes
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Ademar B Lugão
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| |
Collapse
|
18
|
Faid AH, Ramadan MA. Reducing the effective dose of cisplatin using cobalt modified silver nano-hybrid as a carriers on MCF7 and HCT cell models. BMC Chem 2024; 18:69. [PMID: 38600590 PMCID: PMC11007969 DOI: 10.1186/s13065-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Cancer is a deadly illness with a convoluted pathogenesis. The most prevalent restrictions that frequently result in treatment failure for cancer chemotherapy include lack of selectivity, cytotoxicity, and multidrug resistance. Thus, considerable efforts have been focused in recent years on the establishment of a modernistic sector termed nano-oncology, which offers the option of employing nanoparticles (NPs) with the objective of detecting, targeting, and treating malignant disorders. NPs offer a focused approach compared to conventional anticancer methods, preventing negative side effects. In the present work, a successful synthetic process was used to create magnetic cobalt cores with an AgNPs shell to form bimetallic nanocomposites CoAg, then functionalized with Cis forming novel CoAg@Cis nanohybrid. The morphology and optical properties were determined by TEM, DLS, FTIRs and UV-vis spectroscopy, furthermore, anticancer effect of CoAg and CoAg@Cis nanohybrids were estimated using MTT assay on MCF7 and HCT cell lines. Our results showed that Co@Ag core shell is about 15 nm were formed with dark CoNPs core and AgNPs shell with less darkness than the core, moreover, CoAg@Cis has diameter about 25 nm which are bigger in size than Co@Ag core shell demonstrating the loading of Cis. It was observed that Cis, CoAg and CoAg@Cis induced a decline in cell survival and peaked at around 65%, 73%and 66% on MCF7 and 80%, 76%and 78% on HCT at 100 µg/ml respectively. Compared to Cis alone, CoAg and CoAg@Cis caused a significant decrease in cell viability. These findings suggest that the synthesized CoAg can be used as a powerful anticancer drug carrier.
Collapse
Affiliation(s)
- Amna H Faid
- Department of Laser Science and Interaction, National Institute of Laser Enhanced Science (NILES) Cairo University, Giza, Egypt.
| | - Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Science (NILES) Cairo University (CU), Giza, Egypt
| |
Collapse
|
19
|
Noori A, Hasanuzzaman M, Roychowdhury R, Sarraf M, Afzal S, Das S, Rastogi A. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108538. [PMID: 38520964 DOI: 10.1016/j.plaphy.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in various fields due to their unique properties, but their release into the environment has raised concerns about their environmental and biological impacts. Silver nanoparticles can enter plants following their exposure to roots or via stomata following foliar exposure. Upon penetrating the plant cells, AgNPs interact with cellular components and alter physiological and biochemical processes. One of the key concerns associated with plant exposure to AgNPs is the potential of these materials to induce oxidative stress. Silver nanoparticles can also suppress plant growth and development by disrupting essential plant physiological processes, such as photosynthesis, nutrient uptake, water transport, and hormonal regulation. In crop plants, these disruptions may, in turn, affect the productivity and quality of the harvested components and therefore represent a potential threat to agricultural productivity and ecosystem stability. Understanding the phytotoxic effects of AgNPs is crucial for assessing their environmental implications and guiding the development of safe nanomaterials. By delving into the phytotoxic effects of AgNPs, this review contributes to the existing knowledge regarding their environmental risks and promotes the advancement of sustainable nanotechnological practices.
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, 01845, USA
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Rajib Roychowdhury
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, 731235, West Bengal, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shadma Afzal
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| |
Collapse
|
20
|
Mays V, Smith N, Pham C, White M, Wu Q, Berry J, Linan A, Alexander Wait D, Kovacs L. Attenuation of photosynthesis in nanosilver-treated Arabidopsis thaliana is inherently linked to the particulate nature of silver. Heliyon 2024; 10:e27583. [PMID: 38509917 PMCID: PMC10950886 DOI: 10.1016/j.heliyon.2024.e27583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
Silver nanoparticles (AgNPs) are known to affect the physiology and morphology of plants in various ways, but the exact mechanism by which they interact with plant cells remains to be elucidated. An unresolved question of silver nanotoxicology is whether the interaction is triggered by the physical features of the particles, or by silver ions leached from their surface. In this study, we germinated and grew Arabidopsis thaliana seedlings in synthetic medium supplemented with sub-morbid concentrations (4 μg/mL) of AgNPs and silver nitrate (AgNO3). This treatment led to in planta accumulation of 106 μg/g and 97 μg/g of silver in the AgNO3- and AgNP-exposed seedlings, respectively. Despite the statistically indistinguishable silver accumulation, RNA sequencing data demonstrated distinct changes in the transcriptome of the AgNP-exposed, but not in the AgNO3-exposed plants. AgNP exposure induced changes in the expression of genes involved in immune response, cell wall organization, photosynthesis and cellular defense against reactive oxygen species. AgNO3 exposure, on the other hand, caused the differential expression of only two genes, neither of which belonged to any AgNP-enriched gene ontology categories. Moreover, AgNP exposure led to a 39% reduction (p < 0.001) in total chlorophyll concentration relative to untreated plants which was associated with a 56.9% and 56.2% drop (p < 0.05) in carbon assimilation rate at ambient and saturating light, respectively. Stomatal conductance was not significantly affected by AgNP exposure, and limitations to carbon assimilation, as determined through analysis of light and carbon dioxide (A/Ci) curves, were attributed to rates of electron transport, maximum carboxylation rates and triose phosphate use. AgNO3-exposure, on the other hand, did not lead to significant reduction either in chlorophyll concentration or in carbon assimilation rate. Given these data, we propose that the impact of AgNPs cannot be simply attributed to the presence of the metal in plants, but is innate to the particulate nature of nanosilver.
