1
|
Li QJ, Shao HH, Zheng LL, Liu Q, Huo CC, Yi DR, Feng T, Cen S. Thonningianin A disrupts pA104R-DNA binding and inhibits African swine fever virus replication. Emerg Microbes Infect 2025; 14:2482697. [PMID: 40138179 PMCID: PMC11966994 DOI: 10.1080/22221751.2025.2482697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
African swine fever is a highly lethal disease caused by the African swine fever virus (ASFV), posing a significant threat to the global pig industry, wherease no approved treatments are currently available. The ASFV DNA-binding protein, pA104R, plays a critical role in viral genome packaging and replication, making it a key target for drug discovery. Through structure-based virtual screening, we identified a polyphenolic compound, thonningianin A, which disrupts the pA104R-DNA binding and significantly inhibits ASFV replication. Mechanistic study revealed that thonningianin A binds to the DNA-binding region of pA104R, forming strong hydrogen bonds with H100 and occupying the vital DNA-binding residues K92, R94, and K97. In addition, we resolved the high-resolution (1.8 Å) structure of pA104R (PDB ID 9JS5), providing valuable insights for future drug screening. Together, these results demonstrate that thonningianin A holds great potential for the development of anti-ASFV drug, as a herb extract with favourable pharmacokinetic properties and safety.
Collapse
Affiliation(s)
- Quan-jie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hui-han Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin-lin Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Chen-chao Huo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Dong-rong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Li M, Zheng H. Insights and progress on epidemic characteristics, pathogenesis, and preventive measures of African swine fever virus: A review. Virulence 2025; 16:2457949. [PMID: 39937724 PMCID: PMC11901552 DOI: 10.1080/21505594.2025.2457949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
The African swine fever virus (ASFV) is the only giant double-stranded DNA virus known to be transmitted by insect vectors. It can infect pigs and cause clinical signs such as high fever, bleeding, and splenomegaly, which has been classified as a reportable disease by the WOAH. In 2018, African swine fever (ASF) was introduced into China and rapidly spread to several countries in the Asia-Pacific region, with morbidity and mortality rates reaching 100 percent, resulting in significant economic losses to the global pig industry. Because ASFV has large genomes and a complex escape host mechanism, there are currently no safe and effective drugs or vaccines against it. Therefore, it is necessary to optimize vaccination procedures and find effective treatments by studying the epidemiology of ASFV to reduce economic losses. This article reviews research progress on pathogenesis, genome, proteome and transcriptome, pathogenic mechanisms, and comprehensive control measures of ASFV infection.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Ngnindji-Youdje Y, Lontsi-Demano M, Diarra AZ, Foyet J, Tchuinkam T, Parola P. Ticks (Acari: Ixodidae) and tick-borne diseases in Cameroon: Current understanding and future directions for more comprehensive surveillance. One Health 2025; 20:100949. [PMID: 39816239 PMCID: PMC11733189 DOI: 10.1016/j.onehlt.2024.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Despite the high burden of human and animal infectious diseases in Cameroon, implementing integrative approaches to managing and controlling arthropods and their pathogens remains challenging. Surveillance should be designed to detect diseases and provide relevant field-based data for developing and implementing effective control measures to prevent outbreaks before significant public and animal health consequences can occur. Nowadays, ticks are considered the primary vectors of animal diseases in the world, and the second vector of human diseases after mosquitoes. Knowledge of their biodiversity and distribution in any given area is a crucial step towards a better implementation of control strategies. The infections transmitted by ticks remain poorly known or underestimated in Cameroon. Despite the existence of several studies on ticks and associated pathogens, no single review to date summarises all the data available in this field in Cameroon. Following a comprehensive literature search, an inventory of the diversity and distribution of ticks, as well as the different tick-borne diseases (viral, bacteria and protozoa) found in Cameroon was prepared. To date, about 71 species, comprising ten Amblyomma species., eight Hyalomma spp., 26 Rhipicephalus spp., 11 Haemaphysalis spp., seven Ixodes spp., five Aponomma spp. (currently the Bothriocroton species), one Dermacentor, and four soft tick species of minimal or unknown medical and veterinary importance, namely Argas persicus, A. arboreus, Carios vespertilionis, and Ogadenus brumpti have been collected in Cameroon. Many zoonotic tick-borne diseases, such as babesiosis, theileriosis, anaplasmosis, ehrlichiosis, rickettsioses, and Q fever have been reported in the country. Knowledge about tick species and their distribution will aid in designing integrated vector management programs to monitor tick-borne diseases in Cameroon.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, Marseille, France
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
| | - Michel Lontsi-Demano
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
- AgroEcoHealth Platform, International Institute of Tropical Agriculture, PO Box 0932, Cotonou, Benin
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Campus International IRD-UCAD Hann, Dakar 1386, Senegal
| | - Juluis Foyet
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
| | - Timolèon Tchuinkam
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
| | - Philippe Parola
- Aix Marseille Univ, Marseille, France
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
4
|
Yan W, Wang S, Zhu L, Yu X, Li J. Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy. Apoptosis 2025; 30:912-935. [PMID: 39870938 PMCID: PMC11947030 DOI: 10.1007/s10495-024-02032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 01/29/2025]
Abstract
Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy. Single-cell RNA sequencing (scRNA-seq) and TCGA-BRCA data identified CCL5 as a key immune-related gene in breast cancer. Using CRISPR-Cas9, sgRNA targeting CCL5 was designed and delivered to breast cancer cells and humanized mouse models via FCPCV nanoparticles. In vitro experiments demonstrated that FCPCV nanoparticles effectively silenced CCL5, enhanced CD8+ T cell activity, and increased the production of cytokines such as IFN-γ, TNF-α, and GZMB. In vivo studies revealed significant tumor suppression, improved immune microenvironment, and increased CD8+/CD4+ ratios in treated mice, without notable toxic side effects. These findings highlight the potential of CRISPR-Cas9 nanoparticle-mediated gene editing as a novel strategy for enhancing breast cancer immunotherapy, providing a new direction for personalized and effective cancer treatment.
Collapse
Affiliation(s)
- Wei Yan
- Department of Thoracic Oncology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, 330029, China
| | - Shuo Wang
- Department of Thoracic Oncology, Ganzhou Cancer Hospital, Ganzhou Institute for Cancer Research, The Affiliated Cancer Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lihui Zhu
- Department of Endoscopy Center, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Xinlin Yu
- Department of Medical Laboratory, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.
| | - Jianglong Li
- Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.
| |
Collapse
|
5
|
Thanapongtharm W, Wiratsudakul A, Gilbert M, Chamsai T, Pabutta C, Wiriyarat W, Oh Y, Jayme S, Songsaeng N, Maneekan K, Yano T, Suwanpakdee S. Spatial prediction of wild boar distribution in Thailand applications for African swine fever prevention and control. Sci Rep 2025; 15:9987. [PMID: 40121282 PMCID: PMC11929826 DOI: 10.1038/s41598-025-94922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
African swine fever (ASF) has spread to many Southeast Asian countries, affecting domestic pig farms and wild boars. This is especially prevalent in areas where human settlements, domestic animals, and wildlife intersect. Our study suggests using the Random Forest (RF) technique to predict the presence or absence of wild boars and estimate their population density in a specified area. We suggest using data from the Spatial Monitoring and Reporting Tool (SMART) to estimate the wild boar population in Southeast Asian countries, particularly in mainland Southeast Asia. Our findings indicate a relatively high abundance of free-ranging wild boars in protected areas of northwest Thailand, where there is a significant interface between domestic pig farms and wild boars bordering Myanmar. Wild boars were also observed in the northern region, bordering Lao PDR, and in the central and southern regions of Thailand. These findings highlight the need for ASF surveillance in border areas. The study also found that the presence of wild boars is linked to deep forest cover, elevation, and distance to water bodies, in contrast, a high density of human population, rainfed cropland, and irrigated cropland were negatively associated. These results are valuable for planning risk mitigation strategies against ASF infection in wild boars and domestic pigs in Thailand and Southeast Asia for transboundary disease surveillance.
Collapse
Affiliation(s)
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand
| | - Marius Gilbert
- Lutte biologique et Ecologie spatiale (LUBIES), Université Libre de Bruxelles, 1050, Brussels, Belgium
- Fonds National de la Recherche Scientifique (FNRS), 1050, Brussels, Belgium
| | - Tatiyanuch Chamsai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand
| | - Choenkwan Pabutta
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand
| | - Yooni Oh
- Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Emergency Centre for Transboundary Animal Diseases (FAO RAP ECTAD), Bangkok, 10200, Thailand
| | - Sarah Jayme
- Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Emergency Centre for Transboundary Animal Diseases (FAO RAP ECTAD), Bangkok, 10200, Thailand
| | - Neramit Songsaeng
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Komsan Maneekan
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Terdsak Yano
- Faculty of Veterinary Medicine, Chiang Mai University (CMU), Chiang Mai, Thailand
| | - Sarin Suwanpakdee
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand.
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University (MU), Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
6
|
Zhao X, Zhang Y, Jia H, Lv L, Ahsan MA, Fu X, Hu R, Shen Z, Shen N. Diversities of African swine fever virus host-virus dynamics revealed by single-cell profiling. J Virol 2025; 99:e0203524. [PMID: 39932318 PMCID: PMC11917525 DOI: 10.1128/jvi.02035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
African swine fever virus (ASFV) causes epidemics with high mortality; however, effective vaccines and therapies remain missing. Here, we depict a temporal single-cell landscape of primary porcine alveolar macrophages (PAMs) exposed to three different virulent ASFV strains in vitro. We found that attenuated and low-virulence ASFV strains tend to exhibit higher viral loads than highly virulent strain, which may result from upregulated RNA polymerase subunit genes expression. On the host side, our study highlights the IRF7-mediated positive feedback loop to the activation of the interferon signaling pathway in cells exposed to attenuated and low virulent ASFV strains. Moreover, we unraveled the PAMs populations marked by expressions of the IFI16 and CD163, respectively, which produce high levels of interferon-stimulated genes (ISGs) and IL18 to regulate the host response to different virulent ASFV strains. Collectively, our data provide insights into the complex host-virus interactions with various ASFV strain infections, which may shed light on the development of effective antiviral strategies.IMPORTANCEThere is still no available research on the temporal transcriptional profile of host cells exposed to different virulent ASFV strains at the single-cell level. Here, we first profiled the temporal viral and host transcriptomes in PAMs exposed to high virulent, attenuated virulent, and low virulent ASFV strains. Our analysis revealed that attenuated and low-virulence ASFV strains tend to exhibit higher viral loads than highly virulent strains, which may result from upregulated RNA polymerase subunit genes expression. We also found a positive feedback loop of the interferon signaling pathway mediated through IRF7 and identified the populations of PAMs marked by IFI6 and CD163, respectively, which produce high levels of ISGs and IL18 to regulate host response to different virulent ASFV strains. Our study delineated a comprehensive single-cell landscape of host-virus dynamics across ASFV strains with different virulences and would provide an important resource for future research.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hanying Jia
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Lv
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Md Asif Ahsan
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Fu
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Shen
- Shandong Lvdu Bio-Sciences and Technology Co., Ltd., Binzhou, Shandong, China
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Binzhou, Shandong, China
| | - Ning Shen
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Velazquez-Salinas L. Emergence and Control of African Swine Fever. Pathogens 2025; 14:283. [PMID: 40137768 PMCID: PMC11946651 DOI: 10.3390/pathogens14030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
African swine fever (ASF) is a highly lethal and contagious viral disease found in domestic pigs, wild boars, and wild suids, and it has significant economic consequences [...].