Collapse
Affiliation(s)
- Vincent Mays
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Natalie Smith
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Cody Pham
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Margaret White
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Qihua Wu
- Jordan Valley Innovation Center, Missouri State University, Springfield, MO, USA
| | - Jacob Berry
- Jordan Valley Innovation Center, Missouri State University, Springfield, MO, USA
| | | | - D. Alexander Wait
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Laszlo Kovacs
- Department of Biology, Missouri State University, Springfield, MO, USA
| |
Collapse
|
21
|
Saied E, Abdel-Maksoud MA, Alfuraydi AA, Kiani BH, Bassyouni M, Al-Qabandi OA, Bougafa FHE, Badawy MSEM, Hashem AH. Endophytic Aspergillus hiratsukae mediated biosynthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Front Microbiol 2024; 15:1345423. [PMID: 38533339 PMCID: PMC10964773 DOI: 10.3389/fmicb.2024.1345423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
In the current study, endophytic Aspergillus hiratsukae was used for the biosynthesis of silver nanoparticles (Ag-NPs) for the first time. The characterizations were performed using X ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and UV-Vis spectroscopy. The obtained results demonstrated the successful formation of crystalline, spherical Ag-NPs with particle diameters ranging from 16 to 31 nm. The FT-IR studied and displayed the various functional groups involved, which played a role in capping and reducing agents for Ag-NPs production. The SEM-EDX revealed that the main constituent of the AS-formed sample was primarily Ag, with a weight percentage of 64.2%. The mycosynthesized Ag-NPs were assessed for antimicrobial as well as photocatalytic activities. The antimicrobial results indicated that the synthesized Ag-NPs possess notable antibacterial efficacy against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli, with minimum inhibitory concentrations (MICs) of Ag-NPs ranging from 62.5 to 250 μg/mL. Moreover, the biosynthesized Ag-NPs demonstrated weak antifungal activity against Aspergillus brasiliensis and Candida albicans, with MICs of 500 and 1,000 μg/mL, respectively. In addition, the mycosynthesized Ag-NPs exhibited photocatalytic activity toward acid black 2 (nigrosine) dye under both light and dark stimulation. Notably, After 300 min exposure to light, the nigrosine dye was degraded by 93%. In contrast, 51% degradation was observed after 300 min in darkness. In conclusion, Ag-NPs were successfully biosynthesized using endophytic A. hiratsukae and also exhibited antimicrobial and photocatalytic activities that can be used in environmental applications.
Collapse
Affiliation(s)
- Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akram A. Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said, Egypt
- Center of Excellence in Membrane-Based Water Desalination Technology for Testing and Characterization (CEMTC), Port Said University, Port Said, Egypt
| | - Osama A. Al-Qabandi
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Fathia H. E. Bougafa
- Department of Microbiology, Faculty of Science, Tobruk University, Tobruk, Libya
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
22
|
Wang L, Huang X, Cao X, Zhou F, Liu B, Wei S, Liu X, Yang X, Yin S. Confining the Growth of AgNPs onto Epigallocatechin Gallate-Decorated Zein Nanoparticles for Constructing Potent Protein-Based Antibacterial Nanocomposites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4928-4938. [PMID: 38393975 DOI: 10.1021/acs.jafc.3c08029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Sliver nanoparticles (AgNPs) have attracted tremendous interest as an alternative to commercially available antibiotics due to their low microbial resistance and broad-spectrum antimicrobial activity. However, AgNPs are highly reactive and unstable and are susceptible to fast oxidation. Synthesizing stable and efficient AgNPs using green chemistry principles remains a major challenge. To address this issue, we establish a facile route to form AgNP-doped zein nanoparticle core-satellite superstructures with ultralow minimum bactericidal concentration (MBC). In brief, polyphenol surface-functionalization of zein nanoparticles was performed, and the epigallocatechin gallate (EGCG) layer on zein nanoparticles served as a reducing-cum-stabilizing agent. We used EGCG-decorated zein nanoparticles (ZE) as a template to direct the nucleation and growth of AgNPs to develop metallized hybrid nanoparticles (ZE-Ag). The highly monodispersed core-satellite nanoparticles (∼150 nm) decorated with ∼4.9 nm AgNPs were synthesized successfully. The spatial restriction of EGCG by zein nanoparticles confined the nucleation and growth of AgNPs only on the surface of the particles, which prevented the formation of entangled clusters of polyphenols and AgNPs and concomitantly inhibited the coalescence and oxidation of AgNPs. Thus, this strategy improved the effective specific surface area of AgNPs, and as a result, ZE-Ag efficiently killed the indicator bacteria, Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus(MRSA) after 20 min of incubation, with MBCs of 2 and 4 μg/mL, respectively. This situation indicated that as-prepared core-satellite nanoparticles possessed potent short-term sterilization capability. Moreover, the simulated wound infection model also confirmed the promising application of ZE-Ag as an efficient antimicrobial composite. This work provides new insights into the synthesis and emerging application of AgNPs in food preservation, packaging, biomedicine, and catalysis.
Collapse
Affiliation(s)
- Like Wang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaonan Huang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaoxuan Cao
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fuzhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Bo Liu
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuheng Wei
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xia Liu
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaoquan Yang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shouwei Yin
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
23
|
de Freitas CF, Souza PR, Jacinto GS, Braga TL, Ricken YS, Souza GK, Caetano W, Radovanovic E, Arns CW, Rai M, Muniz EC. Silver Nanoparticles In Situ Synthesized and Incorporated in Uniaxial and Core-Shell Electrospun Nanofibers to Inhibit Coronavirus. Pharmaceutics 2024; 16:268. [PMID: 38399322 PMCID: PMC10893522 DOI: 10.3390/pharmaceutics16020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the present study, we sought to develop materials applicable to personal and collective protection equipment to mitigate SARS-CoV-2. For this purpose, AgNPs were synthesized and stabilized into electrospinning nanofiber matrices (NMs) consisting of poly(vinyl alcohol) (PVA), chitosan (CHT), and poly-ε-caprolactone (PCL). Uniaxial nanofibers of PVA and PVA/CHT were developed, as well as coaxial nanofibers of PCL[PVA/CHT], in which the PCL works as a shell and the blend as a core. A crucial aspect of the present study is the in situ synthesis of AgNPs using PVA as a reducing and stabilizing agent. This process presents few steps, no additional toxic reducing agents, and avoids the postloading of drugs or the posttreatment of NM use. In general, the in situ synthesized AgNPs had an average size of 11.6 nm, and the incorporated nanofibers had a diameter in the range of 300 nm, with high uniformity and low polydispersity. The NM's spectroscopic, thermal, and mechanical properties were appropriate for the intended application. Uniaxial (PVA/AgNPs and PVA/CHT/AgNPs) and coaxial (PCL[PVA/CHT/AgNPs]) NMs presented virucidal activity (log's reduction ≥ 5) against mouse hepatitis virus (MHV-3) genus Betacoronavirus strains. In addition to that, the NMs did not present cytotoxicity against fibroblast cells (L929 ATCC® CCL-1TM lineage).
Collapse
Affiliation(s)
- Camila F. de Freitas
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Paulo R. Souza
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Gislaine S. Jacinto
- Laboratory of Virology, Institute of Biology, University of Campinas–UNICAMP, Campinas 13083-970, Brazil
| | - Thais L. Braga
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Yara S. Ricken
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gredson K. Souza
- Chemistry Institute, State University of Campinas, UNICAMP, Rua Josué de Castro Cidade Universitária, Campinas 13083-970, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Eduardo Radovanovic
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Clarice W. Arns
- Laboratory of Virology, Institute of Biology, University of Campinas–UNICAMP, Campinas 13083-970, Brazil
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Chemistry, Federal University of Piauí, Campus Ministro Petronio Portella, Ininga, Teresina 64049-550, Brazil
| | - Edvani C. Muniz
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Department of Chemistry, Federal University of Piauí, Campus Ministro Petronio Portella, Ininga, Teresina 64049-550, Brazil
- Department of Chemistry, Federal University of Technology-Paraná, Estrada dos Pioneiros, 3131, Londrina 86036-370, Brazil
| |
Collapse
|
24
|
Torbati S, Yekan Motlagh P, Khataee A. Toxicity of ZnFe-SO 4 layered double hydroxide in Tetradesmus obliquus and evaluation of some physiological responses of the microalgae for stress management. Sci Rep 2024; 14:975. [PMID: 38200201 PMCID: PMC10782017 DOI: 10.1038/s41598-023-51042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Layered double hydroxides (LDHs), regarding their physical and structural properties, have different and wide applications industry and their increasing use may raise ecological and human health concerns. However, the potential toxicity mechanisms of LDHs in different organisms are still unclear. In the present work, after synthesizing of ZnFe-SO4 LDH and studying of its characterization by XRD, FT-IR, SEM, EDX-mapping, TEM and Raman, its toxicity in Tetradesmus obliquus was evaluated. According to experimental results, the growth of the algae and content of photosynthetic pigments were significantly decreased after treatment with 100 mg/L of ZnFe-SO4 LDH. The high dose exposure to the LDH also inhibited the activity of SOD and POD enzymes, possibly due to the LDH- catalyzed reactive oxygen species production. In addition, lipid peroxidation and the content of phenolic compounds, as no-enzymatic antioxidants were increased by enhancement of the LDH concentration. The rise of phenol, flavonoids and MDA contents could be regarded as some manifestations and responses to the toxic effects of the contaminant in the algae cells. The results provided a better understanding of the undesirable effects and toxicity of LDHs in aquatic organisms.