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- National Bio and Agro-Defense Facility (NBAF), Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
8
|
Franz M, Armitage SAO, McMahon D, Subasi BS, Rafaluk C. Trade-offs in virulence evolution: a Hierarchy-of-Hypotheses approach. Trends Parasitol 2025; 41:188-195. [PMID: 39939271 DOI: 10.1016/j.pt.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 02/14/2025]
Abstract
Understanding the evolution of virulence, that is, the harm pathogens cause their hosts, has major and wide-spread repercussions. A central concept of virulence evolution is the so-called 'trade-off hypothesis', a seemingly straightforward relationship between virulence and transmission. However, substantial ambiguity in terminology related to this hypothesis threatens progress in the field. To address this, we apply a Hierarchy-of-Hypotheses approach to provide structured, visual representations of ideas linked to this hypothesis. We illustrate that the trade-off hypothesis is a complex set of many different hypotheses and trade-offs, and we clarify ambiguities and biases in commonly used terminology in the literature. Thereby, we hope to facilitate a more precise understanding of what the trade-off hypothesis means, enabling more targeted and precise hypothesis testing.
Collapse
Affiliation(s)
- Mathias Franz
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
| | - Sophie A O Armitage
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Dino McMahon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Bengisu S Subasi
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Charlotte Rafaluk
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| |
Collapse
|
9
|
Zhou B, Guo J, Xiao K, Liu Y. The multifaceted role of ferroptosis in infection and injury and its nutritional regulation in pigs. J Anim Sci Biotechnol 2025; 16:29. [PMID: 39994824 PMCID: PMC11854094 DOI: 10.1186/s40104-025-01165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by iron overload and excessive lipid peroxidation. To date, numerous studies in human and mouse models have shown that ferroptosis is closely related to tissue damage and various diseases. In recent years, ferroptosis has also been found to play an indispensable and multifaceted role in infection and tissue injury in pigs, and nutritional regulation strategies targeting ferroptosis show great potential. In this review, we summarize the research progress of ferroptosis and its role in infection and tissue injury in pigs. Furthermore, we discuss the existing evidence on ferroptosis regulation by nutrients, aiming to provide valuable insights for future investigation into ferroptosis in pigs and offer a novel perspective for the treatment of infection and injury in pigs.
Collapse
Affiliation(s)
- Bei Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
10
|
Choi SA, Kim Y, Lee SJ, Moon SC, Ahn KS, Zheng X, Kim DS, Lee SY, Shin SP, Tark D, Kim W, Shin Y, Jheong W, Sur JH. African Swine Fever Vaccine Candidate ASFV-G-ΔI177L/ΔLVR Protects Against Homologous Virulent Challenge and Exhibits Long-Term Maintenance of Antibodies. Animals (Basel) 2025; 15:473. [PMID: 40002955 PMCID: PMC11851887 DOI: 10.3390/ani15040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
African swine fever virus (ASFV) has substantially spread worldwide, resulting in significant economic losses in the swine industry. Despite extensive research, no ASF vaccine has surpassed the effectiveness of live attenuated vaccines. For instance, the live attenuated vaccine ASFV-G-ΔI177L/ΔLVR has demonstrated good efficacy and safety, along with prolonged persistence of ASF antibodies after vaccination. Therefore, we aimed to evaluate its potential for protection against highly virulent homologous ASF viruses based on changes in the farm environment. To this end, we challenged domestic pigs with a virulent field strain of ASFV following intramuscular immunization with ASFV-G-ΔI177L/ΔLVR. We further assessed its genomic stability and long-term antibody persistence in immunized domestic pigs. All vaccinated pigs exhibited high antibody positivity, with higher levels of antibodies observed at the time of challenge. These high ASF vaccine antibodies were maintained for approximately 2 months after vaccination. In addition, no organ or tissue damage was observed in the vaccinated animals. Our findings demonstrate the applicability of this vaccine candidate in the prevention of ASFV infection in the swine industry.
Collapse
Affiliation(s)
- Sun A Choi
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Yeonji Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, Gwangju 62407, Republic of Korea; (Y.K.); (W.K.); (Y.S.)
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su Jin Lee
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Seong Cheol Moon
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Keun Seung Ahn
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Xinghua Zheng
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Do Soon Kim
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Se Young Lee
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Seung Pyo Shin
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, College of Veterinary Medicine, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
| | - Wonjun Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, Gwangju 62407, Republic of Korea; (Y.K.); (W.K.); (Y.S.)
| | - Yongwoo Shin
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, Gwangju 62407, Republic of Korea; (Y.K.); (W.K.); (Y.S.)
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, Gwangju 62407, Republic of Korea; (Y.K.); (W.K.); (Y.S.)
| | - Jung Hyang Sur
- Central Research and Development Institute, Komipharm International Co., Ltd., Siheung-si 15094, Republic of Korea; (S.A.C.); (S.J.L.); (S.C.M.); (K.S.A.); (X.Z.); (D.S.K.); (S.Y.L.); (S.P.S.)
| |
Collapse
|
11
|
Ranathunga L, Abesinghe S, Cha JW, Dodantenna N, Chathuranga K, Weerawardhana A, Haluwana DK, Gamage N, Lee JS. Inhibition of STING-mediated type I IFN signaling by African swine fever virus DP71L. Vet Res 2025; 56:27. [PMID: 39905555 DOI: 10.1186/s13567-025-01474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
African swine fever virus (ASFV) is nucleocytoplasmic large DNA arbovirus and encodes many proteins involved in the interaction with host molecules to evade antiviral immune responses. Especially, evasion strategies of type I interferon (IFN-I)-mediated immune responses are crucial for early ASFV replication. However, there is still a lack of information regarding the immune evasion mechanism of ASFV proteins. Here, we demonstrated that ASFV DP71L suppresses STING-mediated antiviral responses. The conserved phosphatase 1 (PP1) motif of DP71L specifically interact with the C-terminal tail (CTT) of STING and in particular, amino acids P371, L374, and R375 of STING were important for interaction with DP71L. Consequently, this interaction disrupted the binding between STING and TANK-binding kinase 1 (TBK1), thereby inhibiting downstream signaling including phosphorylation of TBK1, STING and IRF3 for antiviral signaling. DP71L significantly interfered with viral DNA induced interferon production and IFN-mediated downstream signaling in vitro. Consistently, knockdown of DP71L enhanced antiviral gene expression in ASFV-infected cells. Taken together, these results highlight the important role of DP71L with respect to inhibition of interferon responses and provide guidance for a better understanding of ASFV pathogenesis and the development of live attenuated ASFV vaccines.
Collapse
Affiliation(s)
- Lakmal Ranathunga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sachini Abesinghe
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - D K Haluwana
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nuwan Gamage
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Zhang X, Zhou L, Ge X, Gao P, Zhou Q, Han J, Guo X, Zhang Y, Yang H. Advances in the diagnostic techniques of African swine fever. Virology 2025; 603:110351. [PMID: 39693789 DOI: 10.1016/j.virol.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
African swine fever (ASF) is a highly contagious disease of pigs caused by African swine fever virus, which poses a huge threat to the global swine industry and is therefore listed as a notifiable disease by the World Organization for Animal Health. Due to the global lack of safe and efficacious vaccines and therapeutic drugs, early diagnosis of cases, whether on-site or laboratory, are crucial for the prevention and control of ASF. Therefore, rapid and reliable diagnosis and detection have become the main means to combat ASF. In this paper, various diagnostic techniques developed globally for ASF diagnosis, including etiological, molecular biological and serological diagnostic techniques, as well as conventional and novel diagnostic techniques, were comprehensively reviewed, and the main advantages and disadvantages of currently commonly used diagnostic techniques were introduced. It is expected that this paper will provide references for selecting appropriate ASF diagnostic techniques in different application scenarios, and also provide directions for the development of innovative diagnostic techniques for ASF in the future.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Li M, Wang Y, Wang Q, Yang L, Liu S, Li G, Song Z, Huang C, Kang L, Zhang Y, Wang T, Kong L, Li S. A Mutant of Africa Swine Fever Virus Protein p72 Enhances Antibody Production and Regulates the Production of Cytokines. Viruses 2025; 17:194. [PMID: 40006949 PMCID: PMC11860850 DOI: 10.3390/v17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
African swine fever virus (ASFV) is a severe threat to the global pig industry, and domestic pigs mostly develop severe clinical manifestations upon viral invasion. Currently, there is no available vaccine against ASFV. Its capsid structural protein p72 is one of the immuno-dominant proteins. In this study, we unexpectedly obtained a p72 mutant protein (p72∆377-428) which deleted the aa 377-428 within p72 and had stable and high expression in E. coli. Using SWISS-MODEL 1.0 software, the prediction showed that p72∆377-428 was quite distinct from the wild-type p72 protein in structure. p72∆377-428 induced stronger antibody production in mice on day 42 and 56 post immunization and could recognize ASFV-infected swine sera. p72∆377-428 reduced IFN-γ production in the splenocytes from p72∆377-428-immunized mice and p72∆377-428-treated swine macrophages compared to p72. p72∆377-428 also decreased the production of pro-inflammatory cytokine genes, including IL-1β, IL-6, and IL-12, compared to p72 in mice. Further, we found that p72∆377-428 reduced the induction of pro-inflammatory cytokine genes by inhibiting AKT phosphorylation and HIF1α expression. Taken together, these findings have implications for immunological function and the corresponding mechanism of ASFV p72, and our study indicates that p72∆377-428 could serve as a novel candidate for ASFV vaccines and diagnostic reagents.
Collapse
Affiliation(s)
- Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Quansheng Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Lingdi Yang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Shiguo Liu
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Guangzhi Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Ziqi Song
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Chulu Huang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Lumei Kang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
- Center for Laboratory Animal Science, Nanchang University, Nanchang 330031, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang 330029, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| | - Sha Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330029, China; (M.L.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330029, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330029, China
| |
Collapse
|
14
|
Adámková J, Lazárková K, Cukor J, Brinkeová H, Bartošová J, Bartoš L, Benediktová K. Wild Boar Attacks on Hunting Dogs in Czechia: The Length of the Hunting Season Matters. Animals (Basel) 2025; 15:130. [PMID: 39858130 PMCID: PMC11758641 DOI: 10.3390/ani15020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Hunting dogs are exposed to the risk of injury in driven hunts, an often-used method for managing growing wild boar numbers. This study investigated the impact of increased hunting pressure-both across the hunting season and within individual hunting events-on the risk of wild boar attacks on hunting dogs, i.e., the length of the hunting season (2.68 ± 0.76 months, mean ± standard deviation), the number of driven hunts per season (3.99 ± 0.43), the intervals between hunts (17.85 ± 4.83 days), the number of wild boars harvested per season (14.46 ± 13.10), and the number of participants (23.8 ± 10.69) and dogs (4.56 ± 2.66) involved per hunt. The data were collected via a retrospective questionnaire survey. The information-theoretic approach (IT-AIC) and GLMM were employed to estimate the factors' effects on the number of wild boar attacks on dogs reported in 40 hunting grounds in five consecutive hunting seasons (2.60 ± 5.07 attacks per hunting season in a hunting ground). The number of attacks only increased with the length of the hunting season. The best model did not include other factors, such as shorter intervals between hunts, a higher number of driven hunts, wild boars harvested, or participants. The respondents reported 150 injuries by wild boars during 797 driven hunts. Most injuries were mild (73.8%), with fewer severe (18.8%) and fatal (7.4%) cases. Further investigation into wild boar and hunting dog interactions is necessary for constructing strategies to improve hunting practices and reduce dog injury risks.
Collapse
Affiliation(s)
- Jana Adámková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Praha, Czech Republic; (K.L.); (H.B.); (L.B.); (K.B.)
| | - Karolína Lazárková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Praha, Czech Republic; (K.L.); (H.B.); (L.B.); (K.B.)
| | - Jan Cukor
- Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Praha, Czech Republic;
- Department of Game Management, Forestry and Game Management Research Institute, 252 02 Jíloviště, Czech Republic
| | - Hana Brinkeová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Praha, Czech Republic; (K.L.); (H.B.); (L.B.); (K.B.)
| | - Jitka Bartošová
- Department of Ethology, Institute of Animal Science, 104 00 Praha, Czech Republic;
| | - Luděk Bartoš
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Praha, Czech Republic; (K.L.); (H.B.); (L.B.); (K.B.)
- Department of Ethology, Institute of Animal Science, 104 00 Praha, Czech Republic;
| | - Kateřina Benediktová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21 Praha, Czech Republic; (K.L.); (H.B.); (L.B.); (K.B.)
| |
Collapse
|
15
|
Modiyinji AF, Joffret ML, Nombot-Yazenguet MPDM, Endengue Zanga MC, Sadeuh-Mba S, Njouom R, Bessaud M. Molecular characterization of enteroviruses circulating among pigs and goats in two Central African countries, Cameroon and the Central African Republic. Access Microbiol 2025; 7:000886.v3. [PMID: 39995472 PMCID: PMC11848064 DOI: 10.1099/acmi.0.000886.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 02/26/2025] Open
Abstract
To date, data on animal enteroviruses (EVs) are scarce, especially in Central Africa. The aim of this study was to characterize EVs among pigs and goats in Cameroon and the Central African Republic (CAR). A total of 226 pig and goat faecal samples collected in two previous studies carried out in Cameroon and CAR were pooled and screened with molecular assays targeting EV-Es, EV-Fs and EV-Gs. EV genomes were amplified by RT-PCR and their sequences were obtained by Illumina sequencing and de novo assembly. Based on the capsid sequences, 27 EV-G sequences were identified and assigned to 11 virus types, while no EV-E or EV-F was observed. Phylogenetic analysis revealed that the EV-Gs detected in Central Africa do not form specific clusters compared to EV-Gs previously reported in other continents. This suggests a worldwide circulation of EV-Gs, which is likely due to the massive international trade of live animals. One human EV, EV-C99, which belongs to the species Enterovirus C, was detected in pigs. This is the third detection of such an event in a similar context, reinforcing the hypothesis that some EV-Cs could be infecting pigs. Our work provides new data on the genetic diversity of EVs circulating among domestic animals in Central Africa.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université de Paris Cité, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
| | | | | | - Serge Sadeuh-Mba
- Service de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Richard Njouom
- Service de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Maël Bessaud
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université de Paris Cité, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
| |
Collapse
|
16
|
Yang Y, Li Y, Wang Z, Tong M, Zhu P, Deng J, Li Z, Liu K, Li B, Shao D, Zhou Z, Qiu Y, Ma Z, Wei J. p54-Fc-Labeled Gold Nanoparticle-Based Lateral Flow Strip-Assisted Portable Devices for Rapid and Quantitative Point-of-Care Detection of ASFV Antibodies. BIOSENSORS 2025; 15:25. [PMID: 39852075 PMCID: PMC11763327 DOI: 10.3390/bios15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle. p54 is an important structural protein of African swine fever, and an ideal protein for serotype diagnosis. Gold nanoparticles are attached to the ASFV p54-Fc fusion protein, and the ASFV-specific antigen p54 and Staphylococcus aureus protein A (SPA) are labeled on a nitrocellulose membrane, at positions T and C, respectively. We developed a SPA double sandwich IC test strip, and assessed its feasibility using ASFV p54 and p54-Fc fusion proteins as antigens. ASFV p54 and p54-Fc fusion proteins were expressed and purified. A sandwich cross-flow detection method for p54, which is the primary structural protein of ASFV, was established, using colloidal gold conjugation. Our method can detect ASFV antibodies in field serum samples in about 15 min using a portable colloidal gold detector, demonstrating high specificity and sensitivity (1:320), and the coincidence rate was 98% using a commercial ELISA kit. The dilution of the serum sample can be determined by substituting the absorbance (T-line) interpreted by portable devices into the calibration curve function formula of an African swine fever virus standard serum. In summary, our method is rapid, cost-effective, precise, and highly selective. Additionally, it introduces a new approach for constructing IC test strips using SPA protein without antibody preparation, making it a reliable on-site antibody test for ASFV.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Yuhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Ziyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Minglong Tong
- Yixing Customs, Yixing 214200, China; (M.T.); (P.Z.)
| | - Pengcheng Zhu
- Yixing Customs, Yixing 214200, China; (M.T.); (P.Z.)
- Nanjing Customs, Nanjing 210001, China;
| | | | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Zhongren Zhou
- Shanghai Quicking Biotech Co., Shanghai 201314, China;
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Y.); (Y.L.); (Z.W.); (Z.L.); (K.L.); (B.L.); (D.S.); (Y.Q.)
| |
Collapse
|
17
|
Gao H, Gu T, Gao X, Song Z, Liu J, Song Y, Zhang G, Sun Y. African swine fever virus enhances viral replication by increasing intracellular reduced glutathione levels, which suppresses stress granule formation. Vet Res 2024; 55:172. [PMID: 39707514 DOI: 10.1186/s13567-024-01433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/27/2024] [Indexed: 12/23/2024] Open
Abstract
African swine fever virus (ASFV) is a DNA virus that has significantly impacted the global swine industry. Currently, there are no effective therapies or vaccines against ASFV. Stress granules (SGs), known for their antiviral properties, are not induced during ASFV infection, even though reactive oxygen species (ROS) are generated. The mechanism by which ASFV regulates SGs formation remains unclear. This study demonstrates that ASFV antagonises SGs formation and increases intracellular levels of reduced glutathione (GSH) levels. The use of the GSH inhibitor BSO and the activator NAC confirmed that the ASFV-induced increase in GSH helps to suppress SGs formation and influences viral replication. Additionally, this study revealed that ASFV enhances GSH by upregulating the antioxidant transcription factor NRF2, as well as factors involved in GSH synthesis and regeneration, such as GCLC, and those related to the ferroptosis pathway, such as SLC7A11. Furthermore, the study uncovered that ASFV manipulates intracellular GSH levels by activating the mitochondrial protein AIFM1. This regulatory mechanism helps the virus inhibit the formation of intracellular SGs, thereby creating an optimal environment for viral replication. These findings provide new insights into the molecular strategies employed by ASFV.
Collapse
Affiliation(s)
- Han Gao
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Taoming Gu
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Xiaopeng Gao
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Zebu Song
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Jing Liu
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Yi Song
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Guihong Zhang
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China.
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Yankuo Sun
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China.
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
18
|
Gallardo C, Mészáros I, Soler A, Fernandez-Pinero J, van den Born E, Simón A, Casado N, Nieto R, Perez C, Aldea I, Lopez-Chavarrias V, Göltl E, Olasz F, Magyar T, Zádori Z, Sánchez-Vizcaíno JM, Arias M. Double Deletion of EP402R and EP153R in the Attenuated Lv17/WB/Rie1 African Swine Fever Virus (ASFV) Enhances Safety, Provides DIVA Compatibility, and Confers Complete Protection Against a Genotype II Virulent Strain. Vaccines (Basel) 2024; 12:1406. [PMID: 39772067 PMCID: PMC11680264 DOI: 10.3390/vaccines12121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: African swine fever virus (ASFV) is a devastating disease affecting domestic and wild suids and causing significant economic losses in the global pig industry. Attenuated modified live virus (MLV) vaccines are the most promising approaches for vaccine development. This study aimed to evaluate the safety and efficacy of four recombinant ASFV genotype II strains, derived from the non-hemadsorbing (non-HAD) attenuated isolate Lv17/WB/Rie1, through the single or simultaneous deletion of virulence-associated genes. Methods: Recombinant viruses were engineered by deleting the UK, EP402R, and EP153R genes, either individually or in combination. Four recombinant strains were evaluated for safety and efficacy in domestic pigs vaccinated intramuscularly with 102 TCID₅₀. Clinical signs, viremia, virus shedding, and antibody responses were monitored. Protection efficacy was assessed by challenging vaccinated pigs with the virulent genotype II Armenia07 strain. Additionally, a reversion-to-virulence study involving an overdose of the vaccine candidate was conducted to evaluate its stability through serial immunizations. Results: Deletion of the UK gene alone increased virulence, whereas the double deletion of EP402R and EP153R (Lv17/WB/Rie1-ΔCD) significantly enhanced safety while maintaining full protective efficacy. Vaccinated pigs exhibited reduced viremia, no virus shedding, and robust virus-specific antibody responses, achieving complete protection against Armenia07. The reversion-to-virulence study revealed potential but limited pathogenicity after multiple passages, indicating areas for improvement in vaccine stability. Conclusions: The Lv17/WB/Rie1-ΔCD strain demonstrates excellent safety and efficacy, along with potential DIVA (differentiating infected from vaccinated animals) compatibility, positioning it as a strong candidate for an ASFV MLV vaccine. Further research is needed to refine the vaccine and address the potential risks of reversion to virulence.