Collapse
Affiliation(s)
- Samaneh Torbati
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquacultur Research Institute, Urmia University, Urmia, 5756151818, Iran.
| | - Parisa Yekan Motlagh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
25
|
Ibrahim NH, Taha GM, Hagaggi NSA, Moghazy MA. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chem 2024; 18:7. [PMID: 38184656 PMCID: PMC10771699 DOI: 10.1186/s13065-023-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
This study marks a pioneering effort in utilizing Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr., (commonly known as acacia raddiana) leaves as both a reducing and stabilizing agent in the green "eco-friendly" synthesis of silver nanoparticles (AgNPs). The research aimed to optimize the AgNPs synthesis process by investigating the influence of pH, temperature, extract volume, and contact time on both the reaction rate and the resulting AgNPs' morphology as well as discuss the potential of AgNPs in detecting some heavy metals. Various characterization methods, such as UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), Zeta sizer, EDAX, and transmitting electron microscopy (TEM), were used to thoroughly analyze the properties of the synthesized AgNPs. The XRD results verified the successful production of AgNPs with a crystallite size between 20 to 30 nm. SEM and TEM analyses revealed that the AgNPs are primarily spherical and rod-shaped, with sizes ranging from 8 to 41 nm. Significantly, the synthesis rate of AgNPs was notably higher in basic conditions (pH 10) at 70 °C. These results underscore the effectiveness of acacia raddiana as a source for sustainable AgNPs synthesis. The study also examined the AgNPs' ability to detect various heavy metal ions colorimetrically, including Hg2+, Cu2+, Pb2+, and Co2+. UV-Vis spectroscopy proved useful for this purpose. The color of AgNPs shifts from brownish-yellow to pale yellow, colorless, pale red, and reddish yellow when detecting Cu2+, Hg2+, Co2+, and Pb2+ ions, respectively. This change results in an alteration of the AgNPs' absorbance band, vanishing with Hg2+ and shifting from 423 to 352 nm, 438 nm, and 429 nm for Cu2+, Co2+, and Pb2+ ions, respectively. The AgNPs showed high sensitivity, with detection limits of 1.322 × 10-5 M, 1.37 × 10-7 M, 1.63 × 10-5 M, and 1.34 × 10-4 M for Hg2+, Cu2+, Pb2+, and Co2+, respectively. This study highlights the potential of using acacia raddiana for the eco-friendly synthesis of AgNPs and their effectiveness as environmental sensors for heavy metals, showcasing strong capabilities in colorimetric detection.
Collapse
Affiliation(s)
- Nesma H Ibrahim
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Gharib M Taha
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Noura Sh A Hagaggi
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marwa A Moghazy
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| |
Collapse
|
26
|
Azevedo APGB, Müller N, Sant Anna C. Applications of Silver Nanoparticles in Patent Research. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:361-373. [PMID: 37106512 DOI: 10.2174/1872210517666230427155921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) have been widely applied in research and industrial fields, finding applications in nanomedicine, drug delivery, biomedical devices, electronics, the energy sector, and environmental protection. Patents provide information on the industrial viability of product technologies, and the number of patent documents provides an estimate of the evolution of a specific technological field. AIMS The present work aims to describe the current trends in AgNPs patent applications. In addition, a retrospective study of published patents in Brazil is presented. METHODS Analyses of AgNPs-related patents were conducted using the free platform for patent search Lens® in 2010-2019 and articles published in same period using the Scholar® base. The patent applications and their evolution over time, major depositors and holders, and the main technological areas associated with AgNP applications have been described. RESULTS China and United States are the major patent applicants for nanotechnologies. The worldwide distribution of publications of journal articles shows that China, India, and the United States are the leading countries in the total number of articles published, in that order. CONCLUSION Our study of patent applications and published articles confirmed the growing global increase in new technologies involving NPs and AgNPs, particularly in the biotechnology area, in the fields of medicine and agriculture.
Collapse
Affiliation(s)
- Ana Paula G B Azevedo
- National Institute of Metrology, Quality and Technology, Inmetro, Division of Technology Innovation, Ditec, Duque de Caxias, Brazil
| | - Nathalia Müller
- National Institute of Metrology, Quality and Technology, Inmetro, Laboratory of Microscopy Applied to Life Science, Lamav, Duque de Caxias, Brazil
| | - Celso Sant Anna
- National Institute of Metrology, Quality and Technology, Inmetro, Laboratory of Microscopy Applied to Life Science, Lamav, Duque de Caxias, Brazil
| |
Collapse
|
27
|
Savvidou MG, Kontari E, Kalantzi S, Mamma D. Green Synthesis of Silver Nanoparticles Using the Cell-Free Supernatant of Haematococcus pluvialis Culture. MATERIALS (BASEL, SWITZERLAND) 2023; 17:187. [PMID: 38204044 PMCID: PMC10779655 DOI: 10.3390/ma17010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The green synthesis of silver nanoparticles (AgNPs) using the cell-free supernatant of a Haematococcus pluvialis culture (CFS) was implemented in the current study, under illumination conditions. The reduction of Ag+ to AgNPs by the CFS could be described by a pseudo-first-order kinetic equation at the temperature range tested. A high reaction rate during synthesis and stable AgNPs were obtained at 45 °C, while an alkaline pH (pH = 11.0) and a AgNO3 aqueous solution to CFS ratio of 90:10 (v/v) proved to be the most effective conditions in AgNPs synthesis. A metal precursor (AgNO3) at the concentration range tested (1-5 mM) was the limited reactant in the synthesis process. The synthesis of AgNPs was accomplished under static and agitated conditions. Continuous stirring enhanced the rate of reaction but induced aggregation at prolonged incubation times. Zeta potential and polydispersity index measurements indicated stable AgNPs and the majority of AgNPs formation occurred in the monodisperse phase. The X-ray diffraction (XRD) pattern revealed the face-centered cubic structure of the formed AgNPs, while TEM analysis revealed that the AgNPs were of a quasi-spherical shape with a size from 30 to 50 nm. The long-term stability of the AgNPs could be achieved in darkness and at 4 °C. In addition, the synthesized nanoparticles showed antibacterial activity against Escherichia coli.
Collapse
Affiliation(s)
- Maria G. Savvidou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Evgenia Kontari
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Str, 15780 Athens, Greece or (M.G.S.); (E.K.); (S.K.)
| |
Collapse
|
28
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
29
|
Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 2023; 28:6624. [PMID: 37764400 PMCID: PMC10536529 DOI: 10.3390/molecules28186624] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Knowing the beneficial aspects of nanomedicine, scientists are trying to harness the applications of nanotechnology in diagnosis, treatment, and prevention of diseases. There are also potential uses in designing medical tools and processes for the new generation of medical scientists. The main objective for conducting this research review is to gather the widespread aspects of nanomedicine under one heading and to highlight standard research practices in the medical field. Comprehensive research has been conducted to incorporate the latest data related to nanotechnology in medicine and therapeutics derived from acknowledged scientific platforms. Nanotechnology is used to conduct sensitive medical procedures. Nanotechnology is showing successful and beneficial uses in the fields of diagnostics, disease treatment, regenerative medicine, gene therapy, dentistry, oncology, aesthetics industry, drug delivery, and therapeutics. A thorough association of and cooperation between physicians, clinicians, researchers, and technologies will bring forward a future where there is a more calculated, outlined, and technically programed field of nanomedicine. Advances are being made to overcome challenges associated with the application of nanotechnology in the medical field due to the pathophysiological basis of diseases. This review highlights the multipronged aspects of nanomedicine and how nanotechnology is proving beneficial for the health industry. There is a need to minimize the health, environmental, and ethical concerns linked to nanotechnology.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
30
|
Gomes DC, Medeiros TS, Alves Pereira EL, da Silva JFO, de Freitas Oliveira JW, Fernandes-Pedrosa MDF, de Sousa da Silva M, da Silva-Júnior AA. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int J Mol Sci 2023; 24:13778. [PMID: 37762080 PMCID: PMC10530915 DOI: 10.3390/ijms241813778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.
Collapse
Affiliation(s)
- Daniele Cavalcante Gomes
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Eron Lincoln Alves Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - João Felipe Oliveira da Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Johny W. de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Marcelo de Sousa da Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| |
Collapse
|
31
|
Kaushal A, Khurana I, Yadav P, Allawadhi P, Banothu AK, Neeradi D, Thalugula S, Barani PJ, Naik RR, Navik U, Bharani KK, Khurana A. Advances in therapeutic applications of silver nanoparticles. Chem Biol Interact 2023; 382:110590. [PMID: 37268200 DOI: 10.1016/j.cbi.2023.110590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Nanotechnology is one of the most appealing area for developing new applications in biotechnology and medicine. For decades, nanoparticles have been extensively studied for a variety of biomedical applications. Silver has evolved into a potent antibacterial agent that can be used in a variety of nanostructured materials of various shapes and sizes. Silver nanoparticles (AgNP) based antimicrobial compounds are employed in a wide range of applications, including medicinal uses, surface treatment and coatings, the chemical and food industries, and agricultural productivity. When designing formulations for specific applications, the size, shape, and surface area of AgNPs are all crucial structural aspects to consider. Different methods for producing AgNPs with varying sizes and forms that are less harmful have been devised. The anticancer, anti-inflammatory, antibacterial, antiviral, and anti-angiogenic properties of AgNPs have been addressed in this review, as well as their generation and processes. Herein, we have reviewed the advances in therapeutic applications of AgNPs, as well as their limitations and barriers for future applications.