Collapse
Affiliation(s)
- Carmina Gallardo
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| | - István Mészáros
- HUN-REN Veterinary Medical Research Institute, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (E.G.); (F.O.); (T.M.); (Z.Z.)
| | - Alejandro Soler
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| | - Jovita Fernandez-Pinero
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| | | | - Alicia Simón
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| | - Nadia Casado
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| | - Raquel Nieto
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| | - Covadonga Perez
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| | - Irene Aldea
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (I.A.); (V.L.-C.)
| | - Vicente Lopez-Chavarrias
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (I.A.); (V.L.-C.)
| | - Eszter Göltl
- HUN-REN Veterinary Medical Research Institute, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (E.G.); (F.O.); (T.M.); (Z.Z.)
| | - Ferenc Olasz
- HUN-REN Veterinary Medical Research Institute, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (E.G.); (F.O.); (T.M.); (Z.Z.)
| | - Tibor Magyar
- HUN-REN Veterinary Medical Research Institute, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (E.G.); (F.O.); (T.M.); (Z.Z.)
| | - Zoltán Zádori
- HUN-REN Veterinary Medical Research Institute, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (E.G.); (F.O.); (T.M.); (Z.Z.)
| | | | - Marisa Arias
- European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain; (A.S.); (J.F.-P.); (A.S.); (N.C.); (R.N.); (C.P.); (M.A.)
| |
Collapse
|
19
|
Xia N, Cao Q, Liu A, Zhang J, Han H, Jiao J, He P, Sun Z, Xu Z, Zheng W, Jiang S, Chen N, Bai J, Zhu J. Identification of a New Conserved Antigenic Epitope by Specific Monoclonal Antibodies Targeting the African Swine Fever Virus Capsid Protein p17. Vet Sci 2024; 11:650. [PMID: 39728990 DOI: 10.3390/vetsci11120650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
African swine fever (ASF) has widely spread around the world in the last 100 years since its discovery. The African swine fever virus (ASFV) particles are made of more than 150 proteins, with the p17 protein encoded by the D117L gene serving as one of the major capsid proteins and playing a crucial role in the virus's morphogenesis and immune evasion. Thus, monoclonal antibody (mAb) targeting p17 is important for the research and detection of ASFV infection. Here, we produced two specific mAbs against p17, designated as 1G2 and 6G3, respectively, and both have been successfully used in enzyme-linked immunosorbent assay (ELISA), Western blotting, and immunofluorescence assay. Moreover, we found that both 1G2 and 6G3 mAbs recognize a novel epitope of 72-78 amino acids of p17 protein, highly conserved across all genotype I and II strains. Based on this epitope, an indirect ELISA has been established to effectively detect antibodies during ASFV infection, and it exhibits high consistency with commercial ASFV ELISA kits. In summary, the production of the specific p17 mAbs and the identification of the recognized epitope will significantly promote the serological diagnosis of ASFV.
Collapse
Affiliation(s)
- Nengwen Xia
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qi Cao
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Anjing Liu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hongjian Han
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jun Jiao
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping He
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ziyan Sun
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zijian Xu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Zhang S, Zuo Y, Gu W, Zhao Y, Liu Y, Fan J. A triple protein-based ELISA for differential detection of ASFV antibodies. Front Vet Sci 2024; 11:1489483. [PMID: 39723184 PMCID: PMC11669292 DOI: 10.3389/fvets.2024.1489483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
African swine fever (ASF) caused by the ASF virus (ASFV) is a severe and highly contagious viral disease that poses a significant threat to the global pig industry. As no vaccines or effective drugs are available to aid prevention and control, early detection is crucial. The emergence of the low-virulence ASFV strain not expressing CD2v/MGFs (ASFVΔCD2v/ΔMGFs) has been identified domestically and internationally and has even become an epidemic in China, resulting in a complex epidemic. The commercialized ASFV ELISA kits available can detect the presence of ASFV infection in pigs, but they are unable to distinguish wild-type ASFV from gene-deleted strains. The current published ELISA assays can distinguish between the wild-type and CD2v gene-deleted ASFV but cannot differentiate wild-type and MGF505 gene-deleted ASFV or CD2v and MGF505 double-gene deleted ASFV infection, posing new challenges for an effective prevention and control of ASFV. In this study, the ASFV-p30, ASFV-CD2v, and ASFV-MGF505 proteins were expressed using a prokaryotic expression system, and a triple protein-based ELISA antibody detection method based on these proteins was successfully established to effectively differentiate between wild-type ASFV and ASFVΔCD2v and/or ASFVΔMGF505 virus infection. This triple protein-based ELISA showed good analytical specificity without cross-reactivity with antibodies against PRRSV, CSFV, PRV, and PCV2. Moreover, it demonstrates remarkable analytical sensitivity by allowing the identification of clinical samples even at dilutions as high as 1:800. The coefficient of variation the intra-assay and inter-assay were below 5%, indicating strong repeatability and reproducibility. To evaluate the performance of the triple protein-based ELISA, a total of 59 clinical serum samples were detected using the triple protein-based ELISA. The results showed that 22 samples were positive for ASFV, of which 19 were ASFV wild-type, one was ASFVΔCD2v, and two were ASFVΔMGF505. Compared with the commercialized triplex qPCR kit, the triple protein-based ELISA exhibited high diagnostic sensitivity and diagnostic specificity. The test accuracy with the commercialized triplex qPCR kit was 98.31% (58/59), and the test accuracy with the commercialized ELISA kit was 96.61% (57/59). These results indicated that the developed triple protein-based ELISA performs well in detection and differentiation. Therefore, it will be useful for the ASFV serological differential diagnosis and epidemiology study.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuzhu Zuo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wenyuan Gu
- Hebei Animal Disease Control Center, Shijiazhuang, China
| | - Yunhuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jinghui Fan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, China
| |
Collapse
|
21
|
Feng Z, Shi K, Yin Y, Shi Y, Feng S, Long F, Wei Z, Si H. A Quadruplex RT-qPCR for the Detection of African Swine Fever Virus, Classical Swine Fever Virus, Porcine Reproductive and Respiratory Syndrome Virus, and Porcine Pseudorabies Virus. Animals (Basel) 2024; 14:3551. [PMID: 39682516 DOI: 10.3390/ani14233551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
African swine fever virus (ASFV), classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine pseudorabies virus (PRV) induce similar clinical signs in infected pigs, including hyperthermia, anorexia, hemorrhage, respiratory distress, neurological symptoms, and/or abortions in pregnant sows. The differential diagnosis of these diseases relies on laboratory examinations. In this study, a quadruplex RT-qPCR was established using four pairs of specific primers and probes aimed at the B646L (p72) gene of ASFV, the 5' untranslated region (5'UTR) of CSFV, the ORF6 gene of PRRSV, and the gB gene of PRV for the detection and differentiation of ASFV, CSFV, PRRSV, and PRV. The assay exhibited great sensitivity with limits of detection (LODs) of 134.585, 139.831, 147.076, and 142.331 copies/reaction for ASFV, CSFV, PRRSV, and PRV, respectively. The assay exclusively identified ASFV, CSFV, PRRSV, and PRV, yielding negative results for the other control swine viruses used in this study. The intra-assay and inter-assay coefficients of variation (CVs) were not higher than 1.12%, indicating good reproducibility of the assay. The quadruplex RT-qPCR assay was used to analyze 3116 clinical tissue samples from pigs in Guangxi province, China, from April 2023 to September 2024. ASFV, CSFV, PRRSV, and PRV had positivity rates of 10.84% (338/3116), 0.80% (25/3116), 14.92% (465/3116), and 1.38% (43/3116), respectively, demonstrating a coincidence rate of ≥99.45% with the previously described RT-qPCR assays, which were also used to test these same samples. The established assay was rapid, sensitive, and accurate in detecting and differentiating ASFV, CSFV, PRRSV, and PRV.
Collapse
Affiliation(s)
- Zhuo Feng
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
22
|
Doté J, Joffret ML, Beta BN, Ait-Ahmed M, Banga-Mingo V, Knowles NJ, Jouvenet N, MBaïkoua MN, Gouandjika-Vasilache I, Bessaud M. Characterization of enteroviruses circulating among farm animals and children in Central African Republic. Emerg Microbes Infect 2024; 13:2368212. [PMID: 38864685 PMCID: PMC11212570 DOI: 10.1080/22221751.2024.2368212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
To characterize enteroviruses (EVs) circulating in farm animals in Central African Republic (CAR), we screened 192 stools of animals under 12 months belonging to family farms located in or near Bangui. To assess whether EV exchanges exist between these animals and humans, we also screened 195 stools of children who lived in contact with farm animals, as well as control stools of 358 children with no contact with farm animals. EVs were typed based on their capsid sequences.In children, all EVs belonged to species A, B and C, with EV-Cs accounting for 60%. Some EV-Cs shared recent common ancestors with lineages of vaccine-derived poliovirus that emerged in the country in 2019-2020. In animals, we identified EV-Gs that belonged to 10 different types, including a previously unknown one that we named EV-G28, while no EV-E or EV-F were observed. The CAR EV-Gs were genetically closely related to specimens sampled in other continents and some of them harboured the torovirus-derived insertion already reported in some EV-Gs. The worldwide circulation of EV-Gs is likely due the massive international trade of live animals. Besides, two human EV-Cs (coxsackievirus A17 and coxsackievirus A24) were detected in pigs, suggesting that these viruses could cross the species barrier. Our work provides original data on the epidemiology and ecology of EVs circulating among herd animals in Africa.
Collapse
Affiliation(s)
- Joël Doté
- Institut Pasteur de Bangui, Laboratoire des virus entériques/rougeole, Bangui, Central African Republic
| | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
| | - Bertille Ndombari Beta
- Institut Pasteur de Bangui, Laboratoire des virus entériques/rougeole, Bangui, Central African Republic
| | - Mohand Ait-Ahmed
- Institut Pasteur, Université de Paris Cité, Pôle de coordination de la Recherche clinique, Paris, France
| | - Virginie Banga-Mingo
- Institut Pasteur de Bangui, Laboratoire des virus entériques/rougeole, Bangui, Central African Republic
| | | | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
| | | | | | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
| |
Collapse
|
23
|
Sun J, Shi Z, Tan Q, Zhong M, Wang N, Xin S, Liu X, Li R, Ma Y, Wu K, Cui Y, Hui W. An Integrated Micro-Heating System for On-Chip Isothermal Amplification of African Swine Fever Virus Genes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402446. [PMID: 39194585 DOI: 10.1002/smll.202402446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The loop-mediated isothermal amplification (LAMP) is widely used in the laboratory to facilitate rapid DNA or RNA detection with a streamlined operational process, whose properties are greatly dependent on the uniformity and rise rate of temperature in the reaction chambers and the design of the primers. This paper introduces a planar micro-heater equipped with an embedded micro-temperature sensor to realize temperature tunability at a low energy cost. Moreover, a control system, based on the Wheatstone bridge and proportional, integral, and derivative (PID) control, is designed to measure and adjust the temperature of the micro-heater. The maximum temperature rise rate of the designed micro-heater is ≈8 °C s-1, and it only takes ≈60 s to reach the target temperature. Furthermore, a designed plasmid, containing the B646L gene of African Swine Fever Virus (ASFV), and a set of specific primers, are used to combine with the designed micro-heating system to implement the LAMP reaction. Finally, the lateral flow assay is used to interpret the amplification results visually. This method can achieve highly sensitive and efficient detection of ASFV within 40 min. The sensitivity of this on-chip gene detection method is 8.4 copies per reaction, holding great potential for applications in DNA and RNA amplification.