Collapse
Affiliation(s)
- Ashutosh Kaushal
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Dinesh Neeradi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Sunitha Thalugula
- Department of Pharmacology, University College of Pharmaceutical Sciences (UCPS), Kakatiya University, Warangal, 506009, Telangana, India
| | - Percy Jasmine Barani
- Department of Chemistry, Wesley Degree College for Women, Osmania University, Secunderabad, 500025, Telangana, India
| | | | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| |
Collapse
|
32
|
Yugay YA, Sorokina MR, Grigorchuk VP, Rusapetova TV, Silant’ev VE, Egorova AE, Adedibu PA, Kudinova OD, Vasyutkina EA, Ivanov VV, Karabtsov AA, Mashtalyar DV, Degtyarenko AI, Grishchenko OV, Kumeiko VV, Bulgakov VP, Shkryl YN. Biosynthesis of Functional Silver Nanoparticles Using Callus and Hairy Root Cultures of Aristolochia manshuriensis. J Funct Biomater 2023; 14:451. [PMID: 37754865 PMCID: PMC10532211 DOI: 10.3390/jfb14090451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
This study delves into the novel utilization of Aristolochia manshuriensis cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were revealed by UV-Vis spectra. Transmission and scanning electron microscopy indicated that the AgNPs, ranging in size from 10 to 40 nm, exhibited a spherical morphology. Fourier-transform infrared analysis validated the abilty of A. manshuriensis extract components to serve as both reducing and capping agents for metal ions. In the context of cytotoxicity on embryonic fibroblast (NIH 3T3) and mouse neuroblastoma (N2A) cells, AgNPs demonstrated varying effects. Specifically, nanoparticles derived from callus cultures exhibited an IC50 of 2.8 µg/mL, effectively inhibiting N2A growth, whereas AgNPs sourced from hairy roots only achieved this only at concentrations of 50 µg/mL and above. Notably, all studied AgNPs' treatment-induced cytotoxicity in fibroblast cells, yielding IC50 values ranging from 7.2 to 36.3 µg/mL. Furthermore, the findings unveiled the efficacy of the synthesized AgNPs against pathogenic microorganisms impacting both plants and animals, including Agrobacterium rhizogenes, A. tumefaciens, Bacillus subtilis, and Escherichia coli. These findings underscore the effectiveness of biotechnological methodologies in offering advanced and enhanced green nanotechnology alternatives for generating nanoparticles with applications in combating cancer and infectious disorders.
Collapse
Affiliation(s)
- Yulia A. Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Maria R. Sorokina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Tatiana V. Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Vladimir E. Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (V.E.S.); (V.V.K.)
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia;
| | - Anna E. Egorova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, Moscow 111123, Russia;
| | - Peter A. Adedibu
- School of Advanced Engineering Studies “Institute of Biotechnology, Bioengineering and Food Systems”, Far Eastern Federal University, Vladivostok 690922, Russia;
| | - Olesya D. Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Elena A. Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Vladimir V. Ivanov
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (V.V.I.); (A.A.K.)
| | - Alexander A. Karabtsov
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (V.V.I.); (A.A.K.)
| | - Dmitriy V. Mashtalyar
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia;
| | - Anton I. Degtyarenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Olga V. Grishchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (V.E.S.); (V.V.K.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Victor P. Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Yury N. Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
- School of Advanced Engineering Studies “Institute of Biotechnology, Bioengineering and Food Systems”, Far Eastern Federal University, Vladivostok 690922, Russia;
| |
Collapse
|
33
|
Kah G, Chandran R, Abrahamse H. Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy. Cells 2023; 12:2012. [PMID: 37566091 PMCID: PMC10417642 DOI: 10.3390/cells12152012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Different conventional therapeutic procedures are utilized globally to manage cancer cases, yet the mortality rate in patients with cancer remains considerably high. Developments in the field of nanotechnology have included novel therapeutic strategies to deal with cancer. Biogenic (green) metallic silver nanoparticles (AgNPs) obtained using plant-mediated protocols are attractive to researchers exploring cancer treatment. Biogenic AgNPs present advantages, since they are cost-effective, easy to obtain, energy efficient, and less toxic compared to chemically and physically obtained AgNPs. Also, they present excellent anticancer abilities thanks to their unique sizes, shapes, and optical properties. This review provides recent advancements in exploring biogenic AgNPs as a drug or agent for cancer treatment. Thus, great attention was paid to the anticancer efficacy of biogenic AgNPs, their anticancer mechanisms, their efficacy in cancer photodynamic therapy (PDT), their efficacy in targeted cancer therapy, and their toxicity.
Collapse
Affiliation(s)
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (G.K.); (H.A.)