Collapse
Affiliation(s)
- Jiajia Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Zongqian Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Qiongxiang Tan
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mingjie Zhong
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Nan Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Shumin Xin
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Xiaofeng Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Ruohan Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Yuxin Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79401, USA
| | - Yali Cui
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wenli Hui
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
24
|
Nguyen GT, Le TT, Vu SDT, Nguyen TT, Le MTT, Pham VT, Nguyen HTT, Ho TT, Hoang HTT, Tran HX, Chu HH, Pham NB. A plant-based oligomeric CD2v extracellular domain antigen exhibits equivalent immunogenicity to the live attenuated vaccine ASFV-G-∆I177L. Med Microbiol Immunol 2024; 213:22. [PMID: 39412651 DOI: 10.1007/s00430-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a deadly, highly contagious disease in both domestic pigs and wild boar. With mortality up to 100%, the disease has been making a serious impact on the swine industry worldwide. Because no effective antiviral treatment has been observed, proactive prevention such as vaccination remains the key to controlling the outbreak. In the pursuit of expediting vaccine development, our current work has made the first report for heterologous production of the viral outer envelope glycoprotein CD2v extracellular domain (CD2v ED), a proposed promising vaccine antigen candidate in the "green" synthetic host Nicotiana benthamiana. Protein oligomerization strategies were implemented to increase the immunogenicity of the target antigen. Herein, the protein was expressed in oligomeric forms based on the C-terminally fused GCN4pII trimerization motif and GCN4pII_TP oligomerization motif. Quantitative western blot analysis showed significantly higher expression of trimeric CD2v ED_GCN4pII with a yield of about 12 mg/100 g of fresh weight, in comparison to oligomeric CD2v ED_GCN4pII_TP, revealing the former is the better choice for further studies. The results of purification and size determination by size exclusion chromatography (SEC) illustrated that CD2v ED_GCN4pII was successfully produced in stable oligomeric forms throughout the extraction, purification, and analysis process. Most importantly, purified CD2v ED_GCN4pII was demonstrated to induce both humoral and cellular immunity responses in mice to extents equivalent to those of the live attenuated vaccine ASFV-G-∆I177L, suggesting it as the potential subunit vaccine candidate for preventing ASFV.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thanh Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Son Duy Thai Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Tra Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - My Thi Tra Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Van Thi Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hien Thi Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thuong Thi Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hang Thi Thu Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company - NAVETCO, Ho Chi Minh City, Viet Nam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
| |
Collapse
|
25
|
Yang J, Zhu R, Li N, Zhang Y, Zhou X, Yue H, Li Q, Wang Y, Miao F, Chen T, Zhang F, Zhang S, Qian A, Hu R. Protection Evaluation of a New Attenuated ASFV by Deletion of the L60L and CD2v Genes against Homologous Challenge. Viruses 2024; 16:1464. [PMID: 39339941 PMCID: PMC11437506 DOI: 10.3390/v16091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
African swine fever (ASF) is an acute infectious disease with a high mortality rate in both domestic and wild boars. Commercial vaccines or antiviral drugs for ASF were not available due to the complex diversity of the structure and genome of its pathogen African swine fever virus (ASFV). In recent years, there have been many reports on candidate strains of attenuated vaccines for ASFV. In this study, we obtained a recombinant virus named SY18ΔL60LΔCD2v by simultaneously deleting the L60L gene and CD2v gene from highly virulent strain SY18. In vitro, SY18ΔL60LΔCD2v displayed a decreased growth kinetic compared to that of parental SY18. In vivo, high doses (105 TCID50) of SY18ΔL60LΔCD2v can protect pigs (5/5) from attacks by the parental SY18 strain (102 TCID50). Low doses (102 TCID50) of SY18ΔL60LΔCD2v only protected 20% of pigs (1/5) from attacks by the parental SY18 strain (102 TCID50). The results indicated that the absence of these two genes in SY18 could induce protection against the homologous parental strain, and there were no obvious clinical symptoms or viremia. These results indicate that the SY18ΔL60LΔCD2v strain can serve as a new live attenuated vaccine candidate for the prevention and control of ASFV infection.
Collapse
Affiliation(s)
- Jinjin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130022, China; (J.Y.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Rongnian Zhu
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Nan Li
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Yanyan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Xintao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Huixian Yue
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Qixuan Li
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130022, China; (J.Y.); (Y.W.)
| | - Faming Miao
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Teng Chen
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Shoufeng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130022, China; (J.Y.); (Y.W.)
| | - Rongliang Hu
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| |
Collapse
|
26
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
27
|
Wang L, Kim J, Kang H, Park HJ, Lee MJ, Hong SH, Seo CW, Madera R, Li Y, Craig A, Retallick J, Matias-Ferreyra F, Sohn EJ, Shi J. Development and evaluation of two rapid lateral flow assays for on-site detection of African swine fever virus. Front Microbiol 2024; 15:1429808. [PMID: 39268541 PMCID: PMC11390401 DOI: 10.3389/fmicb.2024.1429808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction African swine fever (ASF) is a lethal and highly contagious transboundary animal disease with the potential for rapid international spread. In the absence of a widely available and definitively proven vaccine, rapid and early detection is critical for ASF control. The quick and user-friendly lateral flow assay (LFA) can easily be performed by following simple instructions and is ideal for on-site use. This study describes the development and validation of two LFAs for the rapid detection of ASF virus (ASFV) in pig serum. Methods The highly immunogenic antigens (p30 and p72) of ASFV Georgia 2007/1 (genotype II) were expressed in plants (Nicotiana benthamiana) and were used to immunize BALB/c mice to generate specific monoclonal antibodies (mAbs) against the p30 and p72 proteins. mAbs with the strongest binding ability to each protein were used to develop p30_LFA and p72_LFA for detecting the respective ASFV antigens. The assays were first evaluated using a spike-in test by adding the purified p30 or p72 protein to a serum sample from a healthy donor pig. Further validation of the tests was carried out using serum samples derived from experimentally infected domestic pigs, field domestic pigs, and feral pigs, and the results were compared with those of ASFV real-time PCR. Results p30_LFA and p72_LFA showed no cross-reaction with common swine viruses and delivered visual results in 15 min. When testing with serially diluted proteins in swine serum samples, analytical sensitivity reached 10 ng/test for p30_LFA and 20 ng/test for p72_LFA. Using real-time PCR as a reference, both assays demonstrated high sensitivity (84.21% for p30_LFA and 100% for p72_LFA) with experimentally ASFV-infected pig sera. Specificity was 100% for both LFAs using a panel of PBS-inoculated domestic pig sera. Excellent specificity was also shown for field domestic pig sera (100% for p30_LFA and 93% for p72_LFA) and feral pig sera (100% for both LFAs). Conclusion The results obtained in this study suggest that p30_LFA and p72_LFA hold promise as rapid, sensitive, user-friendly, and field-deployable tools for ASF control, particularly in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juhun Kim
- BioApplications Inc., Pohang-si, Republic of Korea
| | - Hyangju Kang
- BioApplications Inc., Pohang-si, Republic of Korea
| | - Hong-Je Park
- MEDEXX Co., Ltd., Seongnam-si, Republic of Korea
| | - Min-Jong Lee
- MEDEXX Co., Ltd., Seongnam-si, Republic of Korea
| | | | | | - Rachel Madera
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Yuzhen Li
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Aidan Craig
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jamie Retallick
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang-si, Republic of Korea
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
28
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Le AD, Nguyen GV, Vu AT, Hoang PT, Le TT, Nguyen HT, Nguyen HTT, Lai HLT, Bui DAT, Huynh LMT, Madera R, Li Y, Retallick J, Matias-Ferreyra F, Nguyen LT, Shi J. A Non-Hemadsorbing Live-Attenuated Virus Vaccine Candidate Protects Pigs against the Contemporary Pandemic Genotype II African Swine Fever Virus. Viruses 2024; 16:1326. [PMID: 39205300 PMCID: PMC11359042 DOI: 10.3390/v16081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and severe hemorrhagic transboundary swine viral disease with up to a 100% mortality rate, which leads to a tremendous socio-economic loss worldwide. The lack of safe and efficacious ASF vaccines is the greatest challenge in the prevention and control of ASF. In this study, we generated a safe and effective live-attenuated virus (LAV) vaccine candidate VNUA-ASFV-LAVL3 by serially passaging a virulent genotype II strain (VNUA-ASFV-L2) in an immortalized porcine alveolar macrophage cell line (3D4/21, 50 passages). VNUA-ASFV-LAVL3 lost its hemadsorption ability but maintained comparable growth kinetics in 3D4/21 cells to that of the parental strain. Notably, it exhibited significant attenuation of virulence in pigs across different doses (103, 104, and 105 TCID50). All vaccinated pigs remained healthy with no clinical signs of African swine fever virus (ASFV) infection throughout the 28-day observation period of immunization. VNUA-ASFV-LAVL3 was efficiently cleared from the blood at 14-17 days post-infection, even at the highest dose (105 TCID50). Importantly, the attenuation observed in vivo did not compromise the ability of VNUA-ASFV-LAVL3 to induce protective immunity. Vaccination with VNUA-ASFV-LAVL3 elicited robust humoral and cellular immune responses in pigs, achieving 100% protection against a lethal wild-type ASFV (genotype II) challenge at all tested doses (103, 104, and 105 TCID50). Furthermore, a single vaccination (104 TCID50) provided protection for up to 2 months. These findings suggest that VNUA-ASFV-LAVL3 can be utilized as a promising safe and efficacious LAV candidate against the contemporary pandemic genotype II ASFV.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Giap Van Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Trang Thi Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huyen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hang Thu Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huong Lan Thi Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Dao Anh Tran Bui
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Le My Thi Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Rachel Madera
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jamie Retallick
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| |
Collapse
|
29
|
Zhang J, Zhang K, Sun S, He P, Deng D, Zhang P, Zheng W, Chen N, Zhu J. Specific Monoclonal Antibodies against African Swine Fever Virus Protease pS273R Revealed a Novel and Conserved Antigenic Epitope. Int J Mol Sci 2024; 25:8906. [PMID: 39201592 PMCID: PMC11354548 DOI: 10.3390/ijms25168906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The African swine fever virus (ASFV) is a large enveloped DNA virus that causes a highly pathogenic hemorrhagic disease in both domestic pigs and wild boars. The ASFV genome contains a double-stranded DNA encoding more than 150 proteins. The ASFV possesses only one protease, pS273R, which is important for virion assembly and host immune evasion. Therefore, the specific monoclonal antibody (mAb) against pS273R is useful for ASFV research. Here, we generated two specific anti-pS273R mAbs named 2F3 and 3C2, both of which were successfully applied for ELISA, Western blotting, and immunofluorescence assays. Further, we showed that both 2F3 and 3C2 mAbs recognize a new epitope of N terminal 1-25 amino acids of pS273R protein, which is highly conserved across different ASFV strains including all genotype I and II strains. Based on the recognized epitope, an indirect ELISA was established and was effective in detecting antibodies during ASFV infection. To conclude, the specific pS273R mAbs and corresponding epitope identified will strongly promote ASFV serological diagnosis and vaccine research.
Collapse
Affiliation(s)
- Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Kaili Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shaohua Sun
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping He
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dafu Deng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Pingping Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
He J, Li J, Luo M, Liu Y, Sun J, Yao L. Identification of two novel linear epitopes on the E165R protein of African swine fever virus recognized by monoclonal antibodies. Front Vet Sci 2024; 11:1392350. [PMID: 39166172 PMCID: PMC11333337 DOI: 10.3389/fvets.2024.1392350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
African swine fever (ASF) is a highly fatal infectious disease in pigs, caused by the African swine fever virus (ASFV). It is characterized by short disease duration and high morbidity and mortality. In August 2018, ASF was first reported in China and it subsequently spread rapidly throughout the country, causing serious economic losses for the Chinese pig industry. Early detection plays a critical role in preventing and controlling ASF because there is currently no effective vaccine or targeted therapeutic medication available. Additionally, identifying conserved protective antigenic epitopes of ASFV is essential for the development of diagnostic reagents. The E165R protein, which is highly expressed in the early stages of ASFV infection, can serve as an important indicator for early detection. In this study, we successfully obtained high purity soluble prokaryotic expression of the E165R protein. We then utilized the purified recombinant E165R protein for immunization in mice to prepare monoclonal antibodies (mAbs) using the hybridoma fusion technique. After three subclonal screens, we successfully obtained three mAbs against ASFV E165R protein in cells named 1B7, 1B8, and 10B8. Through immunofluorescence assay (IFA) and Western blot, we confirmed that the prepared mAbs specifically recognize the baculovirus-expressed E165R protein. By using overlapping truncated E165R protein and overlapping peptide scanning analysis, we tentatively identified two novel linear B cell epitopes (13EAEAYYPPSV22 and 55VACEHMGKKC64) that are highly conserved in genotype I and genotype II of ASFV. Thus, as a detection antibody, it has the capability to detect ASFV across a wide range of genotypes, providing valuable information for the development of related immunodiagnostic reagents.
Collapse
Affiliation(s)
- Jian He
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jieqiong Li
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Mingzhan Luo
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yangkun Liu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
31
|
Miao C, Shao J, Yang S, Wen S, Ma Y, Gao S, Chang H, Liu W. Development of plate-type and tubular chemiluminescence immunoassay against African swine fever virus p72. Appl Microbiol Biotechnol 2024; 108:431. [PMID: 39093478 PMCID: PMC11297061 DOI: 10.1007/s00253-024-13249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024]
Abstract
African swine fever (ASF) is a highly contagious and fatal viral disease that has caused huge economic losses to the pig and related industries worldwide. At present, rapid, accurate, and sensitive laboratory detection technologies are important means of preventing and controlling ASF. However, because attenuated strains of African swine fever virus (ASFV) are constantly emerging, an ASFV antibody could be used more effectively to investigate the virus and control the disease on pig farms. The isolation of ASFV-specific antibodies is also essential for the diagnosis of ASF. Therefore, in this study, we developed two chemiluminescence immunoassays (CLIAs) to detect antibodies directed against ASFV p72: a traditional plate-type blocking CLIA (p72-CLIA) and an automatic tubular competitive CLIA based on magnetic particles (p72-MPCLIA). We compared the diagnostic performance of these two methods to provide a feasible new method for the effective prevention and control of ASF and the purification of ASFV. The cut-off value, diagnostic sensitivity (Dsn), and diagnostic specificity (Dsp) of p72-CLIA were 40%, 100%, and 99.6%, respectively, in known background serum, whereas those of p72-MPCLIA were 36%, 100%, and 99.6%, respectively. Thus, both methods show good Dsn, Dsp, and repeatability. However, when analytical sensitivity was evaluated, p72-MPCLIA was more sensitive than p72-CLIA or a commercial enzyme-linked immunosorbent assay. More importantly, p72-MPCLIA reduced the detection time to 15 min and allowed fully automated detection. In summary, p72-MPCLIA showed superior diagnostic performance and offered a new tool for detecting ASFV infections in the future. KEY POINTS: • Two chemiluminescence immunoassay (plate-type CLIA and tubular CLIA) methods based on p72 monoclonal antibody (mAb) were developed to detect ASFV antibody. • Both methods show good diagnostic performance (Dsn (100%), Dsp (99.6%), and good repeatability), and p72-MPCLIA detects antibodies against ASFV p72 with high efficiency in just 15 min.
Collapse
Affiliation(s)
- Chun Miao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Sicheng Yang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shenghui Wen
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yunyun Ma
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
32
|
Huang T, Li F, Xia Y, Zhao J, Zhu Y, Liu Y, Qian Y, Zou X. African Swine Fever Virus Immunosuppression and Virulence-Related Gene. Curr Issues Mol Biol 2024; 46:8268-8281. [PMID: 39194705 DOI: 10.3390/cimb46080488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
African swine fever virus (ASFV), a highly contagious pathogen characterized by a complex structure and a variety of immunosuppression proteins, causes hemorrhagic, acute, and aggressive infectious disease that severely injures the pork products and industry. However, there is no effective vaccine or treatment. The main reasons are not only the complex mechanisms that lead to immunosuppression but also the unknown functions of various proteins. This review summarizes the interaction between ASFV and the host immune system, along with the involvement of virulence-related genes and proteins, as well as the corresponding molecular mechanism of immunosuppression of ASFV, encompassing pathways such as cGAS-STING, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Janus Kinase (JAK) and JAK Signal Transducers and Activators of Transcription (STAT), apoptosis, and other modulation. The aim is to summarize the dynamic process during ASFV infection and entry into the host cell, provide a rational insight into development of a vaccine, and provide a better clear knowledge of how ASFV impacts the host.
Collapse
Affiliation(s)
- Tao Huang
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangtao Li
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yingju Xia
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Junjie Zhao
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yuanyuan Zhu
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yebing Liu
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yingjuan Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingqi Zou
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
33
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Su G, Yang X, Lin Q, Su G, Liu J, Huang L, Chen W, Wei W, Chen J. Fangchinoline Inhibits African Swine Fever Virus Replication by Suppressing the AKT/mTOR/NF-κB Signaling Pathway in Porcine Alveolar Macrophages. Int J Mol Sci 2024; 25:7178. [PMID: 39000284 PMCID: PMC11241579 DOI: 10.3390/ijms25137178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.
Collapse
Affiliation(s)
- Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guoming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jinyi Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Wenkang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
35
|
Li X, Hu Z, Tian X, Fan M, Liu Q, Wang X. A suitable sampling strategy for the detection of African swine fever virus in living and deceased pigs in the field: a retrospective study. Front Vet Sci 2024; 11:1419083. [PMID: 38988987 PMCID: PMC11234165 DOI: 10.3389/fvets.2024.1419083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
African swine fever (ASF) is a fatal disease that threatens the health status of the swine population and thus can impact the economic outcome of the global pig industry. Monitoring the ASF virus (ASFV) is of utmost concern to prevent and control its distribution. This study aims to identify a suitable sampling strategy for ASFV detection in living and deceased pigs under field conditions. A range of samples, comprising tissues obtained from deceased pigs, as well as serum and tonsil swab samples from live pigs, were gathered and subjected to detection using the qPCR method. The findings revealed that the mandibular lymph nodes demonstrated the highest viral loads among superficial tissues, thereby indicating their potential suitability for detecting ASFV in deceased pigs. Additionally, the correlations between virus loads in various tissues have demonstrated that tonsil swab samples are a viable specimen for monitoring live pigs, given the strong associations observed with other tissues. These findings indicated two dependable sample types for the detection of ASFV: mandibular lymph nodes for deceased pigs and tonsil swabs for live pigs, which supply some references for the development of efficacious preventive measures against ASFV.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
| | - Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- College of Animal Science, Xichang University, Xichang, China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Mingyu Fan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Qingyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
36
|
Zhang D, Jiang S, Xia N, Zhang J, Liu A, Deng D, Zhang C, Sun Y, Chen N, Kang X, Pan Z, Zheng W, Zhu J. Development of visual detection of African swine fever virus using CRISPR/LwCas13a lateral flow strip based on structural protein gene D117L. Vet Microbiol 2024; 293:110073. [PMID: 38579481 DOI: 10.1016/j.vetmic.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
African swine fever virus (ASFV) is a large double stranded DNA arbovirus that is highly contagious and seriously endangers domestic and wild pigs. In the past decade, African swine fever (ASF) has spread in many countries in the Caucasus, Russian Federation, Eastern Europe and Asia, causing significant losses to the pig industry. At present, there is a lack of effective vaccine and treatment for ASF. Therefore, the rapid and accurate detection is crucial for ASF prevention and control. In this study, we have developed a portable lateral flow strip (LFS) detection mediated by recombinase polymerase amplification (RPA) and CRISPR/LwCas13a, which is performed at 37 ℃ and visualized by eyes without the need for complex instruments. This RPA-LwCas13a-LFS is based on the ASFV structural protein p17 gene (D117L), with a detection sensitivity up to 2 gene copies. This method is highly specific and has no cross reactivity to 7 other pig viruses. In the detection of two batches of 100 clinical samples, the p17 (D117L) RPA-LwCas13a-LFS had 100% coincidence with conventional quantitative PCR (qPCR). These findings demonstrate the potential of this simple, rapid, sensitive, and specific ASFV detection method for on-site ASFV detection.
Collapse
Affiliation(s)
- Desheng Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Sen Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Nengwen Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiajia Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Anjing Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Dafu Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chenyang Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Yuxin Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Xilong Kang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
37
|
Wu YC, Lai HX, Li JM, Fung KM, Tseng TS. Discovery of a potent inhibitor, D-132, targeting AsfvPolX, via protein-DNA complex-guided pharmacophore screening and in vitro molecular characterizations. Virus Res 2024; 344:199359. [PMID: 38521505 PMCID: PMC10995865 DOI: 10.1016/j.virusres.2024.199359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections. In this study, a comprehensive approach involving pharmacophore-based inhibitor screening, coupled with biochemical and biophysical analyses, were implemented to identify, characterize, and validate potential inhibitors targeting AsfvPolX. The constructed pharmacophore model, Phar-PolX-S, demonstrated efficacy in identifying a potent inhibitor, D-132 (IC50 = 2.8 ± 0.2 µM), disrupting the formation of the AsfvPolX-DNA complex. Notably, D-132 exhibited strong binding to AsfvPolX (KD = 6.9 ± 2.2 µM) through a slow-on-fast-off binding mechanism. Employing molecular modeling, it was elucidated that D-132 predominantly binds in-between the palm and finger domains of AsfvPolX, with crucial residues (R42, N48, Q98, E100, F102, and F116) identified as hotspots for structure-based inhibitor optimization. Distinctively characterized by a 1,2,5,6-tetrathiocane with modifications at the 3 and 8 positions involving ethanesulfonates, D-132 holds considerable promise as a lead compound for the development of innovative agents to combat ASFV infections.
Collapse
Affiliation(s)
- Yi-Chen Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40202, Taiwan
| | - Hui-Xiang Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40202, Taiwan
| | - Ji-Min Li
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Kit-Man Fung
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40202, Taiwan.
| |
Collapse
|
38
|
Yuan C, Duan Y, Li X, Zhang Y, Cao L, Feng T, Ge J, Wang Q, Zheng H. Transcriptional and ultrastructural changes of macrophages after african swine fever virus infection. Vet Microbiol 2024; 293:110074. [PMID: 38603982 DOI: 10.1016/j.vetmic.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
African swine fever (ASF) is a highly impactful infectious disease in the swine industry, leading to substantial economic losses globally. The causative agent, African swine fever virus (ASFV), possesses intricate pathogenesis, warranting further exploration. In this study, we investigated the impact of ASFV infection on host gene transcription and organelle changes through macrophage transcriptome sequencing and ultrastructural transmission electron microscopy observation. According to the results of the transcriptome sequencing, ASFV infection led to significant alterations in the gene expression pattern of porcine bone marrow derived macrophages (BMDMs), with 2404 genes showing upregulation and 1579 genes downregulation. Cytokines, and chemokines were significant changes in the expression of BMDMs; there was significant activation of pattern recognition receptors such as Toll-like receptors and Nod-like receptors. According to the observation of the ultrastructure, mitochondrial damage and mitochondrial autophagy were widely present in ASFV-infected cells. The reduced number of macrophage pseudopodia suggested that virus-induced structural changes may compromise pathogen recognition, phagocytosis, and signal communication in macrophages. Additionally, the decreased size and inhibited acidification of secondary lysosomes in macrophages implied suppressed phagocytosis. Overall, ASFV infection resulted in significant changes in the expression of cytokines and chemokines, accompanied by the activation of NLR and TLR signaling pathways. We reported for the first time that ASFV infection led to a reduction in pseudopodia numbers and a decrease in the size and acidification of secondary lysosomes.