| | | |
Collapse
|
34
|
O’Shaughnessy M, Sheils O, Baird AM. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs. Int J Mol Sci 2023; 24:12296. [PMID: 37569672 PMCID: PMC10419288 DOI: 10.3390/ijms241512296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer 17 are two of the most prevalent and debilitating respiratory diseases worldwide, both associated with high morbidity and mortality rates. As major global health concerns, they impose a substantial burden on patients, healthcare systems, and society at large. Despite their distinct aetiologies, lung cancer and COPD share common risk factors, clinical features, and pathological pathways, which have spurred increasing research interest in their co-occurrence. One area of particular interest is the role of the lung microbiome in the development and progression of these diseases, including the transition from COPD to lung cancer. Exploring novel therapeutic strategies, such as metal-based drugs, offers a potential avenue for targeting the microbiome in these diseases to improve patient outcomes. This review aims to provide an overview of the current understanding of the lung microbiome, with a particular emphasis on COPD and lung cancer, and to discuss the potential of metal-based drugs as a therapeutic strategy for these conditions, specifically concerning targeting the microbiome.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| |
Collapse
|
35
|
Kilic NM, Singh S, Keles G, Cinti S, Kurbanoglu S, Odaci D. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. BIOSENSORS 2023; 13:622. [PMID: 37366987 DOI: 10.3390/bios13060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Electrochemistry is a genuinely interdisciplinary science that may be used in various physical, chemical, and biological domains. Moreover, using biosensors to quantify biological or biochemical processes is critical in medical, biological, and biotechnological applications. Nowadays, there are several electrochemical biosensors for various healthcare applications, such as for the determination of glucose, lactate, catecholamines, nucleic acid, uric acid, and so on. Enzyme-based analytical techniques rely on detecting the co-substrate or, more precisely, the products of a catalyzed reaction. The glucose oxidase enzyme is generally used in enzyme-based biosensors to measure glucose in tears, blood, etc. Moreover, among all nanomaterials, carbon-based nanomaterials have generally been utilized thanks to the unique properties of carbon. The sensitivity can be up to pM levels using enzyme-based nanobiosensor, and these sensors are very selective, as all enzymes are specific for their substrates. Furthermore, enzyme-based biosensors frequently have fast reaction times, allowing for real-time monitoring and analyses. These biosensors, however, have several drawbacks. Changes in temperature, pH, and other environmental factors can influence the stability and activity of the enzymes, affecting the reliability and repeatability of the readings. Additionally, the cost of the enzymes and their immobilization onto appropriate transducer surfaces might be prohibitively expensive, impeding the large-scale commercialization and widespread use of biosensors. This review discusses the design, detection, and immobilization techniques for enzyme-based electrochemical nanobiosensors, and recent applications in enzyme-based electrochemical studies are evaluated and tabulated.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Dilek Odaci
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| |
Collapse
|
36
|
Ruíz-Baltazar ÁDJ, Böhnel HN, Larrañaga Ordaz D, Cervantes-Chávez JA, Méndez-Lozano N, Reyes-López SY. Green Ultrasound-Assisted Synthesis of Surface-Decorated Nanoparticles of Fe 3O 4 with Au and Ag: Study of the Antifungal and Antibacterial Activity. J Funct Biomater 2023; 14:304. [PMID: 37367269 DOI: 10.3390/jfb14060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
This work proposes a sonochemical biosynthesis of magnetoplasmonic nanostructures of Fe3O4 decorated with Au and Ag. The magnetoplasmonic systems, such as Fe3O4 and Fe3O4-Ag, were characterized structurally and magnetically. The structural characterizations reveal the magnetite structures as the primary phase. Noble metals, such as Au and Ag, are present in the sample, resulting in a structure-decorated type. The magnetic measurements indicate the superparamagnetic behavior of the Fe3O4-Ag and Fe3O4-Au nanostructures. The characterizations were carried out by X-ray diffraction and scanning electron microscopy. Complementarily, antibacterial and antifungal assays were carried out to evaluate the potential properties and future applications in biomedicine.
Collapse
Affiliation(s)
- Álvaro de Jesús Ruíz-Baltazar
- CONAHCYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico
| | - Harald Norbert Böhnel
- Centro de Geociencias, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico
| | - Daniel Larrañaga Ordaz
- Minnesota Dental Research Center for Biomaterials and Biomechanical, School of Dentistry of Minnesota, Minneapolis, MN 55455, USA
| | - José Antonio Cervantes-Chávez
- Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, UAQ Campus Aeropuerto, Santiago de Querétaro 76140, Mexico
| | - Néstor Méndez-Lozano
- Campus Querétaro, Universidad del Valle de México, Blvd. Juriquilla no. 1000 A. Del. Santa Rosa Jáuregui, Querétaro 76230, Mexico
| | - Simón Yobanny Reyes-López
- Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Zona Pronaf, Ciudad Juárez 32310, Mexico
| |
Collapse
|
37
|
Fierascu IC, Fierascu I, Baroi AM, Ungureanu C, Spinu S, Avramescu SM, Somoghi R, Fierascu RC, Dinu-Parvu CE. Phytosynthesis of Silver Nanoparticles Using Leonurus cardiaca L. Extracts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093472. [PMID: 37176353 PMCID: PMC10180527 DOI: 10.3390/ma16093472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
The present work describes, for the first time in the literature, the phytosynthesis of silver nanoparticles using Leonurus cardiaca L. extracts. The influence of the extraction method (classical temperature extraction and microwave extraction), as well as of the extract concentration on the characteristics of the nanoparticles, was studied using analytical methods, such as UV-Vis spectrometry, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Experimental data suggest that use of lower extract concentration leads to smaller dimensions nanoparticles, the same effect using the extract obtained by microwave-assisted extraction. The smallest recorded crystallite sizes (by X-ray diffraction) were under 3 nm. The antioxidant properties (determined by the DPPH assay) and the antimicrobial potential (determined against Gram-negative and Gram-positive strains) are enhanced by the phytosynthesis process (as demonstrated by the comparison of the nanoparticles' properties with the parent extracts). The present work could also represent an important step in obtaining nanoparticles with enhanced properties and controlled morphologies, but also offers information on the phytosynthesis of metallic nanoparticles using low extract concentrations.