Collapse
Affiliation(s)
- Cong Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yueyue Duan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangtong Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Tao Feng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Qi Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
39
|
Zhai W, Huang Y, He Y, Chu Y, Tao C, Pang Z, Wang Z, Zhu H, Jia H. Immunogenicity Analysis and Identification of Potential T-Cell Epitopes in C129R Protein of African Swine Fever Virus. Microorganisms 2024; 12:1056. [PMID: 38930438 PMCID: PMC11205686 DOI: 10.3390/microorganisms12061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The highly conserved C129R protein of AFSV was utilized in the development of an ASFV recombinant adenovirus vaccine, demonstrating strong immunogenicity. In this study, we immunized 6-week-old female C57BL/6J mice via subcutaneous injection with 10 μg of purified C129R protein. Humoral and cellular immune effects were assessed using ELISA, flow cytometry, and ELISpot assays. Additionally, 19 peptides of the C129R protein were synthesized and screened for the use of bioinformatics. Positive T-cell epitopes were screened using ELISpot. The results indicated a higher proportion of CD4+ and CD8+ T lymphocytes in immunized mice compared to control mice. ELISA analysis revealed a serum titer of approximately 1:1, 638, 400 in the experimental group of mice. Additionally, peptides C11(53-61aa), C14(81-89aa), C16(97-105aa), and C18(116-124aa) from the C129R protein were able to activate mice spleen lymphocytes to produce IFN-γ. These findings suggest that the C129R protein significantly enhances both humoral and cellular immunity in immunized mice. Moreover, peptides C11, C14, C16, and C18 may serve as potential T-cell epitopes for the C129R protein. These results lay the groundwork for the further exploration of ASFV C129R protein and the identification of novel ASF vaccine antigens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (W.Z.); (Y.H.); (Y.H.); (Y.C.); (C.T.); (Z.P.); (Z.W.); (H.Z.)
| |
Collapse
|
40
|
Manessis G, Frant M, Podgórska K, Gal-Cisoń A, Łyjak M, Urbaniak K, Woźniakowski G, Denes L, Balka G, Nannucci L, Griol A, Peransi S, Basdagianni Z, Mourouzis C, Giusti A, Bossis I. Label-Free Detection of African Swine Fever and Classical Swine Fever in the Point-of-Care Setting Using Photonic Integrated Circuits Integrated in a Microfluidic Device. Pathogens 2024; 13:415. [PMID: 38787267 PMCID: PMC11124021 DOI: 10.3390/pathogens13050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Swine viral diseases have the capacity to cause significant losses and affect the sector's sustainability, a situation further exacerbated by the lack of antiviral drugs and the limited availability of effective vaccines. In this context, a novel point-of-care (POC) diagnostic device incorporating photonic integrated circuits (PICs), microfluidics and information, and communication technology into a single platform was developed for the field diagnosis of African swine fever (ASF) and classical swine fever (CSF). The device targets viral particles and has been validated using oral fluid and serum samples. Sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device, and PCR was the reference method employed. Its sensitivities were 80.97% and 79%, specificities were 88.46% and 79.07%, and DOR values were 32.25 and 14.21 for ASF and CSF, respectively. The proposed POC device and PIC sensors can be employed for the pen-side detection of ASF and CSF, thus introducing novel technological advancements in the field of animal diagnostics. The need for proper validation studies of POC devices is highlighted to optimize animal biosecurity.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| | - Maciej Frant
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Anna Gal-Cisoń
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Magdalena Łyjak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Kinga Urbaniak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Grzegorz Woźniakowski
- Department of Infectious, Invasive Diseases and Veterinary Administration, Faculty of Biological and Veterinary Sciences, Nicolas Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland;
| | - Lilla Denes
- Department of Pathology, University of Veterinary Medicine Budapest, Istvan Str. 2, 1078 Budapest, Hungary; (L.D.); (G.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Istvan Str. 2, 1078 Budapest, Hungary; (L.D.); (G.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary
| | - Lapo Nannucci
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università Degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n Building 8F, 46022 Valencia, Spain;
| | - Sergio Peransi
- DAS Photonics SL, Camino de Vera, s/n, Building 8F 2nd-Floor, 46022 Valencia, Spain;
| | - Zoitsa Basdagianni
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| | - Christos Mourouzis
- Cyprus Research and Innovation Centre Ltd. (CyRIC), 28th Octovriou Ave 72, Off. 301, Engomi, 2414 Nicosia, Cyprus; (C.M.); (A.G.)
| | - Alessandro Giusti
- Cyprus Research and Innovation Centre Ltd. (CyRIC), 28th Octovriou Ave 72, Off. 301, Engomi, 2414 Nicosia, Cyprus; (C.M.); (A.G.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| |
Collapse
|
41
|
Gao Q, Xu Y, Feng Y, Zheng X, Gong T, Kuang Q, Xiang Q, Gong L, Zhang G. Deoxycholic acid inhibits ASFV replication by inhibiting MAPK signaling pathway. Int J Biol Macromol 2024; 266:130939. [PMID: 38493816 DOI: 10.1016/j.ijbiomac.2024.130939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
African swine fever (ASF) is an acute, febrile, highly contagious infection of pigs caused by the African swine fever virus (ASFV). The purpose of this study is to understand the molecular mechanism of ASFV infection and evaluate the effect of DCA on MAPK pathway, so as to provide scientific basis for the development of new antiviral drugs. The transcriptome analysis found that ASFV infection up-regulated the IL-17 and MAPK signaling pathways to facilitate viral replication. Metabolome analysis showed that DCA levels were up-regulated after ASFV infection, and that exogenous DCA could inhibit activation of the MAPK pathway by ASFV infection and thus inhibit viral replication. Dual-luciferase reporter assays were used to screen the genes of ASFV and revealed that I73R could significantly up-regulate the transcription level of AP-1 transcription factor in the MAPK pathway. Confocal microscopy demonstrated that I73R could promote AP-1 entry into the nucleus, and that DCA could inhibit the I73R-mediated nuclear entry of AP-1, inhibiting MAPK pathway, and I73R interacts with AP-1. These results indicated that DCA can inhibit ASFV-mediated activation of the MAPK pathway, thus inhibiting ASFV replication. This study provides a theoretical basis for research on ASF pathogenesis and for antiviral drug development.
Collapse
Affiliation(s)
- Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Yifan Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Yongzhi Feng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Ting Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Qiyuan Kuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Qinxin Xiang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China.
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China.
| |
Collapse
|
42
|
Huang Y, Zhai W, Wang Z, He Y, Tao C, Chu Y, Pang Z, Zhu H, Jia H. Analysis of the Immunogenicity of African Swine Fever F317L Protein and Screening of T Cell Epitopes. Animals (Basel) 2024; 14:1331. [PMID: 38731330 PMCID: PMC11083013 DOI: 10.3390/ani14091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The African swine fever virus (ASFV) encodes numerous proteins characterized by complex immune escape mechanisms. At present, the structure and function of these proteins, including the F317L protein, have yet to be fully elucidated. In this study, we examined the immunogenicity of the F317L protein. Mice were subcutaneously immunized with the F317L protein using initial and subsequent booster doses, and, at the 28th day post-treatment, we assessed the humoral and cellular immune responses of mice. The F317L protein stimulated production of specific antibodies and activated humoral immune responses. In addition, F317L stimulated the production of large amounts of IFN-γ by splenic lymphocytes, thereby activating cellular immune responses. Using informatics technology, we predicted and synthesized 29 F317L protein T cell epitopes, which were screened using IFN-γ ELISpot. Among these, the F25 (246SRRSLVNPWT255) peptide was identified as having a stronger stimulatory effect than the full-length protein. Collectively, our findings revealed that the ASFV F317L protein can stimulate both strong humoral and cellular immunity in mice, and that the F25 (246SRRSLVNPWT255) peptide may be a potential active T cell epitope. These findings will provide a reference for further in-depth studies of the F317L protein and screening of antigenic epitopes.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Wenzhu Zhai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Yuheng He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
| | - Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Yuanyuan Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
| | - Zhongbao Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| |
Collapse
|
43
|
Jackman JA, Hakobyan A, Grigoryan R, Izmailyan R, Elrod CC, Zakaryan H. Antiviral screening of natural, anti-inflammatory compound library against African swine fever virus. Virol J 2024; 21:95. [PMID: 38664855 PMCID: PMC11046949 DOI: 10.1186/s12985-024-02374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Astghik Hakobyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Rafayela Grigoryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Roza Izmailyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Charles C Elrod
- Natural Biologics Inc, Newfield, NY, 14867, USA.
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia.
| |
Collapse
|
44
|
Petrini S, Brutti A, Casciari C, Calderone D, Pela M, Giammarioli M, Righi C, Feliziani F. High-Pressure Processing of Different Tissue Homogenates from Pigs Challenged with the African Swine Fever Virus. Viruses 2024; 16:638. [PMID: 38675978 PMCID: PMC11053747 DOI: 10.3390/v16040638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
African swine fever (ASF) is a disease that is a growing threat to the global swine industry. Regulations and restrictions are placed on swine movement to limit the spread of the virus. However, these are costly and time-consuming. Therefore, this study aimed to determine if high-pressure processing (HPP) sanitization techniques would be effective against the ASF virus. Here, it was hypothesized that HPP could inactivate or reduce ASF virus infectivity in tissue homogenates. To test this hypothesis, 30 aliquots of each homogenate (spleen, kidney, loin) were challenge-infected with the Turin/83 strain of ASF, at a 10 7.20 median hemadsorption dose (HAD)50/mL. Subsequently, eight aliquots of each homogenate were treated with 600 millipascal (600 MPa) HPP for 3, 5, and 7 min. Six untreated aliquots were used as the controls. Virological results showed a reduction in the viral titer of more than 7-log. These results support the validity of the study hypothesis since HPP treatment was effective in inactivating ASFV in artificially prepared samples. Overall, this study suggests the need for further investigation of other ASFV-contaminated meat products.
Collapse
Affiliation(s)
- Stefano Petrini
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (C.C.); (M.P.); (M.G.); (C.R.); (F.F.)
| | - Andrea Brutti
- SSICA Stazione Sperimentale per l’Industria delle Conserve Alimentari, Fondazione di Ricerca Parma, 43121 Parma, Italy;
| | - Cristina Casciari
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (C.C.); (M.P.); (M.G.); (C.R.); (F.F.)
| | - Davide Calderone
- Associazione Industriali delle Carni e dei Salumi (ASSICA), 20089 Milan, Italy;
| | - Michela Pela
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (C.C.); (M.P.); (M.G.); (C.R.); (F.F.)
| | - Monica Giammarioli
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (C.C.); (M.P.); (M.G.); (C.R.); (F.F.)
| | - Cecilia Righi
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (C.C.); (M.P.); (M.G.); (C.R.); (F.F.)
| | - Francesco Feliziani
- National Reference Centre for Pestiviruses and Asfivirus, Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, Via Gaetano Salvemini, 1, 06126 Perugia, Italy; (C.C.); (M.P.); (M.G.); (C.R.); (F.F.)
| |
Collapse
|
45
|
Muzykina L, Barrado-Gil L, Gonzalez-Bulnes A, Crespo-Piazuelo D, Cerón JJ, Alonso C, Montoya M. Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses. Viruses 2024; 16:505. [PMID: 38675848 PMCID: PMC11054272 DOI: 10.3390/v16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Rapid and early detection of infectious diseases in pigs is important, especially for the implementation of control measures in suspected cases of African swine fever (ASF), as an effective and safe vaccine is not yet available in most of the affected countries. Additionally, analysis for swine influenza is of significance due to its high morbidity rate (up to 100%) despite a lower mortality rate compared to ASF. The wide distribution of swine influenza A virus (SwIAV) across various countries, the emergence of constantly new recombinant strains, and the danger of human infection underscore the need for rapid and accurate diagnosis. Several diagnostic approaches and commercial methods should be applied depending on the scenario, type of sample and the objective of the studies being implemented. At the early diagnosis of an outbreak, virus genome detection using a variety of PCR assays proves to be the most sensitive and specific technique. As the disease evolves, serology gains diagnostic value, as specific antibodies appear later in the course of the disease (after 7-10 days post-infection (DPI) for ASF and between 10-21 DPI for SwIAV). The ongoing development of commercial kits with enhanced sensitivity and specificity is evident. This review aims to analyse recent advances and current commercial kits utilised for the diagnosis of ASF and SwIAV.
Collapse
Affiliation(s)
- Larysa Muzykina
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Lucía Barrado-Gil
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - Antonio Gonzalez-Bulnes
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Daniel Crespo-Piazuelo
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Jose Joaquin Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), University of Murcia, 30100 Murcia, Spain;
| | - Covadonga Alonso
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - María Montoya
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
46
|
Tian P, Sun Z, Wang M, Song J, Sun J, Zhou L, Jiang D, Zhang A, Wu Y, Zhang G. Identification of a novel linear B-cell epitope on the p30 protein of African swine fever virus using monoclonal antibodies. Virus Res 2024; 341:199328. [PMID: 38262569 PMCID: PMC10839582 DOI: 10.1016/j.virusres.2024.199328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
The outbreak of African Swine Fever (ASF) has caused huge economic losses to the pig industry. There are no safe and effective vaccines or diagnostics available. The p30 protein serves as a key target for the detection of ASFV antibodies and is an essential antigenic protein for early serological diagnosis. Here, the p30 protein was purified after being expressed in E. coli and its immunogenicity was verified in sera from pigs naturally infected with ASFV. Furthermore, a monoclonal antibody (McAb) designated as McAb 1B4G2-4 (subtype IgG1/kappa-type) was produced and it was verified to specifically recognize the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV p30 protein. The epitope identified by McAb 1B4G2-4, defining the unique B-cell epitope 164HNFIQTI170, was located using peptide scanning. Comparing amino acid (aa) sequence revealed that this epitope is conserved in all reference ASFV strains from different regions of China, including the highly pathogenic strain Georgia 2007/1 (NC_044959.2) that is widely distributed. It is also exposed to the surface of the p30 protein, suggesting that it could be an important B-cell epitope. Our study may serve as a basis for the development of serological diagnostic methods and subunit vaccines.
Collapse
Affiliation(s)
- Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuoya Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China
| | - Angke Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China.
| |
Collapse
|
47
|
Rajkhowa S, Sonowal J, Pegu SR, Sanger GS, Deb R, Das PJ, Doley J, Paul S, Gupta VK. Natural co-infection of pigs with African swine fever virus and porcine reproductive and respiratory syndrome virus in India. Braz J Microbiol 2024; 55:1017-1022. [PMID: 38041718 PMCID: PMC10920511 DOI: 10.1007/s42770-023-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and African swine fever (ASF) are economically important diseases of pigs throughout the world. During an outbreak, all age groups of animals except piglets < 1 month of age were affected with symptoms of high fever, cutaneous hemorrhages, vomition with blood, diarrhea, poor appetite, ataxia, and death. The outbreak was confirmed by the detection of the N gene of the porcine reproductive and respiratory syndrome virus (PRRSV) and the VP72 gene of the African swine fever virus (ASFV) by PCR in representative blood samples from affected pigs followed by Sanger sequencing. Mixed infection was also confirmed by simultaneous detection of both the viruses using multiplex PCR. Phylogenetic analysis of both the viruses revealed that the outbreak was related to ASFV and PRRSV strains from China which were also closely related to the PRRSV and ASFV strains from the recent outbreak from India. The study confirmed the involvement of genotype II of ASFV and genotype 2 of PRRSV in the present outbreak. Interestingly, PRRSV associated with the present outbreak was characterized as a highly pathogenic PRRSV. Therefore, the present study indicates the possibility of future waves or further outbreaks of these diseases (PRRS and ASF) in this region. This is the first report of ASFV and PRRSV co-infection in pigs from India.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | | | - Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Juwar Doley
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Souvik Paul
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| |
Collapse
|
48
|
Wen Y, Duan X, Ren J, Zhang J, Guan G, Ru Y, Li D, Zheng H. African Swine Fever Virus I267L Is a Hemorrhage-Related Gene Based on Transcriptome Analysis. Microorganisms 2024; 12:400. [PMID: 38399804 PMCID: PMC10892147 DOI: 10.3390/microorganisms12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever (ASF) is an acute and severe disease transmitted among domestic pigs and wild boars. This disease is notorious for its high mortality rate and has caused great losses to the world's pig industry in the past few years. After infection, pigs can develop symptoms such as high fever, inflammation, and acute hemorrhage, finally leading to death. African swine fever virus (ASFV) is the causal agent of ASF; it is a large DNA virus with 150-200 genes. Elucidating the functions of each gene could provide insightful information for developing prevention and control methods. Herein, to investigate the function of I267L, porcine alveolar macrophages (PAMs) infected with an I267L-deleted ASFV strain (named ∆I267L) and wild-type ASFV for 18 h and 36 h were taken for transcriptome sequencing (RNA-seq). The most distinct different gene that appeared at both 18 hpi (hours post-infection) and 36 hpi was F3; it is the key link between inflammation and coagulation cascades. KEGG analysis (Kyoto encyclopedia of genes and genomes analysis) revealed the complement and coagulation cascades were also significantly affected at 18 hpi. Genes associated with the immune response were also highly enriched with the deletion of I267L. RNA-seq results were validated through RT-qPCR. Further experiments confirmed that ASFV infection could suppress the induction of F3 through TNF-α, while I267L deletion partially impaired this suppression. These results suggest that I267L is a pathogenicity-associated gene that modulates the hemorrhages of ASF by suppressing F3 expression. This study provides new insights into the molecular mechanisms of ASFV pathogenicity and potential targets for ASFV prevention and control.
Collapse
Affiliation(s)
- Yuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Xianghan Duan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| |
Collapse
|
49
|
Dodantenna N, Cha JW, Chathuranga K, Chathuranga WAG, Weerawardhana A, Ranathunga L, Kim Y, Jheong W, Lee JS. The African Swine Fever Virus Virulence Determinant DP96R Suppresses Type I IFN Production Targeting IRF3. Int J Mol Sci 2024; 25:2099. [PMID: 38396775 PMCID: PMC10889005 DOI: 10.3390/ijms25042099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
DP96R of African swine fever virus (ASFV), also known as uridine kinase (UK), encodes a virulence-associated protein. Previous studies have examined DP96R along with other genes in an effort to create live attenuated vaccines. While experiments in pigs have explored the impact of DP96R on the pathogenicity of ASFV, the precise molecular mechanism underlying this phenomenon remains unknown. Here, we describe a novel molecular mechanism by which DP96R suppresses interferon regulator factor-3 (IRF3)-mediated antiviral immune responses. DP96R interacts with a crucial karyopherin (KPNA) binding site within IRF3, disrupting the KPNA-IRF3 interaction and consequently impeding the translocation of IRF3 to the nucleus. Under this mechanistic basis, the ectopic expression of DP96R enhances the replication of DNA and RNA viruses by inhibiting the production of IFNs, whereas DP96R knock-down resulted in higher IFNs and IFN-stimulated gene (ISG) transcription during ASFV infection. Collectively, these findings underscore the pivotal role of DP96R in inhibiting IFN responses and increase our understanding of the relationship between DP96R and the virulence of ASFV.
Collapse
Affiliation(s)
- Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - W. A. Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Lakmal Ranathunga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju 62407, Republic of Korea; (Y.K.); (W.J.)
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju 62407, Republic of Korea; (Y.K.); (W.J.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (N.D.); (J.-W.C.); (K.C.); (W.A.G.C.); (A.W.); (L.R.)
| |
Collapse
|
50
|
Pavone S, Iscaro C, Giammarioli M, Beato MS, Righi C, Petrini S, Costarelli S, Feliziani F. Biological Containment for African Swine Fever (ASF) Laboratories and Animal Facilities: The Italian Challenge in Bridging the Present Regulatory Gap and Enhancing Biosafety and Biosecurity Measures. Animals (Basel) 2024; 14:454. [PMID: 38338097 PMCID: PMC10854939 DOI: 10.3390/ani14030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The African Swine Fever Virus (ASFV) is a DNA virus of the Asfarviridae family, Asfivirus genus. It is responsible for massive losses in pig populations and drastic direct and indirect economic impacts. The ever-growing handling of ASFV pathological material in laboratories, necessary for either diagnostic or research activities, requires particular attention to avoid accidental virus release from laboratories and its detrimental economic and environmental effects. Recently, the Commission Delegated Regulation (EU) 2020/689 of 17 December 2019 repealed the Commission Decision of 26 May 2003 reporting an ASF diagnostic manual (2003/422/EC) with the minimum and supplementary requirements for ASF laboratories. This decision generated a regulatory gap that has not been addressed yet. This paper aims to describe the Italian National Reference Laboratory (NRL) efforts to develop an effective and reliable biological containment tool for ASF laboratories and animal facilities. The tool consists of comprehensive and harmonized structural and procedural requirements for ASF laboratories and animal facilities that have been developed based on both current and repealed legislation, further entailing a risk assessment and internal audit as indispensable tools to design, adjust, and improve biological containment measures.
Collapse
Affiliation(s)
- Silvia Pavone
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy; (C.I.); (M.G.); (M.S.B.); (C.R.); (S.P.); (F.F.)
| | - Carmen Iscaro
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy; (C.I.); (M.G.); (M.S.B.); (C.R.); (S.P.); (F.F.)
| | - Monica Giammarioli
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy; (C.I.); (M.G.); (M.S.B.); (C.R.); (S.P.); (F.F.)
| | - Maria Serena Beato
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy; (C.I.); (M.G.); (M.S.B.); (C.R.); (S.P.); (F.F.)
| | - Cecilia Righi
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy; (C.I.); (M.G.); (M.S.B.); (C.R.); (S.P.); (F.F.)
| | - Stefano Petrini
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy; (C.I.); (M.G.); (M.S.B.); (C.R.); (S.P.); (F.F.)
| | - Silva Costarelli
- Animal Health Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy;
| | - Francesco Feliziani
- National Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy; (C.I.); (M.G.); (M.S.B.); (C.R.); (S.P.); (F.F.)
| |
Collapse
|