Collapse
Affiliation(s)
- Ioana Catalina Fierascu
- Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Str., 030167 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Camelia Ungureanu
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 313 Splaiul Independentei Str., 060042 Bucharest, Romania
| | - Simona Spinu
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Sorin Marius Avramescu
- Faculty of Chemistry, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Raluca Somoghi
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 313 Splaiul Independentei Str., 060042 Bucharest, Romania
| | - Cristina Elena Dinu-Parvu
- Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Str., 030167 Bucharest, Romania
| |
Collapse
|
38
|
Konopatsky A, Teplyakova T, Sheremetyev V, Yakimova T, Boychenko O, Kozik M, Shtansky D, Prokoshkin S. Surface Modification of Biomedical Ti-18Zr-15Nb Alloy by Atomic Layer Deposition and Ag Nanoparticles Decoration. J Funct Biomater 2023; 14:jfb14050249. [PMID: 37233359 DOI: 10.3390/jfb14050249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Superelastic biocompatible alloys attract significant attention as novel materials for bone tissue replacement. These alloys are often composed of three or more components that lead to the formation of complex oxide films on their surfaces. For practical use, it is desirable to have a single-component oxide film with a controlled thickness on the surface of biocompatible material. Herein we investigate the applicability of the atomic layer deposition (ALD) technique for surface modification of Ti-18Zr-15Nb alloy with TiO2 oxide. It was found that a 10-15 nm thick, low-crystalline TiO2 oxide layer is formed by ALD method over the natural oxide film (~5 nm) of the Ti-18Zr-15Nb alloy. This surface consists of TiO2 exclusively without any additions of Zr or Nb oxides/suboxides. Further, the obtained coating is modified by Ag nanoparticles (NPs) with a surface concentration up to 1.6% in order to increase the material's antibacterial activity. The resulting surface exhibits enhanced antibacterial activity with an inhibition rate of more than 75% against E. coli bacteria.
Collapse
Affiliation(s)
- Anton Konopatsky
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
- A.V. Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Tatyana Teplyakova
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
- A.V. Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Vadim Sheremetyev
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| | - Tamara Yakimova
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Boychenko
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina Kozik
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| | - Dmitry Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| | - Sergey Prokoshkin
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| |
Collapse
|
39
|
Sahay A, Tomar RS, Shrivastava V, Chauhan PS. Eugenol Loaded Ag-Ti-Co Nanocomposite as a Promising Antimicrobial and Antioxidative Agent. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
40
|
Nanomedicine for drug resistant pathogens and COVID-19 using mushroom nanocomposite inspired with bacteriocin – A Review. INORG CHEM COMMUN 2023; 152:110682. [PMID: 37041990 PMCID: PMC10067464 DOI: 10.1016/j.inoche.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Multidrug resistant (MDR) pathogens have become a major global health challenge and have severely threatened the health of society. Current conditions have gotten worse as a result of the COVID-19 pandemic, and infection rates in the future will rise. It is necessary to design, respond effectively, and take action to address these challenges by investigating new avenues. In this regard, the fabrication of metal NPs utilized by various methods, including green synthesis using mushroom, is highly versatile, cost-effective, eco-compatible, and superior. In contrast, biofabrication of metal NPs can be employed as a powerful weapon against MDR pathogens and have immense biomedical applications. In addition, the advancement in nanotechnology has made possible to modify the nanomaterials and enhance their activities. Metal NPs with biomolecules composite to prevents their microbial adhesion and kills the microbial pathogens through biofilm formation. Bacteriocin is an excellent antimicrobial peptide that works well as an augmentation substance to boost the antimicrobial effects. As a result, we concentrate on the creation of new, eco-compatible mycosynthesized metal NPs with bacteriocin nanocomposite via electrostatic, covalent, or non-covalent bindings. The synergistic benefits of metal NPs with bacteriocin to combat MDR pathogens and COVID-19, as well as other biomedical applications, are discussed in this review. Moreover, the importance of the adverse outcome pathway (AOP) in risk analysis of manufactured metal nanocomposite nanomaterial and their future possibilities also discussed.
Collapse
|
41
|
Kumari K, Nandi A, Sinha A, Ghosh A, Sengupta S, Saha U, Singh PK, Panda PK, Raina V, Verma SK. The paradigm of prophylactic viral outbreaks measures by microbial biosurfactants. J Infect Public Health 2023; 16:575-587. [PMID: 36840992 PMCID: PMC9940476 DOI: 10.1016/j.jiph.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The recent emergence and outbreak of the COVID-19 pandemic confirmed the incompetence of countries across the world to deal with a global public health emergency. Although the recent advent of vaccines is an important prophylactic measure, effective clinical therapy for SARS-Cov-2 is yet to be discovered. With the increasing mortality rate, research has been focused on understanding the pathogenic mechanism and clinical parameters to comprehend COVID-19 infection and propose new avenues for naturally occurring molecules with novel therapeutic properties to alleviate the current situation. In accordance with recent clinical studies and SARS-CoV-2 infection markers, cytokine storm and oxidative stress are entwined pathogenic processes in COVID-19 progression. Lately, Biosurfactants (BSs) have been studied as one of the most advanced biomolecules of microbial origin with anti-inflammatory, antioxidant, antiviral properties, antiadhesive, and antimicrobial properties. Therefore, this review inspects available literature and proposes biosurfactants with these properties to be encouraged for their extensive study in dealing with the current pandemic as new pharmaceutics in the prevention and control of viral spread, treating the symptoms developed after the incubation period through different therapeutic approaches and playing a potential drug delivery model.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Pawan K Singh
- BVG Life Sciences Limited, Sagar Complex, Near Nashikphata, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Vishakha Raina
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| |
Collapse
|